
Layer Supported Models of Logic Programs

Luís Moniz Pereira and Alexandre Miguel Pinto
{lmp|amp}@di.fct.unl.pt

Centro de Inteligência Artificial (CENTRIA)
Universidade Nova de Lisboa, 2829-516 Caparica, Portugal

Abstract. For practical applications, the use of top-down query-driven proof-
procedures is essential for an efficient use and computation of answers using
Logic Programs as knowledge bases. Additionally, abductive reasoning on de-
mand is intrinsically a top-down search method. A 2-valued semantics for Nor-
mal Logic Programs (NLPs) allowing for top-down query-solving is thus highly
desirable.
The current standard 2-valued semantics for NLPs, the Stable Models (SMs) se-
mantics, does not allow for top-down query-solving because it does not enjoy
the relevance property — and moreover, it does not guarantee the existence of a
model for every NLP. To overcome these current limitations we introduce here a
new 2-valued semantics for NLPs — the Layer Supported Models semantics —
which conservatively extends the SMs, enjoys relevance and cumulativity, guar-
antees model existence, and respects the Well-Founded Model. We also show
how our semantics can be easily extended to deal with Disjunctive Logic Pro-
grams and Extended Logic Programs (including explicit negation), thus providing
a practical, comprehensive and advantageous alternative to SMs-based Answer-
Set Programming.
Keywords: Stable Models, Relevance, Semantics, Layering

1 Introduction
The semantics of Stable Models (SM) [7] is a cornerstone for the definition of some of
the most important results in logic programming of the past two decades, providing an
increase in logic programming declarativity and a new paradigm for program evalua-
tion. When we need to know the 2-valued truth value of all the literals in a logic program
for the problem we are modeling and solving, the only solution is to produce complete
models. Depending on the intended semantics, in such cases, tools like SModels [11] or
DLV [2] may be adequate because they can indeed compute whole models. However,
the lack of some important properties of language semantics, like relevance, cumula-
tivity and guarantee of model existence (enjoyed by, say, Well-Founded Semantics [6]
(WFS)), somewhat reduces its applicability in practice, namely regarding abduction,
creating difficulties in required pre- and post-processing. But WFS in turn does not pro-
duce 2-valued models, though these are often desired, nor guarantees 2-valued model
existence.

Furthermore, with SM semantics, in an abductive reasoning situation, computing
the whole model entails pronouncement about every abducible whether or not it is rel-
evant to the problem at hand, and subsequently filtering the irrelevant ones. When we

just want to find an existential answer to a query, we either compute a whole model
and check if it entails the query (the way SM semantics does), or, if the underlying
semantics we use enjoys the relevance property — which SM semantics do not — we
can simply use a top-down proof-procedure (à la Prolog), and abduce by need. In this
second case, the user does not pay the price of computing a whole model, nor the price
of abducing all possible abducibles or their negations, and then filtering irrelevant ones,
because the only abducibles considered will be those needed to answer the query.

SM semantics does not allow for top-down query-solving precisely because it does
not enjoy the relevance property — and moreover, does not guarantee the existence
of a model. Furthermore, frequently there is no need to compute whole models, like
its implementations do, but just the partial models that sustain the answer to a query.
Relevance would ensure these could be extended to whole models.

To overcome these limitations we developed a new 2-valued semantics for NLPs
— the Layer Supported Models (LSM) — which conservatively extends the SMs, en-
joys relevance, cumulativity, and guarantee of model existence, and respects the Well-
Founded Model (WFM) [6]. The LSM semantics here presented builds upon the foun-
dational step of the Layered Models semantics presented in [12] by now imposing a
layered support requirement resulting in WFM consonance. In [12], neither layered
support nor WFM respect are required. Intuitively, a program is conceptually parti-
tioned into “layers” which are subsets of its rules. An atom is considered true if there
is some rule for it at some layer, where all the literals in its body which are supported
by rules of lower layers are also true. Otherwise that conclusion is false. That is, a
rule in a layer must, to be useful, have the support of rules in the layers below. We
also show how our semantics can be easily extended to deal with Disjunctive Logic
Programs (DisjLPs) and Extended Logic Programs (ELPs, including explicit negation),
thus providing a practical, comprehensive and advantageous alternative to SMs-based
Answer-Set Programming.

The core reason SM semantics fails to guarantee model existence for every NLP is
that the stability condition it imposes on models is impossible to be complied with by
Odd Loops Over Negation (OLONs) 1. In fact, the SM semantics community uses such
inability as a means to write Integrity Constraints (ICs).

Example 1. OLON as IC. Indeed, using SMs, one would write an IC in order to pre-
ventX being in any model with the single rule for some atom ‘a’: a← not a,X . Since
the SM semantics cannot provide a semantics to this rule whenever X holds, this type
of OLON is used as IC. When writing such ICs under SMs one must be careful and
make sure there are no other rules for a. But the really unintuitive thing about this kind
of IC used under SM semantics is the meaning of the atom a. What does a represent?

