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Abstract

We illustrate, through commented program examples, the constructs of
Delta Prolog, a concurrent logic programming language founded on the
Distributed Logic of L. Monteiro. The paper aims to show that a
declarative programming style is available when using Delta Prolog. The
style is similar to Prolog's, but in addition each problem can be expressed
into parallelized components where a specification of their communication
schemes may be present. We show this can be expressed initially without
regard to the underlying computation strategy of Delta Prolog.

1 Introduction

Delta Prolog (A-Prolog for short) extends Prolog to include AND-
concurrency and inter-process communication. The groundwork for A-
Prolog originates with Distributed Logic (cf. Monteiro 84,86), which is
neutral with regard to operational semantics. A first implementation
extended C-Prolog (Pereira 83) with the main concepts previously devised,
but with no coordinated interprocess backtracking strategy (Pereira et al.
84). Subsequently, a distributed backtracking algorithm and the choice
operator were introduced in a new implementation (Pereira et al. 86,87).
Improvements since then have concentrated on the distributed backtracking
algorithm, its decentralization, treating the cut, overall clarity (Pereira et al.
88; Cunha 88) and efficiency, and portability of the implementation (Cunha
et al. 87). A-Prolog's extension of Prolog is obtained, at the language
level, by introducing three additional goal types: splits, events, and
choices. At the implementation level, the extension is supported on Prolog
and C; a small number of core primitives aids portability. Currently, A-
Prolog supports distributed programs by means of the asynchronous
execution of multiple instances of the extended C-Prolog interpreter.

A declarative programming style is available when using A-Prolog,
similar to Prolog's, but in addition each problem can be expressed into
parallelized components where a specification of their communication
schemes may be present. At a later stage in the program design process,
not shown here, some detailed knowledge of the computation strategy
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may be useful to obtain a more efficient execution; the programming style
can influence the distributed backtracking of a concurrent program,
inclusively by prefering alternative communication constructs. The extra
knowledge required, if desired, to take better advantage of the more
complex operational semantics is a direct consequence of the availability of
new constructs which, additionally, allow more programming freedom vis-
a-vis Prolog. A more detailed introduction to the language constructs as
well as to its declarative and operational semantics is given in (Pereira et al.
88). Here we follow a more pragmatic approach, illustrated with
commented examples showing how to :

* specify sequentiality constraints and the degree of parallelism

allowable in each problem

* specify the suitable communication schemes to express inter-process

cooperation that may be required for cooperative problem solving within

a distributed programming setting

+ exploit the several forms of non-determinism available in a A-Prolog

program.

The rest of the paper is organized in sections for each of the above
aspects. The emphasis is on the declarative programming style made
possible by A-Prolog, sketched in the examples. The reader is directed to
(Pereira et al. 84,86,87,88) for additional examples, variants of the main
constructs, and the full operational semantics.

2 Sequentiality constraints and parallelism in A-
Prolog programs -

A A-Prolog program is a sequence of clauses of the form: H :-
G1,...,Gn. (n20). The comma is the sequential composition operator.
Declaratively, the truth of goals in A-Prolog is order-dependant, so that H
is true if G1,...,Gn are true in succession. Operationally, to solve goal H
solve successively goals G1,...,Gn. Also, whereas H is a Prolog goal,
each Gj may be either a Prolog or a A-Prolog goal. The latter is either a
split goal (for parallelism), an event goal (for inter-process
communication) or a choice goal (for external non-determinism). A A-
Prolog program without A-Prolog goals is and executes like a Prolog
program, so A-Prolog is an extension to Prolog.

