
Under consideration for publication 1

Extended Tight Semantics for Logic Programs

Luís Moniz Pereira and Alexandre Miguel Pinto
Centro de Inteligência Artificial (CENTRIA)

Departamento de Informática, Faculdade de Ciências e Tecnologia,
Universidade Nova de Lisboa, 2829-516 Caparica, Portugal

E-mail: lmp|amp@di.fct.unl.pt

Abstract

We define the Tight Semantics (TS), a new semantics for all NLPs complying with the
requirements of: 2-valued semantics; preserving the models of SM; guarantee of model ex-
istence (even in face of odd loops over negation or infinite chains); relevance; cumulativity;
and compliance with the Well-Founded Model. We also extend TS to adumbrate ELPs
and Disjunctive LPs, though a full account of these is left to other papers.
When complete models are unnecessary, and top-down querying (à la Prolog) is desired,
TS provides the 2-valued option that guarantees model existence, as a result of its rele-
vance property. Top-down querying with abduction by need is rendered available too by
TS. The user need not pay the price of computing whole models, nor of generation all
possible abductions, only to filter irrelevant ones subsequently.
In a nutshell, a TS model of a NLP P is any minimal model M of P that further satisfiesbP—the program remainder of P—in that each loop in bP has a minimal model contained
in M, whilst respecting the constraints imposed by the minimal models of the other loops
so-constrained too.
The applications afforded by TS are all those of Stable Models, which it generalizes, plus
those permitting to solve OLONs for model existence, plus those employing OLONs for
productively obtaining problem solutions, not just filtering them (like ICs).

KEYWORDS: Normal Logic Programs, Relevance, Cumulativity, Stable Models, Well-
Founded Semantics, Program Remainder.

1 Introduction and Motivation

The semantics of Stable Models (SM) (Gelfond and Lifschitz 1988) is a cornerstone
for some of the most important results in logic programming of the past three
decades, providing increased logic programming declarativity and a new paradigm
for program evaluation. When needing to know the 2-valued truth-value of all lit-
erals in a normal logic program (NLP) for the problem being solved, the solution
is to produce complete models. In such cases, tools like SModels (Niemelä and Si-
mons 1997) or DLV (Citrigno et al. 1997) may be adequate enough, as they can
indeed compute finite complete models according to the SM semantics and its ex-
tensions to Answer Sets (Lifschitz and Woo 1992) and Disjunction. However, lack
of some important properties of the base SM semantics, like relevance, cumula-
tivity and guarantee of model existence—enjoyed by, say, Well-Founded Semantics



2 L. M. Pereira and A. M. Pinto

(Gelder et al. 1991) (WFS)—somewhat reduces its applicability and practical ease
of use when complete models are unnecessary, and top-down querying (à la Prolog)
would be sufficient. In addition, abduction by need top-down querying is not an op-
tion with SM, creating encumbrance in required pre- and post-processing, because
needless full abductive models are generated. The user should not pay the price of
computing whole models, nor that of generating all possible abductions and then
filtering irrelevant ones, when not needed. Finally, one would like to have available
a semantics for that provides a model for every NLP.

WFS in turn does not produce 2-valued models though these are often desired,
nor does it guarantee 2-valued model existence.

To overcome these limitations, we present the Tight Semantics (TS), a new 2-
valued semantics for NLPs which guarantees model existence; preserves the models
of SM; enjoys relevance and cumulativity; complies with the WFM; and is extend-
able to explicit negation and disjunction. TS also deals with infinite chains (Fages
1994), and, we shall see, is easily extended to deal with Disjunctive Logic Programs
(DisjLPs) and Extended Logic Programs, by means of the shifting rule and other
well-known program transformations (Dix et al. 1996; Gelfond et al. 1991; Alferes
et al. 1993), proffering an alternative to SM-based Answer-Set Programming.

TS supersedes our previous RSM semantics (Pereira and Pinto 2005), which we
have recently found wanting in capturing our intuitively desired models in some
examples, and because TS relies on a clearer, simpler way of tackling the difficult
problem of assigning a semantics to every NLP while affording the aforementioned
properties, via adapting better known formal LP methods than RSM’s reductio ad
absurdum stance.

In a nutshell, a TM of an NLP P is any minimal model M of P that further
satisfies P̂—the program remainder of P—in that each loop in P̂ has a minimal
model contained in M, whilst respecting the constraints imposed by the minimal
models of the other loops so-constrained too.

A couple of examples bring out the need for a semantics supplying all NLPs with
models, and permitting models otherwise eliminated by odd loops over default
negation (OLONs):

Example 1
Jurisprudential reasoning. A murder suspect not preventively detained is likely
to destroy evidence, and in that case the suspect shall be preventively detained:

likely_destroy_evidence(suspect) ← not preventive_detain(suspect)
preventive_detain(suspect) ← likely_destroy_evidence(suspect)

There is no SM, and a single TM = {preventive_detain(suspect)}. This ju-
risprudential reasoning is carried out without need for a suspect to exist now.
Should we wish, TS’s cumulativity allows adding the model literal as a fact.

