
Approved Models for Normal Logic Programs

Luís Moniz Pereira and Alexandre Miguel Pinto
{lmp|amp}@di.fct.unl.pt

Centro de Inteligência Artificial (CENTRIA)
Universidade Nova de Lisboa
2829-516 Caparica, Portugal

Abstract. We introduce an original 2-valued semantics for Normal Logic Pro-
grams (NLPs) extending the well-known Argumentation work of Phan Minh
Dung on Admissible Arguments and Preferred Extensions. In the 2-valued Ap-
proved Models Semantics set forth, an Approved Model (AM) correspond to the
minimal positive strict consistent 2-valued completion of a Dung Preferred Ex-
tension. The AMs Semantics enjoys several non-trivial useful properties such as
(1) Existence of a 2-valued Model for every NLP; (2) Relevancy, and (3) Cumu-
lativity. Crucially, we show that the AMs Semantics is a conservative extension to
the Stable Models (SMs) Semantics in the sense that every SM of a NLP is also
an AM, thus providing every NLP with a model: a property not enjoyed by SMs.
Integrity constraints, written in a simpler way, are introduced to identify unde-
sired semantic scenarios, whilst permitting these to be produced nevertheless. We
end the paper with some conclusions and mention of future work.

1 Introduction

This paper introduces a new 2-valued semantics for Normal Logic Programs (NLPs)
based upon and inspired by the previous well-know Argumentation work of Phan Minh
Dung on Admissible Arguments and Preferred Extensions [6].

After introducing in [14] and [12] the new Revised Stable Models semantics for
NLPs (whose complexity has been studied in [11]) further work using the Reductio ad
Absurdum (RAA) principle has been developed, namely the Revised Well-Founded Se-
mantics [15]. Considering an argument-based view of NLPs, we define a new semantics
which inherits the RAA principle studied in [14, 12] and apply it to argumentation. In-
deed, NLPs can be viewed as a collection of argumentative statements (rules) based on
arguments (default negated literals) [2, 6, 4, 7].

We start by presenting the general Motivation of this paper and, after introducing
some needed Background Notation and Definitions, the more detailed problem descrip-
tion. We proceed by setting forth our proposal — the Approved Models Semantics —
and show how it extends previous known results.

The Approved Models (AMs) Semantics enjoys several useful properties such as
(1) Existence of a 2-valued Model for every Normal Logic Program; (2) Relevancy,
which allows for the development of purely top-down query-driven proof procedures;
and (3) Cumulativity. Our approach, in accordance with the previous work on Revision



Complete Scenarios [13] and taking an argumentation point-of-view, allows one to ob-
tain the Stable Models (SMs) as a special case with the advantage that every NLP has a
model, a property not enjoyed by the SMs Semantics.

Indeed, we show that the Approved Models Semantics is a conservative extension
to the Stable Models Semantics — in the sense that every Stable Model of a Normal
Logic Program is also an Approved Model. This allows us to prove that, for certain
specific types of NLPs, the Approved Models Semantics and the Stable Models Seman-
tics coincide; and, therefore, for those NLPs the Stable Models Semantics also enjoys
guarantee of Existence of a Model, Relevancy and Cumulativity. These important and
useful results about the Stable Models Semantics are in line with those studied before
for the Revised Stable Models Semantics [12, 14].

In the quest for finding an Approved Model one can guess it and check its com-
pliance with the properties that characterize Approved Models. Using an innovative
alternative approach, suiting the purposes of a Collaborative Argumentation setting, we
can start with an arbitrary set of hypotheses (default negated literals), which can be
the result of joining together several different alternative sets of hypotheses, calculate
its consequences, and make revisions to the initial assumptions if necessary (when in-
consistencies between the hypotheses and the consequences arise) in order to achieve
positive minimality respecting stratification, 2-valued Completeness and Consistency,
whilst also working toward guaranteeing that the set of negative hypotheses includes a
Preferred Extension.

The set of negative hypotheses is made conflict-free, admissible, and maximal; thus
including a Preferred Extension [6]). This set is then 2-valued consistently completed
with the remaining atoms ensuring the whole 2-valued complete model is approvable
(a notion we will present formally in the sequel).

Finally, integrity constraints are introduced to identify undesired models, whilst per-
mitting these to be produced nevertheless. Conclusions finish the paper.

1.1 Motivation

Ever since the beginning of Logic Programming the scientific community has formally
defined, in several ways, the meaning or semantics of a Logic Program. Several were
defined, some 2-valued, some 3-valued, and even multi-valued semantics. The current
standard 2-valued semantics for NLPs — the Stable Models Semantics [9] — has been
around for almost 20 years now, and it is generally accepted as the de facto standard
for NLPs. This thoroughly studied semantics, however, lacks some important properties
among which the guarantee of Existence of a Model for every NLP.

In [12] we defined a 2-valued semantics — the Revised Stable Models — which ex-
tends the Stable Models Semantics, guarantees Existence of a Model for every Normal
Logic Program, enjoys Relevancy (allowing for top-down query-driven proof-procedu
res to be built) and Cumulativity. Its main drawback is definitely that its definition is
hard to grasp and understand.

Aiming to find a general perspective to seamlessly unify the Stable Models Seman-
tics and the Revised Stable Models Semantics in a clear way, we drew our attention
to Argumentation as a means to achieve it. This is the main motivation of the work



we present in this paper: by taking the Argumentation perspective we intend to show
methods of identifying and finding a 2-valued complete Model for any NLP.

