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RESUMEN

Estudios recientes hacen uso de la programacién 16gica (LP) y, en particular, de la
LP con negacidn explicita (programacién Iégica extendida-XLP) [22, 12, 13] para resolver
y representar problemas de razonamiento no monétono [27, 26]. El propésito de este trabajo
es ampliar de una manera unificada el alcance de las aplicaciones XLP al diagnéstico,
depuracién declarativa y actualizacién de bases de conocimiento. La potencia expresivade
XLP para hacer esto se logra permitiendo que haya programas con resultados contradicto-
rios, que serdn revisados por una semdntica de extraccién de contradicciones, la cual separa
convenientemente aquellas suposiciones que conllevan alguna contradiccion y las revisa.

La estructura del texto es la siguiente:

Aungque el titulo de este trabajo sugiere una orientaci6n aplicada, nuestra presenta-
cion serfamds bien incompleta con una descripcién superficial de los fundamentos teéricos
que lo soportan. En consecuencia, en la seccién 2 introducimos el lenguaje definido por
nosotros y usado en el resto del articulo -programas 16gicos extendidos con dos tipos de
negacion-.

Después, en laseccién 3, examinamos la semdntica extendida de programas légicos
(WESX). Al final de esta seccion se habrd mostrado cémo asignar significado a una clase
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amplia de programas l6gicos extendidos, que serdn usados entonces como nuestra represen-
tacién del problema y como vehiculo para resolver problemas.

En la seccién 4, el lector puede encontrar los métodos de extraccién de contradic-
ciones bivaluadas y trivaluadas, que hemos definido y fundamentado con la semdntica
WEFSX y que son las herramientas teéricas basicas usadas en las aplicaciones. Con esta
seccién se concluye la parte mas formal del articulo.

En la seccién 5 se muestra cémo usar los resultados previos para resolver pro-
blemas de diagnéstico general. Empezamos informando sobre un teorema principal
que define el espectro de aplicabilidad de la extraccién de contradicciones al diagnés-
tico. En esencia, hemos mostrado que podemos capturar un marco de trabajo unificado de
las dos corrientes principales del diagnéstico basado en modelos: las aproximaciones
basadas en consistencia y las aproximaciones abductivas. El método propuesto define
una traduccién de este marco a un lenguaje de la programacién 16gica extendida con
restricciones de integridad. Esta seccién se cierra con varios ejemplos de aplicaciones
ilustrativas de nuestra aproximacién al diagnéstico. Partes de esta seccidn aparecieron en
[29].

Posteriormente, en la seccién 6, mostramos como el depurador de los programas
légicos normales puede ser fructiferamente comprendido como un problema de extraccién
de contradicciones/diagnéstico. Describimos y analizamos aquellos dos aspectos, siendo el
principal logro una transformacién del programa que es capaz de identificar todos los
conjuntos minimales posibles de trabas que pueden explicar la conducta anormal de un
programa erréneo. Una parte de esta secci6n apareci6 en [28].

Concluimos este articulo con una pequeiia seccién que exhibe cémo se puede usar
la transformacién del depurador anteriormente descrito en el problema de la actualizacién
en las bases de datos deductivas, comparéndolo con trabajos previos. Una parte de esta
seccién aparecié en [30].

1. INTRODUCTION

Recent approaches make use of logic programming (LP), and in particular LP with
explicit negation (extended logic programming-XLP) [22, 12, 13], to solve and represent
nonmonotonic reasoning problems [27, 26]. The aim of the present work is to enlarge in an
unified way the scope of XLP applications to diagnosis, to declarative debugging, and to
knowledge base updates. The expressive power of XLP to do so is attained by allowing
programs with contradictory results to be revised by a contradiction removal semantics
which adequately withdraws assumptions that support some contradiction, and revises
them.
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First we elaborate on the work of [23, 25] on contradiction removal of extended logic
programs (CRSX), so as to obtain not only three-valued revisions of assumptions (to the
undefined truthvalue) butalso two-valued ones. In the two-valued revision case, assumptions
are changed into their complements instead.

Then we apply this theory to diagnosis. Because [5] unifies the abductive and
consistency-based approaches to diagnosis for generality we present a methodology that
transforms any diagnostic problem of [5] into an extended logic program, and solve it with
our contradiction removal methods. Another unifying approach to diagnosis with logic
programming [32] uses Generalised Stable Models [16]. The criticisms they voice of
Console and Torasso’s approach do not carry over to our representation, ours having the
advantage of a more expressive language: explicit negation as well as implicit negation (or
negation by default).

In addition, we apply our theory to debugging, setting forth a method to debug
normal Prolog programs, and showing that declarative debugging [21] can be envisaged as
contradiction removal, and so providing a simple and clear solution to this problem.
Furthermore, we show how diagnostic problems can be solved with contradiction removal
applied to the artifact’s representation in logic pius observations. Declarative debugging
can thus be used to diagnose blueprint specifications of artifacts.

Our final application concerns the problems of updating knowledge bases expressed
by logic programs. We compare with previous work and show, as before, the superiority of
the results obtained by our theoretical developments regarding the semantics of the
extended logic programs and its attending contradiction removal techniques.

The structure of the text is as follows:

Although this work’s title suggests a more application oriented focus, we think that
our presentation would be rather incomplete with a shallow description of the theoretical
foundations supporting it. Therefore, in section 2 we introduce the language, defined by us
and used in the rest of the article - logic programs extended with two kinds of negation.

Afterwards, in section 3, we review the extended logic program semantics (WFSX).
Therefore, by the end of this section it has been shown how to assign meaning to a broad
class of extended Jogic programs which will then be used as our problem representation and
problem solving vehicle.

In section 4 the reader can find the 3-valued and 2-valued contradiction removal
methods that we’ve defined and supported by the WFSX semantics, which are the basic
theoretical tools used in the applications. With this section we conclude the more formal part
of the paper.

Section 5 shows how to use the previous results to solve general diagnosis problem:s.
We start by reporting a major theorem that defines the contradiction removal applicability
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spectrum to diagnosis. In essence, we have shown that we can capture an unifying
framework of the two main streams of model-based diagnosis: the consistency-based and
abductive approaches. The proposed method defines a translation from this framework into
the language of extended logic programming with integrity constraints. This section closes
with several illustrative application examples of our approach to diagnosis. Parts of this
section appeared in [29].

Subsequently, in section 6, we show how the debugging of normal logic programs
can be fruitfully understood as a diagnosis/contradiction removal problem. We describe and
analyse these two views, the main achievement being a program transformation that is able
to identify all the possible minimal sets of bugs that can explain the abnormal behaviour of
an erroneous program. Parts of this section appeared in [28].

We conclude this article with a small section that exhibits how the above debugging
transformation can be used for the view update problem in deductive databases, and
compare to previous work. Parts of this section appeared in [30].

We thank Jose Jilio Alferes for his important help in the carrying out part of the
research reported here. We thank ESPRIT BR Compulog 2 (n°. 6810), and INICT for their
financial support, which made this work possible.

2. LANGUAGE

An atom of a given a first-order language £ is an expression of the form p (1, . . ., 1,)
where p is a predicate symbol of £, and the t;s are terms of L. An objective literal is an atom
A or its explicit negation —A. We also use the symbol —to denote complementary literals
in the sense of explicit negation. Thus ——A =A. Here, a literal is either an objective literal
L or its default negation not L. By not {ay, ..., a,, ...} wemean {not a, ..., not a,, ...}

A term (resp. atom, objective literal, literal) is called ground if it does not contain
variables. The setof all ground terms of Lis called the Herbrand universe of £. By theextended
Herbrand base of £, we mean the set of all ground objective literals of L. For short use #
to denote the extended Herbrand base of L

An extended logic program is a finite set of rules of the form:

L, (n20)

where His an objective literal and each of the L;s is a literal. In conformity with the standard
convention we write rules of the form H « also simply as H.

A normal logic program is an extended logic program where each literal appearing
in the body of a rule is either an atom or the default negation of an atom. A normal logic
program P is called definite it none of its rules contains default literals.
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By theextended Herbrand base { P), we mean the language with alphabet consisting
of all the constants, predicate and function symbols that explicitly appear in P.

By grounded version of an extended logic program P we mean the (possibly infinite)
set of ground rulés obtained from P by substituting in all possible ways each of the variables
in P by elements of its Herbrand universe. Thus, without loss of generality (cf. [33]), we
coalesce an extended logic program P with its grounded version.

A program with integrity rules (or constraints) is a set of rules as defined above, plus
a set of denials, or integrity rules, of the form:

1l « Ay,...,A,,not By,..., not B,

whereAy, ..., A,.B),..., B, areobjective literals, and n+ m>0. The symbol L stands for falsity.

3. WFSX OVERVIEW

In this section we briefly review the semantics WFSX for normal logic programs (i.e.
with negation by default) extended with a second explicit, negation, which subsumes the
well founded semantics {10] of normal programs. For more details the reader is referred to
the article in this volume by José Jilio Alferes.