Parallel goal composition. Split goals are of the form S1 // S2, where
// 1s a right associative parallel composition operator and S1 and S) are
arbitrary A-Prolog goal expressions. In particular a,b//c//d,e stands for
a,(b//(c//d)),e. Declaratively, S1 // S2 is true iff S1 and S? are jointly true.
The associativity of the // operator reflects the declarative equivalence of
A//(B//C) and (A//B)//C. Operationally, solving S1 // S2 corresponds to a
concurrent resolution of goal expressions S1 and S2, i.e. to an arbitrary
interleaving of their resolution steps, except that it must respect the
semantics of sequential and-parallel composition and of event goals (cf.
below). The execution model for the resolution of a split goal may be
pictured as follows:
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S1//S2

process P1 rocess P2

Remark: each goal expression (S1 and S2) is solved within a separate
process and there is a basic assumption that these don't share memory. So
if S1 and S2 have variable occurrences with common names, they must be
unified when both processes terminate. Each process is implemented by an
interpreter following a sequential depth-first search with backtracking as in
Prolog. Distributed backtracking is an extension of the backtracking
mechanism of Prolog, which is triggered by unification failure of the
common variables in a split goal, the failure of a process, or the local
backtracking into a previously solved split, event, or choice goal.

Quicksort example using difference lists.

A concurrent quicksort shows split goals may share variables. Slot-
filling is unproblematic for free shared variables in split goals (SL in this
case).

quicksort(U, S) :-gsort(U, S-[]).

gsort([AlU], S-L) :- part(U, A, Sm, La),
gsort(Sm,S-[AISL]) // gsort(La,SL-L).

gsort([], L-L).

part([XIXs], A, Sm, [XILa]) :- A<X, part(Xs,A, Sm, La).

part([XIXs], A, [XISm], La) :- A>=X, part(Xs,A, Sm, La).

part({], _, {1, [D.

Declarative reading.The program has the same declarative reading as
the corresponding Prolog program where "//" is replaced by the comma,
and is interpreted as a conjunction of goals.
Operational semantics. We informally introduce the concept of
derivation tree for a program and a goal (cf. [Pereira et al. 88] for a detailed
rigorous definition). The nodes in the tree are labelled with resolvents, the
root being the top goal. Given a node, a descendant node is obtained by
selecting the leftmost goal G in its resolvent:

+ if G is a Prolog goal, the node is the outcome of a resolution step

involving a matching clause;

+ if G 1s a A-Prolog goal of the form G1//G2, the node has 2 direct

descendants, corresponding to the resolvents for the individual goals G1

and G2, each handled by a separate process.

Consider the top goal "quicksort([2,1,3],X)". Execution of

part([1,3],2, Sm, La) is first completed, with substitutions Sm = [1] and
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La = [3], and only then activation of the split goal gsort()//gsort() is
allowed. The execution model of A-Prolog allows the parallel expansion of
any of the current leaves in a derivation tree. A successful derivation is one
such that every leaf is the empty resolvent.

3 Inter-process communication in A-Prolog

Besides communication through logical variables, A-Prolog offers a
basic language mechanism for inter-process communication: event goals,
which may be synchronous or asynchronous.

Synchronous event goals. There are two main types, X ?E : C and
X 1 E: C where X is a term (the message), ? and ! are infix binary predicate
symbols (the communication modes), E is bound to a Prolog atom (the
event name), and C 1is a goal expression (the event condition), which may
not evaluate A-Prolog goals. If C is the literal true, event goals may
simplify to X ? E and X ! E. Two event goals are complementary iff they
have the same event name, one of mode ? and the other of mode !. An event
goal, say X?E:C, solves only with a complementary event goal, say Y!E:D,
"simultaneously”, whenever the latter is available in a parallel derivation
(unavailability causes resolution of the goal to "suspend”). The two goals
solve iff X and Y unify and then conditions C and D evaluate to true. A
solved event goal is not by itself true or false. It can only be said that it was
true when it solved with its complementary goal. Thus, the declarative
semantics of A-Prolog does not assign an "absolute” truth value to a goal.
In general, a goal is true for some combination sequences of events (or
traces) that were true, and false for others.

