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Abstract

This paper presents an anytime algorithm for incremen-
tal intention recognition in a changing world. The al-
gorithm is performed by dynamically constructing the
intention recognition model on top of a prior domain
knowledge base. The model is occasionally reconfig-
ured by situating itself in the changing world and re-
moving newly found out irrelevant intentions. We also
discuss some approaches to knowledge base representa-
tion for supporting situation-dependent model construc-
tion. Reconfigurable Bayesian Networks are employed
to produce the intention recognition model.

Introduction

We propose a method for intention recognition (IR) in a dy-
namic, real-world environment. An important aspect of in-
tentions is their pointing to the future, i.e. if we intend some-
thing now, we mean to execute a course of actions to achieve
something in the future (Bratman 1987). Most actions may
be executed only at a far distance in time. During that pe-
riod, the world is changing, and the initial intention may be
changed to a more appropriate one or even abandoned. An
IR method should take into account these changes, and may
need to reevaluate the IR model depending on some time
limit.

We use Bayesian Networks (BN) as the IR model. The
flexibility of BNs for representing probabilistic dependen-
cies and the efficiency of inference methods for BN has
made them an extremely powerful tool for problem solving
under uncertainty (Pearl 1988; 2000).

This paper presents a knowledge representation method to
support incremental BN construction for IR during runtime,
from a prior domain knowledge base. As more actions are
observed, a new BN is constructed reinforcing some inten-
tions while ruling out others. This method allows domain
experts to specify knowledge in terms of BN fragments,
linking new actions to ongoing intentions.

In order to proactively provide contextually appropriate
help to users, assisting systems need the ability to rec-
ognize their intentions in a timely manner, given the ob-
served actions. Moreover, the IR algorithm should be any-
time, i.e. the IR decision can be made at any moment
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and can be refined if more time is allotted; e.g. in inter-
face agent domain (Armentano and Amandi 2009). In this
paper, we employ an anytime BN inference algorithm to
design an anytime IR algorithm. There has been an ex-
tensive range of research regarding this kind of approxi-
mate BN inference algorithms (Ramos and Cozman 2005;
Guo and Hsu 2002).

In the next section we present and justify a BN model for
IR. Then, a method for incremental BN model construction
during runtime is presented.

Bayesian Network for Intention Recognition

In (Pereira and Han 2009), a Causal BN structure for inten-
tion recognition is presented and justified based on Heinze’s
intentional model (Heinze 2003). In the sequel some back-
ground knowledge and the structure of the network is re-
called. In this work we do not need the network causal prop-
erty; hence, only background of the naive BNs is recalled.

Definition 1 A Bayes Network is a pair consisting of a di-
rected acyclic graph (dag) whose nodes represent variables
and missing edges encode conditional independencies be-
tween the variables, and an associated probability distribu-
tion satisfying the assumption of conditional independence,
saying that variables are independent of their non-effects
conditional on their direct causes (Pearl 2000).

Definition 2 Let G be a dag that represents causal relations
between its nodes. For two nodes A and B of G, if there is an
edge from A to B (i.e. A is a direct cause of B), A is called a
parent of B, and B is a child of A. The set of parent nodes of
a node A is denoted by parents(A). Ancestor nodes of A are
parents of A or parents of some ancestor nodes of A. If node
A has no parents (parents(A) = 0), it is called a top node.
If A has no child, it is called a bottom node. The nodes
which are neither top nor bottom are said intermediate. If
the value of a node is observed, the node is said to be an
evidence node.

In a BN, associated with each intermediate node of
its dag is a specification of the distribution of its vari-
able, say A, conditioned on its parents in the graph, i.e.
P(A|parents(A)) is specified. For a top node, the un-
conditional distribution of the variable is specified. These
distributions are called Conditional Probability Distribution
(CPD) of the BN.



The joint distribution of all node values can be de-
termined as the product of conditional probabilities of
the value of each node on its parents P(Xy,...,Xy) =
Hf\il P(X;|parents(X;)), where V = {X;|1 <i < N}is
the set of nodes of the dag.