The LSM semantics provides a semantics to all NLPs. ICs are implemented with
rules for reserved atom falsum, of the form falsum ← X , where X is the body of
the IC we wish to prevent being true. This does not prevent falsum from being in
some models. To avoid them, the user must either conjoin goals with not falsum or, if
inconsistency examination is desired, a posteriori discard such models. LSM semantics
separates OLON semantics from IC compliance.

1 OLON is a loop with an odd number of default negations in its circular call dependency path.

After notation and background definitions, we present the formal definition of LSM
semantics and overview its properties. Conclusions and future work close the paper.

2 Background Notation and Definitions
Definition 1. Logic Rule. A Logic Rule r has the general form
H ← B1, . . . , Bn, not C1, . . . , not Cm where H , the Bi and the Cj are atoms.
We call H the head of the rule — also denoted by head(r). And body(r) denotes the
set {B1, . . . , Bn, not C1, . . . , not Cm} of all the literals in the body of r. Throughout
this paper we will use ‘not ’ to denote default negation. When the body of the rule is
empty, we say the head of rule is a fact and we write the rule just as H .

Definition 2. Logic Program. A Logic Program (LP for short) P is a (possibly infinite)
set of ground Logic Rules of the form in Definition 1.
In this paper we focus mainly on NLPs, those whose heads of rules are positive literals,
i.e., simple atoms; and there is default negation just in the bodies of the rules. Hence,
when we write simply “program” or “logic program” we mean an NLP.

3 Layering of Logic Programs
The well-known notion of stratification of LPs has been studied and used for decades
now. But the common notion of stratification does not cover all LPs, i.e., there are some
LPs which are non-stratified.

Example 2. Stratified vs Non-Stratified Programs. Consider the following two pro-
grams P1 and P2. P1 is stratified, according to the usual notion of stratification, whereas
P2 is not.

P1 : x← a a← not b b← not c P2 : x← a a← not b b← not a

Informally, in P1, we say atom ‘a’ is in a stratum above of that of ‘b’, because
there is a rule for ‘a’ with ‘b’ in its body; we say ‘a’ depends on ‘b’. But in P2 that
dependency is symmetrical: ‘b’ also depends on ‘a’, and we cannot say if ‘a’ is in a
stratum above of that of ‘b’ or vice-versa.

The usual syntactic notions of dependency are mainly focused on atoms. They are
based on a dependency graph induced by the rules of the program. These notions are
useful, and we include them below (defs. 3,4). However, for our purposes they are
insufficient as they leave out important structural information about the call-graph of
P . To cover that information we also define and present below the notion of a rule’s
dependency (defs. 5, 6). Indeed, layering puts rules in layers, not atoms.

Definition 3. Atom’s direct dependency. Atom B directly depends on atom A in P iff
there is at least one rule with head B and with A or not A in the body.

Definition 4. Atom’s dependency. An atom’s dependency is just the transitive closure
of the atom’s direct dependency.

Definition 5. Rule’s direct dependency. Rule r directly depends on atom B iff any of
B or not B is in its body.

Definition 6. Rule’s dependency. Rule r depends on atom B iff r directly depends on
B or there is some Xi or not Xi in its body such that atom Xi depends on B.

Definition 7. Relevant part of P for atom A – RelP (A). It is the subset of rules of P
with head A plus the set of rules of P whose heads the atom A depends on, cf. [3].

Likewise for the relevant part for an atom A notion [3], we define and present the
notion of relevant part for a rule r.

Definition 8. Relevant part of P for rule r – RelP (r). It is the set containing the rule
r itself plus the set of rules relevant for each atom r depends on.

Definition 9. Layering of a Logic Program P . Given a logic program P a layering
function L/1 is just any function defined over the rules of P , assigning each rule r =
H ← B1, . . . , Bn, not C1, . . . , not Cm a positive integer, such that:

– L(r) = max(L(rXi
) : Xi = head(rXi

)) if
r directly depends on Xi and Xi depends on H , i.e. r is involved in a loop.

– L(r) ≥ L(rBi) if
r does not depend on H(i.e., r is not involved in a loop) and
max(L(rBi

) : Bi = head(rBi
)) > max(L(rCj

) : Cj = head(rCj
))

i.e. some rule for a Bi is in a layer above all rules for all Cj .
– L(r) > L(rCj) if
r does not depend on H(r is not involved in a loop) and
max(L(rBi

) : Bi = head(rBi
)) ≤ max(L(rCj

) : Cj = head(rCj
))

i.e. otherwise.

