
Layered Models Top-Down Querying
of Normal Logic Programs

Luís Moniz Pereira and Alexandre Miguel Pinto
{lmp|amp}@di.fct.unl.pt

Centro de Inteligência Artificial (CENTRIA)
Universidade Nova de Lisboa
2829-516 Caparica, Portugal

Abstract. For practical applications, the use of top-down query-driven proof-
procedures is essential for an efficient use and computation of answers using
Logic Programs as knowledge bases. Additionally, abductive reasoning on de-
mand is intrinsically a top-down search method. A query-solving engine is thus
highly desirable.
The current standard 2-valued semantics for Normal Logic Programs (NLPs),
the Stable Models (SMs) semantics, does not allow for top-down query-solving
because it does not enjoy the relevance property — and moreover, it does not
guarantee the existence of a model for every NLP. To overcome these current
limitations we introduce here a new 2-valued semantics for NLPs — the Layered
Models semantics — which conservatively extends the SMs, enjoys relevance
and guarantees model existence among other useful properties. Moreover, for
existential query answering there is no need to compute total models, but just the
partial models that sustain the answer to the query, or one might simply know a
model one exists without producing it; relevance ensures these can be extended
to total models.
A first implementation of a query-solving engine based on this new semantics
is presented and described here. It uses the XSB-Prolog engine and its XASP
interface to Smodels, thereby providing a useful tool built as a hybrid of the two
systems and taking advantage of the best of each.
Conclusions and further work end the paper.
Keywords: Smodels, XSB-XASP, Relevance, Semantics

1 Introduction

The semantics of Stable Models (SM) is a cornerstone for the definition of some of the
most important results in logic programming of the past two decades, providing an in-
crease in logic programming declarativity and a new paradigm for program evaluation.
When we need to know the 2-valued truth value of all the literals in a logic program
for the problem we are modeling and solving, the only solution is to produce complete
models. In such a case, tools like SModels [13] or DLV [5] can be adequate because they
can indeed compute whole models. However, the lack of some important properties of
language semantics, like relevance, cumulativity and guarantee of model existence (en-
joyed by, say, Well-Founded Semantics [10] (WFS)), somewhat reduces its applicability



in practice, namely regarding abduction, creating difficulties in required pre- and post-
processing. But WFS in turn does not produce 2-valued models, though these are often
desired, nor guarantees 2-valued model existence.

Furthermore, in SM semantics, in an abductive reasoning situation, computing the
whole model entails pronouncement about each of the abducibles whether or not they
are relevant to the problem at hand, and subsequently filtering the irrelevant ones. When
we just want to find an existential answer to a query, we either compute a whole model
and check if it entails the query (the way SM semantics does), or, if the underlying
semantics we are using enjoys the relevance property — which SM semantics do not
— we can simply use a top-down proof-procedure (à la Prolog), and abduce by need.
In this second case, the user does not pay the price of computing a whole model, nor the
price of abducing all possible abducibles or their negations, and then filtering irrelevant
ones, because the only abducibles considered will be those needed for answering the
query.

The current standard 2-valued semantics for NLPs, the Stable Models [11] seman-
tics, does not allow for top-down query-solving precisely because it does not enjoy
the relevance property — and moreover, does not guarantee the existence of a model.
Furthermore, frequently there is no need to compute whole models, like its implemen-
tations do, but just the partial models that sustain the answer to a query. Relevance
ensures these can be extended to whole models.

To overcome these inherent limitations we developed a new 2-valued semantics
for NLPs — the Layered Models (LM) semantics — which conservatively extends the
SMs, and enjoys relevance and guarantee of model existence and other useful proper-
ties.

The core reason SM semantics fails to guarantee model existence for every NLP is
that it does not provide a semantics to Odd Loops Over Negation (OLONs) 1. In fact,
the SM semantics community uses its inability to handle odd loops as a means to write
Integrity Constraints (ICs).

Example 1. Odd Loop Over Negation as Integrity Constraint. Indeed, using Stable
Models, one would write an IC in order to prevent X being in any model with the
single rule for some atom ‘a’: a← not a, X . Since the SM semantics cannot provide a
semantics to this rule whenever X holds, this type of OLON is used as IC.