Suppose there is a set of evidence nodes in the dag, say
0 ={0,...,0,} C V. We can determine the conditional
probability of a variable X given the observed value of evi-
dence nodes by using the conditional probability formula

P(X,0) P(X,04,...,0,)

P(X]0) = P(O) ~ P(O1,...,0m) M)

where the numerator and denominator are computed by
summing up the joint probabilities over all absent variables
with respect to V' (see (Pereira and Han 2009) for details).

In short, to define a BN, one needs to specify the structure
of the network, its CPD and the prior probability distribution
of the top nodes.

Network Structure for Intention Recognition

The first phase of the IR system is to find out how likely
each conceivable intention is, based on current observations
such as observed actions of the intending agent or the effects
of its actions (those of actions actually observed, or those of
actions whose direct observation was missed) had in the en-
vironment. A conceivable intention is the one having causal
relations to all current observations. It is brought out by us-
ing a BN with nodes standing for binary random variables'
(i.e. receiving values true or false) that represent causes, in-
tentions, actions and effects.

Intentions are represented by intermediate nodes whose
ancestor nodes stand for causes that may give rise to them.
Intuitively, we extend Heinze’s tri-level model (Heinze
2003) (Figure 1) with a so-called pre-intentional level that
describes the causes of intentions, used to estimate prior
probabilities of the intentions. However, if these prior prob-
abilities can be specified without considering the causes,
intentions are represented by top nodes. These reflect the
problem context or the intending agent’s mental state.

Observed actions are represented as children of the in-
tentions that causally affect them. Observable effects are
represented as bottom nodes. They can be children of ob-
served action nodes or of some unobserved actions that
might cause those effects—which are added as children of
intention nodes.

'Note that here intentions are considered at the most abstract
level w.r.t. the IR problem. For example, observing an action of
taking a car out of a garage, at first one would want to recognize
whether or not the agent has an intention of “traveling”—rather
than more concrete instances immediately (e.g. go to beach, moun-
tain, etc.). This approach complies with Bratman’s opinion that one
typically settles on plans that are partial and them fills them in as
need be and as time goes by (Bratman 1987). Moreover, as we shall
see, there is no restriction to consider intentions as sets of intention
instances; the random variables representing such intentions would
then receive values in the corresponding set of instances. In this
paper, we keep at this level of abstract representation for simplicity
of formalization.

Intending Agent Recognizing Agent
Intention Recognized
Intention
Activity Recognized
Actions

v t

State Sensed
' State

Figure 1: Heinze’s tri-level decompositional model of intentional
behavior of the intending agent: Intentional level; Ac-
tivity level; and State level. Intention recognition is the
reversal of this process.

The causal relations among nodes of the BNs (e.g. which
causes give rise to an intention, which intentions trigger an
action, which actions have an effect), as well as their CPD
and the distribution of the top nodes, are specified by do-
main experts. However, they might be learnt mechanically.
By using equation (1) the conditional probabilities of each
intention on current observations can be determined, X be-
ing an intention and O being the set of current observations.

Situation-sensitive Bayesian Networks

Undoubtedly, BNs should be situation-sensitive since using
a general BN for all specific situations of a problem domain
is unrealistic and most likely imprecise. For example, in
the Elder Care domain, different elders will have different
conditions and habits that need to be taken into account to
recognize their intentions. Also, place, time of day, temper-
ature, etc. need to be considered (Pereira and Han 2010).
However, consulting the domain expert to manually change
the BN w.r.t. each situation is also very costly or unfeasible.

In (Pereira and Han 2009) is provided a way to con-
struct situation-sensitive BN, i.e. ones that change accord-
ing to the given situation. It uses Logic Programming (LP)
techniques to compute situation specific probabilistic infor-
mation that is then updated into the BN. The BNs them-
selves are also encoded with P-log, a probabilistic logic
implemented system (Baral, Gelfond, and Rushton 2009;
Han, Ramli, and Damadsio 2008), which supports coherent
updates. The LP techniques employed for this are deduc-
tion with top-down procedure (XSB-Prolog) (XSB 2009)
(to deduce situation-specific probabilistic information) plus
integrity constraints and abduction (to abduce probabilistic
information needed to support and explain observations in
the given situation). However, we can employ too various
other types of LP based reasoning, e.g. constraint satisfac-
tion, contradiction removal, preferences, or inductive learn-
ing, whose results can be compiled (in part) into an evolving



BN.