Example 2
A joint vacation problem. Three friends are planning a joint vacation. First
friend says “I want to go to the mountains, but if that’s not possible then I’d rather
go to the beach”. The second friend says “I want to go traveling, but if that’s not



Extended Tight Semantics for Logic Programs 3

possible then I’d rather go to the mountains”. The third friend says “I want to go to
the beach, but if that’s not possible then I’d rather go traveling”. However, traveling
is only possible if the passports are OK. They are OK if they are not expired, and
they are expired if they are not OK. We code this information as the NLP:

beach ← not mountain

mountain ← not travel

travel ← not beach, passport_ok

passport_ok ← not expired_passport

expired_passport ← not passport_ok

The first three rules contain an odd loop over default negation through beach,
mountain, and travel; and the rules for passport_ok and expired_passport form
an even loop over default negation. Henceforth we will abbreviate the atoms’ names.
This program has a single SM: {e_p, m}. But looking at the rules relevant for
p_ok we find no irrefutable reason to assume e_p to be true. TS semantics allows
p_ok to be true, yielding three other models besides the SM: TM1 = {b, m, p_ok},
TM2 = {b, t, p_ok}, and TM3 = {t, m, p_ok}.

The even loop has two minimal models: {p_ok} and {e_p}. Assuming the first
minimal model, the odd loop has three minimal models corresponding to TM1,
TM2, and TM3 above. Assuming the second minimal model (where e_p is true),
the odd loop has only one minimal model: the SM mentioned above {e_p, m}, also
a TM.

The applications afforded by TS are all those of SM, plus those requiring solving
OLONs for model existence, and those where OLONs are employed for the produc-
tion of solutions, not just used as Integrity Constraints (ICs). Model existence is
essential in applications where knowledge sources are diverse (like in the semantic
web), and where the bringing together of such knowledge (automatically or not)
can give rise to OLONs that would otherwise prevent the resulting program from
having a semantics, thereby brusquely terminating the application. A similar situ-
ation can be brought about by self-, mutual- and external updating of programs,
where unforeseen OLONs would stop short an ongoing process. Coding of ICs via
odd loops, commonly found in the literature, can readily be transposed to IC coding
in TS, as explained in the sequel.

Paper structure. After background notation and definitions, we usher in the
desiderata for TS, and only then formally define TS, exhibit examples, and prove its
properties. Subsequently, we proffer extensions to cover both Extended as well as
Disjunctive Logic Programs. Conclusions, future and ongoing topics, and reference
to similar work close the paper.

2 Background Notation and Definitions

Definition 1
Normal Logic Program. A Normal Logic Program (NLP) P is a (possibly
infinite) set of logic rules, each of the form H ← B1, . . . , Bn, not C1, . . . , not Cm



4 L. M. Pereira and A. M. Pinto

where H, the Bi and the Cj are atoms, and each rule stands for all its ground
instances. H is the head of the rule, denoted by head(r), and body(r) denotes set
{B1, . . . , Bn, not C1, . . . , not Cm} of all the literals in the body of r. heads(P )
denotes {head(r) : r ∈ P}. Throughout, ‘not ’ signals default negation. Abusing
notation, we write not S to denote {not s : s ∈ S}. If the body of a rule is empty,
we say its head is a fact and may write the rule just as H.

Throughout too, we consider minimal models of programs, and write MMP (M)
to denote M is a minimal model of P . When both MMP (M) and M ⊆ heads(P )
hold, then MN denotes the union of M with the negations of heads of P absent in
M ; i.e., MN = M ∪ not (heads(P ) \M). We dub MN a completed minimal model
of P .

Definition 2
Rule dependencies. Given a normal logic program P build a dependency graph
G(P ) such that the rules of P are the nodes of G(P ), and there is an arc, labeled
“positive”, from a node r2 to a node r1 if head(r2) appears in the body of r1; or
labeled “negative” if not head(r2) appears in the body of r1.

We say a rule r1 directly depends on r2 (written as r1 ← r2) iff there is a direct
arc in G(P ) from r2 to r1. By transitive closure we say r1 depends on r2 (r1 � r2)
iff there is a path in G(P ) from r2 to r1.

Dependencies through default negation play a major role in the sequel and so we
also need to define the following: we say a rule r1 directly depends negatively on
r2 (written as r1 ← −r2) iff not head(r2) appears in the body of r1. By transitive
closure we say r1 depends negatively on r2 (r1 � −r2) iff r1 directly depends
negatively on r2 or r1 depends on some r3 which directly depends negatively on r2.

Definition 3
RelP (a) — Relevant part of NLP P for the positive literal a. The Relevant
part of a NLP P for some positive literal a, RelP (a) is defined as

RelP (a) =
⋃
{r, r′ ∈ P : r � r′ ∧ head(r) = a}

Intuitively, the relevant part of a program for some atom a is just the set of rules
with head a and the rules relevant for each atom in the body of the rules for a. I.e.,
the relevant part is the set of rules in the call-graph for a.

Definition 4
Loop in P . We say a subset PL of rules of P is a loop iff for every two rules r1 and
r2 in PL there is a path from r1 to r2 and vice-versa. I.e., ∀r1,r2∈PL

r1 � r2∧r2 � r1.
We write Loop(PL) to denote that PL is a Loop.