A layering of program P is a partition P 1, . . . , Pn of P such that P i contains all rules
r having L(r) = i, i.e., those which depend only on the rules in the same layer or layers
below it. This notion of layering does not correspond to any level-mapping [9], since
the later is defined over atoms, and the former is defined over rules. Amongst the several
possible layerings of a program P we can always find the least one, i.e., the layering
with least number of layers and where the integers of the layers are smallest. Then fact
rules are in layer 1. In the remainder of the paper when referring to the program’s
layering we mean such least layering (easily seen to be unique).

In example 2 above, although P2 has no stratification, it has a layering with a unique
layer: P 1

2 is comprised of all three rules a← not b, b← not a, and x← a.
Due to the definition of dependency, this definition of layer does not coincide with

that of stratum for usual stratification [1], nor does it coincide with the layer definition of
[13]. However, when the program at hand is stratified (according to [1]) it can easily be
seen that its respective layering coincides with its stratification. In this sense, layering,
which is always defined, is a generalization of the stratification. The original definition
of stratification [1] was made on predicate names rather than atoms. By abandoning the
restriction of a finite number of strata of [1], the definition of Local Stratification (that
now applies to atoms) of Przymusinski [13] is obtained. It copes with infinite ground
programs, such as: a(X)← not b(s(X)) b(s(X))← not a(X)

Still, whereas the ground instance of this program (assuming at least one constant
symbol) is not locally stratified, its ground version comprises just one layer.

The layering of P is said to be depth-bound iff there is one “bottom” layer com-
prised of rules whose heads are not above any other literal, i.e., iff P 1 6= ∅. In practice,
all useful programs have a depth-bound layering, but for theoretical completeness we

show that the LSM semantics — defined in the sequel — also deals with programs with
depth-unbound layering. A typical case of a program with a depth-unbound layering
(actually the only one with real theoretical interest, to the best of our knowledge) was
presented by François Fages in [5]. We repeat it here for illustration and explanation.

Example 3. Program with depth-unbound layering.

p(X)← p(s(X)) p(X)← not p(s(X))

Ground (layered) version of this program, assuming there only one constant 0 (zero):

p(0)← p(s(0)) p(0)← not p(s(0))
p(s(0))← p(s(s(0))) p(s(0))← not p(s(s(0)))

p(s(s(0)))← p(s(s(s(0)))) p(s(s(0)))← not p(s(s(s(0))))
...←

...
...←

...

The only layer supported model of this program is {p(0), p(s(0)), p(s(s(0))) . . .}
or, in a non-ground form, {p(X)}. The theoretical interest of this program lies in that,
although it has no OLONs it still has no SMs either because no rule is supported (under
the usual notion of support), thereby showing there is a whole other class of NLPs to
which the SMs semantics provides no model, due to the notion of support used.

4 Layer Supported Models Semantics
The Layer Supported Models semantics we now present is the result of the two new
notions we introduced: the layering, formally introduced in section 3, which is a gener-
alization of stratification; and the layered support, as a generalization of classical sup-
port. These two notions are the means to provide the desired 2-valued semantics which
respects the WFM, as we will see below. Next we present the layered support notion,
after we recap the classical support notion for easier comparison.

Definition 10. Classically Supported interpretation. An interpretationM of P is clas-
sically supported iff every atom a of M is classically supported in M . Given a NLP P
and some model M with atom a ∈ M , a is classically supported in M iff there is
some rule r in P (where r = a ← b1, . . . , bn, not c1, . . . , not cm) such that M �
{b1, . . . , bn, not c1, . . . , not cm}. This notion of support requires that all the literals in
the body of some rule for a are true under M in order for a to be supported under M .

Definition 11. Layer Supported interpretation. An interpretation M of P is layer
supported iff every atom a of M is layer supported in M . Given a NLP P and some
model M with atom a ∈M , a is layer supported in M iff

∃ r∈P :
head(r)=a

∧L(r)=i

M � (body(r) ∩ {A,not A : ∀ r′∈P :
head(r′)=A

L(r′) < i})

I.e., a is layer supported inM iff it has a rule whose body literals which are determined
by rules of strictly lower layers are true in M . Otherwise, it follows that a is false. It
is as if the unsupported rules in a layer are removed and CWA is applied to the atoms
without any rules.

Theorem 1. Classical Support implies Layered Support. Given a NLP P , an inter-
pretation M , and an atom a such that a ∈M , if a is classically supported in M then a
is also layer supported in M .

Proof. Trivial from the definitions of classical support and layered support. ut
In programs without odd loops layered supported models are classically supported too.