In [8], François Fages proved that a NLP might have no Stable Models iff it contains
Odd Loops Over Negation (OLONs)1 and/or Infinite Chains Over Negation (ICONs)2.
Both these notions of OLON and ICON were formally and thoroughly studied in [14,
12] and the original Revised Stable Models Semantics was defined having also the
OLONs and ICONs in mind.

For self-containment and to clarify the context, we now present a few informal
motivating examples of OLONs and ICONs and how we solve them, so that every
NLP has a semantics, employing a reasoning by contradiction argument. This kind of
reductio ad absurdum reasoning takes place only when it is absolutely necessary in
order to ensure 2-valued completeness of the resulting model, this “last resort” flavor of
the RAA coming from the requirement of keeping the semantics maximally skeptical.

Example 1. An invasion problem. Some political leader thinks that “If Iran will have
Weapons of Mass Destruction then we intend to invade Iran”, also “If we do not intend
to invade then surely they will have Weapons of Mass Destruction”, rendered as the
following OLON (where “not ” denotes default negation)

intend_to_invade ← iran_will_have_WMD
iran_will_have_WMD ← not intend_to_invade

The literal involved in the OLON is intend_to_invade which is the literal that
depends on itself through and odd number of default negations. The literal
iran_will_have_WMD is just an in between stepping-stone for the OLON.

If we assume that “we do not intend to invade Iran” then, according to this program
we will conclude that “Iran will have Weapons of Mass Destruction” and “we intend
to invade Iran”. These conclusions, in particular “we intend to invade Iran”, contradict
the initial hypothesis “we do not intend to invade Iran”. So, reasoning by Reductio ad
Absurdum in a 2-valued setting, we should “intend to invade Iran” in the first place.

This example gives a hint on how we resolve inconsistent arguments in the remain-
der of the paper, further exemplified below.

Example 2. A going-out problem. John likes Mary a lot so he asked her out: he said
“We could go to the movies”. Mary is more of a sports girl, so she replies “Either
that, or we could go to the swimming pool”. “Now, that’s an interesting idea”, John
thought. The problem is that John cannot swim because he hasn’t started learning to.
He now thinks “Well, if I’m going to the swimming pool with Mary, and I haven’t
learned how to swim, I might risk drowning! And if I’m risking drowning then I really
should start learning to swim”. Here is the Normal Logic Program corresponding to
these sentences:

start_learning_to_swim ← risk_drowning
risk_drowning ← go_to_pool , not start_learning_to_swim
go_to_pool ← not go_to_movies
go_to_movies ← not go_to_pool

1 Intuitively, an OLON is just a cycle in the dependency-graph induced by the NLP (an atom a
depends on itself) where there is an odd number of default negations along the cycle.

2 An example of an ICON with the explanation of the concept is presented below.



If John is not willing to go to the swimming pool — assuming not go_to_pool
— he just concludes go_to_movies and maybe he can convince Mary to join him.
On the other hand, if the possibility of having a nice swim with Mary is more tempt-
ing, John assumes he is not going to the movies not go_to_movies and therefore he
concludes go_to_pool. In this case, since John does not know how to swim he could
also assume not start_learning_to_swim. But since John is going to the swimming
pool, he concludes risk_drowning. And because of risk_drowning he also concludes
start_learning_to_swim. That is, he must give up the hypothesis of
not start_learning_to_swim in favour of start_learning_to_swim
because he wants to go to the pool with Mary. As a nice side-effect he no longer risks
drowning.

Example 3. Middle region politics. In a Middle Region two factions are at odds. One
believes that if terrorism does not stop then oppression will do it and hence become
unnecessary.

oppression← not end_of_terrorism end_of_terrorism← oppression

The other faction believes that if oppression does not stop then terrorism will do it
and hence become unnecessary.

terrorism← not end_of_oppression end_of_oppression← terrorism

According to these rules, if we assume that not end_of_terrorism we conclude
that there is oppression which in turn will cause the end_of_terrorism. So, the
end_of_terrorism should be true in the first place instead of not end_of_terrorism.
The same happens with end_of_oppression. In spite of the peaceful resulting solution
we propose, {end_of_oppression, end_of_terrorism}, there is no Stable Model for
this program.

Example 4. An infinite chain over negation. The classical example of an ICON was
first presented in [8] and is

p(X)← p(s(X)) p(X)← not p(s(X))
with a single constant 0 (zero), and so its ground version is
p(0)← p(s(0)) p(0)← not p(s(0))
p(s(0))← p(s(s(0))) p(s(0))← not p(s(s(0)))

...
...

As we can see, the ground version has an Infinitely long descending Chain in the de-
pendency graph for every literal p(X) Over default Negation. In [14] the author proved
that every possible ICON can be reduced to this canonical case, i.e., other ICONs may
exist with more rules besides these, but the main structure (relevant for its properties)
of every ICON relies on the same as the one presented here.

According to the Stable Models semantics this program has no models. But there is
one Approved Model where every p(X) is true. To see this, by reductio ad absurdum,
assume that p(X) was false for some X; then the two bodies of each clause above would
have to be false, meaning that p(s(X)) would be true by the second one; but then, by
the first one, p(X) would be true as well, thereby contradicting the default assumption.
Hence, by Reductio ad Absurdum reasoning, p(X) must be true, for arbitrary X .