Definition 5
Program Remainder (Brass et al. 2001). The program remainder P̂ is ob-
tained by a polynomial time complexity program transformation from P . P̂ is guar-
anteed to exist for every NLP, and is computed by applying to P the positive re-
duction (which deletes the not b from the bodies of rules where b has no rules), the



Extended Tight Semantics for Logic Programs 5

negative reduction (which deletes rules that depend on not a where a is a fact), the
success (which deletes facts from the bodies of rules), and the failure (which deletes
rules that depend on atoms without rules) transformations, and then eliminating
also the unfounded sets (Gelder et al. 1991) via a loop detection transformation.
The loop detection is computationally equivalent to finding the Strongly Connected
Components (SCCs) (Tarjan 1972) in the G(P ) graph, as per definition 2, and is
known to be of polynomial time complexity.

Definition 6
Program Division. Let P be an NLP and I ⊆ heads(P )∪not heads(P ) a consis-
tent interpretation of P . P : I denotes the subset of P remaining after performing
this sequence of steps:

1. delete rules with not a in the body where a ∈ I – similar to negative reduction
2. delete all a in the bodies of rules where a ∈ I – similar to success
3. delete all not a in the bodies of rules where not a ∈ I

The rationale behind program division is to obtain the subset of P remaining
after considering all literals in M true. Step 1 eliminates the rules of P which are
already satisfied (in a classical way) by the literals in M . Step 2 is similar to success
but deletes all positive literals a from the bodies of rules where a ∈ I. Step 3 is a
negative counterpart of step 2; one could dub it negative success. Thus, steps 2 and
3 are slightly more credulous that the original success.

3 Desiderata

Intuitively desired semantics. Usually, both the default negation not and the
← in rules of Logic Programs reflect some asymmetry in the intended minimal
models, e.g., in a program with just the rule a← not b, although it has two minimal
models: {a}, and {b}, the only intended one is {a}. This is afforded by the syntactic
asymmetry of the rule, reflected in the one-way direction of the ←, coupled with
the intended semantics of default negation. Thus, a fair principle underlying the
rationale of a reasonable semantics would be to accept an atom in a model only if
there exist rules in a program, at least one, with it as head. This principle rejects
{b} as a model of program a← not b.

When rules form loops, the syntactic asymmetry disappears and, as far as the
loop only is concerned, minimal models can reflect the intended semantics of the
loop. That is the case, e.g., when we have just the rules a← not b and b← not a;
both {a} and {b} are the intended models. However, loops may also depend on other
literals with which they form no loop. Those asymmetric dependencies should have
the same semantics as the single a← not b rule case described previously.

So, on the one side, asymmetric dependencies should have the semantics of a sin-
gle a← not b rule; and the symmetric dependencies (of any loop) should subscribe
to the same minimal model semantics as the a← not b and b← not a set of rules.
Intuitively, a good semantics should cater for both the symmetric and asymmetric
dependencies as described.



6 L. M. Pereira and A. M. Pinto

Desirable formal properties. By design, our TS benefits from number of desir-
able properties of LP semantics (Dix 1995), namely: guarantee of model existence;
relevance; and cumulativity. We recapitulate them here for self-containment. Guar-
antee of model existence ensures all programs have a semantics. Relevance permits
simple (object-level) top-down querying about truth of a query in some model (like
in Prolog) without requiring production of a whole model, just the part of it sup-
porting the call-graph rooted on the query. Formally:

Definition 7
Relevance. A semantics Sem for logic programs is said Relevant iff for every
program P , a ∈ Sem(P )⇔ a ∈ Sem(RelP (a)).

Relevance ensures any partial model supporting the query’s truth can always be
extended to a complete model; relevance is of the essence to abduction by need, in
that only abducibles in the call-graph need be considered for abduction.

Cumulativity signifies atoms true in the semantics can be added as facts without
thereby changing it; thus, lemmas can be stored. Formally:

Definition 8
Cumulativity. A semantics Sem is Cumulative iff the semantics of P remains
unchanged when any atom true in the semantics is added to P as a fact:

Cumulative(Sem)⇔ ∀P∀a,b_a ∈ Sem(P ) ∧ b ∈ Sem(P )⇒ a ∈ Sem(P ∪ {b})

Neither of these three properties are enjoyed by Stable Models, the de facto
standard semantics for NLPs. The core reason SM semantics fails to guarantee
model existence for every NLP is that the stability condition it imposes on models
is impossible to be complied with by Odd Loops Over Negation (OLONs), i.e. those
comprising an odd number of default negations.

Example 3
Stable Models semantics misses Relevance and Cumulativity.

c← not c c← not a

a← not b b← not a

This program’s unique SM is {b, c}. However, P ∪ {c} has two SMs {a, c}, and
{b, c} rendering b no longer truein the SM semantics, which is the intersection of
its models. SM semantics lacks Cumulativity. Also, though b is true in P according
to SM semantics, b is not true in RelP (b) = {a ← not b; b ← not a}, shows SM
semantics lacks Relevance.

An OLON is a loop with an odd number of “negative” arcs as in definition 2. In
fact, the SM semantics community uses that inability as a means to impose ICs,
such as a← not a, X, where the OLON over a prevents X from being true in any
model.

TS goes beyond the SM standard, not just because in complying with all the
above 3 properties, but also in being a model conservative extension of the SMs
semantics, in this sense: A semantics is a model conservative extension of another
when it provides at least the same models as the latter, for programs where the lat-
ter’s are defined, and further provides semantics to programs for which the latter’s



Extended Tight Semantics for Logic Programs 7

are not defined. Another way of couching this is: new desired models are provided
which the semantics being extended was failing to produce, but all the latter’s
produced ones are nevertheless provided by the model-conservative extension.