An interpretation of an extended program P is denoted by T'U not F, where T and
F are disjoint subsets of H{P). Objective literals in 7 are said to be true in I, objective
literals in F false by default in I, and in #{P)-! undefined in [.

WFSX follows from WES for normal programs plus the coherence requirement
relating the two forms of negation:

‘Forany objective literal L, if —L is entailed by the semantics then not L must
also be entailed’.

This requirement states that whenever some literal is explicitly false then it must be
assumed false by default.

Because it is more adequate for our purposes, here we present WFSX in a distinctly
different manner with respect to its original definition. This presentation is based on
alternating fixpoints of Gelfond-Lifschitz I'-like operators (11, 12]. The equivalence between
both definitions is proven in [1]. We begin by recalling the definition of T™:

Definition 3.1 (The I'- operator) Let P be an extended program, I an interpretation, and
let P’ (resp. I') be obtained from P (resp. 1) by denoting every literal — A by a new atom,
say —_A. The GL-transformation %is the program obtained from P’ by removing all rules
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containing a default literal not A such that A € I', and by then removing all the remaining
default literals from P.

Let J least model of 7; T'lis obtained from J by replacing the introduce atoms —_A
by —A.

To impose the coherence requirement we introduce:

Definition 3.2 (Seminormal version of a program) The seminormal version of a program
P is the program P obtained from P by adding to the (possibly empty) Body of each rule
L «~ Body the default literal not — L, where — L is the complement of L wrt explicit negation.

Below we use I'(S) to denote I'p(s), and T's(S) to denote Tp(S).

Definition 3.3 (Partial stable model) A ser of objective literals T generates a partial stable
model (PSM) of an extended program P iff:

1.T=TT,T
2.Tc I,T
The partial stable model generated by T is the interpretation T\ not (HP)— T\ T).

In other words, partial stable models are determined by the fixpoints of I'T,. Given
a fixpoint 7, objective literals in T are rrue in the PSM, objective literals not in I',T are false
bydefault, and all the others are undefined. Note thatcondition 2 imposes that aliteral cannot
be both true and false by default (viz. if it belongs to T it does not belong to H -I",7, and
vice-versa). Moreover note how the usage of T imposes coherence: if =L is true, i.e. it
belongsto 7, then in I',7, via semi-normality, all rules for L are removed and, consequently,
L ¢TI T, ie. L is false by default.

Example 3.1 Program P = {a; —a} has no partial stable models. Indeed, the only fixpoint
of IT,is {a, —a},and {a, —ma} g T, {a, —a} = {}. Thus it is not a PSM.

Programs without partial stable models are said contradictory. Now we simply define
the semantics for non-contradictory programs.

Theorem 3.1 ( WFSX semantics) Every noncontradictory program P has a least (wrt C)
partial stable model, the well-founded model of P (WFM(P)).

To obtain an iterative ‘bottorm-up’ definition for WFM(P) we define the following
transfinite sequence {1y):

Iy = {}
losy = TITy
Iy = U{lyloe<d} forlimitordinal §
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There exists a smallest ordinal A for the sequence above, such that I is the smallest
Sixpoint of TT'. Then WFM(P) = 1, L not (H{(P) - T',1,)

Inthis constructive definition literals obtained after an applicationof T'T,(i.e.in some
Io) are true in WFM(P), and literals not obtained after an application of I'; (i.e. not in
TI'ylq, for some ) are false by default in WFM (P).

Note that, like the alternating fixpoint definition of WFS [38), this definition of
WESX also relies on the application of two anti-monotonic operators. However, unlike the
definition of WFS, these operators are distinct.

4. CONTRADICTION REMOVAL

As we’ve seen before, WFSX is not defined for every program, i.e. some programs
arecontradictory and are given no meaning. While for some programs this seems reasonable
(e.g. example 3.1), for others this can be too strong.

Example 4.1 Consider the statements ‘Birds, not shown to be abnormal, fly’, ‘Tweety is a
birdand does not fly’ and ‘Socrates is aman’ which are naturally expressed by the program:

JI(X) « bird(Y), not abnormal(X) bird(tweety)
—y(tweery) man(socrates)

WFSX assigns no semantics to this program. However, intuitively, we should at least
be able to say that Socrates is a man and tweety is a bird. It would also be reasonable to
conclude that rweery doesn’t fly, because the rule stating that it doesn’t fly, since it is a fact,
makes a stronger statement than the one concluding it flies. The latter relies on accepting
an assumption of non-abnormality, enforced by the closed world assumption treatment of
the negation as failure, and involving the abnormality predicate. Indeed, whenever an
assumption supporis a contradiction it seems logical (o be able to take the assumption back
in order to prevent it - ‘Reductio ad absurdum’, or ‘reasoning by contradiction’.

Other researchers have defined paraconsistentsemantics for contradictory programs
e.g.[6,2,17,36, 39] and use them to formalize diverse forms of reasoning in contradictory
databases. On the contrary, we only allow a program to run into contradiction in order to
remove it.

To deal with the issue of contradiction brought about by closed world assumptions,
rather then defining more sceptical semantics one can rely instcad on a less sceptical
semantics and accompany it with a revision process thal restores consistency, whenever
violation of integrity contraints occurs.

These very sceptical semantics model rational reasoners who assume the program
absolutelly correct and so, whenever confronted with a Closed World Assumption (or
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hypothesis) leading to an inconsistency cannot accept such a hypothesis; i.e. they prefer to
assume the program correct rather than assume that an acceptable hypothesis must perforce
be accepted.

WFSX models less sceptical reasoners who, confronted with an inconsistent
scenario, prefer considering the program wrong rather than admitting that an CWA hypothesis
be not accepted.

This view can be justified if we think of a program as something dynamic, i.e.
evolving in time. According to this view, each program results from the assimilation of
knowledge into a previous one. In [19], Kowalski presents a detailed exposition of the
intended behaviour of this knowledge assimilation processes in various cases. There he
claims the notion of integrity constraints is needed in logic programming both for
knowledge processing, representation, and assimilation. The problem of inconsistency
arises from nonsatisfaction of the integrity constraints. If some new knowledge can be
shown incompatible with the existing theory and integrity constrains, a revision process is
required to restore satisfaction of those constraints.

Example 4.1 (cont.) We canalso view that program as the result of knowledge assimilation
into a previous knowledge base expressed by a program. For example the program can be
thought of as the adding to previous knowledge the fact that tweety does not fly. According
to WFSX the resulting program is inconsistent. One way of restoring consistency to the
program would be to add the rule ab(tweety) «-not ab(tweety) stating that ab{ rweery) cannot
be false, viz. it would lead directly to a contradiction. The resulting program is now
noncontradictory and its WFM is (man(s), = fly(t), bird(t), not fly(t)}.

Another way of removing contradiction is enforcing ab(nweery) to be truc by adding
it as a fact. This new program is also non-contradictory with WFM:

{man(s), = fly(t), bird(t), not fly(t), ab(t)}
Notice that the first form of revision is more sceptical than the second one.

The set negative literals on which arevision can be made, i.e. the assumption of their
truthfulness can be removed, is the set of revisable literals, and is a subset of nnor H(P).

Definition 4.1 (Revisables) The revisables of a program P are a subset of NoRules(P). the
set of literals of the form not A, with no rules for A in P.

Revisable literals are deemed provided by the user along with the program'. For
instance, in example 4.1 the revisable literals might be: {not abnormal (X))

! The declaration of revisable literals by the user is akin to that of abducible literals. Although some
frameworks identify what are the abducible for some particular problems ([9] where abducibles arc of the
form a*), theories of abduction, for the sake of generality, make no restriction on which literals are
abducibles, and assume them provided by the user.
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We take back revisable assumptions (i.e. assumptions on revisable literals) in a
minimal way, and in all alternative ways of removing contradiction.

4.1. Three-valued contradiction removal

Before tackling the question of which assumptions to revise to abolish contradiction,
we begin by showing how to impose in a program a revision that takes back some revisable
assumption, identifying rules of a special form, which have the effect of prohibiting the
falsity of an objective literal in models of a program. Such rules can prevent an objective
literal being false, hence their name:

Definition 4.2 (Inhibition rule) The inhibition rule for not Lis L «not L. Let IR(S) = {L
«not L1 not L € S},where S is a set of default literals.

These rules state that if nor A is true then A is also true, and so a contradiction arises.
Intuitively this is quite similar to the effect of integrity constraints of form 1 ¢ not A.
Technically the difference is that the removal of such a contradiction in the case of inhibition
rules is dealt by WFSX itself, where in the case of those integrity constraints isn’t.

These rules allows, by adding them to a program, to force default literals in WFSX
to become undefined. Note that changing the truth value of revisable literals from true to
undefined is less committing than changing it to false.

Todeclaratively define the intended program revisions void of contradiction we start
by first considering the resulting WFSXs of all possible ways of revising a program P with
inhibition rules, by taking back revisable assumptions, even if some revisions are still
contradictory programs.

However, it might happen that several different revisions in fact correspond to the
same, in the sense that they lead to the same consequences. For a more detailed discussion
and solution to this problem the reader is referred to [1].