In a BN for intention recognition, we assume that only
prior probabilities of the top nodes (causes) are subject to
changes along with the changing situation. The CPD tables
for intention and action nodes reflect the internal state of
the recognizing agent about world. They may change in the
long-term periods, but just occasionally. In short, for a given
situation at hand, a BN for intention recognition can be situ-
ated in it by re-computing the prior probabilities of the cause
nodes in accordance with the situation.

Based on this discussion, in the next sections we show an
anytime IR method by incrementally constructing a BN as
new actions are observed.

Incremental Bayesian Network Construction
for Intention Recognition

For simplicity, the following formally defines a simpler ver-
sion of a BN for intention recognition where we do not in-
clude the state level (the effects of actions).

Definition 3 (Intention Recognition BN — IRBN)

A BN for intention recognition (IRBN) W is a triple

({Cs,Is,As}, pa, Py ) where

e Cs, Is and As are the sets of cause nodes, intention nodes
and action nodes, respectively. They stand for binary ran-
dom variables.

e pa is a mapping which maps a node to the set of its par-
ent nodes such that: pa(C) = 0 YC € Cs; pa(I) C
Cs VI € Is; and pa(A) = Is VA € As. This means
that Cs are the top nodes, cause nodes have connections
only to intention nodes, and each intention node connects
to all action nodes.

o CPD tables of the intention and action nodes and prior
probabilities of the cause nodes are given by the probabil-
ity distribution Py, i.e. Py (X |pa(X)) defines the prob-
ability of X conditional on pa(X) in W, for all X € Viy
where Viy = CsU IsU As.

Furthermore, it is required that Cs = J;c;,pa(I), ie.
there is no isolated cause node in W.

The intention recognition method will be performed by
incrementally constructing an IRBN as more actions are ob-
served. The construction is based on a prior knowledge base
of IRBNs designed for single actions. We refer to them as
the unit BNs for intention recognition.

Definition 4 (Unit IRBN) The Bayesian network for inten-
tion recognition for an action A, denoted by irBN(A), is an
IRBN where its set of intentions refers to a single action A.
We denote by Py the probability distribution in irBN(A).

Next we stipulate a reasonable set of assumptions for a
domain knowledge base.

Definition 5 (Knowledge Base) The domain knowledge
base KB consists of a set of actions AS and a set of unit
IRBNs for every action in AS, satisfying that

o An intention I has the same set of parents (causes) and
CPD table in all the unit IRBNs that it belongs to. Let
C(I) denote the set of parents of I and P g(I|C(I)) de-
fine its CPD table.

e A cause C has the same prior probability distribution in
all the unit IRBNs that it belongs to, denoted by P p(C).

Before presenting the IR algorithm, let us define some (orig-
inal) operators for handling CPD tables and IRBNs.

Definition 6 (Project of CPD Table) Let T be a CPD table
defining P(X|V), the probability of a random variable X
conditional on a set of random variables V. The project of
T on a strict subset V' of V (V' C V) according to an as-
signment u to the variables in U = V' \ V' is a CPD rable
defining P(X|V',U = w), i.e. the part of T for V that cor-
responds to U = u.

If the variables of V are binary, we denote by proj(T,V’)
the project of T on V' according the assignment of all vari-
ables in U to false. Furthermore, from now on if we do not
mention the assignment, we mean implicitly the assignment
of all variables in U to false.

Now let us define how to combine an IRBN with a set
of unit IRBNs. This occurs when a set of new actions are
observed, and we would like to combine the unit IRBNs for
those actions with the current IRBN to get a new IRBN.