While encompassing the above properties, TS still respects the Well-Founded
Model like SM does: every TS model complies with the true and the false atoms in
the WFM of a program. Formally:

Definition 9
Well-Founded Model of a Normal Logic Program P . Following (Brass et al.
2001), the true atoms of the Well-Founded Model of P (the irrefutably true atoms of
P ) are the facts of P̂ , the remainder of P (their definition 5.17). Moreover, the true
or undefined literals of P are just the heads of rules of P̂ ; and that the computation
of P̂ can be done in polynomial time. Thus, we shall write WFM+(P ) to denote
the set of facts of P̂ , and WFM+u(P ) to denote the set of heads of rules of P̂ .
Also, since the false atoms in the Well-Founded Model of P are just the atoms of
P with no rules in P̂ , we write WFM−(P ) to denote those false atoms.

Definition 10
Interpretation M of P respects the WFM of P . An interpretation M respects
the WFM of P iff M contains the set of all the true atoms of the WFM of P , and
it contains no false atoms of the WFM of P . Formally:

RespectWFMP (M)⇔WFM+(P ) ⊆M ⊆WFM+u(P )

TS’s WFM compliance, besides keeping with SM’s compliance (i.e. the WFM
approximates the SM), is important to TS for a specific implementation reason too.
Since WFS enjoys relevance and polynomial complexity, one can use it to obtain top-
down—in present day tabled implementations—the residual or remainder program
that expresses the WFM, and then apply TS to garner its 2-valued models, foregoing
the need to generate complete models.

TS provides semantics to all NLPs. For program a ← not a, the only Tight
Model (TM) is {a}. In the TS, OLONs are not ICs. ICs are enforced employing
rules for the special atom falsum, of the form falsum← X, where X is the body
of the IC one wishes to prevent being true. This does not preclude falsum from
figuring in some models. From a theoretical standpoint it means the TS semantics
does not a priori include an in-built IC compliance mechanism. ICs can be dealt
with in two ways, either by (1) a syntactic post-processing step, as a model “test
stage” after their “generate stage”; or by (2) embedding IC compliance in the query-
driven computation, whereby the user conjoins query goals with not falsum. If
inconsistency examination is desired, like in case (1), models including falsum can
be discarded a posteriori. Thus, TS clearly separates OLON semantics from IC
compliance, and frees OLONs for a wider knowledge representation usage.

4 Tight Semantics

The rationale behind tightness follows the intuitively desired semantics principles
described in section 3. On the one side any Tight Model M is necessarily a mini-



8 L. M. Pereira and A. M. Pinto

mal model of P̂ which guarantees that no atoms with no rules are in M . This is in
accordance with the principle of intuitively desired semantics for asymmetric depen-
dencies, and is also what guarantees that Tight Models respect the Well-Founded
Model, as proved in the sequel. On the other, implementing the intuitively desired
semantics for symmetric dependencies, the Tight Semantics imposes each TM to
have the internal loop congruency of tightness: the semantics for each loop is its
minimal models, as long as a chosen minimal model for it be compatible (via pro-
gram division) with the model for the whole program, while the rest ML of the
original model M is itself Tight.

Definition 11
Tight Model. Let P be an NLP, and M a minimal model of P̂ , such that MN

is a completed minimal model of P . Let P̂L denote a Loop(P̂L) strictly contained
in P̂ ; and given MM bPL

(ML), let ML denote (M \ML)∪ {ML ∩ heads(P : MLN
)}.

We say M is tight in P — TightP (M) — iff

∃P̂L ⇒ ∃ML : MLN
⊆MN ∧ TightP :MLN

(ML)

The Tight Semantics of P — TS(P ) — is the intersection of all its Tight Models.

Example 4
Mixed loops 1. Let P be

a← k k ← not t t← a, b

a← not b b← not a

P̂ coincides with P , so its minimal models are M1 = {a, k} with M1N
= {a, not b, k,

not t}; M2 = {a, t} with M2N
= {a, not b, not k, t}; and M3 = {b, t} with M3N

=
{not a, b, not k, t}. Of these, only M1N

and M3N
are Tight. M1 in particular is

also a Stable Model. To see that M2N
is not Tight notice that there are three

loops in P : PL1 = {a ← not b; b ← not a}, PL2 = {a ← k; k ← not t; t ← a, b},
PL3 = {a ← k; k ← not t; t ← a, b; b ← not a}. The minimal models of PL1 are
ML11 = {a} with ML11N

= {a, not b}, and ML12 = {b} with ML12N
= {not a, b}.

Dividing P by ML11N
we get P : ML11N

= {a← k; k ← not t; t← b}. ML11
is now

({a, t} \ {a}) ∪ {{a} ∩ heads({a← k; k ← not t; t← b})} = {t} ∪ {a} = {a, t}. But
{a, t} is not Tight in P : ML11N

since it is not even a minimal model of it.

Example 5
Difference between TS and RSM semantics. Let P be

a← not b, c

b← not c, not a

c← not a, b

TS accepts both M1 = {a} and M2 = {b, c} as tight models, whereas the RSM
semantics (Pereira and Pinto 2005) only accepts M1. Neither are stable models.