1.2 Background Notation and Definitions

Definition 1. Logic Rule. A Logic Rule r has the general form
L← B1, B2, . . . , Bn, not C1, not C2, . . . , not Cm

where L is an atom h, the Bi and Cj are atoms.

We call L the head of the rule — also denoted by head(r). And body(r) denotes the
set {B1, B2, . . . , Bn, not C1, not C2, . . . , not Cm} of all the literals in the body of r.
Throughout this paper we will use ‘not ’ to denote default negation.

When the body of the rule is empty, we say the head of rule is a fact and we write
the rule just as h or not h. Since we are considering only Normal Logic Programs facts
will never be of the form not h.

Definition 2. Logic Program. A Logic Program (LP for short) P is a (possibly infinite)
set of ground Logic Rules of the form in definition 1.

In this paper we focus solely on Normal LPs (NLPs), those whose heads of rules are
positive literals, i.e., simple atoms; and there is just default negation in the bodies of the
rules. Hence, when we write just “program” or “logic program” we mean a NLP.

We use the notation Atoms(P ) to denote the set of all atoms of P ; and not S —
where S is a set of literals (both positive and/or default negated) — to denote the set
resulting from default negating every literal of S. Note that the default negation of an
already default negated literal not a is just the positive literal, i.e., not not a ≡ a.

Definition 3. 2-valued Interpretation. A 2-valued interpretation I = I+ ∪ I− of P
is a set of literals, both positive I+ ⊆ Atoms(P ) and negative I− ⊆ not Atoms(P ),
such that

– I+ ∩ not I− = ∅— it is consistent, i.e., there is no atom a of Atoms(P ) such that
both a and not a are in I

– I+ ∪ not I− = Atoms(P ) — it is 2-valued complete, i.e., there is no atom a of
Atoms(P ) such that both a and not a are not in I

Definition 4. ` operator. Let P be a NLP and I a 2-valued interpretation of P . P ′ is
the Horn theory obtained from P by replacing every default literal of the form not L in
P by the atom not_L. I ′ is likewise obtained from I using the same replacement rule.
By definition, P ′∪I ′ is a Horn theory, and so it has a least model M ′ = least(P ′∪I ′).
We define ` in the following way, where a is any atom of P :

P ∪ I ` a iff a ∈M ′ P ∪ I ` not a iff not_a ∈M ′

In the sequel, we will write M = least(P∪I) to mean M = {L : P∪I ` L}, where
L is any positive (a) or negative (not a) literal derived from I in P . M corresponds
thus to the result of applying the inverse substitution of literals not_a by not a in M ′.
We will also sometimes refer to least(P ∪ I) as the consequences of I in P .

Definition 5. Internally Consistent 2-valued Interpretation. Let P be a NLP and I a
2-valued interpretation I of P . I is Internally Consistent in P iff least(P ∪ I) ⊆ I .



Since we are considering only NLPs, where there are no negations in the heads
of rules, we can never derive a negative literal by applications of the least operator.
Hence, the literals in least(P ∪ I) — besides including all the literals in I — include
only positive literals (some heads of rules of P ). By requiring least(P ∪ I) ⊆ I we
ensure that all the literals in least(P ∪ I) do not contradict any of the literals in I−;
knowing beforehand that literals in I+ cannot ever be contradicted by least(P ∪ I)
because P is a Normal Logic Program.

In fact, since I is 2-valued complete, if least(P ∪I) ⊆ I then necessarily least(P ∪
I) = I . Moreover, in [10], the authors prove that if least(P ∪ I−) = I , then I is a
Stable Model of P and vice-versa, with the appropriate language translation. We also
write ΓP (I) as a shorthand notation for least(P ∪M−) \M−, i.e., ΓP (M) is just the
positive part of least(P ∪M−). Hence, M is a Stable Model of P iff ΓP (M) = M .
For any interpretation I , we consider Γ 0

P (I) = I , and Γn+1
P (I) = ΓP (Γn

P (I)).

Definition 6. Approvable Interpretation. Let P be a NLP and I an Internally Con-
sistent 2-valued Interpretation of P . We say I is an Approvable Interpretation of P iff
I is such that I− is set maximal. I.e., there is no other Internally Consistent 2-valued
Interpretation I ′ of P such that I ′− ⊃ I−.

2 The Approved Models Semantics for Normal Logic Programs

The Approved Models Semantics for Normal Logic Programs gets its inspiration from
the Argumentation perspective and also from our previous works [14], [12], and [13].

In [6], the author shows that preferred maximal scenarios (with maximum default
negated literals — the hypotheses) are always guaranteed to exist for NLPs; and that
when these yield 2-valued complete (total), consistent, admissible scenarios, they coin-
cide with the Stable Models of the program. However, preferred maximal scenarios are,
in general, 3-valued. The problem we address now is how to define 2-valued complete
models based on preferred maximal scenarios. In this paper we take a step further from
what we achieved in [6], extending its results. We do so by completing a preferred set of
hypotheses rendering it approvable (as presented above in definition 6), ensuring whole
model consistency and 2-valued completeness.

The resulting semantics thus defined, dubbed Approved Models Semantics, is a
conservative extension to the widely known Stable Models semantics [9] in the sense
that every Stable Model is also an Approved Model. The Approved Models are guar-
anteed to exist for every NLP, whereas Stable Models are not. The concrete examples
above show how NLPs with no Stable Models can usefully model knowledge, as well
as produce additional models, as in Example 2. Moreover, this guarantee is crucial in
program composition (say, from knowledge originating in divers sources) so that the
result has a semantics. It is important too to warrant the existence of semantics after
external updating, or in Stable Models based self-updating [1].