Definition 4.3 (Submodels of a program) A submodel of a(contradictory) program P with
I1Cs, and revisable literals Rev, is any pair <M, R> where R is a subset of Rev and M =
WEM(POIR(R))2. In a submodel <M,R> we dub R the submodel revision, and M are the
consequences of the submodel revision. A submodel is contradictory iff L € M or M is
contradictory.

Exampled4.2 Consider P = {p ¢~ not g; —~p «not r; a « not b} with revisable literals Rev
= {not g, not r, not b}. Its submodels lattice is depicted in figure [, where shadowed
submodels are contradictory ones.

2 For a study of submodels based on the PSMs instead of on the well-founded model see [24].
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fi

{-e. not p, nox 1}
{not q. not b}

{a. not b}
{ notq, not r}

{~p. not p, not 1, a, not b {p. nol -p. not g, a. noi b}
{not q} {no 1}

{p. not —p. not q}
{not 1, not b}

Figure 1. Submodels lattice of example 4.2

As we are interested in revising contradiction in a minimal way, we care about those
submodels that are noncontradictory and among these, about those that are minimal in the
sense of set inclusion.

Definition 4.4 (Three-valued revision) A submodel <M, R> is a three-valued revision of
a program P iff it is noncontradictory.

Definition 4.5 (Minimal noncontradictory submeodel) A three-valued revision <M,R>
is @ minimal noncontradicrory submodel (MNS for short) or a minimal revision, of a
program P iff there exists no other three-valued revision <M’ R’> such that R’  R.

By definition, each MNS of a program Preflects a revision of P, P\U RevRules? that
guarantees noncontradiction, and such that for any set of rules RevRules’ = RevRules, P U
RevRules’ is contradictory. In other words, each MNS reflects a revision of the program that
restores consistency, and which adds a minimal set of inhibition rules for revisables.

It is clear that with these intended revisions some programs have no revision. This
happens when contradiction has a basis on non-revisable literals.

Example 4.3 Consider program P = {a «— not b; b < not ¢; —a; ¢} with revisable literals
Rev = {not c}. The only submodels of P are:

<WFM(P), {}> and <WFM(P U {c « not c}), {not c}>.

3 Where RevRules is the set of inhibition rules for some submodel revision.
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As both these submodels are contradictory P has no MNS, and thus no revisions.
Note that if not b were revisable, the program would have a revision P U {b e not b} If
not b were absent from the first rule, P would have no revision no matter what are the
revisables.

4.2. Two-valued contradiction removal

For most practical applications of contradiction removal techniques the three-
valued revisions are too sceptical. To cope with this problem we define in this section a two-
valued contradiction removal method. Instead of revising CWAs from true to undefined we
change their truth-value to false. Contradiction removal is achieved by addingtothe original
program the complements* of some revisable literals.

Definition 4.6 (Revision facts) The revision fact for not L in L. Let RF(S)={LlinotL e
S}, where S a set of default literals.

These facts allows, by adding them to a program, 1o force default literals in WESX
to become false.

Definition 4.7 (Submodels of a program) A submode! of a( contradictory)program P with
ICs, and revisable literals Rev, is any pair <M, R>, where R is a subset of Revand M =
WFM(P U RF(R)). In a submodel <M, R>, we dub R the submodel revision, and M are the
consequences of the submodel revision. A submodel is contradiciory iff L € M or M is
contradictory.

Similarly to the three-valued case we define two-valued and minimal revisions:

Definition 4.8 (Two-valued revision) A submode! <M, R>;is a two-valued revision of a
program P iff it is noncontradictory.

Definition 4.9 (Minimal two-valued revisions) A particular two-valued revision <M,R>,
is a minimal revision, of a program P iff there exists no other two-valued revision <M,
R’>,, suchthat R’ c R.

For simplicity we’ll use R to identify a two-valued revision. The other component
is implicit.

Example 4.4 Consider contradictory program P:

a ¢ noth, notc 1l « b

—a « notd L « dnotf

4 The complement of atom L is not L, and of literal nor L is L.
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Intuitively literals not b, not d and not e are true by CWA, entailing @ and — a, and
thus L via violation of the implicit integrity rule L ¢~ a, —a.

The revisions of the above program are {e}, {d, f }, (e, f} and {d, e, f }. The minimal
ones are {e} and {df}.

Even for very simple programs it is possible to have three-valued revisions and no
two-valued revision.

Example4.5Given thesetofrevisables (nota}, program { L e~ nora, L ¢—a} hasthe unique
three-valued revision <{not — a}, {nota}> and no two-valued revision.

5. APPLICATION TO DIAGNOSIS

In thissection we describe a general program transformation that translates diagnostic
problems (DP), in the sense of [5], into logic programs with integrity rules. By revising this
program we obtain the diagnostic problem’s minimal solutions, i.e. the diagnoses. The
unifying approach of abductive and consistency-based diagnosis presented by these authors
enables us to represent easily and solve a major class of diagnostic problems using two-
valued contradiction removal. Similar work has been done [32] using Generalised Stable
Models [16].

We start by making a short description of a diagnostic problem as defined in [5, 8].
ADP is atriple consisting of a system description, inputs and observations. The system is
modelled by aHorn theory describing the devices, their behaviours and relationships. In this
diagnosis setting, each component of the system to be diagnosed has a description of its
possible behaviours with the additional restriction that a given device can only be in a single
mode of a set of possible ones. There is a mandatory mode in each component modelled,
the correct mode, that describes correct device behaviour; the other mutually exclusive
behaviour modes represent possible faulty behaviours.

Having this static mode! of the system we can submit to it a given set of inputs
(contextual data) and compare the results obtained with the observations predicted by our
conceptualized model. Following [5] the contextual data and observation part of the
diagnostic problem are sets of parameters of the form parameter(value) with the restriction
that a given parameter can only have one observed valued.

From these introductory definitions [5] present a general diagnosis framework
unifying the consistency-based (c.f. [35, 8] and others) and abductive approaches (c.f. [31]
and others). These authors translate the diagnostic problem into abduction problems where
the abducibles are the behaviour modes of the various system components. From the
observations of the system two sets are constructed: * | the subset of the observations that
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must be explained, and W~ = (—f{X): f{Y) is an observation, for each admissible value X of
parameterfother than Y}. A diagnosis isaminimal consistent set of abnormality hypotheses,
with additional assumptions of correct behaviour of the other devices, that consistently
explain some of the observed outputs: the program plus the hypotheses must derive (cover)
all the observations in ‘P* consistent with \¥-. By varying the set ¥* a spectrum of different
types of diagnosis is obtained.

We show that it is always possible to compute the minimal solutions of a diagnostic
problem by computing the minimal revising assumptions of asimple program transformation
of the system model.

Example 5.1 Consider the following partial model of an engine, with only one component
oil_cup, which has behaviour modes correct and holed [5]:

holed(oil_cup)
holed(oil_cup)
correct(oil_cup)
oil_level(low),engine(on)
oil_level(normal),engine(on)

oil _below_car(present)
oil_evel(low)
oil_level(normal)
engine_temperature(high)
engine_temperature(normal)

TTTT?

An observation is made of the system, and it is known that the engine is on and that
there is oil below the car. The authors study two abduction problems corresponding to this
DP:

. W+={oil_below_car(present)} and¥-={ } (Poole’s view ofadiagnostic problem
[31]) with minimal solution W, = {holed(oil_cup)}.

2. =¥ = {]} (De Kleer’s DP view [7]) with minimal solution W, = {}.
To solve abduction problem 1 it is necessary to add the following rules:

L« notoil_below_car(present)
correct(oil_cup) ¢ not abfoil_cup)
holed(oil _cup) « ab(oil_cup) fault_mode(oil_cup, holed)

The above program, as wanted, has a single two-valued minimal revision:
{abloil_cup), fault_mode(oil_cup, holed)}

To solve the second problem, the transformed program has the same rules of the
program for problem P, except the integrity constraint-it is not necessary to cover any set
of observations. The program thus obtained is non-contradictory having minimal revision

{1

Next, we present the general program transformation which turns a diagnostic
abduction problem into a contradiction removal problem.
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Theorem 5.1 Given an abduction problen: (AP) corresponding to a diagnostic problem,
the minimal solutions of AP are the minimal revising assumptions of the modelling program
plus contextual data and the following rules:

1. L & not obs(v), for each obs(v) € ¥+.
2. = obs(v), for each obs(v) e ¥-.
and for each component ¢; with distinct abnormality behaviour modes by and by
3. correct(c;) < not ab(c;).
4. bfc;) « ab(c;) fault_mode(c, by).
5. L e fault_mode(c;, bj) fault_mode(c; b;) for each b;, by.
with revisables fault_mode(c,, b;) and ab(c;).
We don’t give a detailed proof of this result but take into consideration:

* Rule I ensures that, for each consistent set of assumptions obs(v) € ¥*must be
entailed by the program.

* Rule 2 guarantees the consistency of the sets of assumptions with ¥-.

* Rules 4 and 5 deal and generate all the possible mutually exclusive behaviours of
a given component.