In the formalism of this paper we exploit an assumption
that the intending agent has only one most likely intention at
a given time, to be discerned by the IRBN. Our approach can
be naturally extended to consider the case of having multiple
intentions at the same time; however, we will not formalize
that here. The extension will be further discussed in the fu-
ture work section.

Intuitively, conceivable intentions are those that give rise
to all current observable actions; thus, the set of conceivable
intentions in the obtained IRBN is the intersection of the sets
of such intentions of the IRBN and of the unit IRBNs of the
newly observed actions. The CPD table of an action in the
obtained IRBN is given by the project of the corresponding
CPD table in its unit IRBN on the new set of intentions.

We start by defining how to combine a set of unit IRBNs.

Definition 7 (Combination of Unit IRBNs) Let

O = {Ay,...,A,} (n > 0) be a set of actions such that

O C AS. Let irBN(A;) = ({Cs;,Isi,{Ai}}, pai, Pa,)

be the unit IRBN for action A; (1 < i < n). The BN for

intention recognition for O, denoted by irBN(0), is the
triple ({Cso,Iso, 0}, pao, Po}) where

o [sp = ﬂ?zl Is;; Csp = UIeIso c(I);

e pap(C) =0 VYC € Csp; pao(I) = C(I) VI € Isp;
and pap(A;) =1Iso Vi:1<i<n;

* Po(C) = Pxp(C) VYC € Cso; Po(Ilpao(l)) =
Prp(I|C(I)) VI € Isp; and for 1 < i < n,
Po(A;ilpaoc(4;)) is defined by proj(T,Isp) where T
is the CPD table for A; in irBN(A;), i.e. defined by
Py, (Ailpai(A;)).

It is easy to see that irBN(0) is an IRBN (Definition 3). Now

let us define how to combine two IRBNS.

Definition 8 (Combination of IRBNs) Let

W1 = <{C$1,151,A31},pa1,P1> and W2 =
({Csq, s, Aso}, pas, P2) be two IRBNs.  The com-
bination of these two IRBNs is an IRBN, denoted by
comb(Wy, W) = ({C's, I's, As}, pa, Pw), defined as follows



o As = AsiUAsy; Is=1s1N1Isy; Cs =), CU)s
e pa(C) =0 VC € Cs; pa(I) = C(I) VI € Is; and
pa(A) =1Is VA € As;

« Py(C) = Pxp(C) ¥C € Cs; Pw(Ilpa(l)) =
Prp(I|IC(I)) VI € Is; and for each A € As,
Py (Alpa(A)) is defined by the CPD table proj(T, Is)
where T is the CPD table for A in irBN(A), i.e. defined
by Pa(Alpa(A)).

When some intentions are found irrelevant—e.g. because
they are much unlikely?—those intentions should be taken
out of the IRBN. This is enacted by considering them as
completely false and employing a project operator.

Definition 9 (Remove Intentions from IRBN) Letr W =

({Cs, Is, As},pa, Pw) be an IRBN and R C Is a strict

subset of Is. The result of removing the set of inten-

tions R from W is an IRBN, denoted by remove(W,R) =

({Csg, Isr, Asr}, par, Pr), and defined as follows

o Asp=As; Isp=1Is\ R; Csgp=U;¢s,, CU);

° paR(C') =0 VC € Cspg; paR(I) = O(I) VI € Isg,
and pagp(A) =Isp VA € Asg;

[ PR(C) = PKB(C) VC € Csg; PR(I|paR(I)) =
Prp(I|IC(I)) VI € Isgr; and for each A € Asp,
Pr(A|pagr(A)) is defined by the CPD table proj (T, Isg)
where T is the CPD table for A in W, i.e. defined by
Py (Alpa(A)).

In a given situation, an IRBN is situated by recomputing
the prior probabilities of the top nodes.

Definition 10 (Situate IRBN) Let w =
({Cs,Is,As},pa, Pw) be an IRBN. We say that W is
situated into a situation SIT if the prior probabilities of
the top nodes of W, i.e. Py (C) (C € Cs), are recomputed
according to SIT. In this work, a situation is encoded by a
logic program and the prior probabilities of the top nodes
are computed using LP techniques, as described above
(also in (Pereira and Han 2009)).