Moreover, the Approved Models Semantics enjoys the Relevancy property which
allows for the development of purely top-down, program call-graph based, query driven
methods to determine whether a literal belongs to some model or other. These methods
can thus simply return a partial model, guaranteed extendable to a complete one, there



being no need to compute all models or even to complete models in order to answer a
query. Relevancy is crucial too for modeling abduction, it being query driven. Finally,
the Approved Models Semantics enjoys Cumulativity, so lemmas may be stored and
reused.

Before presenting the formal definition of an Approved Model we give a general
intuitive idea to help the reader grasp the concept. For the formal definition of Approved
Models Semantics we will also need some preliminary auxiliary definitions.

2.1 Intuition

In [4] the authors prove that every SM of a NLP corresponds to a stable set of hy-
potheses, and these correspond in turn to a 2-valued complete, consistent, admissible
scenario. In order to guarantee the Existence of a 2-valued total Model for every NLP
we allow in all the negative hypotheses which are self-conflict-free and admissible ([6]),
and include a Preferred Extension [6]. The extra negative hypotheses approved beyond
a Preferred Extension are criteriously allowed (only the approvable ones) to ensure that
the resulting 2-valued completion is consistent.

2.2 Underlying Notions

Most of the ideas and notions underlying the work we now present come from the
Argumentation field — mainly from the foundational work of Phan Minh Dung in
[6] — plus the Reductio ad Absurdum reasoning studied in [14], [12], and [13]. For
self-containment we now present the basic notions of argument (or set of hypotheses),
attack, conflict-free set of arguments, acceptable argument, and admissible set of argu-
ments (all original from [6]).

Definition 7. Argument. In [6] the author presents an argument as

“an abstract entity whose role is solely determined by its relations to other
arguments. No special attention is paid to the internal structure of the argu-
ments.”

In this paper, since we are focusing on NLPs, we will pay attention to the internal
structure of an argument by considering an argument (or set of hypotheses) as a set S of
default negated literals of a NLP P , i.e., S ⊆ not Atoms(P ). Thus, a simple argument
not a of S (or simple hypothesis) is just an element of an argument S.

Using these notions of argument and simple argument we can define the set of
Arguments of a NLP P — Arguments(P ) — as the set of all arguments of P , i.e., the
set of all subsets of not Atoms(P ).

Definition 8. Attack — Argument B Attacks simple argument not a in P [6]. In
[6] Dung does not specify what the attacks relationship concretely is, this way ensur-
ing maximal generality of the argumentation framework. In our present work, since we
are considering NLPs, and arguments as sets of default negated literals (each a simple
argument), the attacks relationship corresponds to deriving a positive literal contradict-
ing one simple argument of the attacked argument.



Formally, if P is a NLP, B ∈ Arguments(P ), and not a ∈ not Atoms(P ), we
say B attacks not a in P iff P ∪B ` a, i.e., a ∈ least(P ∪B). For simplicity, we just
write attacksP (B,not a).

Abusing this notation, we also write attacksP (B,A), where both A and B are
Arguments of P , to mean that the Argument B attacks Argument A in P . This means
that ∃not a∈AattacksP (B,not a).

Definition 9. Conflict-free argument A [6]. An argument A of P is said to be conflict-
free iff there is no simple argument not a in A such that attacksP (A,not a). I.e., A
does not attack itself.

Definition 10. Acceptable argument [6]. An argument A ∈ AR — where AR is a set
of arguments — of P is said to be Acceptable with respect to a set S of arguments iff
for each argument B ∈ AR: if B attacks A then B is attacked by S.

Definition 11. Admissible Argument A of P [6]. A conflict-free argument A is admis-
sible in P iff A is acceptable with respect to Arguments(P ). Intuitively, A is admissi-
ble if it counter-attacks every argument B in Arguments(P ) attacking A. Formally,
∀B∈Arguments(P )∀not a∈AattacksP (B,not a)⇒ ∃not b∈BattacksP (A,not b)
This definition corresponds to the definition of Admissible Set presented in [6]. No-

tice that it is not required an attacking set B to be consistent with its consequences, i.e.,
least(P ∪B) is not required to be consistent.

Definition 12. Preferred Extension[6]. A Preferred Extension is a maximal (with re-
spect to set inclusion) admissible Argument of P .

2.3 Definition of the Approved Models Semantics

Definition 13. Approved Models. Let P be a NLP and M = M+ ∪M− a 2-valued
interpretation of P . We say M is an Approved Model of P iff:

• M is an Approvable Interpretation of P , and
• M− contains a Preferred Extension of P

We use the notation AMP (M) to mean that M is an Approved Model of P . The
Approved Models Semantics of an NLP P is just the intersection of the positive parts of
all its Approved Models. We write

• AM+(P ) to denote the set of atoms of P considered true by the Approved Models
Semantics. This corresponds to the Approved Models Semantics of P , i.e.,
AM+(P ) =

⋂
AMP (M) M+

• AM−(P ) to denote the set of atoms of P considered false by the Approved Models
Semantics. I.e., AM−(P ) = not

⋂
AMP (M) M−

• AMu(P ) to denote the set of atoms of P considered undefined by the Approved
Models Semantics. I.e., AMu(P ) = Atoms(P )−

(
AM+(P ) ∪AM−(P )

)



2.4 Properties of the Approved Models Semantics

Stable Models Extension

Theorem 1. Every Stable Model is also an Approved Model. If P is a NLP, and SM
a Stable Model of P , then M = SM ∪M−, where M− = not (Atoms(P ) \ SM), is
an Approved Model of P .