Finally, in no revision there appears the literal fault_mode(c, correct), thus
guaranteeing that minimal revising assumptions are indeed minimal solutions to the DP.

The concept of declarative debugging, see section 6, can be used to aid in the
development of logic programs and in particular to help the construction of behavioural
models of devices. Firstly, a Prolog prototype or blueprint of the component is written and
debugged using the methodology presented in that section. After the system is constructed,
the diagnostic problems can be solved using contradiction removal as described above, in
the correct blueprint.

In the rest of this section we’l] present several examples of diagnosis problems.
Whenever possible, we’ll try to write the logic programs as close as possible to the ones
obtained by the previous program transformation. We start by a very simple example which
shows how difficult the modelization task can be.

Figure 2. The three or problem.

144

Application 1o diagnosis, debugging and updating of logic programs with implicit and explicit negarion

Carlos Viegas Damisio - Luis Moniz Pereira

Example 5.2 Consider the simple logic circuit of Fig. 2. We’ll present two models of the
circuit. Both are correct for predicting the behaviour of the circuit, but only one can be used
to perform correctly the diagnosis task.

The naive solution would model an or gate with the following program:

or_gate(G, 1,1,1) « correct(G) or_gate(G, 1,0,1) & correc(G)
or_gate(G, 0,1,1) « correci{(G) or_gate(G,0,0,0) « correct(G}
correct(G) ¢« notab(G)

The topology of the circuit is captured by:

node(e, E)  « node(a, A), node(b, B), or_gate(gl, A, B, E)
node(f, F)  « node(c, C), node(d, D), or_gate(g2, C, D, F)
node(g, G) ¢« node(e, E), node(f, F), or_gate(g3. E, F, G)

Given the inputs, this program correctly predicts the outputs. But our main concern
is diagnosis, and this program can not be used to do it !!! Suppose the situation where the
value atnodes ‘a’, ‘b’, ‘c’ and ‘d” is } and the output atnode ‘g’ is 0. Obviously, we cannot
explain this wrong output because we have no description of the behaviour of an or gate
when itis abnornal, i e. there are no fault-models. So we only require the consistency with

the observed output (‘V* = {} and ¥~ = {—node(g, 1)}):
nodefa, 1) node(b, 1) node(c, 1) node(d, 1) —node(g, 1)

If we apply the contradiction removal method, with the revisables being the ab literals,
we obtain as minimal revisions: {ab(g))}, {ab(gs)}. {ab(gz}}.

Intuitively, the first two diagnoses are incorrect. For instance, consider the diagnosis
fab(g1)}. In this situation gate 3 still has an input node with logical value 1, therefore its
output should be also 1. The problem is that in the program above an ‘or’ gate to give its
output must have both inputs determined, j.e. the absorption property of (hese gates is not
correctly modeled. An alternative and correct description of this circuit is given below:

or_gate(G, 11,12, 1) e node(Il, 1), correct(G)
or_gate(G,11,12,1) « node(I2, 1), correct(G)
or_gate(G, 11,12, 0) « node(Il, 0}, node(12, 0), correct(G)

correct{G) « not ab(G)
The connection’s representation part is slightly simplified:

node(e, E) « or_gate(gl, a b, E)
node(f. F) « or_gate(g2, ¢, d, F)
node(g, G) « or_gare(g3. e, f. G)

145



Estudios sobre programacion ligica v sus aplicaciones

Now, with the same set of inputs and constraints we obtain the expected
diagnosis:

{ab(g)), ab(g2)} {ab(g3)}

Finally, notice that using this new model it is also not possible to explain the output
of gate g3. If we set ‘¥* = {node(g, 0)} and ¥- = {— node(g, 1)}, translated according to
theorem 5.1 to:

L «not node(g, 0) —node(g, 1)

This new program (plus the input and circuit description) is contradictory, i.e. there
is no two-valued revision.

Other solution is given to the previous problem is described in the next example: we
mantain the wrong model of the gates an add a particular fault model to it. Besides, the
example will exemplify ina concrete situation the distinction between three-valued revision
and two-valued revision.

Example 5.3 Consider the circuit of figure 5.3, with inputsa=0,b=1,c=[,d=1,h= 1|

Figure 3. Logic circuit of example 4.3.

and (incorrect) output 0. Its behavioural model is:

% Normal behaviour of and gates % Faulty behaviour

and_gate(G, 1, 1, 1) « correct(G) and_gate(G, 1, 1,0) « abnormal(G)
and_gate(G, 0,1,0) « correct(G)  and_gate(G,0,1,1) « abnormal(G)
and_gate(G, 1,0,0) « correct(G) and_gate(G, 1,0,1)  « abnormal(G)
and_gate(G, 0,0,0) « correct(G) and_gate(G, 0,0, 1) « abnormal(G)

And a similar set of rules for or gates, as in example 5.2. According to the program
transformation two auxiliary rules are needed:

correct{G) ¢ not ab(G) abnormal(G) « ab(G)
and the description of the circuit and its connections:

node(a, 0)  node(b, 1) node(c, 1) node(d, 1) node(h, 1)

146

Application to diugnosis, debugging and updating of logic programs with implicit and explicit negation

Carlos Viegas Damdsio - Luis Moniz Pereira

% Connections

node(e, E} « node(a, A), node(b, B), or_gate(gl, A, B, E)
node(f, F) ¢ node(c, C), node(d, D), and_gate(g2, C. D, F)

node(g, G) « node(e, E), node(f, F), or_gate(g3, E, F, G)
node(i, 1) ¢« node(g, G), node(h, H), and_gate(g4, G, H, I}

Selecting a consistency-based approach, i.e W*={}:
—node (i, 1)

The minimal solutions to this problem are highlighted in figure 4. The two-valued
minimal revisions {ab(g1), ab(g2)}, {ab(g3)}, and {ab(gd)} are the minimal solutions to
the diagnosis problem. The above representation does not suffer from the problems of the
example 5.2. This is due to the fact that when an abnormality assumption is made the gate’s
fault-model become “active’, an output value is produced which can be used by other gates
in the circuit. Notice that this program is able to explain the outputs: if an integrity rule
enforcing that the output at node ‘g’ should be 0 is added to the program then the minimal
revisions are the same as before.

Figure 4. Diagnoses of example 4.3.

If instead of two-valued contradiction removal the three-valued one is used four
(withtwo intuitively incorrect) single-faultdiagnoses are found: {ab(g 1)}, {ab(g2)}, {ab(g3))
and {ab(g4)} Remember that these literals are revised to undefined, blocking the propagation
of values from inputs to outputs. This short example shows again that the naive model of
logical gates is not adequate for diagnosis. More differences between three-valued and two-
valued contradiction will be drawn in the next example.

In example 5.4 we’ll show how to represent and reason with fault-models in the
diagnosis task.
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Example 5.4 Consider the situation in figure 5, where two inverters are connected in series.

01

Figure 5. Two inverters circuit.

This particular situation can be represented by the program below:

(T, G, 1) & node(T, I, 0), not ab(G)
(T, G, 1,0) & node(T, I, 1), not ab(G)
node(T, b, B) ¢« inv(T, gl, a, B)

node(T, ¢, C) « inv(T, g2, b, C)
node(0, a, 0)

—node(0, ¢, 0)

[ A O R S

Rules 1-2 model normal inverter behaviour, where correct has been replaced by nor
ab. Rules 3-4 specify the circuit topology. Rule 5 establishes the input as 0. Rule 6 specifies
the observed output should not be 0 (consistency-based approach). The extra parameter T
in all rules is a time-stamp that let us encode multiple observations. For the time being
suppose that the previous observation was made at time 0. The revisables are, as usual, the
ab literals.

Revising this program, using either contradiction removal methods, these minimal
revisions are obtained: {ab(g1}} and {ab(g2)}:

Now, tryingto explain the output, viaintegrity rule L «—nornode(0, c, 1), the program
is contradictory and non-revisable. It is necessary to add a fault-model to the program:

inv(T, G, 1,0) & fault_mode(G, s0) 7
inv(T, G, I, 1) « fault_mode(G, sl) 8
in(T, G, 1, V) « node(T, 1, V), fault_mode(G, sh) 9
1 « fault_mode(G, M1), fault_mode(G, M2), M1#M2 10

Rules 7-9 model three fault modes: one expresses the output is stuck at 0, the other
thatitis stuck at 1, whatever the input may be, and the other that the output is shorted with
the input. According to rule 10 the three fault modes are mutually exclusive. If a pure
consistency-based diagnosis is performed the revisions are the same as before. Whereas, the
observed output can be explained:

L < not node(0, ¢, 1) 11

The program consisting of rules 1-11 is revisable with minimal diagnosis (with
either of the contradiction removal techniques):
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{ab(gl), fault_mode(g1, sh)}  {ab(g]), Sault_mode(g1, s0)}
{ab(g2), fault_mode(g2, s1)) {ab(g2), faulr_mode(g2, sh)}

Regardless of the minimal revisions being the same with both methods, they have
different consequences. The two-valued approach really explains the output, i.e. node(0, c,
1)1s entailed by any of the revised programs. The three-valued method doesn’(: it satisfies
the constraints by (indirectly) undefining the literals node(0, ¢, 0) and node(0, c, 1). The distinct
effects will be clear soon.