Remarks:
+ Solving event goals is a form of "rendez-vous" of the two derivations
solving the goals, with exchange of messages achieved by unification of
X and Y and evaluation of conditions C and D. This basic
synchronization mechanism of A-Prolog generalizes Hoare's and Milner's
synchronous communication (Hoare 85; Milner 80) by using term
unification for message exchange. No special significance is attached to
the communication modes ! and ? (like "send" or "receive"), except that
they are complementary in the sense above.
+» To preserve the declarative semantics, but only whenever there is no
common memory implemented, it is required that after the two
conditions' evaluation both X and Y be ground. Alternatively, as there is
no shared memory, one could record any variables shared by X and Y
and attempt to unify them upon termination of the processes solving the
events (this is automatically done for the common variables in a split
goal). A less strict condition would allow variables in the message as long
as they result from unification of two anonymous variables (i.e. those
with a single occurrence in a clause).
» Failure of or local backtracking into an event goal causes distributed
backtracking. An event name may not be shared by more than two active
processes, otherwise completeness may be impaired (Pereira et al. 88).
» For improved efficiency, synchronous communication with no
backtracking involved is also supported in A-Prolog through the binary
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predicates !!! and ???, where the above restriction does not apply. This
means that there is no complete search strategy for the handling of the
joint failure of two goals like T1!!!E and T2???E , i.e. when both of
these event goals fail, then each corresponding process backtracks
locally. Likewise, no distributed backtracking occurs when a process
backtracks over a synchronous event goal of this type.

An example of a simple game of touch and go

Bidirectionality of communication in synchronous event goals is shown
in the next program, a simple version of the game of "touch and go": a
pursuer process tries to catch a fugitive process, and the processes invert
their roles after each successful catch. The current positions for each
process are exchanged in the synchronous event named "game". The
approach and escape strategies for each process (in predicates
new_position/2 and approach/6) are not detailed.

% top goal (where the pursuer starts at position (0,0))
:- fugitive(go) // pursuer(0,0,g0).

fugitive(stop) :- pursuer(0,0,go).
fugitive(go) :- new_position(X,Y), display_position(X,Y,'*"),
fug(X,Y)&pur(A,B) ! game, am_I_caught(X,Y,A,B,T), fugitive(T).
pursuer(_,_,stop) :- fugitive(go).
pursuer(X,Y,go) :- display_position(X,Y,>"),
fug(A,B)&pur(X,Y) ? game, catch_you(A,B,X,Y,NX,NY,T),
pursuer(NX,NY,T).
am_I_caught(X,Y,X,Y,stop).
am_I_caught(_, _, _, _, go).
catch_you(X,Y, X, Y, _, _, stop).
catch_you(X,Y,MX,MY ,NX,NY,go) :- approach(X,Y,MX,MY,NX,NY).

An _example of a simple filtering system

This is a system with three processes, where an intermediate process
(with top goal filter/4) filters each result that is sent by a producer process
(with top goal prod/2); next it sends it to a consumer process (cons/2). Note
that event names can be variable parameters. '

p(X) :- prod(X,el) // filter(el,e2,1,5) // cons(Y,e2). % top goal
prod(X,To) :- a(X), X ! To.
a(l). a(2). a(3). a(4). a(s).

filter(From,To,Lower,Upper):- X ? From : (X>Lower, X<Upper), X ! To.
cons(X,From) :- X ? From.

Declarative reading. The relation defined by p(X) and the program is

the set of all singletons (X8) for all substitutions © such that X6 is ground
and is true in the minimal model of the program for the null trace (Monteiro
86; Pereira et al. 88). This corresponds to the substitutions {X=2}, {X=3)}
and {X=4}, obtained by successful resolution of event goals X'el and
X7%el: (X>1, X<5) in the communication between the producer and the
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filter, and of event goals X!e2 and X?e2 in the communication between the
filter and the consumer. The substitutions {X=1} and {X=5)} are ruled out
by the event condition. In (Monteiro 86) it is shown that a A-Prolog
program possesses a rigorous definition of its refutation semantics, proven
equivalent to its declarative and fixpoint semantics.