The LM semantics provides a semantics to all NLPs. ICs are implemented with
rules for reserved atom falsum, of the form falsum ← X , where X is the body of
the IC we wish to prevent being true. This does not prevent falsum from being in
some models. To avoid them the user must either conjoin goals with not falsum or, if
inconsistency examination is desired, a posteriori discard such models. LM semantics
separates OLON semantics from IC compliance.

After a brief note on notation and background definitions, we present the formal
definition of LM semantics and overview its useful properties. A section describing
the current implementation follows and the directions in the development of the next
version of our query-solving engine. Conclusions and future work close the paper.

1 OLON is a loop with an odd number of default negations in its circular call dependency path.



2 Background Notation and Definitions

Definition 1. Logic Rule. A Logic Rule r has the general form
A← B1, . . . , Bn, not C1, . . . , not Cm where A, the Bi and the Cj are atoms.

We call A the head of the rule — also denoted by head(r). And body(r) denotes the
set {B1, . . . , Bn, not C1, . . . , not Cm} of all the literals in the body of r. Throughout
this paper we will use ‘not ’ to denote default negation. When the body of the rule is
empty, we say the head of rule is a fact and we write the rule just as h.

Definition 2. Logic Program. A Logic Program (LP for short) P is a (possibly infinite)
set of ground Logic Rules of the form in Definition 1.

In this paper we focus solely on NLPs, those whose heads of rules are positive literals,
i.e., simple atoms; and there is default negation just in the bodies of the rules. Hence,
when we write simply “program” or “logic program” we mean a NLP.

3 Layering of Normal Logic Programs

The well-known notion of stratification of LPs has been studied and used for decades
now. But the common notion of stratification does not cover all LPs, i.e., there are some
LPs which are non-stratified.

Example 2. Stratified vs Non-Stratified Programs. Consider the following two pro-
grams P1 and P2. P1 is stratified, according to the usual notion of stratification, whereas
P2 is not.

P1 : x← a a← not b b← not c P2 : x← a a← not b b← not a

Informally, in P1, we say atom ‘a’ is in a stratum above of that of ‘b’, because
there is a rule for ‘a’ with ‘b’ in its body; we say ‘a’ depends on ‘b’. But in P2 that
dependency is symmetrical: ‘b’ also depends on ‘a’, and we cannot say if ‘a’ is in a
stratum above of that of ‘b’ or vice-versa.

Definition 3. Layering of a Logic Program P . Given a normal logic program P build
a dependency graph G(P ) such that the atoms of P are the nodes of G(P ), and there
is an arc from a node A to a node B iff there is a rule in P with head B such that A
appears in its body.

A layering function l/1 is just any function defined over the atoms of a program P ,
assigning each atom an integer, such that:

– If there is a path in G(P ) from A to B, and there is a path in G(P ) from B to A
then l(A) = l(B).

– If there is a path in G(P ) from A to B, and there is no path in G(P ) from B to A
then l(A) < l(B).



A layering of program P is a partition P1, . . . , Pn of P such that Pi contains all
rules whose head is an atom A such that l(A) = i.

Amongst the several possible layerings of a given program P we can always find the
least one, i.e., the layering with the least number of layers. Throughout the rest of the
paper when we refer to the program’s layering we will always mean such least layering
(easily seen to be unique).

Definition 4. Direct Dependency. We say an atom A directly depends on an atom B
in P iff there is at least one rule of P with head A and with B or not B in the body.

Definition 5. Dependency. We say an atom A depends on an atom B in P iff there is
a path in G(P ) from A to B.

Definition 6. Relevant part of P for A. The Relevant part of P for some atom A is the
subset of rules of P with head A plus the set of rules of P whose heads A depends on,
cf [6].