Example 4. Layered Unsupported Loop. Consider program P :
c← not a a← c, not b b

The only rule for b is in the first layer of P . Since it is a fact it is always true.
Knowing this, the body of the rule for a is false because unsupported (both classically
and layered). Since it is the only rule for a, its truth value is false, and, consequently, c
is true. This is the intuitively desirable semantics for P , which corresponds to its LSM
semantics. LM and the LSM semantics differences reside both in their layering notion
and the layered support requisite of Def. 11. In this example, if we used LM semantics,
which does not exact layered support, there would be two models: LM1 = {b, a} and
LM2 = {b, c}. {b} is the only minimal model for the first layer and there are two
minimal model extensions for the second layer, as a is not necessarily false in the LM
semantics because Def. 11 is not adopted. Lack of layered support lets LM semantics
fail to comply with the WFM.

Definition 12. Layer Supported Model of P . Let P 1, . . . , Pn be the least layering of
P . A layer supported interpretation M is a Layer Supported Model of P iff

∀1≤i≤nM |≤i is a minimal layer supported model of
⋃

1≤j≤i

P j

where M |≤i denotes the restriction of M to heads of rules in layers less or equal to i:

M |≤i ⊆M ∩ {head(r) : L(r) ≤ i}

The Layer Supported semantics of a program is just the intersection of all of its
Layer Supported Models.

By definition, the minimal layer supported models up to and including a given layer,
respect the minimal layer supported models up to the layers preceding it. This ensures
the truth assignment to atoms in loops in higher layers is consistent with the truth assign-
ments in loops in lower layers and that these take precedence in their truth labeling. As
a consequence of the layered support requirement, layer supported models of each layer
comply with the WFM of the layers equal to or below it. Combination of the (merely
syntactic) notion of layering and the (semantic) notion of layered support makes the
LSM semantics.

Layered support is a more general notion than that of perfect models [14], with sim-
ilar structure. Perfect model semantics talks about “least models” rather than “minimal
models” because in strata there can be no loops and so there is always a unique least
model which is also the minimal one. Layers, as opposed to strata, may contain loops
and thus there is not always a least model, so layers resort to minimal models, and these
are guaranteed to exist (it is well known every NLP has minimal models).

It is worth noting that atoms with no rules and appearing in the bodies of some rule
are necessarily “placed” in the lowest layer: an atom a having no rules is equivalent
to having the single rule a ← false. Any minimal model of this layer will consider
the heads of such rules to be false. This ensures compliance with the Closed World
Assumption (CWA).

Example 5. Atom with no rules. Consider P = {a ← not b}. In this case the least
layering of P assigns L(b ← false)=1 and L(a ← not b) = 2, and therefore P 1 = ∅
and P 2 = {a ← not b}. Necessarily, M1 = ∅ (which means b is false, and says
nothing about a), and M2 = {a}. Notice although {b} is a minimal model of P it is a
non-minimal model of layer 1 and, hence, rejected by our LSMs definition.

Example 6. Layered Unsupported Loop example revisited. Consider P from Ex. 4.
Clearly, b’s rule is in P ’s first layer and P 1’s unique minimal model is exactly M1 =
{b}. Now the second layer of P , i.e., P 2 has two minimal models: M21 = {a, b}, and
M22 = {c, b}— both are already including P 1’s minimal model M1. Among M21 and
M22 , only M22 is layer supported; let us see why. Since a’s rule and c’s rule depend
on each other they are in the same (second) layer of P . The only rule in a layer strictly
below is b’s. Consider M22 . Take the (only) rule for c (c← not a) and intersect the set
of literals in its body, {not a}, with the set of literals from atoms which are heads of
rules strictly below c’s, i.e., {b, not b}. The result is {not a}∩{b, not b} = ∅. M22 � ∅
trivially; hence M22 is layer supported. Now consider M21 . Take the (only) rule for
a (a ← c, not b) and intersect the set of literals in its body, {c, not b}, with the set
of literals from atoms which are heads of rules strictly below c’s, i.e., {b, not b}. The
result is {c, not b} ∩ {b, not b} = {not b}. Now, M21 = {a, b} 2 {not b}, hence M21

is not layer supported. Layer Supported Models give the intended semantics for P .

Example 7. A joint vacation problem. Three friends are planning a joint vacation.
First friend says “I want to go to the mountains, but if that’s not possible then I’d rather
go to the beach”. The second friend says “I want to go traveling, but if that’s not possible
then I’d rather go to the mountains”. The third friend says “I want to go to the beach, but
if that’s not possible then I’d rather go traveling”. However, traveling is only possible if
the passports are OK. They are OK if they are not expired, and they are expired if they
are not OK. We code this information as the following NLP:

beach← not mountain pass_ok ← not exp_pass
mountain← not travel exp_pass← not pass_ok

travel← not beach, pass_ok

It is easy to see that the three rules on the left form an OLON over beach,mountain,
and travel and are in layer 2; and the rules for pass_ok and exp_pass are in layer 1.
This program has only one SM: {exp_pass,mountain}. But, looking at the rules rele-
vant for pass_ok we find no irrefutable reason to assume exp_pass to be true. The LSM
semantics allows pass_ok to be true yielding three other models besides the SM; those
are: LSM1 = {beach,mountain, pass_ok}, LSM2 = {beach, travel, pass_ok},
and LSM3 = {travel,mountain, pass_ok}.