Extended Tight Semantics for Logic Programs 9

Example 6
Mixed loops 2. Let P be

a← not b

b← not c, e

c← not a

e← not e, a

In this case, TS, like the RSM semantics, accepts all minimal models: M1 = {a, b, e},
M2 = {a, c, e}, and M3 = {b, c}.

Example 7
Quasi-Stratified Program. Let P be

d← not c

c← not b

b← not a

a← not a

The unique TS is {a, c}, and there are no Stable Models. In this case it is quite
easy to see how the Tightness works: {a} is necessarily the unique minimal model
of a ← not a. Dividing the whole program by {a} we get {d ← not c; c ← not b}.
Its unique TM is {c} providing the global model {a, c} together with the {a} model
for a← not a.

5 Properties of the Tight Semantics

Forthwith, we prove some properties of TS, namely: guarantee of model existence,
relevance, cumulativity, model-conservative extension of SMs, and respect for the
Well-Founded Model. The definitions involved are to be found in section 3.

Theorem 1
Existence. Every Normal Logic Program has a Tight Model.

Proof
Let P be an NLP. P̂ is guaranteed to exist. So too are minimal models of any given
NLP, in particular, for P̂ too. If P̂ has no loops, then every minimal model of P̂

is trivially Tight. In particular, if P̂ has no loops it means P̂ is stratified and the
unique Tight Model is its unique minimal model.

Consider now P̂ has loops, and that PL is any such loop in P̂ . Assume P̂ has no
TMs. In this case, for every PL there is no ML ⊆MLN

such that TightP :MLN
(ML)

holds. Since for every PL it is always possible to compute an ML and its respective
MLN

, the tightness condition must fail because TightP :MLN
(ML) fails. But any PL

which does not depend on any other rule outside PL is unaffected by any program
division P : ML′

N
where ML′ is a minimal model of some other PL′ . Hence the

hypothetical failure of tightness in holding of ML in P : MLN
must be because all

MLs of all PL are not Tight in some PL′′′ = PL′′ ∪PL such that PL depends on PL′′

and vice-versa. I.e., for all ML of PL, TightPL′′′ :MLN
(ML) must not hold. Since it is



10 L. M. Pereira and A. M. Pinto

always possible to compute ML = (M \ML) ∪ {ML ∩ heads(PL′′′ : MLN
)} it must

be the case that for every ML′′ of each PL′′ , ML′′ ∪ML is not a consistent minimal
model of PL′′ ∪PL, which is an absurdity because consistent minimal models of any
given program are always guaranteed to exist.

Theorem 2
Relevance of Tight Semantics. The Tight Semantics is relevant.

Proof
According to definition 7 a semantics Sem is relevant iff a ∈ Sem(P ) ⇔ a ∈
Sem(RelP (a)) for all atoms a. Since the TS of a program P — TS(P ) — is the
intersection of all its TMs, relevance becomes a ∈ TS(P ) ⇔ a ∈ TS(RelP (a)) for
TS.
⇒: We assume a ∈ TS(P ), so we can take any M such that TMP (M) holds, and

conclude a ∈ M . Assuming, by contradiction, that a /∈ TS(RelP (a)) then there is
at least one TM of RelP (a) where a is false. Let us write Ma to denote such TM
of RelP (a) where a /∈ Ma. Since all TMs of P are minimal models of P̂ we have
two possibilities: 1) a is a fact in P̂ — in this case there is a rule (a fact) for a

and hence this fact rule is in RelP (a) forcing a ∈Ma; 2) a is not a fact in P̂ — by
definition of Tight Model a can be in M only if a is the head of a rule and there is
some minimal model ML ⊆ M of a loop PL ⊆ P such that a ∈ ML. Since a must
be the head of a rule in loop, that loop is, by definition, in RelP (a). Since M is
Tight in P , by definition so must be each and every of its subset minimal models
of loops; i.e., a ∈Ma.
⇐: Assume a ∈ TS(RelP (a)). Take the whole P ⊇ RelP (a). Again, a will be in

every TM of P because a is in all TMs of RelP (a), and, by definition, every TM of
P always contains one TM of RelP (a).

Theorem 3
Cumulativity of Tight Semantics. The Tight Semantics is cumulative.

Proof
By definition 11, the semantics of a program P is the intersection of its TMs.
So, a ∈ TS(P ) ⇔ ∀TMP (M)a ∈ M . For the TS semantics cumulativity becomes
expressed by ∀a,b(a ∈ TS(P ) ∧ b ∈ TS(P ))⇒ a ∈ TS(P ∪ {b})

Let us assume a ∈ TS(P ) ∧ b ∈ TS(P ). Since both a ∈ TS(P ) and b ∈ TS(P ),
we know that whichever TM M and ML ⊆M such that a ∈ML, b ∈ TS(P : MLN

)
holds; and in that case P : MLN

= (P ∪ {a}) : MLN
. Hence, b ∈ TS(P ∪ {a}).

Theorem 4
Stable Models Extension. Any Stable Model is a TM of P .



Extended Tight Semantics for Logic Programs 11

Proof
Assume M is a SM of P . Then M = least(P/M) where the division P/M deletes
all rules with not a in the body where a ∈ M , and then deletes all remaining
not b from the bodies of rules. The program division P : M performs exactly the
same step as the P/M one, but then only deletes the not b such that not b ∈MN .
Moreover, the P/M division is performed using the whole M at once, whilst the
P : M considers not the whole M but only partial MLN

s of M . Tightness requires
consistency amongst the several individual MLN

s whilst the M = least(P/M)
stability condition requires consistency throughout the whole M . We can thus say
the division P/M performs all the steps the P : M division does, and then some.
In this sense the M = least(P/M) stability condition demands from M all that
Tightness does and even more. Hence, a model passing the stability condition is
bound to be also a Tight Model.

