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Abstract—Individuals make commitments towards others in
order to influence others to behave in certain ways. Most commit-
ments may depend on some incentive that is required to ensure
that the action is in the agent’s best interest and thus, should be
carried out to avoid eventual penalties. Similarly, individuals may
ground their decision on an accurate assessment of the intentions
of others. Hence, both commitments and intention recognition
go side by side in behavioral evolution. Here, we analyze the
role played by the co-evolution of intention recognition plus the
emergence of commitments, in the framework of the evolution
of cooperative behavior. We resort to tools of evolutionary game
theory in finite populations, showing how the combination of
these two aspects of human behavior can enhance the emergent
fraction of cooperative acts under a broad spectrum of configu-
rations.

I. INTRODUCTION

Intention recognition (also called intention reading or under-
standing) is ubiquitous in many kinds of human interactions
and communications, with much documented experimental ev-
idence [1], [2], [3], [4]. Technically, intention recognition can
be defined as a process of becoming aware of the intentions
(or goals) of another agent or a group of other agents, inferring
them through observed actions or effects on the environment
[5], [6], [7], [8], [9], [10]. Intention recognition or intention
reading is so critical for human social functioning and the
development of key human abilities, such as language and
culture, that it might have been shaped by natural selection
[1], [4], [11], [12], [13].

But there are cases where it is difficult, if not impossible,
to recognize the intentions of another agent. It might be your
first interaction with someone in your life, and you have no
information about him/her which can be used for intention
recognition. You also might know someone well, but you still
might have very little relevant information in a given situation
to predict the intentions with high enough confidence. In such
cases, the strategy of proposing a commitment, or manifesting
an intention, can help to impose or clarify intentions of others1.

Moreover, agents make commitments towards others when
they give up options in order to influence others. Most com-

1Intention is choice with commitment [14], [15], [16]. Once an agent
intends to do something, it must settle on some state of affairs for which
to aim, because of its resource limitation and in order to coordinate its future
actions. Deciding what to do established a form of commitment [14], [16].
Proposing a commitment deal to another agent consists in asking it to express
or clarify its intentions.

mitments depend on some incentive that is necessary to ensure
that an action (or even an intention) is in the agent’s interest
and thus will be carried out in the future [17]. As previously,
the capacity for using commitment strategies effectively is so
important that natural selection may have shaped specialized
capacities to make this possible [18], [19], [20], [21], [22],
[23], [24], [25].

One of the commitments we all know is marriage. By giving
up the option to leave someone else, spouses gain security
and an opportunity for a much deeper relationship that would
be impossible otherwise [23], [22], as it might be risky to
assume a partner’s intention of staying faithful without the
commitment of marriage. A contract is another popular kind
of commitment, e.g. for an apartment lease [22]. When it is
risky to assume another agent’s intention of being cooperative,
arranging an appropriate contract provides incentives for co-
operation. However, for example in accommodation rental, a
contract is not necessary when the cooperative intention is of
high certainty, e.g. when the business affair is between close
friends or relatives. It said, arranging a commitment deal can
be useful to encourage cooperation whenever intention recog-
nition is difficult, or cannot be performed with sufficiently
high certainty. On the other hand, arranging commitments is
not free, and requires a specific capacity to set it up within a
reasonable cost (for the agent to actually benefit from it) [23],
[26] — therefore it should be avoided when opportune. In the
case of marriage, partners sometimes choose to stay together
without an official commitment when it might be too costly
(e.g., it could be against parents’ or families’ wish, or it may
need to be in secret because of their jobs) and/or they strongly
trust each other’s faithfulness (e.g., because of emotional
attachment [27], [22]). In short, a combination of the two
strategies, those of commitment and of intention recognition,
seems unavoidable. Nevertheless, intention recognition with-
out actual commitment can be enhanced by costly engagement
gifts, in support of sexual selection and attachment [28], [29].
Furthermore, social emotions can act as ersatz commitment
[27].