As proven in Theorem 5 in section 5, all SMs of a given program are also LSMs
of it, thereby showing the LSM semantics is a conservative generalization of the SM

semantics. Here, the SM = {exp_pass,mountain} is no exception: it is a minimal
model of the program, and {exp_pass} is also a minimal model of layer 1. SMs, com-
plying with the classical, more restrictive, notion of support, necessarily comply with
the layered, slightly more relaxed (to afford all loops) notion of support. All other LSMs
in the example are not SMs.

The first layer has two minimal models: {pass_ok} and {exp_pass}. Assuming
the first minimal model, the second layer has three minimal models which correspond
to LSM1, LSM2, and LSM3 above. Assuming the second minimal model (where
exp_pass is true), the second layer has only one minimal model: the SM mentioned
above {exp_pass,mountain} (which also a LSM). According to the LSM semantics,
when the passports are OK, the three friends go on a joint vacation to any two of the
three possible places.

Besides the lower layer atoms they depend on (if any), atoms involved in loops have
no particular raison d’être in a model other than being part of a minimal model solution
for the respective loop(s), i.e., their only support lies on lower layers. This is true for
ELONs as well as OLONs. Thus, loops are just a way to write arbitrary disjunctive
choices (viz. shifting rule of [4]). In this example there is no particular reason to choose
pass_ok or exp_pass; we cannot say any of them to be supported for some reason. The
same reasoning applies to the top layer where the OLON over beach, mountain, and
travel resides, provided that in the lower layer the truth of pass_ok has been adopted.
The apparent lack of support of beach in model {beach,mountain, pass_ok} is due
to adopting the usual (classical) notion of support (where every atom true in a model
must be supported by all the literals of a body of one of its rules), instead of adopting
the new layered support (every atom true in a model must be classically supported just
on the lower layers literals of a body of its rules).

The principle used by LSMs to provide semantics to any NLP — whether is has
OLONs or not, whether it is depth-bound or not — is to accept all, and only, the min-
imal models that are layer supported, i.e., that respect the layers of the program. The
principle used by SMs to provide semantics to some NLPs is just a “stability” (fixed-
point) condition imposed on the SMs by the Gelfond-Lifschitz operator. This stability
condition is too restrictive and it even gives rise to some incongruences (cf. example 8
below).

Example 8. Even Loop Over Negation2 vs Odd Loop Over Negation. Consider P1:
a← not b b← not a. It has two SMs: SM1 = {a}, SM2 = {b}. Now add the rules
a ← b and b ← a. The ELON is kept, but two OLONs appear now. The program
now has no SMs, but it still has one LSM = {a, b}.

The example shows the incongruence in the SMs semantics when dealing with
loops: it treats OLONs differently from ELONs and this incongruence stems from the
stability requirement which, in our opinion, is too restrictive. The intended semantics of
a loop over default negation, be it either an ELON or an OLON, be it written on purpose
or be it produced by a series of updates or merges of different NLPs, is a disjunction.
In example 8 above, the intended semantics of the ELON a ← not b b ← not a is,

2 An Even Loop Over Negation (ELON), analogously to an OLON, is a loop in the dependency
call graph with an intervening even (odd) number of default negations.

usually, a∨ b, and that is actually achieved by the SM semantics in this case. By adding
the two rules a← b and b← a, which do no more that stating an equivalence between
a and b, the semantics of the resulting program should now be (a∨ b)∧ (a⇔ b) which
is just a ∧ b. The SM semantics fails in providing such behavior, whereas the LSMs
semantics succeeds.

In the same manner of thinking, the intended semantics of program a ← not b
b ← not c c ← not a would be (a ∨ b) ∧ (b ∨ c) ∧ (c ∨ a); that is not achieved by
the SM semantics. LSM semantics succeeds in doing so, while at the same time having
upper layers’ choices respect their lower layers’ choices.

Extending the LSM semantics to Extended Logic Programs (where explicit negation
is allowed, also in the heads of rules, besides default negation) is easily achieved by
considering each explicitly negated literal ¬L as just any another atom. Paraconsistent
models may arise, but if unwanted can be discarded by semi-normalizing rules [10].

Extending the LSM semantics to Disjunctive LPs (allowing heads of rules to con-
tain the disjunction of several atoms) is accounted for by the shifting rule program
transformation [4, 8]. Example 9 is a clear illustration.