Operational semantics. A-Prolog is responsible for finding the
successful derivations that are defined by a goal and program. A successful
derivation tree has the empty resolvent in all of its leaves and a
corresponding null trace (i.e. where all event goals have been successfully
solved). The resolution rule of event goals is that, given a derivation tree
with two leaves of the form:

X?2E:C,Gy, ..., Gy and Y!'E:D,G2, .., Gm

where event goals X?E:C and Y!E:D resolve with unifier 8 obtained by

first unifying X and Y and then solving C and D, then each leaf spawns a
new node and resolvent with the respective forms:

(G2, ..., Gp)O and (G2, ..., G'm)O

Thus the rule defines a joint derivation step that "simultaneously” occurs in
the processes that are responsible for the expansion of those branches in the
derivation tree. If the conditions for event success are not fulfilled the
corresponding derivation tree is not expandable anymore, i.e. the
computation strategy must abandon it and try to explore alternative
derivations.

Executing the filtering system, a derivation is produced whose leaves are
headed by event goals:

(S1)

prod(X,el)/ /filter(el,e2,1,5)//cons(Y,e2)
(S12)
filter(el,e2,1,5)//cons(Y,e2)

,el)
| filter(el,e2,1,5) cons(Y,e2)

(S1 1)a(X)’|X!el (S121) S$122)

l1lel X?el:(X>1.X<5),Xle2 Y ?e2

prod(
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The rightmost leaf in the tree is suspended as no complementary event goal
currently exists heading another leaf. Other leaves contain complementary
leading event goals exist, but their joint resolution fails because the event
condition (X>1, X<5) is not satisfied for X=1. A search strategy must now
find the next derivation in the space of possible derivations. As we are
modelling the expansion of each branch in the tree by processes following
Prolog's sequential search strategy, the mechanism for searching alternative
derivations involves two aspects:
* a local search is performed by each process relative to the doing and
undoing of derivation steps of Prolog goals; this follows Prolog's depth-
first search and uses local backtracking within each process; a gain is
obtainable here, vis-a-vis a purely sequential system, as we have multiple
Prolog processes that may be executing in parallel both in the forward and
backward directions;
* a global coordination of the search is required whenever a joint
derivation step (involving an event or a split goal) must be done or
undone; this is done following a distributed backtracking strategy
demanding the cooperation of all processes that may depend on the joint
step.

The details of this distributed backtracking strategy are not explained
here: cf. (Pereira et al. 88; Cunha 88). Its main purpose is to implement an
exhaustive search for the set of successful derivations for a program and
goal, where a distinction between local and global search is made and no
centralized control component is required. The computation path of each
process 1s sliced down into consecutive segments, identified as derivation
paths between two consecutive A-Prolog goals (cf. the derivation tree for
the example above, where each segment is identified by a diadic number
which encodes a lexicographic ordering). The concept of segment allows
concentrating on interaction points only, and ignore local backtracking
within segments (which is dealt with by each process alone). An ordering
amongst segments 1s defined that guides an exhaustive search through all
alternative derivations. The global strategy is invoked only when a process,
in local backtracking, reaches a previously solved A-Prolog goal, or when
the conditions for success of a synchronous event fail.

The filtering example shows a simple case, where only 2 processes are
involved in a failure: the consumer process, being suspended on its event
goal, is not involved in the communication failure occurring at event named
el. So when the search strategy abandons the derivation tree shown, the
branch for the consumer process is unnaffected by the search for
alternatives involving the other processes. It is up to the producer to
backtrack locally and try to offer alternative bindings to the event term X,
while the filter process just waits for those alternatives by hanging at its
event goal. In all cases the systematic approach is such that its decisions are
based on the ordering among the segments involved (e.g. S11 and S121 in
the example):

» the process of the lower segment in the ordering (S§11) is forced to
hang at its event goal,

» the other process is forced to backtrack and search for local
alternatives.
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In the filtering example, as no local alternatives are available within the
filter process, search will ultimately force backtracking into the producer
process. Thus a first solution is obtained where X=2, which is passed over
to the consumer. If further solutions are requested, distributed backtracking
forces the filter and consumer processes to relaunch their top goals (so that
all their solutions become available again) while the producer backtracks
locally (past event goal X ! e1) and obtains alternative bindings for X.