In example 2 above, although P2 has no stratification, it has a layering: its bottom
layer L1

P2
is comprised of rules a ← not b, and b ← not a; and its second layer L2

P2

contains only the rule x← a.
Due to the definition of dependency, this definition of layer does not coincide with

that of stratum for usual stratification [2], nor does it coincide with the layer definition
of [17]. The original definition of stratification [2] was made on predicate names rather
than atoms. By abandoning the restriction of a finite number of strata of [2], the defini-
tion of Local Stratification (that now applies to atoms) of Przymusinski [17] is obtained.
It copes with infinite ground programs, such as:

a(X)← not b(s(X)) b(s(X))← not a(X)

Still, whereas the ground instance of this program (assuming at least one unary
constant symbol) is not locally stratified, its ground version comprises just one layer.

The layering of P is said to be depth-bound iff there is one “bottom” layer com-
prised of rules whose heads are not above any other literal, i.e., iff L1

P = ∅.
In practice, all useful programs have a depth-bound layering, but for theoretical

completeness we show that the Layered Models semantics — defined in the sequel —
also deals with programs with depth-unbound layering.

A typical case of a program with a depth-unbound layering (actually the only one
with real theoretical interest, to the best of our knowledge) was presented by François
Fages in [9]. We repeat it here for illustration and explanation.

Example 3. Program with depth-unbound layering.

p(X)← p(s(X)) p(X)← not p(s(X))

Ground (layered) version of this program, assuming there only one constant 0 (zero):

p(0)← p(s(0)) p(0)← not p(s(0))
p(s(0))← p(s(s(0))) p(s(0))← not p(s(s(0)))

p(s(s(0)))← p(s(s(s(0)))) p(s(s(0)))← not p(s(s(s(0))))
...←

...
...←

...



The only layered model of this program is {p(0), p(s(0)), p(s(s(0))) . . .} or, in a
non-ground form, {p(X)}. The theoretical interest of this program lies in that, although
it has no OLONs it still has no SMs either because no rule is supported (under the usual
notion of support), thereby showing there is a whole other class of NLPs to which the
SMs semantics provides no model.

4 Layered Models Semantics

Definition 7. Layered Model of P . Let P1, . . . , Pn be the least layering of program
P . An interpretation M is a Layered Model of P iff

∀1≤i≤nM |≤i is a minimal model of
⋃

1≤j≤i

Pj

where M |≤i denotes the restriction of M to atoms in layer i or a layer before i. I.e.

M |≤i = M ∩ {A : l(A) ≤ i}

Intuitively, each minimal model up to and including some layer i must extend a
minimal model of the layers below i.

Mark that, by definition, the minimal models up to and including a given layer
respect the minimal models up to the layers preceding it. This ensures that the truth
assignment to atoms in loops in higher layers are consistent with the truth assignments
in loops in lower layers and that these take precedence in their truth labeling.

Note that this is a more general definition than that of perfect models [18], which
improves on it, but with similar structure. Perfect model semantics talks about “least
models” rather than “minimal models” because in strata there can be no loops and so
there is always a unique least model which is also the minimal model. Now layers,
as opposed to strata, may contain loops and thus there is not always a least model, so
layers resort to minimal models, and these are guaranteed to exist (it is well known,
every normal program has minimal models).

It is worth noting that atoms with no rules and appearing in the bodies of some rule
are necessarily “placed” in the lowest layer. Any minimal model of this layer will con-
sider these atoms (with no rules) to be false. This ensures compliance with the Closed
World Assumption (CWA).

Example 4. Atom with no rules. Consider program P = {a ← not b}. In this case

the least layering of P assigns l(b) = 1 and l(a) = 2, and therefore P1 = {} and
P2 = {a ← not b}. Necessarily, M1 = {} (which means b is false, and says nothing
about a), and M2 = {a}. Notice that, although {b} is a minimal model of P , it is a non-
minimal model of layer 1 and, hence, it is rejected by our Layered Models definition.

Example 5. Layered Models versus Stable Models. Consider program P :
a← not b b← not c c← not a, x
x← not y y ← not x



The rules for x and y are in the same layer which is immediately below the layer
containing the rules for a, b and c. This program has only one Stable Model: SM =
{y, b} but, besides that one, it has also other LMs: M1 = {x, a, b}, M2 = {x, a, c} and
M3 = {x, b, c}. As proven in Theorem 4 in section 5, all SMs of a given program are
also LMs of it, thereby showing that the Layered Models semantics is a conservative
generalization of the Stable Models semantics. In this example, the SM = {y, b} is no
exception: it is a minimal model of the program, and {y} is also a minimal model of
layer 1. All other LMs in the example are not SMs.