Here, we start from a simple model [30] of commitment
formation, characterized by two key parameters: a punishment
cost of failing commitment imposed on either side of a
commitment deal, and the cost of managing it. It has been
shown that, if a strong enough commitment deal can be



arranged, that is, with a small enough management cost and
a large enough punishment cost, cooperation can emerge in a
population of selfish agents.

On top of that model, using the tools of Evolutionary Game
Theory (EGT) [31], [32], [33], [34], we show that combining
intention recognition and commitment strategies in a reason-
able way can lead to the emergence of improved cooperation,
not able to be achieved solely by either strategy. Our study
seeks what is a reasonable combination of commitment and
intention recognition.

We shall do so in the setting of the Prisoner’s Dilemma
(PD), a well-known game-theoretical framework to study the
evolution of cooperation within populations of self-interested
agents [35], [32], [36], [37] 2. In an interaction, each player
has two options – to cooperate (C) or to defect (D) –, whereas
defection is the dominant option, as it is always better to
defect in one-shot interaction. Both players, if rational, will
choose to defect, while they would be better off seeking mutual
cooperation instead, thus leading to both the decrease of social
welfare and individuals’ fitness.

It will be seen from our model that, in most of the cases,
there is a wide range of combination of the intention recogni-
tion and commitment strategies, which leads to a strategy that
performs better than either strategy solely – in the sense that
the population spends more time in the homogeneous state of
agents using that strategy [38], [39]. Our results suggest that,
if one can recognize intentions of others with high enough
confidence or certainty, one should rely more on it, especially
when it is difficult to reach to a conceivably strong commit-
ment deal. It helps to avoid the unnecessary cost of arranging
and managing the deal. That is, in a transparent world where
people have nothing to hide from each other, contracts are
unnecessary. On the other hand, when intention recognition
with high precision is difficult (due to, e.g. environment noise,
agents have great incentives to hide intentions, or there is
not enough observed actions), one should rely more on the
commitment strategy, particularly if a reasonable deal can be
envisaged.

The remainder of the paper is structured as follows. In
Section II, we introduce the model of commitment, on top
of which we integrate the co-evolution of commitment and
intention recognition. In this section, we also describe the EGT
methods to be used for analyzing our model. In Section III,
we provide analytical and computer simulations obtained from
our model. In Section IV, some discussions on the implication
of the results are provided. The paper ends by proffering some
concluding remarks.

II. MODELS AND METHODS

A. Models

We first summarize the commitment variant of the Prisoner’s
Dilemma, then we describe our model for the combination of
intention recognition and commitment.

2There are other social dilemmas such as the Stag Hunt and the Chicken
Game [37], but the Prisoner’s Dilemma is known to represent one of the most
difficult or fierce environments for cooperation to emerge.

1) Commitment variant of the Prisoner’s Dilemma: Let
us consider a commitment variant of the Prisoner’s Dilemma
game in which a new type of cooperator (denoted by COM C)
that, before each interaction, asks the co-player whether it
commits to cooperate. If the co-player does not so commit,
there is no interaction. Both players get 0. Otherwise, if
the co-player commits, they then go on to play with each
other in the present interaction. If the co-player keeps to its
commitment, both players obtain the reward payoff, R. Note
that here we do not yet take into account execution noise
(see, e.g., [37]), i.e. the agents might mis-implement their
intended choice, from cooperate to defect or vice versa. Thus,
COM C will never mis-implement the intended commitment
choice, all the more so because commitment always entails
an initial cost, thus being no point in proposing commitment
when not intending to honor it. The payoffs of the commitment
PD game, as we shall see, would make such bluffing players
inevitably worse off. Otherwise (if the co-player fails its
commitment), the proposing or focal player obtains the sucker
payoff, S, and its co-player obtains the temptation payoff, T .
However, the one that fails the commitment, whatever the
player, will suffer a penalty cost for its non-defecting co-
player to get a compensation. For simplicity, it is assumed
that these two amounts are equal, denoted by δ. This cost
can be a real monetary one, e.g., in the form of prior debit
(e.g., in the case of accommodation rental) or of a punishment
cost (e.g., commitment was performed in terms of a legal
contract, and the one who fails commitment must pay a penalty
cost), or an imaginary abstract value, e.g., public spread of
good/bad reputation (bad reputation for the one that fails, and
sympathy for the other), or even emotional suffering [23], [17],
[40], [21]. How this cost is set up depends on the types of
commitment at work, or the reason for which the commitment
is believed to become fulfilled [41], [40], [30].