Formally, the situate operator is defined by
situate(W,SIT) = ({Cs, Is, As}, pa, Ps), where

e Ps(C) (C € Cs) are the new prior probabilities of top
nodes, resulted from the re-computation according to SIT.

o Ps(X|pa(X)) = Pw(X|pa(X)) VX € IsU As.

Anytime Intention Recognition Algorithms

Criteria let decide if the BN should be reconfigured to take
into account the situation at hand. We use here a simple cri-
terion, saying that if there is a “salient” intention currently
in the BN, it should be reconfigured—i.e. be situated ac-
cording to the latest information about the situation at hand;
otherwise, the BN remains the same. The property “salient”
reads differently in different application domains, and it is
up to the domain expert to design its specification. E.g., in
security domain, “salient” may read dangerous (intrusion in-
tention; committing suicide intention (of an assisted person),

?One intention is much less likely than the other if the fraction
of its likelihood and that of the most likely intention is less than
some small threshold. It is up to the KB designer to provide it.

Algorithm 1. Let KB be the prior domain knowledge base
and AS its set of actions. Repeat the following steps until
there is only one intention remaining in the IRBN or some
time limit is reached; in the latter case, the most likely in-
tention in the previous cycle is the final result.

1. Let O C AS be the set current observed actions. Com-
bine the current IRBN W with irBN(O) we obtain W/ =
comb(W, irBN(0)). If O is the set of initially observed ac-
tions, let W’ = irBN(O).

2. If there is an “salient” intention in W, situate it according

to the situation at hand curSIT: situate(W, curSIT) =
W' otherwise, the IRBN remains the same: W/ = W',

3. Compute the likelihood of each intention in W, condi-

tional on the set of current observed actions in W”. Re-
move the intentions which are much less likely than the
others (following Definition 9).

If an observed action makes the set of conceivable inten-
tions empty, the action is considered irrelevant to the sought
for intention, and discarded. There may be several inten-
tions being pursued by the agent, but that issue is not further
examined here yet.

At any cycle, if the likelihood of all the intentions are very
small (say, smaller than a given threshold), one could say
that the sought for intention is abandoned. This is because
the causes and actions do not support or force the intending
agent to keep pursuing his initial intention anymore.

In Algorithm 1, a standard inference algorithm is used for
computing conditional probabilities based on Formula (1).
If the time limit is reached within the first cycle, i.e. when
the initial set of actions are observed, the algorithm cannot
provide any IR decision. Hence, in the sequel we use an any-
time BN inference algorithm (Ramos and Cozman 2005) to
provide a truly anytime IR algorithm. There are a number of
such BN inference algorithms in the literature. However, the
question which one is the most appropriate for the presented

IRBN structure is beyond the scope of this paper.
Definition 11 (Anytime Algorithm) An algorithm is any-

time if it can produce a solution in a given time T and the
quality of the solutions improves with time after T.

Accordingly, Algorithm 1 is considered anytime only if the
first cycle is guaranteed to pass. It mostly depends on
whether the BN inference can be done within the time limit.
Using an anytime inference algorithm can solve this prob-
lem. Although the precision might decrease, we accept it
due to time limitation.

Algorithm 2 (Anytime). The only difference is in step 3.
An anytime BN inference algorithm is used to compute the
likelihood of intentions. Stop when the time limit is reached.

Revising Knowledge Base Representation

The knowledge base presented above contains a single BN
for a particular action, and in the BN all conceivable inten-
tions that may give rise to the action are included. The set of
intentions in each BN is usually very big.

The set of conceivable intentions for an action should de-
pend on the situation in which the action is observed. We
propose two methods for revising the knowledge base rep-
resentation to tackle this problem. The first uses a set of



conditional unit IRBNs for each action, and provides a crite-
rion to choose an appropriate one depending on the situation
at hand. In contrast, the second method keeps the same rep-
resentation as before, and uses common sense reasoning to
compute the set of conceivable intentions of an action in the
given situation; then, a remove operator is performed.