Besides the lower layer atoms they depend on (if any), atoms involved in loops have
no particular raison d’être in a model other than being part of a minimal model solution
for the respective loop(s), i.e., their only support lies on lower layers. This is true for
ELONs as well as OLONs. Thus, loops are just a way to write arbitrary disjunctive
choices (viz. shifting rule of [7]). In this example there is no particular reason to choose
x or y; we cannot say any of them to be supported for some reason. The same reasoning
applies to the top layer where the OLON over a, b, and c resides, provided that in the
lower layer the truth of x has been adopted. The apparent lack of support of a in model
{a, b, x} is due to adopting the usual (classical) notion of support (where every atom
true in a model must be supported by all the literals of a body of one of its rules), instead
of adopting the new layered support (every atom true in a model must be classically
supported just on the lower layers literals of a body of its rules).

The principle used by LMs to provide semantics to any NLP — whether is has
OLONs or not, whether it is depth-bound or not — is to accept all, and only, the minimal
models that respect the layers of the program. The principle used by SMs to provide
semantics to some NLPs is just a “stability” (fixed-point) condition imposed on the
SMs by the Gelfond-Lifschitz operator. This stability condition is too restrictive and it
even gives rise to some incongruences.

Example 6. Even Loop Over Negation2 vs Odd Loop Over Negation. Consider P1:
a← not b b← not a. It has two SMs: SM1 = {a}, SM2 = {b}. Now add the rules
a ← b and b ← a. The ELON is kept, but two OLONs appear now. The program
now has no SMs, but it still has one LM = {a, b}.

The example shows the incongruence in the SMs semantics when dealing with
loops: it treats OLONs differently from ELONs and this incongruence stems from the
stability requirement which, in our opinion, is too restrictive. The intended semantics of
a loop over default negation, be it either an ELON or an OLON, be it written on purpose
or be it produced by a series of updates or merges of different NLPs, is a disjunction.
In example 6 above, the intended semantics of the ELON a ← not b b ← not a is,
usually, a∨ b, and that is actually achieved by the SM semantics in this case. But in the
same manner of thinking, the intended semantics of program a ← not b b ← not c
c← not a would be (a ∨ b) ∧ (b ∨ c) ∧ (c ∨ a); that is not achieved by the SM seman-
tics. LM semantics succeeds in doing so, while at the same time having upper layers’
choices respect their lower layers’ choices.

2 An Even Loop Over Negation (ELON), analogously to an OLON, is a loop in the dependency
call graph with an intervening even number of default negations.



5 Properties of the Layered Models semantics

5.1 Existence

Theorem 1. Existence. Every Normal Logic Program has a Layered Model.

Proof. By construction, it is always possible to find a layering for P and, therefore, its
least layering. It is always possible to find a minimal model for layer 1 and, moreover,
for each layer above it is always possible to find a minimal model for it which includes
a minimal model of the previous layer. ut

5.2 Relevance

[6] presents definitions of the Relevance and Cumulativity properties of a semantics of
logic programs. We recall them here for self containment.

Definition 8. Relevance. A semantics for logic programs is said to be Relevant iff for
every program P a ∈ Sem(P )⇔ a ∈ Sem(RelP (a)).

Theorem 2. Relevance of Layered Models semantics. The LM semantics is relevant.

Proof. According to definition 7, the LM semantics of a program P is the intersection
of its LMs. So, a ∈ LM(P ) ⇔ ∀LMP (M)a ∈ M . For the LM semantics the relevance
property is expressed by a ∈ LM(P )⇔ a ∈ LM(RelP (a)).
⇒: We assume a ∈ LM(P ), so we can take any M such that LMP (M) holds,

and conclude that a ∈ M . Assuming, by absurd, that a /∈ LM(RelP (a)) this means
that there is at least one LM of RelP (a) where a is false, i.e., where not a is true. Since
every LM of P satisfies its subsets we conclude there must be at least one LM of P
containing the LM of RelP (a) where a is false. But this means that a /∈ LM(P ) which
is an absurd contradicting the initial assumption a ∈ LM(P ).
⇐: Assume a ∈ LM(RelP (a)). Take the whole P ⊇ RelP (a). Again, a will be in

every LM of P because a is in all LMs of RelP (a), and every LM of P always contains
one LM of RelP (a). ut