Two players that defect in an interaction obtain the pun-
ishment payoff, P . As usual, for the Prisoner’s Dilemma, the
payoff entries satisfy the ordering, T > R > P > S, whereas
the four possible outcomes can be written down as a payoff
matrix ( C D

C R,R S, T
D T, S P, P

)
.

For setting up a commitment, the proposer must pay a small
cost, ε. The cost of proposing and setting up the commitment
might be high, but it is reasonable to assume that this cost is
very small compared to the mutual benefit of a cooperation
strategy guaranteeing commitment, ε << R.

We consider a finite population of constant size, consisting
of four strategies: COM C (as described above), C (always
cooperates, without proposing a commitment deal), D (always
defects, and does not commit when being asked to), and
D COM (always defects, though commits when being asked
to). In [30], it is shown analytically and by computer simula-
tions that COM C dominates the population if the punishment
cost δ is large enough compared to the management cost ε,



thereby leading to the emergence of cooperation.
In each round, two random players are chosen from the

population for an interaction. For the row player, the (average)
payoff matrix reads

M1 =


COM C C D D COM

COM C R− ε/2 R− ε −ε S + δ − ε
C R R S S
D 0 T P P
D COM T − δ T P P

.
(1)

2) Combination of intention recognition and commitment:
We provide a new strategy, IRCOM, which combines the two
strategies, those of intention recognition and commitment. In
an interaction, IRCOM recognizes the intention (cooperates
or defects) of its co-player [12]. A confidence level, cl,
is assigned to the recognition result. It defines the degree
of confidence (here in terms of probability) that IRCOM
predicts the co-player’s intention correctly 3. In general, cl
follows some probability distribution. As in a real intention
recognition problem, the distribution should depend on the
intention recognition method at work (how efficient it is),
the environment IRCOM lives in (is it supportive for gath-
ering relevant information for the recognition process, e.g.
observability of co-players’ direct and indirect interactions,
perception noise, population structure), etc. For example, we
can consider different distributions satisfying that the longer
IRCOM survives, the more precisely or confidently it performs
intention recognition; or, considering the repeated interaction
setting in the framework of the iterated PD, the more IRCOM
interacts with its co-player, the better it can recognize the co-
player’s intention (see intention recognition models for the
iterated PD in [13], [12]).

We model cl by a continuous random variable X with
probability density function f(x, U), where U is a vector
characterizing the factors that might influence cl, including
the efficiency of the intention recognition model at work, the
environmental factors (e.g., noise, population structure), and
the interaction setting (repeated, one-shot, etc.).

If IRCOM is confident enough about the intention recog-
nition process and result, that is cl is greater than a given,
so-called, confidence threshold θ ∈ [0, 1], then in the current
interaction IRCOM cooperates if the recognized intention of
the co-player is to cooperate, and defects otherwise. The
prediction is wrong with probability (1−cl). For simplicity, we
assume that the prediction is a (continuous) random variable,
Y , uniformly distributed in [0, 1]. Hence, the probability that
IRCOM utilizes intention recognition, but with an incorrect
and correct prediction, respectively, can be written as joint

3In AI, the problem of intention recognition has been paid attention for
several decades, and the main stream is that of probabilistic approaches [6],
[7], [42], [43], [44]. They tackle the problem by assigning probabilities to
conceivable intentions (conditional on the current observations), based on
which the intentions are ranked. Similarly to [43], [44], [45], in our model,
a degree of confidence in terms of a probability measure, is assigned to
intentions.

probability distributions [46, Chapter 1] [47]

pic = P (X > θ, Y < 1−X) =
∫ +∞

θ

∫ 1−x

−∞
f(x, U)dy dx,

(2)

pc = P (X > θ, Y > 1−X) =
∫ +∞

θ

∫ +∞

1−x
f(x, U)dy dx.