Example 9. Map coloring. Again, considering the SM semantics, the rules for any
individual node of the classical problem of map coloring can be expressed as the fol-
lowing NLP (where we assume there are some facts for nodes and for the edges):

col(C, red) ← not col(C, blue), not col(C, green)
col(C, blue) ← not col(C, red), not col(C, green)
col(C, green)← not col(C, blue), not col(C, red)

One can argue that there are OLONs here which, under the SM semantics, work as
ICs preventing some undesired models. That is actually not the case in this situation:
no OLON acts as an IC under SM semantics because every OLON has a symmetri-
cal one (e.g, the OLON col(C, red) ← not col(C, blue) ← not col(C, green) ←
not col(C, red) is symmetrical to OLON col(C, red)← not col(C, green)←
not col(C, blue) ← not col(C, red)) and both together form an ELON which is solv-
able by SM semantics. In fact, this is a typical example of an application of the shifting
rule [4, 8] to transform a Disjunctive LP in to a NLP: the “original” Disjunctive LP
would be col(C, red) ∨ col(C, blue) ∨ col(C, green). In this example, since every SM
is also a LSM, and there are no more minimal models besides the SMs, we conclude
the LSM and SM semantics coincide.

5 Properties of the Layer Supported Models semantics
5.1 Existence

Theorem 2. Existence. Every Normal Logic Program has a Layer Supported Model.

Proof. By construction, it is always possible to find a layering for P and, therefore, its
least layering. It is always possible to find a minimal layer supported model for layer 1
— for the first layer, a minimal layer supported model is just any minimal model since
there are no layers below the first one. Moreover, for each layer i+1, it is alway possible
to add to it the atoms in a minimal layer supported model of layer i as facts. Now, any
minimal model of layer i+ 1 with those facts is necessarily a minimal layer supported
model of layer i+ 1 including the minimal layer supported model of layer i. ut

Iterative method for building a Layer Supported Model For programs with depth-
bound layering, a Layer Supported Model can be constructed in this way:
1. Find the layering of P , and consider M0 = ∅
2. For any successor ordinals i, compute a minimal modelMi+1 ofMi∪(P i+1//Mi),

where P i+1//Mi is obtained by:
(a) Deleting from P i+1 all the rules with not a in the body where a ∈Mi

(b) Deleting all a in the bodies of rules of P i+1 such that a ∈Mi

(c) Deleting from P i+1 all the rules with a in the body where there are no rules
with head a in P≤i+1

(d) Deleting all not a in the bodies of rules of P i+1 such that there are no rules
with head a in P≤i+1

By construction, a minimal model Mi+1 of such Mi ∪ (P i+1//Mi) is a minimal
layer supported model of P i+1. This can easily be verified by noticing that all
the rules in P i+1 with layered unsupported bodies are deleted when computing
P i+1//Mi (steps (a), and (c)). Moreover, step (b) and (d) above only simplify the
bodies of the remaining rules, respectively, by assuming true the atoms in Mi, and
by enforcing the Closed World Assumption wrt. P i+1. Steps (c) and (d) above are
respectively called “Failure” and “Positive reduction” in [15]. Adding the atoms of
Mi as facts guarantees that Mi+1 ⊇ Mi which is a necessary condition for Mi+1

to be a minimal layer supported model.
3. For limit ordinalsα, β, ω,Mω =

⋃
β<ωMβ is a Layer Supported Model of

⋃
β<ω P

β

iff every Mβ is a Layer Supported Model of
⋃
α<β P

α.

5.2 Relevance
[3] presents definitions of the Relevance and Cumulativity properties of a semantics of
logic programs. We recall them here for self containment.

Definition 13. Relevance. A semantics for logic programs is said to be Relevant iff for
every program P , a ∈ Sem(P)⇔ a ∈ Sem(RelP (a)).

Theorem 3. Relevance of LSM semantics. The LSM semantics is relevant.

Proof. According to definition 12, the LSM semantics of a program P — LSM(P)
— is the intersection of its LSMs. So, a ∈ LSM(P) ⇔ ∀LSMP (M)a ∈ M . For
the LSM semantics the relevance property is expressed by a ∈ LSM(P) ⇔ a ∈
LSM(RelP (a)).
⇒: We assume a ∈ LSM(P), so we can take any M such that LSMP (M) holds,

and conclude a ∈M . Assuming, by contradiction, that a /∈ LSM(RelP (a)) then there
is at least one LSM of RelP (a) where a is false, i.e., not a is true. Let M ′ be such
a LSM of RelP (a) where a /∈ M ′. Since we assumed a ∈ M , for every LSMP (M)
we know there is some particular M such that M ⊇ M ′; so a ∈ M but a /∈ M ′. By
definition M is a minimal model of P , so we know that in order for a to be in M it is
necessary that there is either some rule of the form a← B or of the form x← B,not a
in P \ RelP (a). But every rule of the form a ← B is, by definition, part of RelP (a);
so the only possibility is to have a rule x ← B,not a in P \ RelP (a). In this last
case, since the LSMs are minimal models this means that a would be the unique atom
satisfying the rule x ← B,not a, i.e., M � B and M 2 x; but since LSMs are also

layer supported this means that in such case a would not be in the model, whereas x
would. And we would conclude that a /∈M contradicting the initial hypothesis.
⇐: Assume a ∈ LSM(RelP (a)). Take the whole P ⊇ RelP (a). Again, a will be

in every LSM of P because a is in all LSMs of RelP (a), and every LSM of P always
contains one LSM of RelP (a). ut