Relevance is the property that makes it possible to implement a top-down call-
directed query-derivation proof-procedure — a highly desirable feature if one wants
an efficient theorem-proving system that does not need to compute a whole model to
answer a query. These methods are designed to try and identify whether a query literal
belongs to some LM, and to partially produce a LM supporting a positive answer. The
partial solution is guaranteed extendable to a full LM because of relevance.

5.3 Cumulativity

Definition 9. Cumulativity. A semantics is Cumulative iff for every program P
∀a,b(a ∈ Sem(P ) ∧ b ∈ Sem(P ))⇒ a ∈ Sem(P ∪ {b})

Theorem 3. Cumulativity of Layered Models semantics. LM semantics is cumulative.



Proof. By definition 7, the semantics of a program P is the intersection of its LMs.
So, a ∈ LM(P ) ⇔ ∀LMP (M)a ∈ M . For the LM semantics cumulativity becomes
expressed by
∀a,b(a ∈ LM(P ) ∧ b ∈ LM(P ))⇒ a ∈ LM(P ∪ {b})
Let us assume a ∈ LM(P )∧b ∈ LM(P ). If there is a path from b to a in P , then a

depends on b and there exist i ≥ j such that b ∈Mj and a ∈Mi, and M ⊇Mi ⊇Mj .
It comes trivially that adding b as a fact to P does not change a’s truth-value since every
Mi including a already included b.

If there is no path from b to a it means that a does not depend on b’s truth-value,
and since the LM semantics is relevant, a’s truth-value will remain unchanged just by
adding b as a fact to P . ut

5.4 Stable Models Extension

Theorem 4. Stable Models Extension. Any Stable Model is a Layered Model of P .

Proof. Assume M is a SM of P . It is well known that every SM is also a minimal
model. By definition of SM we know M is the least model of P/M (which results from
deleting from P all the rules with not a in the body where a ∈ M , and then deleting
all remaining not x). The least model can be calculated by iterating the well-known
TP operator [8]. This operator gives as a result an interpretation that differs from the
interpretation it takes only by some atoms which are heads of rules whose bodies were
true in the input interpretation. This means the atoms in J \ I , where J = TP (I), are in
a layer above those of I . At each iteration of TP the previous interpretation atoms are
kept. Hence we can conclude T i

P ({}) = Mi, and, therefore, M is a LM. ut

In example 5 we present a program with a SM — show it to be a LM as well — and
other non-SMs LMs.

Some NLPs have no SMs but, by Theorem 1, all have at least one LM. The relation
between the Layered Models and the Revised Stable Models ([14, 16]) is not yet fully
studied, but, at first glance, they seem equivalent. The thorough analysis of the relation
between these two semantics remains as future work, for now.

Due to lack of space, the complexity analysis of this semantics is left out of this
paper. Nonetheless, a brief note is due. Theorem 1 guarantees every NLP has at least
one LM, hence the complexity of finding if one LM exists is trivial, when compared to
SMs semantics. The whole point of having a new semantics enjoying relevance is to be
able to do brave reasoning (finding if there is any model of the program where some
atom a is true) without necessarily computing a whole model, just the relevant subset of
the program for a and computing the respective submodel, guaranteed extendable to a
whole one. Cautious reasoning (finding out if some atom a is in all models) boils down
to finding if a is unconditionally true given its dependency graph.