Conditional Unit IRBNs

We provide a set of unit IRBNs for each action, and a crite-
rion for choosing what is the appropriate one depending on
the situation at hand. Each unit IRBN in the set is accompa-
nied by a precondition, and the criterion must satisfy that in
each situation only one unit IRBN is for an action.

This method would perform efficiently by encoding a situ-
ation as a logic program, then w.r.t. which the preconditions
are evaluated. However, designing a BN for each situation is
very costly since the set of of situations needing to be con-
sidered may be very large. Moreover, it is difficult if not
impossible to specify all situations at the beginning.

The following method handles this issue in a more con-
structive way.

Situation-sensitive Intentions

Undoubtedly, whether an intention may give rise to a partic-
ular action or not should depend on the situation in which the
action is observed. Given some situation at hand, common-
sense reasoning can be employed for that purpose. In the
sequel LP techniques are used for common sense reasoning.

The prior domain knowledge base KB is accompanied
by a logic program Px g in order to help decide which in-
tentions in a unit IRBN are conceivable in a given situa-
tion. Let AS = {A;,..,An} (N > 1) be the set of
actions of KB and BNs = {Wy,..., Wy}, where W; =
({Csi, I8, As;}ypa;, P;) (1 < i < N), be the set of unit
IRBNSs of KB.

We say that an intention I is conceivable when observing
action A if it is expected in the given situation and there is
no expectation to the contrary. Thus, for 1 < ¢ < N and
I € Is;, Pip contains the following rule:

conceivable(I) — A;, expect(I), not expect_not(I)

Furthermore, for each I & Ufil Is;, Pxp contains two
rules: expect(l) « Cond;. expect_not(l) « Conds.

The rules about expectations are domain-specific knowl-
edge used to constrain the conceivable intentions in a sit-
vation. Counter expectation rules supplement expectation
rules for representing defeasible conditions or exceptions.

Now suppose that an action A; (1 < i < N) is observed.
The current situation is encoded by a logic program SI7T'.
In order to compute the set of conceivable intentions that
may give rise to A;, we simply use the XSB Prolog built-in
findall/3 predicate to find all true conceivable/I atoms of the
program Pxp U SIT U{A; «<}.

Suppose O is the set of obtained conceivable intentions.
Then, the IRBN obtained by removing the other intentions
from W, i.e. remove(W;, Is; \ 0), is used for IR.

Example 1 (Elder Care) An elderly person stays alone in
his apartment. An IR system is set up to support his activi-
ties in the living room. At the moment the system observes

that the elder is looking around for something (look). The

knowledge base KB of the system has a unit IRBN for this

action. For illustration, consider a small set of conceivable
intentions: Is = {book,water, weapon, lightSwitch}.

The  accompanying logic program  Pgp  con-

tains the following rules, for each I €  Is:

conceivable(I) « look, expect(I), not expect_not(I).

Suppose in Prp the expectation and counter-expectation

rules for these intentions are

1. expect(book).  expect_not(book) «— light_off .
expect_not(book) < burglar_alarm_ring.

2. expect(water). expect_not(water) « light _off .
expect_not(water) < burglar_alarm_ring.

3. expect(weapon) «— burglar_alarm_ring.
expect_not(weapon) « light_off .
expect_not(weapon) < no_weapon_availabe.

4. expect(lightSwitch).
expect_not(lightSwitch) «— light_on, tv_on.

For example, the rules in part 1 say the intention of looking
for a book is always expected except when the light is off or
the burglar alarm is ringing.

If at the moment, light is off (SIT = {light_off «+}),
then conceivable(light_switch) is the only true
conceivable/1 atom of the program Pxp U SIT U
{look «}. In this case, since there is only one conceivable
intention, we can conclude immediately.

Now suppose light is on, the tv is not on, and the burglar
alarm is not ringing. There are three conceivable intentions:
book, water and lightSwitch. Then we need to remove the
intention weapon from the unit IRBN.

If light is on, tv is not on, and the burglar alarm is ringing,
the are conceivable intentions: weapon and lightSwitch.