4-colour maps example

This program illustrates the creation and launching of a top goal for
colouring the regions of planar maps, with at most four colours, such that
no two adjacent regions have the same colour. The program consists in the
construction and launching (in parallel for each region), of a region-specific
parallel top goal that checks whether the colours of that region's bordering
ones are different from the colour chosen for itself by the region. Failure to
comply with the different-colour constraint ignites distributed backtracking,
but affecting only the necessary regions. A top goal has the form

:- region(r1,L1,C1) // ... // region(rp,Ly,Cn).

where each rj, Lj, Cj denotes a region name, a list of its adjacent region's
names, and the region's solution colour. The four possible colours are
expressed, say, by:

colour(green). colour(yellow). colour(red). colour(blue).

Each region predicate call chooses a colour for the region and then sets
up and executes in parallel all the tests required to check for colour
compatibility with its neighbouring regions, in "Test".

tegion(R, B, C) :- setup_test(C, R, B, Test ), colour(C), Test.
setup—test(C, R, [], true).
setup—test(C, R, [B], Test_B ) :- create_test(C,R,B,Test_B).
setup—test(C, R, [BIL], (Test_B // Test_L)) :-

create—test(C, R, B, Test_B), setup—test(C, R, L, Test_L).

The creation of a test introduces, for efficiency, an assymmetry with
respect to region names: regions with an alphabetically lower name "send" a
request for the colour of their alphabetically higher bordering neighbour,
receive from it its colour and test for colour similarity. Thus, the colour
constraint is only tested by one of any two bordering regions, and not
redundantly by both. For each frontier between two regions a unique event
name is generated and used for communicating colour from one to the
other.
create_test(Cl1, R, B, (colour(C2) ! Event : not C1=C2) ):- R@<B, !,

event_name(B,R, Event).
create—test(C1, R, B, (colour(C1) ? Event) ) :- event_name(R, B, Event).
event-name(R, B, Event) :- name(R, NR), name(B, NB),

append(NR, NB, NE), name(Event, NE).

In the case of the map



495

r3 ré

r4

re rs

ri

we have the top goal

:- region(r1,{r2,r3,r5,06],C1) // region(r2,[r1,r3,r4,r5,r6},C2) //
region(r3,[r1,r2,r4,16],C3) // region(r4,[r2,r3],C4) //
region(r5,[r1,r2,r6],C5) // region(r6,[r1,r2,r3,r5],C6).

The execution of, say, region(r5,[r1,r2,r6], C5), launches the Test:
colour(C5) ? 1511 // colour(C5) 7r5r2 // colour(C6) ! r6rS5 : not C5=C6.

Asynchronous event goals. These allow the sending and receiving of
Prolog terms as messages, using respectively the forms TM E and T 77 E,
where E is bound to a Prolog atom (the event name ) and T is a term. If T
is a non-ground term the receiver process obtains a local copy for each
variable in T, its instantiation reflecting the received message. The
semantics of these constructs is defined in a way comparable, respectively,
to the one for "write" and "read" in i/o streams. Currently no distributed
backtracking applies to event goals of this type although the distributed
backtracking strategy could be extended to deal with asynchronous
communication. An alternative is to simulate the asynchronous model in
terms of synchronous event goals and choice goals (cf. next section) using
an intermediate buffer . Thus asynchronous goals are mainly provided for
convenience and efficiency.

An_example for an air-line reservation system
Multiple terminal processes interact with a database process responsible
for the management of a simple air-line reservation system , by processing
user requests of the forms:
info(flight_number, Number_of_available_seats )
reserve(flight_number, number_of_requested_seats, Answer )

"Number_of_available_seats" gives the available seats on the flight, and
Answer is "YES' or 'NO'. Serialization is achieved by having the database
process (predicate dbase/1) first receive the terminal name for a user
process through an asynchronous event goal named "data”. Then a single
synchronous event goal is used to support the reception of a request, its
processing (within the event condition) and the return of the results to the
user. The name of the synchronous event goal is the terminal name for
each user process, and is dynamically transmitted to the database process.
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% top goal :- terminal(t1)//terminal(t2)//terminal(t3) // dbase([1 12,256,68)).

Each terminal solves the top goal "terminal(ttyn)" where ttyn is its terminal
name.

terminal(Tty) :- read(X), Tty M data, X ! Tty, write(X), nl, terminal(Tty).