6 Examples

Example 7. A joint vacation problem. Three friends are planning a joint vacation.
First friend says “I want to go to the mountains, but if that’s not possible then I’d rather



go to the beach”. The second friend says “I want to go traveling, but if that’s not possible
then I’d rather go to the mountains”. The third friend says “I want to go to the beach, but
if that’s not possible then I’d rather go traveling”. However, traveling is only possible if
the passports are OK. They are OK if they are not expired, and they are expired if they
are not OK. We code this information as the following NLP:

beach ← not mountain
mountain ← not travel
travel ← not beach, passport_ok

passport_ok ← not expired_passport
expired_passport← not passport_ok

It is easy to see that the first three rules forming an OLON over beach, mountain,
and travel are in layer 2; and the rules for passport_ok and expired_passport are in
layer 1. This program has only one SM: {expired_passport,mountain}. But, looking
at the rules relevant for passport_ok we find no irrefutable reason to assume
expired_passport to be true. The LM semantics allows passport_ok to be true yield-
ing three other models besides the SM; those are:
LM1 = {beach, mountain, passport_ok}, LM2 = {beach, travel, passport_ok},
and LM3 = {travel, mountain, passport_ok}.

The first layer has two minimal models: {passport_ok} and {expired_passport}.
Assuming the first minimal model, the second layer has three minimal models which
correspond to LM1, LM2, and LM3 above. Assuming the second minimal model
(where expired_passport is true), the second layer has only one minimal model: the
SM mentioned above {expired_passport,mountain} (which also a LM).

Example 8. N-Queens. When considering the SM semantics, the classical example
of the N-Queens problem (apart from diagonal attack prevention) can be expressed as
the following NLP (where we assume there are some facts for the rows and for the
columns):

hasQueen(X,Y )← row(X), column(Y ), not noQueen(X, Y )
noQueen(X, Y ) ← row(X), column(Y ), column(Y Y ), not eq(Y, Y Y ),

hasQueen(X,Y Y )
noQueen(X, Y ) ← column(Y ), row(X), row(XX), not eq(X,XX),

hasQueen(XX, Y )

In this program there are, apparently, two OLONs via both rules for noQueen/2:
hasQueen/2 depends on not noQueen/2 which, in turn, depends on hasQueen/2.
We can think of these OLONs, under SM semantics, as providing ICs to eliminate mod-
els where we have two mutually attacking queens. However, the rules for noQueen/2
are applicable (have the remaining context literals of their bodies true) only when
not eq(X, XX) (or not eq(Y, Y Y )) hold. This means the two queens are not attacking
each other and so, the OLONs never get a chance to act as ICs to eliminate models. The
undesired models with mutually attacking queens are eliminated by the not eq(X, XX)



and not eq(Y, Y Y ) literals. In this particular case, the LMs coincide with the SMs. If
we delete the not eq/2 occurrences, LM still computes the correct models because a
queen cannot attack itself, which is solved by the minimal model. Not so for the SM.

Example 9. Map coloring. Again, considering the SM semantics, the rules for any
individual node of the classical problem of map coloring can be expressed as the fol-
lowing NLP (where we assume there are some facts for nodes and for the edges):

col(C, red) ← node(C), not col(C, blue), not col(C, green)
col(C, blue) ← node(C), not col(C, red), not col(C, green)
col(C, green)← node(C), not col(C, blue), not col(C, red)

One can argue that there are OLONs here which, under the SM semantics, work as
ICs preventing some undesired models. That is actually not the case in this situation:
no OLON acts as an IC under SM semantics because every OLON has a symmetri-
cal one (e.g, the OLON col(C, red) ← not col(C, blue) ← not col(C, green) ←
not col(C, red) is symmetrical to OLON col(C, red)← not col(C, green)←
not col(C, blue) ← not col(C, red)) and both together form an ELON which is solv-
able by SM semantics.

In this example, since every SM is also a LM, and there are no more minimal models
besides the SMs, we conclude the LM and SM semantics coincide.

7 Implementation

7.1 XSB-XASP Interface

The Prolog language has been for quite some time one of the most accepted means
to codify and execute logic programs, and as such has become a useful tool for re-
search and application development in logic programming. Several stable/production
stage implementations have been developed and refined over the years, with plenty of
working solutions to pragmatic issues ranging from efficiency and portability to explo-
rations of language extensions. The XSB Prolog system3 is one of the most sophis-
ticated, powerful, efficient and versatile among these implementations, with a focus
on execution efficiency and interaction with external systems, implementing program
evaluation following the WFS for NLPs. The XASP interface [3, 4] (standing for XSB
Answer Set Programming), is included in XSB Prolog as a practical programming in-
terface to Smodels [13], one of the most successful and efficient implementations of the
SMs over generalized LPs. The XASP system allows one not only to compute the mod-
els of a given NLP, but also to effectively combine 3-valued with 2-valued reasoning.
The latter is achieved by using Smodels to compute the SMs of the so-called residual
program, the one that results from a query evaluated in XSB using tabling [20]. A resid-
ual program is represented by delay lists, that is, the set of undefined literals for which
the program could not find a complete proof, due to mutual dependencies or loops over
default negation for that set of literals, detected by the XSB tabling mechanism. This