(3)
If cl ≤ θ, i.e. IRCOM is not confident enough about its
intention prediction, it behaves the same as COM C (see
above). The greater θ is, the more cautious IRCOM is about
its intention recognition result. Obviously, if θ = 1, IRCOM
behaves identically to COM C ; and if θ = 0, IRCOM behaves
identically to a (pure) intention recognizer [12], [13] (see
Figure 1).

We now replace COM C with IRCOM, considering a
population of four strategies, IRCOM, C, D, and D COM.
For the row player, the (average) payoff matrix reads

M = θM1 +M2 (4)

where M2 is the payoff matrix when IRCOM utilizes the
intention recognition strategy, i.e. in the case cl > θ. To derive
M2, we consider the case that cl has a uniform distribution
in the interval [0, 1], i.e. f(x, U) = 1 for x ∈ [0, 1] and 0
otherwise. Note that, on average, this can be considered as the
distribution of a very inefficient intention recognition model
because the confidence level or precision is a random number
uniformly drawn from [0, 1]. As the prediction of the co-
player’s intention is only between two options, cooperate and
defect, a random choice prediction already has a confidence
level of 0.5.

Computing the integrals in Eqs. (2) and (3), we obtain: pic =
(1− θ) 1−θ

2 and pc = (1− θ) 1+θ
2 . Hence,

M2 = (1− θ)


m11 m12 m13 m14

m21 R S S
m31 T P P
m41 T P P

 (5)

where
m11 = 1

4

[
P (1− θ)2 + (S + T )(1− θ)(1 + θ) +R(1 + θ)2

]
;

m12 = 1
2 [T (1−θ)+R(1+θ)]; m13 = 1

2 [S(1−θ)+P (1+θ)];
m14 = 1

2 [S(1−θ)+P (1+θ)]; m21 = 1
2 [S(1−θ)+R(1+θ)];

m31 = 1
2 [T (1−θ)+P (1+θ)]; m41 = 1

2 [T (1−θ)+P (1+θ)].

The main subject of the following analysis is to address,
given the payoff entries of the PD, and the parameters of
the commitment deal IRCOM can manage, how confident
about the intention recognition result IRCOM should be in
order to make a decision, without relying on the commitment
proposing strategy. That is, if there is an optimal value of θ
for an IRCOM to gain greatest net benefit.

B. Methods

Our analysis will be based on evolutionary game theory
methods for finite populations [48], [38]. In the context of
evolutionary game theory, the individuals’ or agents’ payoff
represents their fitness or social success. The dynamics of



strategy change in a population is governed by social learning,
that is, the most successful agents will tend to be imitated by
the others. There are many ways to model social learning [32],
[37], [49]. Adopting one of the most frequently used ones,
we shall consider the so-called pairwise comparison rule [50],
which assumes that an agent A with fitness fA adopts the
strategy of another agent B with fitness fB with probability
given by

1
1 + e−β(fB−fA)

,

where β controls the ‘imitation strength’, i.e., how strongly
the agents are basing the decision to imitate on fitness com-
parisons. For β = 0, we obtain the limit of neutral drift – the
imitation decision is random. For large β, imitation becomes
increasingly deterministic.

In the absence of mutations, the end states of evolution
are inevitably monomorphic: once such a state is reached,
imitation cannot produce any change. We thus further assume
that, with a certain mutation probability µ > 0 (also dubbed
the exploration rate [51]), an agent switches randomly to
a different strategy without imitating any other agent. The
resulting Markov Chain has a stationary distribution, which
characterizes the average time the population spends in each
of these monomorphic end states. Yet, for arbitrary exploration
rates and number of strategies, stationary distributions are
often cumbersome to compute [39], [34], [52].

Fortunately, in the case of small exploration or mutation
rates, analytical computation of this stationary distribution can
conveniently be computed [53], [38], [39], [20]. The small
exploration rates guarantee that any newly occurred mutant
in a homogeneous population will fixate or become extinct
long before the occurrence of another mutation. Hence, the
population will always consist of at most two strategies in
co-presence. This allows one to describe the evolutionary
dynamics of our population in terms of a reduced Markov
Chain, whose size is equal to the number of strategies being
considered (which is 4 in our case), and each state represents
a possible monomorphic end state of the population associated
with one of the strategies. The transitions between states are
defined by the fixation probabilities of a single mutant of one
strategy in a homogeneous population of individuals adopting
another strategy.