Theorem 5
Tight Semantics respects the Well-Founded Model. Every Tight Model of
P respects the Well-Founded Model of P — ∀M :TMP (M)RespectWFMP (M).

Proof
Take any TM M of P . Since all TMs are minimal models of P̂ , M must contain all
the facts of P̂ , i.e., M ⊇WFM+(P ). Also minimal models of P̂ are bound to be a
subset of the heads of rules of P̂ , hence M ⊆WFM+u(P ).

Due to lack of space, the complexity analysis of this semantics is left out of this
paper. Nonetheless, a brief note is due. Tight Model existence is guaranteed for
every NLP, whereas finding if there are any SMs for an NLP is NP-complete. Brave
reasoning — finding if there is any model of the program where some atom a is true
— is an NP-hard task. But since TS enjoys relevance, the computational scope of
this task can be reduced to consider only RelP (a), instead of the whole P . From
a practical standpoint, this can have a significant impact in the performance of
concrete applications. By the same token, cautious reasoning (finding out if some
atom a is in all models) in the TS should have the complementary complexity of
brave reasoning: co-NP-complete.

A current avenue of further work already being taken follows the line of thought
we laid out in (Pereira and Pinto 2009b) by partitioning an NLP into layers, a
generalization of strata, to further segment the program and thus reduce the com-
binatorics of the Tightness test. Although not reducing the theoretical complexity
class of the Tightness test, in practical implementations the syntactical partitioning
of layering can have a substantial impact on performance.

6 Tight Semantics Extensions

We indicate next how TS can be extended to ELPs and Disjunctive LPs. A full
account of these extensions is left for specific papers.



12 L. M. Pereira and A. M. Pinto

Extended Logic Programs. Extended Logic Programs (ELPs) are NLPs where
explicit negation is allowed (also in the heads of rules), besides default negation. In
general, an extended logic rule can take the form H ← B1, . . . , Bn, not C1, . . . , not Cm

where H, the Bi and the Cj are literals which can be either an atom A or its explicit
negation ¬A.

TS can be applied “as-is” to ELPs, like it is usually done, simply by treating explic-
itly negated literals as regular atoms that extend the program’s language. Of course,
contradicitons might arise from both H and ¬H being derived from rules. When
such situations occur, TS effortlessly and requiring no change to its base definition,
yields paraconsistent models. Note, however, that such paraconsistent models ap-
pear (only and) whenever paraconsistencies arise from the rules. In case there are
no contradicitons stemming from the extended logic rules, no paraconsistent mod-
els will appear. Moreover, it might be the case that in a paraconsistent model only
some literals are paraconsistent—i.e. those literals (or their explicitly negated com-
plements) depending through relevance on contradictory rule conclusions—whilst
others not. Naturally, if one wants to avoid paraconsistency altogether, a simple
well-known method to ensure it is rule semi-normalization (Janhunen 1999).

Disjunctive Logic Programs. Disjunctive Logic Programs (DisjLPs) are just
NLPs where the heads of rules can now contain the disjunction of several atoms;
i.e., the rules can take the form h1 ∨ . . . ∨ hp ← b1, . . . , bn, not c1, . . . , not cm

The reduction of DisjLPs to NLPs has been studied before and the shifting rule
solution proposed in (Dix et al. 1996; Gelfond et al. 1991) is commonly accepted as
a good one. For self-containment we include here the definition of the shifting rule.

Definition 12
Shifting rule (Dix et al. 1996; Gelfond et al. 1991). Let

r = h1 ∨ . . . ∨ hp ← b1, . . . , bn, not c1, . . . , not cm

be a disjunctive logic rule. The shifting rule is a rewrite rule transforming r to:

h1 ← b1, . . . , bn, not c1, . . . , not cm, not h2, . . . , not hp

. . . ← . . .
hp ← b1, . . . , bn, not c1, . . . , not cm, not h1, . . . , not hp−1

Taking advantage of the shifting rule, we define the TS for DisjLPs as consisting
simply of the TS of the NLP obtained by applying the shifting rule in full to every
disjunctive logic rule. Because TS deals with all loops, there are hence no restrictions
on how many or what shiftings can be applied, as has been the case in prior uses of
shifting rule which impose, say, guarantee transform stratification. TS thus opens
the way for a fuller use of the shifting rule in LPs.

7 Conclusions, Future and Ongoing Topics, and Similar Work

Having defined a more general 2-valued semantics for LPs much remains in store,
and to be explored and reported, in the way of properties, complexity, comparisons,



Extended Tight Semantics for Logic Programs 13

implementation, and applications. We hope the concepts and techniques newly in-
troduced here might be adopted by other logic programming semantics approaches
and systems.