The database process keeps a list (DB) with the current state of available

seats for each flight, and solves, e.g, a top goal of the form
"dbase([112,256,68])".

dbase(DB) :- Next_tty ?? data, dbase(DB, Next_tty).

dbase(DB, Next_tty) :-
Request ? Next_tty : dbprocess(Request,Next_tty, DB,New_DB),
dbase(New_DB).

dbprocess(info(Flight, Seats), _, DB, DB) :-
information(DB, Flight, Seats).

dbprocess(reserve(Flight, Seats, Response), _, DB, New_DB) :-
reserve(Flight, Seats, DB, Response, New_DB).

dbprocess(_, Next, DB, DB) :- write('unknown command from '),
write(Next), nl.

4 Non-determinism in A-Prolog programs

A-Prolog programs exhibit the same types of non-determinism found in
Prolog, namely a form of internal or local non-determinism
corresponding to the possibility of unifying a Prolog goal with alternative
clauses, the selection of any one such clause (within each process) being
independent of the state of the environment (i.e. of any other processes).
Concurrency and communication introduce additional forms of non-
determinism in A-Prolog. In order to model external or global non-
determinism (Francez et al. 79), where the environment can influence the
choice of an event among a set of alternatives for commmunication, the

language includes choice goals, based on its namesake introduced in
(Hoare 85).

Choice goals. These have the form A1 : A2 . i Ap (n>2), where ::
is the choice operator, and the Aj are the alternatives of the goal. Each
alternative has the form "Ge,B", where Ge is a synchronous event goal (the
head of the alternative), sequentially conjuncted to a possibly empty goal
expression B (body of the alternative). Declaratively, A1 :: A9 :: ... o Apis
true iff at least one alternative is true. Solving a choice goal consists in
solving the Ge of any one alternative (whose choice is governed by the
availability of a complementary goal for Ge) and then solving its body B. If
no complementary events are available for any alternative the choice
suspends. Operationally, the behaviour of choice is extended to deal with
backtracking. Failure of the selected alternative or failure into the choice
initiates a specific distributed backtracking discipline such that the
remaining choice alternatives (if any) are considered for computation (the



497

failed alternative being abandoned). If no alternatives remain to be explored
then the whole choice goal fails.

An example of a counter object

This example is given in (Shapiro 83). It may be programmed as in
(Pereira et al. 84) by using a backtracking strategy or, alternatively, it may
use a choice goal as below. The top goal has the form ":-terminal //
counter(0)" where terminal processes request operations on the object via a
synchronous event. According to the request issued, a choice alternative is
selected and executed.

terminal :- read(X), do_it(X), write(X), nl, next(X).

do_it( abolish ) :- _ ! abolish.
do_it( up ) :- _lup.
do_it( down ):- _ Y down.
do_it( show(S) ) :- S ! show.
do_it( clear) :- _!clear.
counter(S) :- ( _ ?clear, counter(0)
_Tup, U is S+1, counter(U)

_?down, DisS-1, counter(D)
S ? show, counter(S)
_ 7 abolish ).

next(abolish).

next(_) :- terminal.

Touch and go with n pursuers

Here we allow n pursuers in the previous "touch and go" game and
further specify that the game must be over on the first successful catch of
the fugitive. The termination of the game could easily be modeled by
having an arbiter process as a central coordinator (as an alternative a
broadcast mechanism would be helpful, possibly using the logical variable
as a communication channel). Instead an asynchronous event with name
"stop" is used which indicates the end of the game: on being caught the
fugitive process sends a term "end_of_game". This term is then
successively received by each of the pursuers, as an alternative in a choice
goal. Each pursuer starts with a brother process responsible for detecting
the termination of the game (which it signals through a synchronous event
named after the pursuer identification (cf. variable Port)). This extra
process is required because an asynchronous event goal may not be the
head of an alternative in a choice goal.