More precisely, let N be the size of the population. Suppose
there are at most two strategies in the population, say, k agents
using strategy A (0 ≤ k ≤ N ) and (N − k) agents using
strategy B. Thus, the (average) payoff of the agent that uses
A or uses B can be written as follows, respectively,

ΠA(k) =
(k − 1)πA,A + (N − k)πA,B

N − 1

ΠB(k) =
kπB,A + (N − k − 1)πB,B

N − 1

(6)

where πX,Y stands for the payoff an agent using strategy X
obtained in an interaction with another agent using strategy
Y , given by the payoff matrix (4).
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Figure 1: Frequency of each strategy as a function of confidence
threshold, θ. Symbols indicate results from computer simulations
(averaged over 107 interactions for each pair of strategies), and
dashed curves show the exact numerical results (see Methods).
In a population of IRCOM, COM D, C, and D individuals,
for large enough θ, the population spends most of the time in
the homogeneous state of IRCOM. The performance of IRCOM
decreases when θ is too high. It implies that IRCOM should not
be too cautious about its intention recognition capacity, i.e. not
be too careful to always propose commitment instead of believing
in its intention recognition result. Parameters: δ = 4; ε = 0.05;
payoff entries, T = 2, R = 1, P = 0, S = −1; population size,
N = 100; imitation strength, β = 0.1.

Now, the probability to change, by ±1, the number k of
agents using strategy A at each time step can be written as

T±(k) =
N − k
N

k

N

1
1 + e∓β[ΠA(k)−ΠB(k)]

. (7)

The fixation probability of a single mutant with a strategy A
in a population of (N − 1) agents using B is given by [50],
[54], [53], [38], [39]

ρB,A =
1

1 +
∑N−1
i=1

∏i
j=1

T−(j)
T+(j)

. (8)

In the limit of neutral selection (β = 0), T−(j) = T+(j) ∀j.
Thus, ρB,A = 1/N . Considering a set {1, ..., q} of different
strategies, these fixation probabilities determine a transition
matrix M = {Tij}qi,j=1, with Tij,j 6=i = ρji/(q − 1) and
Tii = 1−

∑q
j=1,j 6=i Tij , of a Markov Chain. The normalized

eigenvector associated with the eigenvalue 1 of the transposed
of M provides the stationary distribution described above [54],
[53], [38], [39], describing the relative time the population
spends adopting each of the strategies.
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Figure 2: Frequency of IRCOM as a function of confidence threshold, θ. (a) We plot for different values of management cost, ε. In a population of
IRCOM, COM D, C, and D individuals, for large enough θ and small enough ε, the population spends most of the time in the homogeneous state
of IRCOM. The smaller ε, the better the performance of IRCOM. The performance of IRCOM decreases when θ is too high, and the greater ε,
the more significant the decrease is. It implies that the more costly the management of the commitment deal, the more beneficial it is to rely on
intention recognition. (b) We plot for different values of punishment cost, δ. In a population of IRCOM, COM D, C, and D individuals, for large
enough θ and large enough δ, the population spends most of the time in the homogeneous state of IRCOM. The greater δ, the better the performance
of IRCOM. The performance of IRCOM decreases when θ is too high, and the decrease is more significant when δ is smaller. It implies that the
weaker the commitment deal can be arranged, the more beneficial it is to rely on intention recognition alone more often. Parameters: δ = 4 in
panel (a) and ε = 0.05 in panel (b); payoff entries, T = 2, R = 1, P = 0, S = −1; population size, N = 100; imitation strength, β = 0.1.
The results are computed numerically (see Methods).