Proof. Let P be a NLP, and SM a Stable Model of P . Since every Stable Model SM
is a Minimal Herbrand Model of P it means that not (Atoms(P ) \ SM) is Maximal.
Therefore, we conclude that SM ∪ not (Atoms(P ) \ SM) is an Approvable Interpre-
tation of P .

Moreover, since SM is a Stable Model of P we know, by [6], that not (Atoms(P )\
SM) is Admissible in P . Since SM is a SM of P , it is minimal and therefore
not (Atoms(P ) \ SM) is maximal. Hence, not (Atoms(P ) \ SM) is a Preferred
Extension and SM ∪ not (Atoms(P ) \ SM) is an Approved Model of P . ut

Existence

Theorem 2. Every Normal Logic Program has at least one Approved Model.

Proof. Let P be a NLP. In [6] the author proves that every NLP has at least one preferred
extension, and that preferred extensions are Maximal Admissible Arguments. Consider
M ′− ∈ Arguments(P ) one such preferred extension. It is always possible to construct
one M− = M ′− ∪ S−, where S− ∈ Arguments(P ), such that M = M− ∪M+, and
M+ = Atoms(P )\not M−, is an Approvable Interpretation. The limit case would be
S− = ∅ and M+ = Atoms(P ) \ (not M−).

The intuitive idea is that no more simple arguments can be added to a preferred
extension M ′− because, for at least one not s ∈ S−, M ′− ∪ {not s} would not be an
Acceptable Argument in the sense of definition 10, so a corresponding positive atom s
can be added instead, plus a new maximal addition of default atoms as a result of adding
the positive one, for any such positive atom.

The addition of such positive atoms corresponds to resolving an inconsistency that
would follow from adding the corresponding default negation literal, and computing the
semantics according to definition 4. It is thus a form of reasoning by contradiction and
the positive atom can be justified as a positive hypothesis introduced by that reasoning.
Indeed, the reason a preferred extension is not complete is, according to Fage’s result
[8], because there may be some ICONs or OLONs that prevent turning it into an SM.

ut

In [13] we showed iterative and incremental methods for calculating the Revi-
sion Complete Scenarios. The same methods can be used to calculate the Approved
Models for these coincide with the models yielded by the Revision Complete Sce-
narios. In a nutshell, to calculate a Revision Complete Scenario we start with a set
of hypotheses which initially is the set of all default negated literals of the program
H− = not Atoms(P ). Next, we compute the least model of the program consider-
ing those hypotheses, i.e, least(P ∪H−). Some inconsistencies (pairs l, not l) will be



present in least(P∪H−): we select one such l and remove not l from H− thus reducing
it. We repeat this process until there are no more inconsistencies in least(P ∪H−). At
that point we just add the remaining positive atoms needed in order to ensure 2-valued
completeness and consistency. For greater clarity we show how this process develops
with Example 2:

Example 5. Iteratively calculating an Approved Model. Recall the example 2 with
John, Mary, going to the swimming pool or to the movies.

start_learning_to_swim← risk_drowning
risk_drowning ← go_to_pool, not start_learning_to_swim
go_to_pool ← not go_to_movies
go_to_movies ← not go_to_pool

For simplicity, we will use abbreviations for the literals. To iteratively calculate the
Approved Models of this program let us do as explained above. First, we start with
H− = not Atoms(P ), i.e., H− = {not sls, not rd, not gp, not gm}. Now we com-
pute least(P ∪ H−) = {not sls, sls, not rd, rd, not gp, gp, not gm, gm}. There are
several inconsistencies in least(P ∪H−), we can choose any one default negated literal
participating in one inconsistency and remove it from H−. Take notice that, since we
are removing one not l from H− and in the end we want a 2-valued complete model, we
will necessarily have l as true in that model — we say l was revised from false (not l) to
true (l). Let us choose to revise not gp. H− thus becomes {not sls, not rd, not gm}.
We recompute least(P ∪ H−) = {not sls, not rd, not gm, gp, rd, sls}. We now re-
peat the process of choosing any one assumption not l participating in an inconsistency
to revise it, and update H− accordingly. We now revise not sls. H− is now H− =
{not rd, not gm}. The corresponding Approved Model is M = {not rd, not gm, sls,
gp} which is not a Stable Model. The only other Approved Model is
M ′ = {not rd, gm, not sls, not gp} which is also a Stable Model.

Relevancy

Definition 14. RelP (a) — Relevant part of NLP P for the positive literal a.
The Relevant part of a NLP P for some positive literal a, RelP (a) is defined as

RelP (a) =
{r ∈ P : head(r) = a} ∪

⋃
x:r∈P∧head(r)=a∧(x∈body(r)∨not x∈body(r)) RelP (x)

Intuitively, the relevant part of a program for some atom a is just the set of rules
with head a and the rules relevant for each atom in the body of the rules for a. I.e., the
relevant part is the set of rules in the call-graph for a.