% top goal for a game with 3 pursuers, each starting at (0,0)
:- fugitive(go) //pursuers(0,0,1) //pursuers(0,0,2) //pursuers(0,0,3).
fugitive(stop) :- end_game M stop.
fugitive(go) :- new_position(X, Y),
display_position(X, Y, *'),
fug(X, Y) & pur(A, B) !!! game, % non-backtrackable event
am_I_caught(X, Y, A, B, T), fugitive(T).

pursuers(X, Y, Identification) :- build_name(Identification, Port),
pursuer(X, Y, Port) // termination(Port).
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pursuer(X, Y, Port) :- display_position(X, Y, >,
(end_game ? Port

fug(A, B) & pur(X,Y) 7?? game, % non-backtrackable event
catch_you(A, B, X, Y, NX, NY,_), pursuer(NX, NY, Port)
)

termination(Port) :- end_game ?? stop, end_game " stop,
end_game ! Port.

Back to _the air-line reservation system

The previous program for the air-line database forces each terminal
process to hang waiting for the completion of its request on a synchronous
event, while at the same time forcing all other terminals to hang, waiting to
be served. This restriction can be lifted by decomposing the database
process into three separate ones: the merge, responsible for receiving user
requests, the database, responsible for their processing, and the split,
responsible for the sending of results. Non-backtrackable synchronous
events (denoted by !!! and ?7?) can be used here for efficiency reasons
(ust replace ! and ? in the text, respectively by !!! and 777?).

% top goal :- terminal(tl) // terminal(t2) // database([180,290]) //
split({(Answer&Terminal)?s]).

t4

\‘ [(Q4&T4)]
merge

t5 Q5

Q)

(Q3&T3) A

a) The terminal process sends a pair of the form "Question & T" to the

merger process. "Question" is a user request and "T" is the terminal name

where the answer is to be collected via an event.

terminal(T) :- read(Question), (Question&T) ! m, Answer ? T,
write(Answer), terminal(T).

b) The merge process acts as a buffer process between the terminal
processes and the database; it starts by receiving a first request and then
cycles receiving additional requests or sending them for processing.
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merge([]) :- (Question&Terminal) ? m, merge([(Question&Terminal)]).

merge([HIT]) :- (
(Question&Terminal) ? m,
append([HIT], [(Question&Terminal)], NL.), merge(NL)

H ! data, merge(T)
).

c¢) The database process

database(DB) :- (Question&Terminal) ? data,
dbprocess(Question, Terminal, DB, NDB),
(Question&Terminal) ! s, database(NDB).

d) The split process uses a choice goal in order to receive the replies to the
user queries as they are produced by the database process or to send them
to the terminal processes that are ready to get them. The choice alternatives
must be dynamically built, as new replies to user queries are received by
the split process (note that since process split has to keep an alternative for
receiving further replies from the database process, every time a reply is
received (on event named s), a new alternative has to be built for that event
in order to allow a new communication, c.f. below, first clause of
new_choice_list/3). A variant of the choice (dynamic choice ), which
allows a more flexible manipulation of the choice alternatives, is useful
here. Its syntax is choice list( L, A) , where A represents the heading
event goal for the selected alternative (in the form (Term, Event_Type,
Event_Name, Condition)) and L stands for a (non-empty) list of choice
alternatives in the form (Term Event_Type Event_Name : Condition,
Body).

split(L) :- choice_list(L,Alternative), new_choicelist(Alternative,L,NL),
split(NL).

new_choicelist(((Answer&Terminal), 7, s, _), L,NL) :-
remove(((Answer&Terminal)? s ), L ,L1),
append([(Answer ! Terminal), (NAnsw&NTerm)7s )], L1, NL).
new_choicelist((Answer, !, Terminal, _), LNL) :-
remove((Answer ! Terminal), L , NL).

Non-attacking queens
Two possible solutions to the problem of N non-attacking queens on a

chessboard (Wirth 76) are discussed in the sequel.

(i) Central chessboard ]

A single process (solving goal board/2) is responsible for keeping the
current state of the chessboard and checking for the compatibility of
queens' positions. Each queen has a fixed column number (J) and an
associated process (solving goal queen/2 where NQueens is the number of
queens) responsible for its placement along that column. This is achieved
by choosing a line (predicate pick_line/2 not shown) and then offering the
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queen’s position to the chessboard process through event "qJ " (event
name given by build_name/2).

queen(J, NQueens) :- build_name(J, Event), pick_line(NQueens, I),
(I&J) ! Event.