III. RESULTS

To start with, we compute the stationary distributions analyt-
ically and resorting to agent-based simulations (see Methods
and Figure 1). The results show that, for a large range of
θ, IRCOM performs better than COM C (i.e. IRCOM with
θ = 1), whereas the population spends most of the time in the
homogenous state of IRCOM. However, when the confidence
threshold is low, defection becomes dominant. This said, when
the intention recognition is not of high enough certainty—that
is, IRCOM is not confident enough about whether its co-player
intends to cooperate or to defect in the current interaction—
it would be better off counting on the commitment strategy
(this also can be observed in several different configurations
in Figure 2).

In Figure 2, we analyze the influence of the strength
of the commitment deal which can be arranged, on how
the intention recognition and commitment strategies can be
combined appropriately. Note that the greater the punishment
cost, δ, and the smaller the management cost, ε, the stronger
the commitment deal. Namely, in Figure 2a, fixing δ, we plot
for different values of management cost, ε. The performance
of IRCOM decreases when θ is too high, and the decrease is
more dramatic when ε is greater. It means that the costlier the

management of the commitment deal, the more beneficial it is
to rely on intention recognition. Next, in Figure 2b, fixing
ε, we plot for different values of punishment cost, δ. The
performance of IRCOM decreases when θ is too high, and
the decrease is more dramatic when δ is smaller. In short,
these results imply that the weaker the commitment deal can
be arranged, the more beneficial it is to rely on intention
recognition.

So far the model has been studied with respect to a very
inefficient intention recognition model, where cl is uniformly
distributed in [0, 1]. It is not surprising that the performance of
the intention recognition strategy solely—which corresponds
to IRCOM with θ = 0 (see Figure 1)—is very poor (Figures
1 and 2). In the sequel, let us study the model using more
efficient intention recognition models.

We consider different probability distributions of the con-
fidence level cl, reflecting different levels of efficiency or
precision of the intention recognition model at work, given
the relevant factors (noise, environment factors, interaction
settings, etc.) (Figure 3). Namely, in an increasing order of
efficiency, cl is uniformly drawn from intervals [0, 1], [0.5, 1],
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Figure 3: Frequency of IRCOM as a function of confidence threshold, θ, in a population of IRCOM, COM D, C, and D individuals. We consider
different probability distributions of the confidence level cl, reflecting the efficiency or precision of the intention recognition model at work, given
the relevant factors (noise, environment, etc.). Namely, cl is uniformly drawn from [0, 1], [0.5, 1], [0.7, 1], and [0.9, 1]. The results show that if a
strong commitment deal can be arranged (panel a), it is better to rely on the commitment strategy using a high enough confidence threshold—even
when the intention recognition model is very efficient, while it is more beneficial to rely, even exclusively, on the intention recognition strategy
if it is efficient enough, in the case that only weak commitment deals can be arranged (panel b). Parameters: ε = 0.05, δ = 4 (panel a) and
ε = 0.5, δ = 2 (panel b); payoff entries, T = 2, R = 1, P = 0, S = −1; population size, N = 100; imitation strength, β = 0.1; The payoff
matrices in all cases are derived by averaging 107 interactions of each pair of strategies. The results are computed numerically (see Methods).

[0.7, 1], and [0.9, 1] 4 . The results show that, whenever the
intention recognition model is efficient enough, the intention
recognition strategy solely (i.e. IRCOM with θ = 0) performs
quite well, complying with the results obtained in [12], [13],
where concrete intention recognition models are deployed.

However, when a quite strong commitment deal can be
envisaged (Figure 3a), arranging it can still glean some evo-
lutionary advantage. But in case that only weak commitment
deals can be arranged (Figure 3b), it is then more beneficial
to rely, even exclusively, on the intention recognition strategy
should it be efficient enough.