Relevance is the property that makes it possible to implement a top-down call-
directed query-derivation proof-procedure — a highly desirable feature if one wants
an efficient theorem-proving system that does not need to compute a whole model to
answer a query. These methods are designed to try and identify whether a query literal
belongs to some LSM, and to partially produce a LSM supporting a positive answer.
The partial solution is guaranteed extendable to a full LSM because of relevance.

5.3 Cumulativity

Definition 14. Cumulativity. A semantics is Cumulative iff for every program P
∀a,b(a ∈ Sem(P) ∧ b ∈ Sem(P))⇒ a ∈ Sem(P ∪ {b})

Theorem 4. Cumulativity of LSM semantics. LSM semantics is cumulative.

Proof. By definition 12, the semantics of a program P is the intersection of its LSMs.
So, a ∈ LSM(P)⇔ ∀LSMP (M)a ∈M . For the LSM semantics cumulativity becomes
expressed by ∀a,b(a ∈ LSM(P) ∧ b ∈ LSM(P))⇒ a ∈ LSM(P ∪ {b})

Let us assume a ∈ LSM(P)∧b ∈ LSM(P). If b depends on a then there are i ≥ j
such that a ∈ Mj and b ∈ Mi, and M ⊇ Mi ⊇ Mj . It comes trivially that adding a as
a fact to P does not change b’s truth-value since every Mi including b already included
a. If b does not depend on a’s truth-value, and since the LSM semantics is relevant, b’s
truth-value will remain unchanged just by adding a as a fact to P . ut

5.4 Stable Models Extension

Theorem 5. Stable Models Extension. Any Stable Model is an LSM of P .

Proof. Assume M is an SM of P . It is well known that every SM is a minimal model,
and moreover, that it is a classically supported model. From the definition of Layered
Support, any classically supported model is necessarily also a Layer Supported Model.
It follows from the definition of Layer Supported Model and these properties of Stable
Models that every SM is also a LSM. ut

In example 7 we present a program with an SM — show it to be a LSM as well
— and other non-SMs LSMs. Due to lack of space, the complexity analysis of this
semantics is left out of this paper. Nonetheless, a brief note is due. Theorem 2 guarantees
every NLP has at least one LSM, hence the complexity of finding if one LSM exists is
trivial, when compared to SMs semantics. Since this semantics enjoys relevance, the
complexity of brave reasoning (finding if there is any model of the program where
some atom a is true) does not need to consider the whole P , but instead only RelP (a).
Nonetheless, it seems reasonable to assume that this is still an NP-hard task. Cautious
reasoning (finding out if some atom a is in all models) boils down to finding if a is
unconditionally true given its dependency graph.

5.5 Respect for the Well-Founded Model

Definition 15. Interpretation M of P respects the WFM of P . An interpretation M
respects the WFM of P iff M contains the set of all the true atoms of the WFM of P ,
and it contains no false atoms of the WFM of P .

Theorem 6. Layer Supported Models respect the WFM. Let P be an NLP, and P≤i

denote
⋃

1≤j≤i P
j . Each LSM M |≤i of P≤i, where M ⊇ M |≤i, respects the WFM of

P≤i ∪M |<i.

Proof. By definition, each M |≤i is a full LSM of P≤i. Consider P≤1. Any M |≤1 con-
tains the facts of P , and their direct positive consequences, since the rules for all of
these are necessarily placed in the first layer in the least layering of P . Hence, M |≤1

contains all the true atoms of the WFM of P≤1. Layer 1 also contains whichever loops
that do not depend on any other atoms besides those which are the heads of the rules
forming the loop. Any such loops having no negative literals in the bodies are determin-
istic and, therefore, the heads of the rules forming the loop will be all true or all false in
the WFM of P≤1, depending on whether the bodies are fully supported by facts in the
same layer, or not, and — in the latter case — if the rules are not involved in other types
of loop making their heads undefined. In any case, an LSM of this layer will by neces-
sity contain all the true atoms of the WFM of P≤1. On the other hand, assume there is
some atom b which is false in the WFM of P≤1. b being false in the WFM means that
either b has no rules or that every rule for b has an unsatisfiable body in P≤1. In the first
case, by definition 12 we know that b cannot be in any LSM. In the second case, every
unsatisfiable body is necessarily unsupported, both classically and layered. Hence, b
cannot be in any LSM of P≤1. This means that any LSM contains no atoms false in
the WFM of P≤1. By definition M |≤i+1 is an LSM of P≤i+1 iff M |≤i+1 ⊇ M |≤i,
for some LSM M |≤i of P≤i, which means the LSMs M |≤i+1 of P≤i+1 are exactly
the LSMs M |≤i+1 of P≤i+1 ∪M |≤i. Adding the M |≤i atoms as facts imposes them
as true in the WFM of P≤i+1 ∪M |≤i. The then deterministically true consequences
of layer i + 1 — the true atoms of the WFM of P≤i+1 ∪M |≤i — become necessar-
ily present in every minimal model of P≤i+1 ∪M |≤i, and therefore in its every LSM
M |≤i+1. On the other hand, every atom b false in the WFM of P≤i+1 ∪M |≤i has now
unsatisfiable bodies in all its rules (up to this layer i + 1). Hence, b cannot be in any
LSM of P≤i+1 ∪M |≤i. Therefore, every M |≤i+1 respects the WFM of P i+1 ∪M |≤i.