Suppose now that an additional experiment is made at time 1, by setting the input to
1 and observing output I. This test is modeled by the rules:

node(l, a, 1) 12
= node(l, ¢, 0) 13
4 — not nodef), c, 1) 14

With the third-valued contradiction removal method the minimal diagnoses are the
same as before, whereas with the two-valued one they are:

{ab(gl), faulr_mode(g1, s0)) {ab(g2), fauli_mode(g2, s1)}
{ab(gl), fault_mode(g], s1)ab(g2), Jault_mode(g2, sh))

Next, a typical and problematic problem is presented and correctly (and easily)
solved.

Example 5.5 [37]

Three bulbs are set in parallel with a source via connecting wires and a switch, as
specified in the first three rules (where ok is used instead of correct ). Normality is assumed
by defaultin the rule for ok. The two integrity rules enforce that the switch is always either
open or closed. Since both cannot be assumed simultaneously, this program has two
minimal revisions, with ab, open, closed being the revisables: one obtained by revising the
CWA onopen (i.e. adding open); the other by revising the CWA on closed (i.e. adding closed).
In the first open, not on(b1), not on(b2), not on(b3) are true in the model; in the second
closed, on(b1), on(b2), on(b3) do.

SI b1 b2% b3}
w1 w2 w3

on(bl) « closed, ok(s), ok(w1), ok(b1) L « not open, not closed

on(b2) < closed, ok(s), ok(wl), ok(w2), ok(b2) L « open, closed

on(b3) « closed, ok(s), ok(wl), ok(w2), ok;(w3), ok(b3) ok(X) « not ab(X)
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Further integrity rules specify observed behaviour to be explained. For instance, to
explain that bulb 1 is on it is only necessary to add L « not on(b1) to obtain the single,
intuitive, minimal revision {closed}.

Suppose instead we wish to explain that bulb 2 isoff (i.e. noton). Adding L <—on(b2),
five minimal revisions explain it, four of which express faults:

{closed, not ab(s)} {closed, not ab(w, }}
{closed, not ab(b,)} {closed,not ab(w,)}

{open}

Adding now both integrity rules, only two of the previous revisions remain: both
with the switch closed, but one stating that bulb 2 is abnormal and the other that wire 2 is.

Finally, we show a more extensive example due to [4].

Example 5.6 [4]

Causal nets are a general representation schemaused todescribe possibly incomplete
causal knowledge, in particular to represent the faulty behaviour of a system. Consider the
(simple) causal model of a car engine in figure 6. A causal net is formed by nodes and arcs
connecting nodes. There are (at least) three types of nodes:

* Initial Cause nodes - represent the deep causes of the faulty behaviour. It is the
initial perturbations are not directly observable;

= State nodes - describe partial states of the modeled system;
» Finding nodes - observable manifestations of the system.

There are two kinds of arcs: causal arcs thatrepresent cause/effect relationships and
has manifestations arcs connecting states with their observable manifestations. These arcs
can be labeled by a MAY tag, stating some sort of incompleteness in the model.

This formalism can be easily iranslated to logic programs:

lubric_oil_burning & piston_rings_used
stack _smoke «— lubric_oil_burning

irreg_oil_consumpt « lubric_oil_burning
oil_loss ¢ oil_cup_holed

oil_below_car ¢ oil_loss, may(oil_below_car, oil_loss)

oil_lack « oil_loss
oil_lack « irreg_oil_consumpt
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high_engine_temp ¢ oil_lack
temp_indic_red « high_engine_temp

coolant_evaporation e high_engine_temp
vapour « coolant_evaporation

power_decrease « high_engine_temp, may(power_dec, high_eng_temp)
lack_of_accel « power_decrease

melted_pistons ¢ coolant_evaporation, may(melted_pistons, cool_evap)
smoke_from_eng « melted_pistons

X
v Y
bnc_oil_buming }
N

spask_plugs_used_up

diny_spark_pkigs "

uTeg_igrion

T
Pl murmbling_engme "

b MAY

high_engine_temp
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}
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Figure 6. Causal model in a mechanical domain.
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If the findings ‘dirty spark plugs’, ‘lack of acceleration’, ‘temperature indicator is
red’ and ‘vapour’ are observed the following integrity rules are added to the program:

1« notdirty_spark_plugs L« notvapour
1« notlack_of accel 1« nottemp_indic_red

By revising the program, with the revisables being the initial cause nodes and may
literals, the minimal revisions are:

{  old_spark_plugs, may(irreg_ignition, spark_plugs_used_up)
piston_rings_used, may(power_decrease, irreg_ignition) }

{ oil_cup_holed, may(irreg_ignition, spark_plugs_used up),
old_spark_plugs,may(power_decrease,irreg_ignition) '}

{oil_cup_holed, old_spark_plugs, may(power_decrease, high_engine_temp))

{old_spark_plugs, piston_rings_used, may(power_decrease, high_engine_temp)}

6. DEBUGGING

It is clear that fault-finding or diagnosis is akin to debugging. In the context of

logic, both arise as a confrontation between theory and mode!. Whereas in debugging

one confronts an erroneous theory, in the form of a set of clauses, with models in the
form of input/output pairs, in diagnosis one confronts a perfect theory (a set of rules
acting as a blueprint or specification for some artifact) with the imperfect input/output
behaviour of the artifact (which, if it were not faulty, would behave in accordance with a
theory model).

What is comimon to both is the mismatch. The same techniques used in debugging
to pinpoint faulty rules can equally be used to find the clauses, in a perfect blueprint, which
are at odds with artifact behaviour. Then, by means of the correspondence from the
blueprint’s modelization to the artifact’s subcomponents whose i/o behaviour they emutate,
the faulty ones can be spotted.

Declarative debugging then is essentially a diagnosis task, but until now its
relationship to diagnosis was unclear or inexistent. We present a novel and uniform
technique for normal logic program declarative error diagnosis by laying down the
foundations on a general approach to diagnosis using logic programming. In so doing the
debuggingactivity becomesclarified, thereby gaining amore intuitive appeal and generality.
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This new view may beneficially enhance the cross-fertilization between the diagnosis and
debugging fields. Additionally, we operationalize the debugging process viaa contradiction
removal (or abductive) approach to the problem. The ideas of this work extend in several
ways the ones of [21].

A program can be thought of as a theory whose logical consequences engender its
actual input/output behaviour. Whereas the program’s intended input/output behaviour is
postulated by the theory’s purported models, i.e. the truths the theory supposedly accounts
for.

The object of the debugging exercise is to pinpoint erroneous or missing axioms,
from erroneous or missing derived truths, so as to account for each discrepancy between a
theory and its models. The classical declarative debugging theory [21] assumes that these
models are completely known via an omnisciententity or ‘oracle’. In amore general setting,
that our theory accounts for, these models may be only partially known and the lacking
information might not be (easily) obtainable. By hypothesizing the incorrect and missing
axioms thatare compatible with the given information, possible incorrections are diagnosed
but not perfected, i.e. sufficient corrections are made to the program but only virtually. This
process of performing sufficing virtual corrections is the crux of our method.

From the whole set of possible diagnoses we argue that the set of minimal ones is
the expected and intuitive desired result of the debugging process. When the intended
interpretation (model) is entirely known, then a unique minimal diagnosis exists which
identifies the bugs in the program. Whenever in the presence of incomplete information, the
set of minimal diagnoses corresponds to all conceivable minimal sets of bugs; these are
exactly the ones compatible with the missing information; in other words, compatible with
all the imaginable oracle answer sequences that would complete the information about the
intended model. It is guaranteed one of these sets pinpoints bugs that justify the disparities
observed between program behaviours and user expectations. Mark that if only one minimal
diagnosis is obtained then at Jeast part of the bugs in the program were sieved. but more may
persist.

Diagnostic debugging can be enacted by the contradiction removal methods intro-
duced in section 4.2 (29]. Indeed, a simple program transformation affords a contra-
diction removal approach to debugging, on the basis of revising the assumptions about
predicates’ correctness and completeness, just for those predicates and goals that support
buggy behaviour. We shall see this transformation has an effect similar to that of
turning the program into an artifact specification with equivalent behaviour, whose
predicates model the components, cach with associated abnormality and fault-mode
literals. When faced with the disparities between the expected and observed behaviour, the
transformed program generates, by using contradiction removal methods, all possible
virtual corrections of the original program. This is due to a one-to-one mapping between
the (minimal) diagnoses of the original program and the (minimal) revisions of the
transformed one.

153



Estudios subre programacion logica v sus aplicaciones

These ideas on how debugging and fault-finding relate are new, the attractiveness
of the approach being its basis on logic programs. In the same vein that one can obtain a
general debugger for normal logic programs, irrespective of the program domain, one can
aim at constructing a general fault-finding procedure whatever the faulty artifact may be,
just as long as it can be modelled by logic programs not confined to being normal logic
programs, but including more expressive extensions such as explicit negation.