Definition 15. Relevant Semantics. This definition is taken from [5]. A Semantics
Sem for NLPs is said to be Relevant iff for every program P and positive literal a
of P a ∈ Sem(P )⇔ a ∈ Sem(RelP (a))

Theorem 3. The Approved Models Semantics is Relevant.
a ∈ AMS(P )⇔ AMS(RelP (a))



Proof. Let P be a NLP. By definition (see above), the semantics of P according to the
Approved Models Semantics is the intersection of the positive parts of all the Approved
Models of P . I.e., AMS(P ) = AM+(P ) =

⋂
AMP (M) M+

“⇒” Let a be an atom of P , i.e., a positive literal of P , belonging to AMS(P ).
Then, necessarily a ∈M+ for any AMP (M). We know by definition that a ∈M+ iff
a ∈ least(P ∪M), and since the least operator just computes the set of heads of rules
whose body is satisfied — in this case by the interpretation M — a is in M because one
of the rules with a as head, i.e. one of the Relevant Rules for a, has its body satisfied by
M . Then, in this case, clearly, a ∈ AMS(RelP (a)).

“⇐” Consider now that a ∈ AMS(RelP (a)). For the same reason — knowing that
a ∈ M iff a ∈ least(P ∪M) — it is easy to see that any rule r ∈ P we might add
to RelP (a) which does not change RelP (a), i.e. r is not Relevant for a in P , will not
affect the fact that a ∈ AMS(RelP (a)) and hence that a ∈ AMS(RelP (a) ∪ {r}).
Therefore we can conclude that a ∈ AMS(P ), where P ⊇ RelP (a). ut

Cumulativity

Definition 16. Cumulative Semantics. This definition is taken from [5]. Let P be an
NLP, and Sem a semantics for NLPs. We say the semantics Sem is Cumulative (or
that it enjoys Cumulativity) iff the Semantics of P remains unchanged when any atom
considered true in the Semantics is added to P as a fact

Cumulative(Sem)⇔ ∀P∀a,ba ∈ Sem(P )∧b ∈ Sem(P )⇒ a ∈ Sem(P ∪{b})

Theorem 4. The Approved Models Semantics is Cumulative.
∀P∀a,ba ∈ AMS(P ) ∧ b ∈ AMS(P )⇒ a ∈ AMS(P ∪ {b})

Proof. Let P be a NLP. a ∈ AMS(P )∧ b ∈ AMS(P ), i.e., both a and b are in all Ap-
proved Models of P . By definition of Approved Model we know that every Approved
Model M of P satisfies M = least(P∪M), and since both a ∈M and b ∈M we know
that P ∪M = P ∪M∪{b}. Therefore, least(P ∪M) = least(P ∪M∪{b}) = M 3 a.
Since this hold for every literal a and b, and for every Approved Model M , it also holds
for their intersection. ut

2.5 Further requirements: Respecting the Well-Founded Model

Although the Approved Models semantics enjoys already some nice properties as seen
above, it still lacks a feature important for practical implementations and applicability:
the respect for the program’s natural stratification. This is the motivation for the further
requirements we present next. These, when enforced, guarantee that respect which was
already guaranteed by the Revised Stable Models semantics and this is the reason why
we relate the Revised Stable Models semantics and the Approved Models semantics.

Definition 17. Well-Founded Model of a Normal Logic Program P . According to
[3] the true atoms of the Well-Founded Model of P (the irrefutably true atoms of P )
can be calculated as the Least Fixed Point of the Gelfond-Lifschitz operator iterated
twice — Γ 2

P . Formally, WFM+(P ) = lfp(Γ 2
P ↑ω (∅)). Also according to [3] the



true or undefined literals of a program can be calculated as the consequences of as-
suming as true the true atoms of the Well-Founded Model. Formally, WFM+u(P ) =
ΓP (WFM+(P )) ⊇WFM+(P ). So, the just undefined literals of P are WFMu(P )
= WFM+u(P )\WFM+(P ). And finally, the false atoms of the Well-Founded Model
of a Program P (the irrefutably false atoms of P ) are, necessarily, the atoms of P which
are neither true nor undefined. Formally, WFM−(P ) = Atoms(P ) \WFM+u(P ).

Definition 18. Atom a respects the subset S of Atoms of P . Let P be a NLP, a an
atom of P , and S ⊆ Atoms(P ) a subset of Atoms of P . We say a respects S in P iff a
remains true or undefined in the Well-Founded Model of P when the context S is added
to P as facts. Formally, RespectsP (a, S)⇔ a ∈WFM+u(P ∪ S)

Definition 19. Undefined part of the Model M — Mu. Let P be a NLP, and M an
Approvable Interpretation of P . We write Mu to denote the subset of M+ of which
all atoms are undefined in the Well-Founded Model of P . Formally, Mu = M+ ∩
WFMu(P ). These are the only atoms that might come under reductio ad absurdum.

The concept of USP (M,a), presented next, is based on the core idea of finding the
subset of atoms of Mu which influence the truth value of a. To find such set we recur
to the Well-Founded Model calculus because, as it is based upon the Γ 2

P monotonic
operator, it draws conclusions from premises according to the implication-based rules
of the program. Therefore, when an atom a is concluded true by the Well-Founded
Model we know that its truth value was calculated using only the part of the program in
the call-graph for the atom a. We show this and the following concepts in example 6.