Complexity Assessments

Let M1, MC be the maximal number of intentions and max-
imal number of causes in a unit IRBN of KB, respectively,
and NA be the number of actions in KB (i.e. |AS|). Let
M = MI + MC + N A. The complexity will be evaluated
in terms of M. First we evaluate the worst-case complexity
of the operators: project, combine, remove, situate.

e It is easy see that the project proj(T, V') in Definition 6
can be done in 2/V'I. That is to create a new CPD table
from the original table. However, in a real implementa-
tion, it can be done by simply setting a pointer to the orig-
inal table. Thus, the complexity of this operator can be
considered as constant.

e The operator comb combining two IRBNs in Definition 8
can be done in linear time, i.e. O(M); the same complex-
ity for the remove operator in Definition 9.

e The complexity of the situate operator in Definition
10 is mainly from that of inferring the prior probabilities
of the top nodes according to the situation at hand. If
encoding the situation as a logic program and using the
top-down querying procedure of XSB-Prolog (as done in
(Pereira and Han 2009)) these inferences can be done in
polynomial time (XSB 2009).



In short, all these operators have polynomial time com-
plexity. Thus, the complexity of the algorithms depend
mostly on the BN inference algorithms (in step 3). In al-
gorithm 1, the exact probabilistic inference method based
on formula (1) is used. Like in the general case of BNs, the
inference in IRBNs is exponential (O(2M)).

As we see, the complexity of the algorithms strongly de-
pends on the size of the IRBNs—which depends on the size
of its set of intention nodes. Note the size of the set of
causes proportionally depends on that of the set of inten-
tions. Hence, the two discussed methods for revising the do-
main knowledge base representation, which reduce the set
of intentions of IRBNs, can help to enable to considerably
improve the performance.

Related Work

Bayesian networks have been one of the most successful
models applied for intention or plan recognition problem.
The most important works® were proposed by Charniak and
Goldman, e.g. in (Charniak and Goldman 1993), and more
recently, by Geib and Goldman, e.g. in (Geib and Goldman
2009). Depending on the structure of plan libraries, they em-
ployed some knowledge-based model construction to build
BN from the library, and then infer the posterior probability
of explanations (for the set of observed actions).

Different from our IR model, in those works, the causes
of intentions (or root goals as they dubbed) do not figure in
the model; the prior probabilities of intentions are assumed
to be given in the plan library. As discussed previously, we
believe that this assumption is not reasonable because those
prior probabilities should depend on the situation at hand,
which are captured by the causes of the intentions. This
way, our model can appropriately explain the abandonment
of intentions—when the causes do not support or force the
intending agent to hold those intentions anymore.

Furthermore, in their approaches, the intentions are not
envisaged depending on the situation at hand. Thus, the con-
structed BN model is usually quite large.

Lastly, to our knowledge, we make here the first attempt
to design an anytime algorithm for intention recognition.

Conclusion and Future Work

We have presented an anytime algorithm for incremental
intention recognition in a changing world. The algorithm
is performed by dynamically constructing a BN model for
intention recognition from a prior domain knowledge base
consisting of BN units. The model is occasionally updated
w.r.t. the situation at hand when required.

We have also discussed some methods to knowledge base
representation for supporting situation-dependent model
construction, which enable to reduce the size of the model—
and consequently, the complexity of the algorithm. Our next
step is to improve these methods to allow representing the
knowledge base in terms of easily maintained BN fragments;
e.g, a BN fragment consists of a single intention and a single
action. The fragments are chosen depending on the situation

3Here we only consider the works using naive BN models; other
BN models such as dynamic BNs are not yet discussed.

at hand, and combined by employing a wide range of BN
combination methods, e.g. in (Laskey and Mahoney 1997).
Another future direction is to consider the case the intend-
ing agent may pursue multiple intentions simultaneously.
This can be achieved simply by creating a new IR process
whenever a newly observed action is not explained by the
current intentions. Now, a set of IR processes is maintained
and reconfigured as observation of new actions emerge. The
result is a set of most likely intentions for each IR process.
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