However we must still go some way until this ultimate goal can be achieved. The
current method applies only to a particular class of normal logic programs where the well-
founded model [10] and SLDNF-resolution [20] coincide in meaning. The debugging of
programs under wellfounded semantics with explicit negation {1, 22] is also foreseen,
where new and demanding problems are yet to be solved. On the positive side, the loop
detection properties of well-founded semantics will allow for a declarative treatment of
otherwise endless derivations.

We examine here the problem of declarative error diagnosis, or debugging, for the
class of normal logic programs, where SLDNF-Resolution can be used to finitely compute
all the logic consequences of these programs, i.e. SLDNF-Resolution gives the complete
meaning of the program. In the sequel we designate this particular class of programs as
source programs.

Well-founded semantics plays this important rdle in our approach to declarative
debugging. By considering only source programs, we guarantee that the well-founded
model (WFM) is total’ and equivalent to the model computed by SLDNF-Resolution. In
[34], Przymusinski showed that SLDNF-Resolution is sound wrt to well-founded semantics.
Thus, for these programs it is indifferent to consider the WFM or Clark’s completion
semantics [3] (which characterizes SLDNF).

On the other hand, we intend to further develop this approach, and then deal with the
issue of debugging of programs under WFS. By using WFS, loop problems are avoided.
Conceivably, we could so debug symptoms in loop-free parts of a normal program under
SLDNF, even if some other parts of it have loops.

Last, but not least, the basis of our declarative debugging proposal consists in
applying a contradiction removal method we’ve defined for programs under WFSX.

6.1. Declarative Error Diagnosis

Next we present the classical theory of declarative error diagnosis, following mainly
[21], in order to proceed to a different view of the issue.

s A well-founded model is total iff all literals are either true or false in it.
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It would be desireable that a program gave all and only the correct answers to a
user’s queries. Usually a program contains some bugs that must be corrected before it can
produce the required behaviour.

Let the meaning of a logic program P be given by the normal Herbrand models for
comp(P), Clark’s completion of P [3]. Let the ultimate goal ot a program be for its meaning
to respect the user’s intended interpretation of the program.

Definition 6.1 (Intended interpretation [21]) Let P be aprogram. An intended interpretation
for P is a normal Herbrand interpretation for comp(P).

Definition 6.2 (Program correct wrt intended interpretation [21])

A logic program P is correct wrt to an intended interpretation Iy iff Iy is a model
for comp(P).

Errors in a terminating logic program manifest themselves through two kinds of
symptoms (we deliberately ignore for now the question of loop detection).

Definition 6.3 (Symptoms). Let P be a logic progran, 1y its intended interpretation, and
A an atom in the Herbrand base of P.

*if Pt sipnrA and A g Ly then A is a wrong solution for P wrt [y,
* if ¥ sLonr A and A € [y then A is a missing solution for P wrt Iy

Of course, if there is a missing or a wrong solution then the program is not correct
wrtits intended interpretation, and therefore there exists in it some bug requiring correction.
In [21] two kinds of errors are identified: uncovered atoms and incorrect clause instances.
As we deal with ground programs only, we prefer to designate as incorrect rules the latter
type of error.

Definition 6.4 (Uncovered atom) Let P be a program and Iy its intended
interpretation. An atom A is an uncovered atoni for P wrt Iy iff A € Iyybut for no rule
Ae—WinP IyEW.

Definition 6.5 (Incorrect rule) Let P be a program and Iy its intended interpretation. A
rule A <~ W is incorrect for P wrt Iy iff A € Iy and Iy E W.

Theorem 6.1 (Two types of bug only [21]) Let P be a program and Iy its intended
interpretation. P is incorrect wrt Iy, iff there is an uncovered atom for P wrt to Iy or there
is an incorrect rule for P wrt to Iy

Thus, if there is a missing or a wrong solution there is, at least, an uncovered atom
or an incorrect rule for P.
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Example 6.1 Let P be the (source) program with model {not a, b, not c}:
a<notb benote

Suppose the intended interpretation of P is Iy = {nor a, not b, ¢}, i.e. bisa wrong
solution, and ¢ amissing solution for P wrt Iy;. The reader can check, ¢ is an uncovered atom
for P wrt Iy, and a ¢ nor b is an incorrect rule for P wrt .

6.2. What is Diagnostic Debugging?

We now know, from the previous section (cf. theorem 6.1), that if there is a missing
or a wrong solution then there is, at least, an uncovered atom or an incorrect rule for P. In
classical declarative error diagnosis the complete intended interpretation is always known
from the start. Next we characterize the situation where only partial knowledge of the
intended interpretation is available but, if possible or wanted, extra information can be
obtained. To formalise this debugging activity we introduce two entities: the user and the
oracle.

Definition 6.6 (User and Oracle) Ler P be a source program and Iy the intended
interpretation for P. The user is identified with the limited knowledge of the intended model
that he has, i.e. a ser U C ly. The oracle is an entity that knows everything, that is, knows
the whole intended interpretation Iy

By definition, the user and the oracle share some knowledge and the user is not
allowed to make mistakes nor the oracle to lie. The user has a diagnosis problem and poses
the queries and the oracle helps the user: it knows the answers to all possible questions. The
user may coincide with the oracle as a special case.

Our approach is mainly motivated by the following obvious theorem: if the incorrect
rules of a program® are removed, and a fact A for each uncovered atom A is added to the
program, then the model of the new transformed program is the intended interpretation of
the original one.

As justified in the section introduction, our approach uses the well-founded
.semantics to identify the model of programs.

Theorem 6.2 Let P be a source program and Iy its intended interpretation. If WFM(P) #
Iy, and

Unc={A: Ais an uncovered atom for P wrt Iy}
InR={A « B: A « Bisincorrect for P wrt Iy}

then WFM((P-InR) L Unc) = Iy

6 In this section program means source program, unless stated otherwise.
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Example 6.2 Consider the source program P
a¢notb benotc

The WFM(P)is {nota, b, notc ). 1 Iyy= {nota, notb, ¢ } is the intended mnterpretation,
then c is an uncovered atom for P wrt Iy, and @ « not b is an incorrect rule for P wrt Iy
The WFM of the new program,

b « notc c
obtained by applying the transformation above, is /y,.

Definition 6.7 (Diagnosis) Let P be a source program, U a set of literals of the language
of P, and D the pair <Unc, InR> where Unc € Hp, InRC P. Disa diagnosis for U wrt
Pif

U c WFM((P-InR) U Unc).

Example 6.2 (cont.) The diagnoses for U = {not a, ¢} wrt P are:

Di={{bc}), {}) ) Ds=({c}, {a < not b} )
D, ={{b,c}, {a < not b)) ) D¢ = ({c}.{a &« not b; b « not c})
D3 ={{b,c}, {b « notc) N
Dy = {{b, c},{a « not b; b « not c})

Each one of these diagnoses can be viewed as a virtual correction of the program.
For example, D) can be viewed as stating that if the program is corrected so that 4 and ¢
become true, by adding them as facts say, then the literals in U also become true. Another
possibility is to set ¢ true and correct the first role of the original program. This possibility
is reflected by Ds.

However some of these diagnoses are redundant: for instance in Dg there is no reason
to consider the second rule wrong; doing so is redundant.

Thisiseven more serious in the case of D3. There, the atom b is considered uncovered
and all rules for b are considered wrong.

Definition 6.8 (Minimal Diagnosis) Let P be a source program and U a set of literals. Given
two diagnosis Dy= <Uncy, InRy> and D, = <Unc,, InRy> for U wrt P we say that Dy <
D, iff Uncy v InRy < Uncy U InR,.

D is a minimal diagnosis for U wrt P iff there is no diagnosis D for U wrt P such
that Dy < D. <{}, {}> is called the empty diagnosis.

Example 6.2 (cont.) The minimal diagnoses for U = {not a, ¢} wrt P are D, and Ds above.

157



Estudios sobre programacion ligica v sus aplicaciones

Obviously, if the subset of the intended interpretation given by the user is already
aconsequence of the program, we expect empty to be the only minimal diagnosis: i.e. based
on that information no bug is found:

Theorem 6.3 Let P be a source program, and U a set of literals. Then U < WFM(P) iff the
only minimal diagnosis for U wrt P is empty.

A property of source programs is that if the set U of user provided literals is the
complete intended interpretation (the case when the user knowledge coincides with
oracle’s), a unique minimal diagnosis exists. In this case the minimal diagnosis uniquely
identifies all the errors in the program and provides one correction to all the bugs.

Theorem 6.4 Let P be a source program and Iy its intended interpretation. Then diagnosis
D= <Unc,InR>is the unique minimal diagnosis for Iy wrt P where

Unc
InR

{ A Aisanuncovered atom for P wrt I}
{A ¢ B: A e Bisincorrect for Pwrt I}

The next lemma helps us show important properties of minimal diagnosis:

Lemma 6.5 Let P be asource program, and U, and Uy sets of literals. [f U, c U, and if there
are minimal diagnosis for Uy and U, wrt P then there is a minimal diagnosis for U,wrt P
contained in a minimal diagnosis for U, wrt P.