Conclusions. We defined TS, a semantics for all NLPs complying with the ex-
press requirements of: 2-valued semantics, preserving the models of SM, guarantee
of model existence (even in face of odd loops over negation or infinite chains), rele-
vance, cumulativity, and WFM respect. We have seen how TS extends to adumbrate
ELPs and Disjunctive LPs, but a full account of these extensions must be left for
other papers.
In a nutshell, a TS model of a NLP P is any minimal model M of P that further
satisfies P̂—the program remainder of P—in that each loop in P̂ has a minimal
model contained in M, whilst respecting the constraints imposed by the minimal
models of the other loops so-constrained too.

The applications afforded by TS are all those of SM, which it generalizes, plus
those requiring solving OLONs for model existence, and those where OLONs actu-
ally are employed for the production of problem solutions, not just filtering them
like ICs. Guarantee of model existence is essential in applications where knowledge
sources are diverse (like in the semantic web), and where the bringing together of
such knowledge (automatically or not) can give rise to OLONs that would oth-
erwise prevent the resulting program from having a semantics, thereby brusquely
terminating the application. A similar situation can be brought about by self- and
mutually-updating programs, including in the learning setting, where unforeseen
OLONs would stop short an ongoing process if the SM semantics were in use.

Relevancy condones top-down querying and avoids the need to compute whole
models. It also permits abduction by need, avoiding much useless consideration of
irrelevant abducibles.

That TS includes the SM semantics and that it always exists and admits top-
down querying is a novelty making us look anew at 2-valued semantics use in KRR,
contrasting its use to other semantics employed heretofore for KRR, even though
SM has already been compared often enough (Baral 2003).

Future and Ongoing Topics. TS’s implementation, because of its relevance
property, may avoid the need to compute complete models, and its apodictic need
for groundness, and the difficulties it begets for problem representation. Work un-
der way concerns the efficient implementation of TS at XSB-Prolog engine level.
Nevertheless, a meta-interpreter implementation is already available. XSB is the
appropriate vehicle since it implements the WFS, allows for relevance compliant
top-down querying, and produces the program remainder of the query. The lat-
ter’s strongly connected components (SCCs) are akin to our loops, and tightness
can be applied to glean from them their TS 2-valued models. To that effect, we
first had to perfect incremental answer completion at the engine level in the SLG-
WAM in (Swift et al. 2009). Our meta-interpreter approach relies on XSB-XASP
(Castro et al. 1999) to send to Smodels (Niemelä and Simons 1997) a duly mas-
saged program remainder, where odd loops are duly and appropriately replaced via



14 L. M. Pereira and A. M. Pinto

a program transformation, in order to generate TS’s 2-valued models, employing
techniques described in (Pereira and Pinto 2009c). The program remainder is cal-
culated by XSB for a specific given query. XSB actually calls it the query residual
because when it was first implemented it actually computed the residual, not the
remainder. It is only after our inclusion of the Answer Completion (Swift et al.
2009) component in XSB’s engine that one is certain that the query remainder is
what gets computed. Still, the old query residual nomenclature is used in XSB.

One topic of future work consists in defining partial model schemas that can
provide answers to queries in terms of abstract non-ground model schemas encom-
passing several instances of ground partial models. Abstract partial models, instead
of fully ground ones, may be produced directly by the remainder — a subject for
further investigation.

Yet another topic of future work is the definition of a Well-Founded Tight Se-
mantics (WFTS), foreseeably a partial model contained in the intersection of the all
TMs that extends the WFM by deterministically resolving all length 1 odd loops
over default negation whilst respecting tightness. Floating conclusions are disal-
lowed by this definition, as no non-determinism is involved. Incidental to this topic
is the relationship of the WFTS to O-semantics (Pereira et al. 1994). It is apparent
that TS extends the latter.

Similar Work. In (Pereira and Pinto 2005) we defined a 2-valued semantics –the
Revised Stable Models–based on a reductio ad absurdum, that guarantees existence
of a model for every Normal Logic Program, enjoys relevance, cumulativity, respect
for the WFM, and is a model-conservative extension to SM, in that every stable
model is a RSM one. Its main drawback is definitely that its definition is hard to
grasp and understand, and hence we strived to provide equivalent argumentation-
based and layer-based reconstructions.

In (Pereira and Pinto 2007), we introduced the Approved Models semantics (AM),
an original 2-valued semantics for Normal Logic Programs (NLPs) extending the
well-known argumentation-based work of Phan Minh Dung on Admissible Argu-
ments and Preferred Extensions (Dung 1995), inspired on the reductio ad absur-
dum approach of the RSM semantics. Each AM model corresponds to the minimal
positive strict consistent 2-valued completion of a Dung Preferred Extension. AM
enjoys: model existence for every NLP; relevancy; cumulativity; being also a model-
conservative extension to SM. Respect for the WFM is deliberately not enforced
in AM, though its Strict AM extension does so, and is conjectured, in the referred
publication, to be equivalent to RSM semantics.

In (Pereira and Pinto 2009a), we introduced the Layered Models (LM) semantics,
an original 2-valued semantics for Normal Logic Programs (NLPs), a layer-based
approach enjoying relevance, cumulativity, and constituting a model-conservative
extension to SM, but not complying with the WFM. In (Pereira and Pinto 2009b;
Pereira and Pinto 2009d), we introduced the Layered Supported Models (LSM)
semantics, a refinement of LM that ensures compatibility with the WFM, and
conjectured equivalent to the RSM semantics.