Definition 20. Undefined Support of Model M for atom a in P — USP (M,a). Let
P be an NLP, M an Approvable Interpretation of P and a an atom of M+. We write
USP (M,a) to denote the subset of atoms of Mu which support the truth value of a.
Formally,

USP (M,a) = {b ∈Mu : ∃S⊆Atoms(P )

(
a ∈WFMu(P ∪S)∧a /∈WFMu(P ∪

S ∪ {b})
)
}

By this definition we see b has critical influence on the undefinedness of the truth
value of a under some context S: when b is not added as a fact a remains undefined,
when b is added as a fact a becomes defined (true or false, but no longer undefined).

Next, we present the concept of USSP (M,a). The idea behind it is a stricter form
of the previous one. We want USSP (M,a) to include all the atoms in USP (M,a)
except for those which are in a loop (a call-graph loop) with a. So, roughly, the atoms
in USSP (M,a) are all in strictly lower strata if we considered a kind of stratification
where all the atoms in a loop belong to the same strata. To obtain such a set we remove
from USP (M,a) all the atoms b for which a is an element of USP (M, b). If a depends
on b and b depends on a then there is a loop between a and b.

Definition 21. Undefined Strict Support of Model M for atom a in P —
USSupP (M,a). Let P be an NLP, M an Approvable Interpretation of P and a an
atom of M+. We write USSP (M,a) to denote the subset of atoms of Mu which support
the truth value of a and whose truth value is in turn not influenced by a. Formally,



USSP (M,a) = USP (M,a) \ {b ∈ USP (M,a) : a ∈ USP (M, b)}
In a nutshell, the atoms in USSP (M,a) are guaranteed not to be in a loop with a

— as happens with b in, for example, a program like a← not b b← not a.

We wish to assume the literals in I to be true, hence we add them to P as facts
obtaining P ∪ I . Now we want to calculate what is necessarily true and necessarily
false in that resulting program P ∪ I . For that we calculate the Well-Founded Model
of P ∪ I , namely its Positive and Negative parts. We now say M Respects I iff all
the atoms in the Positive part of the Well-Founded Model of P ∪ I are also considered
true by M , and all the atoms in the Negative part of the Well-Founded Model of P ∪ I
are also considered false by M . So, there are no contradictions between M and the
Well-Founded Model of P ∪ I . This is the rationale behind the next definition.

Definition 22. M Respects Interpretation I in P — RespectsP (M, I). Let P be an
NLP, M an Approvable Interpretation of P , and I an arbitrary Interpretation in P .
We say M Respects the Interpretation I in P iff the Positive Part of the Well-Founded
Model of P ∪ I is totally contained in M+, and the Negative Part of the Well-Founded
Model of P ∪ I is totally contained in M−. Formally,

RespectsP (M, I)⇔
(
M+ ⊇WFM+(P ∪ I)

)
∧

(
M− ⊇ not WFM−(P ∪ I)

)
Since M+ ∩M− = ∅ it follows trivially that if RespectsP (M, I) then M+ ∩

WFM−(P ∪ I) = ∅ and (not M−) ∩WFM+(P ∪ I) = ∅

Example 6. Respect and Dir-Respect for the USSP (M,a). Consider NLP P =
i← not k t← a, b a← not b
k ← not t b← not a
There are four Approvable Interpretations for P : M1 = {a, k, not b, not t, not i},

M2 = {b, k, not a, not t, not i}, M3 = {a, t, i, not b, not k}, and
M4 = {b, t, i, not a, not k}. Models M1 and M2 are symmetrical on a and b, and the
same happens with M3 and M4. So, we will just examine M1 and M3 without any loss
of information.

Let us calculate the USP (M1, a). Mu
1 = {a, k} = M+

1 . If we add k as a fact
to P , a will remain undefined; however, when we add a as a fact to P , k becomes
defined, in this case true. Since there are no other possible subsets of Mu

1 to con-
sider we have USP (M1, a) = {a} and USP (M1, k) = {a}. It is now simple to
calculate USSP (M1, a) = ∅ and USSP (M1, k) = {a}. Notice that the check for
RespectsP (M1, USSP (M1, a)) is trivial because USSP (M1, a) = ∅. Also,
RespectsP (M1, USSP (M1, k)) holds because, as we have already seen, adding {a} =
USSP (M1, k) to P as a fact renders a true. The case with M3 is quite different.
Mu

3 = {a, t, i}. USP (M3, a) = {a}, USP (M3, t) = {a}, and USP (M3, i) = {a, t}.
USSP (M3, a) = ∅, USSP (M3, t) = {a}, and USSP (M3, i) = {a, t}. Clearly,
RespectsP (M3, USSP (M3, a)) holds. However,
RespectsP (M3, USSP (M3, t)) does not hold. It suffices to check that adding {a} ⊆
USSP (M3, t) to P as a fact, t, which was considered true in M3, becomes now false
in the WFM(P ∪ {a}).

Definition 23. Strict Model M of a program P . Let P be a NLP. An Approvable
Interpretation M is Strict in P iff for any atom a in M+, M Respects its own Undefined
Strict Support, i.e. StrictP (M)⇔ ∀a∈M+RespectsP (M,USSP (M,a))



Conjecture 1. M+ is a Revised Stable Model [12] of a NLP P iff M is an Approved
Model and a Strict Interpretation of P .

Conjecture 2. M = M+ ∪M− is an Approved Model of a NLP P iff there is some
Revision Complete Scenario H of P , where H = H+ ∪ H− and H+ ⊆ M+ and
H− = M−.

2.6 Integrity Constraints

Example 7. Middle Region Politics Revisited. Recall the Example 3 presented earlier.
We are now going to add extra complexity to it.