Let us suppose the set U provided by the user is a proper subset of the intended
interpretation. Then itis expectable that the errors are not immediately detected, in the sense
that several minimal diagnoses may exist. The next theorem guarantees that at least one of
the minimal diagnoses finds an error of the program.

Theorem 6.6 Let P be a source program, ly its intended interpretation, and U a set of
literals. If U < Iy and if there are minimal diagnosis for U wrt P then there is a minimal
diagnosis (Unc, InR) for U wrt P such that for every A € Unc, A is an uncovered atom for
P wrt 1y, and for every rule A « B € InR, A « B is incorrect for P wirt Iy.

As a special case, even giving the complete intended interpretation, if one single
minimal diagnosis exists then it identifies at least one error.

Corollary 6.1 Let P be a source program, Iy its intended interpretation, and U a set of
literals. If there is a unigue minimal diagnosis (Unc, InR) for U wrt P then for every A

Unc, A isanuncovered atom for Pwrt ly, andforevery ruleA ¢~ Be InR, A < Bisincorrect
for Pwrt Iy,

In a process of debugging, when several minimal diagnoses exist, queries should be
posed to the oracle in order to enlarge the subset of the intended interpretation provided, and
thus refine the diagnoses. Such a process must be iterated uniil a single minimal diagnosis
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is found. This eventually happens, albeit when the whole intended interpretation is given
(cf theorem 6.4).

Example 6.2 (cont.) As mentioned above, the two minimal diagnoses for U = {nota, c}
wrt Pare Dy =({b, ¢}, {})and Ds = ({c}, {a « not b}).

By theorem 6.6, at least one of these diagnoses contains errors. In D), b and ¢ are
uncovered. Thus, if this is the error, not only literals in U are true but also b. In Ds, ¢ is
uncovered and rule a « not b is incorrect. Thus, if this is the error, b is false.

By asking about the truthfulness of b one can, in fact, identify the error: e.g. should
the answer to such query be yes the set / is augmented with b and the only minimal diagnosis
is Dy; should the answer be no U is augmented with not b and the only minimal diagnosis
is D5.

The issue of identifying disambiguating oracle queries is dealt with in the next
section.

In all the results above we have assumed the existence of at least one minimal
diagnosis. This is guaranteed because:

Theorem 6.7 Ler P be n source program, I its intended interpretation, and U a finite set
of literals. If U C Iyyand U ¢ WFM(P) then there is a non-empty minimal diagnosis <Unc,
InR> for U wrt P such that, for every A € Unc, A is an uncovered atom for P wrt Iy, and
foreveryrule A « B e InR, A « B is incorrect for P wrt I .

6.3. Diagnosis as Revision of Program Assumptions

In this section we show that minimal diagnosis are minimal revisions of a simple
transformed program obtained from the original source one. Let’s start with the program
transformation and some results regarding it.

Definition 6.9 The transformation Y that maps a source program P into a source program
P’ is obtained by applying to P the following two operations:

* Add to the body of each rule H < B,, . .., B,, not C,..., not C,, in P the default
literal not incorrect (H « B,,.. ., B,, not C,..., not C,, ).

* Add the rule p(X,\, X...,X,) « uncovered(p(X,, Xyp...Xy)) for each predicate p
with arity n in the language of P.

It is assumed predicate symbols incorrect and uncovered don’t belong to the language
of P.
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It can be easily shown that the above transformation preserves the truths of P: the
literals not incorrect(. . .) and uncovered(. . .) are, respectively, true and false in the
transformed program. The next theorem captures this intuitive result.

Theorem 6.8 Let P be a source program. If L is a literal with predicate svmbol distinct from
incorrect and uncovered then L € WFM(P) iff Le WEFM(Y(P)).

Example 6.2 (cont.) By applying transformation Y to P we get

a < not b, not incorrect{a < not b) a ¢ uncovered(a)
b ¢ not ¢, not incorrect(b « not c) b ¢ uncovered(b)
¢ ¢« uncovered(c)

The reader can check that the WFM of Y (P) is

{not a, b, not ¢, not uncovered(a), not uncovered(b), not uncovered(c),
not incorrect(a <« not b), nor incorrect(b « not ¢) }

A user can employ this transformed program in the same way he did with the original
source program, with no change in program behaviour. If he detects an abnormal behaviour
of the program, in order to debug the program he then just explicitly states what answers
he expects:

Definition 6.10 (Debugging transformation) Ler P be a source program and U a set of
user provided literals. The debugging transformation Y gup, (P, U) converis the source
program P into an object program P’. P’ is obtained by adding 10 Y(P) the integrity rules
L «notaforeach atomae U, and L « a for each literal nota e U.

Our main result is the following theorem, which links minimal diagnosis for a given
set of literals wrt to a source program with minimal revisions of the object program obtained
by applying the debugging transformation.

Theorem 6.9 Let P be a source program and U a set of literals from the language of P. The
pair <Unc, InR)> is a diagnosis for U wrt P iff

{uncovered(A): A € Unc} v {incorrec(A « B): A « B e InR)

is a revision of Ygep,o( P, U), where not incorrect(. . .) and not uncovered(. . .) are all the
revisable literals.

The proof is trivial and it is based on the facts that adding a positive assumption
incorrect has an effect similar to removing the rule from the program, and adding a positive
assumption uncovered(A) makes A true in the revised program. The integrity rules in
Ygebuel P. U) guarantee that the literals in U are ‘explained’.
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Theorem 6.10 Let P be a source program, Iy its intended interpretation, and U a finite set
of literals. If U < Iy and U ¢ WFM(P) then there is a non-empty minimal revision R of
Yoebug( P, U). using as revisables all the not incorrect(_j and not uncovered(_) literals, such
that for every uncovered(A) in R, A is an uncovered atom for P wrt Iy, and for every
incorrectfA < B) € R, A « B is incorrect for P wrt Iy .

From all minimal revisions a set of questions of the form ‘What is the truth value of
<ANATOM > intheintended interpretation?’ can be compiled. The oracle answers to these
questions identify the errors in the program.

Definition 6.11 (Disambiguating queries) Let D = <Unc, InR> be a diagnosis for finite
set of literals U wrt to the source program P, Iy its intended interpreration, and let (the set
of atoms)

Query = (Unc L Atony,g) -U
where Atomy,g is the set of all atoms appearing in rules of InR.
The ser of disambiguating queries of D is:
{What is the truth value of A in Iy? ! A € Query)

The set of disambiguating queries of a set diagnoses is the union of that for each
diagnosis.

Now the answers, given by the oracle, to the disambiguating questions to the set of
all diagnoses can be added to the current knowledge of the user, i.e. atoms answered true
are added to U, and for atoms answered false their complements are added instead. The
minimal diagnoses of the debugging transformation with the new set U are then computed
and finer information about the errors is produced. This process of generating minimal
diagnoses, and of answering the disambiguating queries posed by these diagnoses, can be
iterated until only one final minimal diagnosis is reached:

Algorithm 6.1 (Debugging of a source program)
1. Transformation Y(P) is applied 10 the program.
2. The user detects the symptoms and their respective integrity rules are inserted.

3. The minimal diagnosis are computed. If there is only one, one error or more are
Jound and reported. Stop’.

We conjecture that termination occurs, in the worst-case, after the first time the oracle is consulted, i.e. the
algorithm stops either the first or second time it executes this step.
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4. The disambiguating queries are generated and the oracle consulted.
5. Its answers are added in the form of integrity rules.
6. Goto 3.

Example 6.2 (cont.) After applying Y to P the user detects that b is a wrong solution. He
causes the integrity rule L « b be added to Y(P) and provokes a program revision to
compute the possible explanations of this bug. He obtains two minimal revisions:
{uncovered(c)} and {incorrect(b « not c})}.

Now, if desired, the oracle is questioned:
+ What is the truth value of ¢ in the intended interpretation? Answer: true.

Then the user (or the oracle...) adds to the program the integrity rule 1 < not ¢ and
revises the program. The unique minimal revision is {uncovered(c)} and the bug is found.

The user now detects that solution a is wrong. Then he adds the integrity rule L «
a too and obtains the only minimal revision, that detects all the errors.