The top goal is ":- queens(R,8)." and an initial setup takes place to launch
the required processes.
queens(Result, NQueens) :-

board(NQueens, Result) // set_up(NQueens, NQueens).

set_up(1l, NQ) :- !, queen(1, NQ).

set_up(N, NQ) :- M is N-1, queen(N, NQ) // set_up(M, NQ).

board(NQ, R) :- build_choice(NQ, [],ChoiceList),
accept_queens(ChoiceList,[], R, NQ).

The board process must build a list of alternatives for the communication
of the queens' positions, where the order of communications is not a priori
known. Initially the list (as given by build_choice/3) has the form
(& )?q1,(_&_)?q2,..., (&_)?q8]. A dynamic choice goal is used for the
non-deterministic selection of one of the available alternatives and then a
test is performed (predicate accept/3) to check acceptance of the received
queen position, depending on the current board configuration (being kept
on the list PartialBoard). An accepted queen's position (I,J) is added to the
PartialBoard and the board process recurses, considering only the
remaining queens (ChoiceList being updated by predicate remove/3). A
solution is found when all queens have been accepted. (Remark:
operationally, failure to accept a queen triggers distributed backtracking
and a queen process is ultimately forced to search for a new position by
locally backtracking within pick_line, while the board process keeps the
corresponding alternative open for communication).

accept_queens([], Result, Result, _).

accept_queens(ChoiceList, PartialBoard, Result, NQ) :-
choice_list(ChoiceList, (X&Y), ?, Event, _)),
accept(PartialBoard, (X,Y), NQ),
remove(ChoiceList, Event, NewChoiceList),
accept_queens(NewChoiceList, [(X,Y)IPartialBoard], Result, NQ).

(1) Chessboard as a ring token

An alternative solution could be devised where the processes
representing the queens are connected in a ring structure. Each queen
process has a local (possibly incomplete) view of the chessboard (using a
suitable representation). This view reflects the current chosen position for
the corresponding queen plus information exchanged with its neighbours.
The exchange is achieved through events (suitably named by
build_names/4) where the chessboards of the intervening queens are
mutually unified, and so any incompatibility is ruled out by pattern
matching (since disallowed positions are marked ). A solution is found
when a complete chessboard is detected. The exchanges take place
according to a certain direction around the ring, although this need not be
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fixed a priori ( a choice goal could be used instead of the last two clauses
for ring/5).

The top goal is ":- queens(Result,8).", which is analogous to the one given
above, except for inexistence of the board process. Each queen process is
specified by:

queen(J, Board,NQueens) :- build_ names(J, Right, Left, NQueens),
direction(J, Direction), pick_line(NQueens, I), set_board(l,J,Board),
ring(Direction, Board, Right, Left, NQueens).

ring(_,Board,_, ,NQ) :- all_queens_accepted(Board, NQ).

ring(right, Board, Right, Left, NQ) :- Board ! Left,
ring(left, Board, Right, Left, NQ).

ring(left, Board, Right, Left, NQ) :- Board ? Right,
ring(right, Board, Right, Left, NQ).

5 Conclusions

A-Prolog subsumes Prolog (a A-Prolog program without A-Prolog
goals is and executes like a Prolog program) and extends it with non-
deterministic AND-concurrency with distributed backtracking, plus
interprocess communication without redefining unification. It does not
enforce commitment, like the clause guards of Concurrent Prolog (Shapiro
83), Parlog (Clark Gregory 84) and Guarded Horn Clauses (Ueda 85), nor
does it require synchronization mechanisms affecting unification semantics.
A comparison of these languages and A-Prolog is found in (Butler et al. 86;
Aparicio 87). Currently, A-Prolog supports distributed programs through
the asynchronous execution of multiple instances of an extended C-Prolog
interpreter on a single processor. Research is being carried out on
improvements of the computation strategy for A-Prolog.
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