ut

6 Conclusions and Future Work
We have defined the LSM semantics for all NLPs, complying with expressed require-
ments: 2-valued semantics, extending SMs, guarantee of model existence, relevance
and cumulativity, and respecting the WFM. We have also seen how this semantics can
be easily extended to cater of ELPs and Disjunctive LPs. OLONs no longer act as ICs,
be they intentionally written with that purpose or not. Instead, ICs are written as just
⊥ ← IC_Body; and the user should conjoin not ⊥ with her query if consistency is
required (this can, of course, be automated).

The applications afforded by LSMs are all those of SMs plus those requiring OLONs
for model existence, and those where OLONs are actually employed for problem rep-
resentation. The guarantee of model existence is essential in applications where knowl-
edge sources are diverse (like in the semantic web), and where the bringing together
of such knowledge (automated or not) can give rise to OLONs that would otherwise
prevent the resulting program from having a semantics, thereby brusquely terminating
the application. A similar situation can be brought about by self- and mutually-updating
programs, including in the learning setting, where unforeseen OLONs would stop short
an ongoing process if the SM semantics were in use. Hence, apparently there is only to
gain in exploring the adept move from SM semantics to the more general LSM one.

Work under way concerns the efficient implementation of the LSM semantics.

References

1. K.R. Apt and H.A. Blair. Arithmetic classification of perfect models of stratified programs.
Fundam. Inform., 14(3):339–343, 1991.

2. S. Citrigno, T. Eiter, W. Faber, G. Gottlob, C. Koch, N. Leone, C. Mateis, G. Pfeifer, and
F. Scarcello. The dlv system: Model generator and advanced frontends (system description).
In Workshop in Logic Programming, 1997.

3. J. Dix. A Classification-Theory of Semantics of Normal Logic Programs: I, II. Fundamenta
Informaticae, XXII(3):227–255, 257–288, 1995.

4. J. Dix, G. Gottlob, V.W. Marek, and C. Rauszer. Reducing disjunctive to non-disjunctive
semantics by shift-operations. Fundamenta Informaticae, 28:87–100, 1996.

5. F. Fages. Consistency of Clark’s completion and existence of stable models. Methods of
Logic in Computer Science, 1:51–60, 1994.

6. A. Van Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics for general logic
programs. J. of ACM, 38(3):620–650, 1991.

7. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In
ICLP/SLP, pages 1070–1080. MIT Press, 1988.

8. M. Gelfond, H. Przymusinska, V. Lifschitz, and M. Truszczynski. Disjunctive defaults. In
KR-91, pages 230–237, 1991.

9. P. Hitzler and M. Wendt. A uniform approach to logic programming semantics. TPLP,
5(1-2):93–121, 2005.

10. T. Janhunen. Classifying semi-normal default logic on the basis of its expressive power. In
Procs. LPNMR’99, volume 1730 of LNAI, pages 19–33. Springer Verlag, 1999.

11. I. Niemelä and P. Simons. Smodels - an implementation of the stable model and well-founded
semantics for normal logic programs. In Procs. LPNMR’97, volume 1265 of LNAI, pages
420–429, July 1997.

12. L.M. Pereira and A.M. Pinto. Layered models top-down querying of normal logic programs.
In Procs. PADL’09, volume 5418 of LNCS, pages 254–268. Springer, January 2009.

13. T. C. Przymusinski. Every logic program has a natural stratification and an iterated least
fixed point model. In PODS, pages 11–21. ACM Press, 1989.

14. T.C. Przymusinski. Perfect model semantics. In ICLP/SLP, pages 1081–1096, 1988.
15. U. Zukowski, B. Freitag, and S. Brass. Transformation-based bottom-up computation of the

well-founded model. In Non-Monotonic Extensions of Logic Programming (NMELP’96),
volume 1216 of LNAI, pages 171–201. Springer, 2001.