{incorrect(a ¢~ not b),uncovered(c)}
Example 6.3 Consider the slight variation of example 5.4:

in(T, G, I, 1) « node(T, I, 0), not ab(G)

[
ino(T, G, 1,0) e node(T, I, 1), not ab(G) 2
node(T, b, B) « inv(T, gl. a, B) 3
node(T, ¢, C) « inv(T, g2, b, C) 4
node(0, a, 0) 5
—node(0, ¢, 0) 6
inT, G, 1,0) « fault_mode(G, s0) 7
in(T, G, I, V) « node(T, I, _), V #0, missing(G, V) 12
1 & fault_mode(G, M1), fault_mode(G, M2), M1#M2 10

1 ¢« not node(0, ¢, 1) Il

We made the fault model partial by, withdrawing rules 8 and 9. So that we can still
explain all observations, we ‘complete’ the fault model by introducing rule 12, which
expresses that in the presence of input to the inverter, and if the value to be explained is not
equal to O (since that is explained by rule 7), then there is a missing fault mode for value V.
Of course, missing has to be considered a revisable too. Now the following expected
minimal revisions are produced:

{ab(gl), fault_mode(g1, s0)} {ab(g2), missing(g2, 1)}
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The above fault model ‘completion’ is a general technique for explaining all
observations, with the advantage, with respect to [18]’s lenient explanations, that missing
fault modes are actually reported. In fact, we are simply debugging the fault model
according to the methods of the previous section: we’ve added a rule that detects and
provides desired solutions not found by the normal rules, just as in debugging. But also
solutions not explained by other fault rules: hence the V # 0 condition. The debugging
equivalent of the latter would be adding a rule to ‘explain’ that a bug (i.e. fault mode) has
already been detected (though not corrected). Furthermore, the reason node(/, _) is included
in 12 is that there is a missing fault mode only if the inverter actually receives input. The
analogous situation in debugging would be that of requiring that a predicate must actually
ensure some predication about goals for it (eg. type checking) before it is deemed
incomplete.

The analogy with debugging allows us to debug artifact specifications. Indeed, it
suffices to employ the techniques of the previous section. By adding not ab(G, R,
HeadArguments) instead of not ab(G) in rules, where R is the rule number, revisions will
now inform us of which rules possibly produce wrong solutions that would explain bugs.
Of course, we now need to add not ab(G, R) to all other rules, but during diagnosis they will
not interfere if we restrict the revisables to just those with the appropriate rule numbers. With
regard to missing solutions, we’ve seen in the previous paragraph that it would be enough
to add an extrarule for each predicate. Moreover the same rule numbering technique is also
applicable.

We now come full circle and may rightly envisage a program as just another artifact,
to which diagnostic problems, concepts, and solutions, can profitably apply:

Example 6.4 The (buggy) model of an inverter gate below entails node(b, 0), and also
(wrongly) node(b, 1), when its input is .

inv(G, I, 0) ¢ node(l, 1), not ab(G)

inv(G, I, 1) « node(I, 1), not ab(G) % bug: node(1,0)
node(b, V) « inv(gl, a, V)
node(a, 1)

After the debugging transformation:

inv( G, I, 0) ¢ node(l, 1), not ab(G, 1, (G, I, 0])
inv(G, I, 1) « node(], 1), not ab(G, 2, [G, 1, 1])
node(b, V) « inv(gl, a, V), not ab(3, [b, V])

node(a,) « not ab(4 [a, V))
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Now, adding to it L « niode(b, 1), and revising the now contradictory program the
following minimal revisions are obtained:

lab(gl, 2 1gl, a, 1))} {ab(3,[b. 1))} {ab(4, [a. 1])}

The minimal revision {ab{g1,2,(g1,a,1])} states that either the inverter model is
correct and therefore gatel is behaving abnormally or that rule 2 has a bug.

7. UPDATING KNOWLEDGE BASES

In this section we exhibit a program transformation to solve the problem of updating
knowledge bases. Recall that a logic program stands for all its ground instances.

Asstated in [14, 15] the problem of updating knowledge bases is a generalisation of
the view update problem of relational databases. Given a knowledge base. represented by
a logic program, an integrity constraint theory and a first order formula the updating
problem consists in updating the program such that:

* It continues to satisfy the integrity constraint theory;

« When the existential closure of the first-order formula is not (resp., is) a Jogical
consequence of the program then, after the update, it becomes (resp., no longer)
sO.

Here, werestrict the integrity constraint theory to sets of integrity rules (c.f. Sect. 4.2)
and the first-order formula to a single ground literal. The method can be generalised as in
[15], in order to cope with first-order formulae.

We assume there are just two primitive ways of updating a program: retracting arule
(or fact) from the program or asserting a fact. A transaction is a set of such retractions and
assertions.

Next, we define a program transformation in all respects similar to the one used 1o
perform declarative debugging:

Definition 7.1 The transformarion Y thar maps a logic program P into a logic program P’
is obtained by applying 10 P the following two operations:

* Addtothebodyofeachrule H «B,, ..., B, not Cy,...not C,,in P the default lireral
not retract_inst((H « By, ..., B,. nor C, ..., not C,,)).

* Addthe rule p(X), Xa, ... X,) < assert_inst(p(X,. Xo,...., X)) for each predicate p
with ariry n in the language of P.
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It is assumed the predicate symbols retract_inst and assert_inst don ' belong 10 the
language of P. The revisables of the program P’ are the retract_inst and assert_inst
literals.

If an atom A is o be inserted in the database P, then the integrity rule 1 < not A is
added to Y(P). The minimal revisions of the latter program and integrity rule are the minjmal
transactions ensuring that A is a logical consecuence of P. If an atom A is to be deleted, then
add the integrity rule 1 « A instead. With this method the resulting transactions are more
‘intuitive’ than the ones obtained by [15]:

Example7.1[15] Consider the following logic programand the request to make pleasant(fred)
a logical consequence of it (insertion problem):

pleasant(X) « not old(X), likes_fun(X)
pleasant(X) « sports_person X), loves_nature(X)
sports_person(X) « swimmer(X)
sports_person(X) ¢ not sedentary(X)

old(X) < age(X,Y), Y > 55

swimmer(fred)

age(fred, 60}

The transactions returned by Guessoum and Lloyd’s method are:
1. {assert(pleasant(fred)))

2. {assert(likes_fun(fred)), retract({old(X) « age(X,Y), Y>55))}
3. {asser[(]ikes_fun(fred)),rclracl(age(fred,60))}

4, {assert(sports_person(fred)),asserl(loves_nalure(fred))}

5. {assert(swimmer(fred)),asserl(]oves_nature(fred))}

6. {assert(loves_nature(fred))}

Notice that transactions 4 and 5 assert facts (sports _person(fred), resp. swimmer{(fred))
that are already conclusions of the program !. Also remark that in transaction 2 the whole
rule is being retracted from the program, rather that Just the appropriate instance. On the
contrary, our method returns the transactions:

1. {assert_inst(pleasant(fred))}
2. {assen_inst(]ikes_fun(fred)),retract_inst((old(fred) < age(fred,60),60>55)))
3. {assert_insl(]ikes_fun(fred)),retract_inst(age(fred$ 60))}

4. {assert_inst(loves_nature(fred))}
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If the second transistion is added to the program then it is not necessary to remove
therule old(X) «~age(X, Y), Y>55 from it. Only an instance of the rule is virtually retracted
via assertion of the fact retract_inst{age(fred,60))3.

Another advantage of our technique is that the user can express which predicates are
liable to retraction of rules and addition of facts by only partially transforming the program,
i.e. by selecting to which rules the not retract is added, or to which predicates the second
rule in the transformation is applied.

In [14] is argued that the updating procedures should desirably return minimal
transactions, capturing the sense of making ‘least’ changes to the program. These authors
point out asituation where minimal transactions do not obey the integrity constraint theory:

Example 7.2 [ 14] Consider the definite logic program from where r{a) must not be alogical
consequence of it (the deletion problem):

nX) « p(X) pla)
nX) « p(X), g(X)  qla)

and the integrity constraint theory Vx (p(x) < g(x)). Two of the possible transactions that
delete r(a) are:

T\ = {retract(p(a))} and T, = {retract(p(a)), retract(g(a))}

Transaction 7y is minimal but the updated program does not satisfy the integrity
constraints theory. On the contrary, the updated program using 7> does satisty the integrity
constraint theory.

With ourmethod, we firstapply Y to the program, obtaining (notice how the integrity
constraint theory is coded):

nX) « p(X), not retract_inst((r(X) « p(X)))

(X} « p(X), g(X), not retract_inst{((r(X) ¢ p(X), ¢(X)))
pla) < not retract_inst(p(a))

g(a) ¢ not retract_inst(q(a))

p(X) « assert_inst(p(X))
q(X) - assert_inst(q(X))
n(X) « assert_inst(r(X))

L« not p(X),q(X)

& It may be argued that we obtain this result because we consider only ground instances. In fact, we have devised
a sound implementation of the contradiction removal algorithm that is capable of dealing with non-ground
logic programs such as this one. For the above example the transactions obtained are the ones listed.
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The ~request todelete r{a) is converted into the integrity rule L ¢ r(a) which is added
to the previous definition. As the reader can check;, this program is contradictory. By

computing its minimal revisions, the minimal transactions that satisfy the integrity theory
are found:

L. {retract_inst(p(a)), retract_inst(q(a))}

2. {retract_inst(r{a) « p(a)),retract_inst((r(a) «pla).q(a)))}

3. {retract_inst(g{a)), retract_inst((r(a) pla)))}

Remark that transaction 7 is not a minimal revision of the previous program.

Due to the uniformity of the method, i.e. both insertand delete requests are translated
to integrity rules, the iterative contradiction removal algorithm ensures that the minimal
transactions obtained, when enacted, do satisfy the integrity constraints.
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