We already know the two factions which are at odds and their thinking.

oppression← not end_of_terrorism end_of_terrorism← oppression
terrorism← not end_of_oppression end_of_oppression← terrorism

We now combine these two sets of rules with the two following Integrity Constraints
(ICs) which guarantee that oppression and end_of_oppression are never simultane-
ously true; and the same happens with terror:

falsum← oppression, end_of_oppression
falsum← terrorism, end_of_terrorism

As the reader can see, we write ICs not as OLONs of length 1 as it is usual in the Stable
Models community, but we write them as simple, normal rules which have as head a
special literal falsum. This literal is “special” not because the Approved Models Se-
mantics treats it in any differently, but just because the programmer writing the rules
uses it only for the purpose of writing ICs, i.e., falsum is not to be used for any other
purposes in the program. So far so good, there is still a single joint set of hypotheses
resulting in a consistent scenario {end_of_oppression, end_of_terrorism}. Still,
there is no SM for this program. But introducing either one or both of the next two
rules, makes it impossible to satisfy the ICs:

oppression← not terrorism terrorism← not oppression
In this case all the Approved Models contain the atom falsum. There are still

no Stable Models for the resulting program. The semantics we propose allows two
models for this program, corresponding to the 2-valued complete consistent models,
both containing falsum. We can discard them or examine the failure to satisfy the ICs.

When posing a query to be solved in a top-down call-graph oriented manner, if the
user wants to make sure falsum is not part of the answer, (s)he just needs to conjoin
not falsum to the query conjunction. When using the SMs Semantics, typically ICs are
written as OLONs of length 1 (e.g. falsum ← IC_Body, not falsum). This is done
to take advantage of the characteristics of that semantics, in particular to take advantage
of the fact that the SMs do not deal with OLONs (in the sense that it does not provide a
semantics to them) and, therefore, eliminate the interpretations which would “activate”
the OLON by rendering the IC_Body true. Since the Approved Models Semantics
gives a semantics to all NLPs it has no special features to take advantage from in order
to prune undesired interpretations. The programmer just writes the ICs as depicted in
the example 7 above and, if (s)he wants to, asks for models without the falsum atom.



3 Conclusions

We have presented a new 2-valued semantics for Normal Logic Programs, based upon
the previous work on Argumentation by Phan Minh Dung. This new semantics con-
servatively extends the Stable Models Semantics with the advantage of enjoying three
useful properties: guarantee of model Existence for every NLP; Relevancy, allowing
for top-down query-driven proof-procedures; and Cumulativity. Using our semantics,
we have showed how Integrity Constraints can be written in a simpler way and dealt
with in a very intuitive manner. All previously known results about the Stable Models
Semantics, when it exists, and their good properties are kept intact. The work presented
is based upon valuable results of years of effort the scientific community has placed in
studying the Stable Models Semantics and the Argumentation framework of Dung. We
take another step forward, by adding reductio ad absurdum to argumentation in NLPs.

References

1. J. J. Alferes, A. Brogi, J. A. Leite, and L. M. Pereira. Evolving logic programs. In S. Flesca
et al., editor, JELIA, volume 2424 of LNCS, pages 50–61. Springer, 2002.

2. J. J. Alferes and L. M. Pereira. An argumentation theoretic semantics based on non-refutable
falsity. In J. Dix et al., editor, NMELP, pages 3–22. Springer, 1994.

3. Chitta Baral and V. S. Subrahmanian. Dualities between alternative semantics for logic
programming and nonmonotonic reasoning. J. Autom. Reasoning, 10(3):399–420, 1993.

4. A. Bondarenko, P. M. Dung, R. A. Kowalski, and F. Toni. An abstract, argumentation-
theoretic approach to default reasoning. Artif. Intell., 93:63–101, 1997.

5. Jürgen Dix. A Classification-Theory of Semantics of Normal Logic Programs: I, II. Funda-
menta Informaticae, XXII(3):227–255, 257–288, 1995.

6. P. M. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artif. Intell., 77(2):321–358, 1995.

7. P. M. Dung, R. A. Kowalski, and F. Toni. Dialectic proof procedures for assumption-based,
admissible argumentation. Artif. Intell., 170(2):114–159, 2006.

8. F. Fages. Consistency of Clark’s completion and existence of stable models. Methods of
Logic in Computer Science, 1:51–60, 1994.

9. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In
ICLP/SLP, pages 1070–1080. MIT Press, 1988.

10. A. C. Kakas and P. Mancarella. Negation as stable hypotheses. In LPNMR, pages 275–288.
MIT Press, 1991.

11. M. Malý. Complexity of revised stable models. Master’s thesis, Comenius University
Bratislava, 2006.

12. L. M. Pereira and A. M. Pinto. Revised stable models - a semantics for logic programs. In
G. Dias et al., editor, Progress in AI, volume 3808 of LNCS, pages 29–42. Springer, 2005.

13. L. M. Pereira and A. M. Pinto. Reductio ad absurdum argumentation in normal logic pro-
grams. In Argumentation and Non-monotonic Reasoning (ArgNMR’07) workshop at LP-
NMR’07, pages 96–113, 2007.

14. A. M. Pinto. Explorations in revised stable models — a new semantics for logic programs.
Master’s thesis, Universidade Nova de Lisboa, February 2005.

15. L. Soares. Revising undefinedness in the well-founded semantics of logic programs. Master’s
thesis, Universidade Nova de Lisboa, 2006.