IV. DISCUSSION

A general implication of our analysis is that an appropriate
combination of the two strategies of commitment and intention

4In the context of iterated interactions (e.g. in the framework of the iterated
Prisoner’s Dilemma), these levels of efficiency can be achieved (on average)
by considering large enough numbers of interactions between two players (or
high enough probabilities of a next interaction or ‘the shadow of future’ [36],
[37]), given that the noise is small enough. Normally, the more an intention
recognizer interacts with a fixed co-player, the better it predicts its co-player’s
intention. For example, this holds for the two intention recognition models
described in [12], [13]. Furthermore, in [55], the authors present experimental
evidence showing that, in a one-shot PD, subjects of only brief acquaintance
were able to recognize players with an intention to defect with more than
twice chance accuracy.

recognition often leads to a strategy that performs better
than either one solely. It is advantageous to rely on the
intention recognition strategy (when reaching sufficiently high
confidence about its result) because it helps to avoid the cost of
arranging and managing commitment deals, especially when
no strong deals can be arranged or envisaged. This result has a
similar implication to that obtained in [56], where the authors
show that overconfidence might give evolutionary advantage
to its holders. In our model, an IRCOM can gain extra net
benefit if it is a little overconfident (that is, when using suf-
ficiently small θ), taking risk to rely on intention recognition
result instead of arranging some commitment deal. Differently,
because in our model IRCOM is further guaranteed by an
efficient strategy of commitment, being over-overconfident
(that is, using too small θ) and relying exclusively on inten-
tion recognition might prevent it from opportunely gaining
benefit from the commitment strategy—especially in case the
intention recognition model at work is not efficient. It said, the
performance of overconfident individuals [56] can be enhanced
by relying on the commitment strategy when they need to
muster overly high courage (say, in order to decide to claim
some resource).

In the framework where intention recognition is difficult
and of high risk, for example, climate change negotiation [57],



[58], [52], military setting (comprising a lot of bluffing) [41],
[59], and international relationships [60], our model suggests
arranging a strong commitment deal.

V. CONCLUSION

Assume simply that we are given an intention recognition
method, that affords us a degree of confidence distribution
cl about its predictions, with regard to the intentions of
others, and hence their future actions, typically on the basis
of their seen actions and surrounding historical and present
circumstances. Assume too some commitment model is given
us about providing mutual assurances, and involving an initial
cost and a penalty for defaulting.

We have shown how to combine together one such general
intention recognition method, with a specific commitment
model defined for playing the Prisoner’s Dilemma (PD), in
the setting of Evolutionary Game Theory (EGT), by means of
a single payoff matrix extended with a new kind of player,
IRCOM, which chooses whether to go by the result of its
intention recognition method about a co-player’s next move,
or to play by the commitment strategy, depending on whether
its level of confidence on the intention prediction cl exceeds or
not some a given confidence threshold θ. Our results indicate
that IRCOM is selected by evolution for a broad range of
parameters and confidence thresholds.

Then we have studied, for a variety of cl and θ, in the
context of PD in EGT, how IRCOM performs in the presence
of other well-known non-committing strategies (always coop-
erate, C, and always defect, D) – plus the strategy that commits
when being asked to, but always defects, D COM. Analytical
and simulation results show under which circumstances, for
different cl and θ, and distinct management and punishment
costs, ε and δ, that the new combined strategy IRCOM proves
advantageous and to what degree. And indeed IRCOM proves
to be adaptably advantageous over those other strategies, in
all circumstances, for a quite small confidence level onwards.

Much remains to be done with respect to further consider-
ation of combining the two strategies of intention recognition
and commitment. The two go often together, and not just
in the basic way we have examined. Indeed they are the
two sides of the same coin, one side being an attempt to
identify an intention, the other side being a manifestation of
an intention. For one, we only considered the case where
intention recognition comes first in order to decide on a
commitment proposal. But in general, once a commitment is
made, intention recognition is a paramount method to follow
up on whether the commitment will be honored, on the basis
of detecting or not the intermediate actions leading up to
commitment fulfillment. Social organizations rely on these
mechanisms to structure themselves. Furthermore, the infor-
mation about commitments can be used to enhance intention
recognition.

It seems to us that intention recognition, and its use in the
scope of commitment, is a foundational cornerstone where we
should begin at, naturally followed by the capacity to establish

and honor commitments, as a tool towards the successive con-
struction of collective intentions and social organization [61],
[62]. Finally, one hopes that understanding these capabilities
can be useful in the design of efficient self-organized and
distributed engineering applications [63], from bio and socio-
inspired computational algorithms to swarms of autonomous
robotic agents.
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