Finally and recently, we discovered that RSM semantics, and its paradigm change



Extended Tight Semantics for Logic Programs 15

reconstruction versions, though not incorrect, did not capture exactly the intuitions
we had been trying to formalize in order to obtain a 2-valued semantics for any NLP.
Namely, for example 5 RSM fails to provide model {b, c} relative to our intended
intuitions, as captured in the implemented procedures devised for RSM (Pinto
2005).

Accordingly, we made a fresh start with a new approach and devised the TS
herein, achieved via adapting better known formal LP methods than RSM’s reductio
ad absurdum stance, and complying with the heretofore intuitions we wished to
capture, by proffering clear and simple statements to satisfy them, all the while
corroborating the implementation rationale followed, and its attending techniques.

References

Alferes, J. J., Dung, P. M., and Pereira, L. M. 1993. Scenario semantics of extended
logic programs. In LPNMR. MIT Press, 334–348.

Baral, C. 2003. Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press.

Brass, S., Dix, J., Freitag, B., and Zukowski, U. 2001. Transformation-based
bottom-up computation of the well-founded model. TPLP 1, 5, 497–538.

Castro, L. F., Swift, T., and Warren, D. S. 1999. XASP: Answer Set Programming
with XSB and Smodels. http://xsb.sourceforge.net/packages/xasp.pdf.

Citrigno, S., Eiter, T., Faber, W., Gottlob, G., Koch, C., Leone, N., Mateis,
C., Pfeifer, G., and Scarcello, F. 1997. The dlv system: Model generator and
advanced frontends (system description). In Workshop in Logic Programming.

Dix, J. 1995. A Classification-Theory of Semantics of Normal Logic Programs: I, II.
Fundamenta Informaticae XXII(3), 227–255, 257–288.

Dix, J., Gottlob, G., Marek, V., and Rauszer, C. 1996. Reducing disjunctive to
non-disjunctive semantics by shift-operations. Fundamenta Informaticae 28, 87–100.

Dix, J., Gottlob, G., and Marek, W. 1996. Reducing disjunctive to non-disjunctive
semantics by shifting operations. Fundamenta Informaticae 28, 87–100.

Dung, P. M. 1995. On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. AI 77, 2, 321–358.

Fages, F. 1994. Consistency of Clark’s completion and existence of stable models. Methods
of Logic in Computer Science 1, 51–60.

Gelder, A. V., Ross, K. A., and Schlipf, J. S. 1991. The well-founded semantics for
general logic programs. J. of ACM 38, 3, 620–650.

Gelfond, M. and Lifschitz, V. 1988. The stable model semantics for logic program-
ming. In ICLP/SLP. MIT Press, 1070–1080.

Gelfond, M., Przymusinska, H., Lifschitz, V., and Truszczynski, M. 1991. Dis-
junctive defaults. In KR-91. 230–237.

Janhunen, T. 1999. Classifying semi-normal default logic on the basis of its expressive
power. In Procs. LPNMR’99. LNAI, vol. 1730. Springer Verlag, 19–33.

Lifschitz, V. and Woo, T. Y. C. 1992. Answer sets in general nonmonotonic reasoning
(preliminary report). In KR. 603–614.

Niemelä, I. and Simons, P. 1997. Smodels - an implementation of the stable model and
well-founded semantics for normal logic programs. In Procs. LPNMR’97. LNAI, vol.
1265. 420–429.



16 L. M. Pereira and A. M. Pinto

Pereira, L., Alferes, J., and Aparício, J. 1994. Adding closed world assumptions to
well-founded semantics. TCS 122, 1-2, 49–68.

Pereira, L. and Pinto, A. 2009a. Layered models top-down querying of normal logic
programs. In Procs. PADL’09. LNCS, vol. 5418. Springer, 254–268.

Pereira, L. M. and Pinto, A. M. 2005. Revised stable models - a semantics for logic
programs. In Progress in AI, G. D. et al., Ed. LNCS, vol. 3808. Springer, 29–42.

Pereira, L. M. and Pinto, A. M. 2007. Approved models for normal logic programs.
In Procs. LPAR’07, N. Dershowitz and A. Voronkov, Eds. LPAR - LNAI, vol. 4790.
Springer, Yerevan, Armenia, 454–468.

Pereira, L. M. and Pinto, A. M. 2009b. Layer supported models of logic programs. In
Procs. 10th LPNMR, E. Erdem, F. Lin, and T. Schaub, Eds. LNAI, vol. 5753. Springer,
450–456.

Pereira, L. M. and Pinto, A. M. 2009c. Stable model implementation of layer sup-
ported models by program transformation. In 18th Intl. Conf. on Applications of Declar-
ative Programming and Knowledge Management (INAP’09), S. Abreu and D. Siepel,
Eds. Évora, Portugal.

Pereira, L. M. and Pinto, A. M. 2009d. Stable versus layered logic program seman-
tics. In Fifth Latin American Workshop on Non-Monotonic Reasoning 2009. Apizaco,
Tlaxcala, México.

Pinto, A. M. 2005. Explorations in revised stable models — a new semantics for logic
programs. M.S. thesis, Universidade Nova de Lisboa.

Swift, T., Pinto, A. M., and Pereira, L. M. 2009. Incremental answer completion
in xsb-prolog. In Procs. 25th ICLP. LNCS, vol. 5649. Springer-Verlag, 519–524.

Tarjan, R. 1972. Depth-first search and linear graph algorithms. SIAM J. Comput-
ing 1, 2, 146–160.