3 Both the XSB Logic Programming system and Smodels are freely available at:
http://xsb.sourceforge.net and http://www.tcs.hut.fi/Software/smodels.



method allows to obtain any two-valued semantics in completion to the three-valued
semantics the XSB system produces.

Such integration allows to make use of relevance for queries. In SMs it is necessary
to compute all complete models for the whole program. In our implementation frame-
work, we sidestep this issue, by using XASP to compute the query relevant residual
program on demand. After some degree of transformation, the resulting residual pro-
gram is sent to Smodels for computation of stable models of the relevant sub-program.
The top-down computation, to boot, helps in partly or totally grounding the residual
program.

7.2 Top-down query-solving implementation using the Layered Models
semantics

The intended use of LM semantics implementation is to provide a tool for existential
querying — much like Prolog — but dealing effectively, and in a 2-valued fashion, with
all kinds of loops over negation.

In top-down querying, layers are inherently found by a loop-detection mechanism
in the call-graph descending search, this being facilitated by the implementation of
XSB Prolog [19]. In practice top-down querying using the LMs semantics corresponds
to finding and solving the OLONs (through the minimal choices of which atoms to
assume true), making sure minimal models found to solve an OLON respect the WFM
of the layers below it. This is guaranteed because XSB’s residual program computation
mechanism simplifies the original program, preserving its layering and semantics, and
reducing it according to its WFM. OLON detection and reduction is performed on the
residual program.

This first implementation of the LMs semantics is mainly intended to be a proof-of-
concept, more than a high-end efficient and optimized final one. By their very nature,
depth-unbound programs cannot be solved in full generality. We leave them unsolved,
for now, and will consider solvable cases in the next implementation. This implemen-
tation is moreover limited to call-consistent programs, i.e., those where the top-down
querying ensures the groundness of the queried literal in each step in the derivation
tree. Also reserved for the future, is the employing of constructive negation as a way to
constrain free variables under default negation, without having to fully ground them.

The present meta-interpreter allows the user to consult a Knowledge Base (KB) —
in the form of a finite grounded NLP — and then to pose queries which are solved in
a top-down fashion, obtaining as a result a partial LM — if there is one inclusive of
the query. Upon backtracking other partial models are returned. The meta-interpreter
is comprised of two components: one takes care of the OLONs and the other solves
ELONs in a manner compatible with the ICs.

Residual Program After launching a query in a top-down fashion we must obtain the
relevant residual part of the program for the query. This is achieved in XSB Prolog
using the get_residual/2 predicate. According to the XSB Prolog’s manual “ the
predicate get_residual/2 unifies its first argument with a tabled subgoal and its
second argument with the (possibly empty) delay list of that subgoal. The truth of the



subgoal is taken to be conditional on the truth of the elements in the delay list”. The
delay list is the list of literals whose truth value could not be determined to be true nor
false, i.e., their truth value is undefined in the WFM of the program.

It is possible to obtain the residual clause of a solution for a query literal, and in turn
the residual clauses for the literals in its body, and so on. This way we can reconstruct
the complete relevant residual part of the KB for the literal — we call this a residual
program or reduct for that solution to the query.

More than one such residual program can be obtained for the query, on backtrack-
ing. Each reduct consists only of partially evaluated rules, with respect to the WFM,
whose heads are atoms relevant for the initial query literal, and whose bodies are just
the residual part of the bodies of the original KB’s rules. This way, not only do we get
just the relevant part of the KB for the literal, we also get precisely the part of those
rules bodies still undefined, i.e., that are involved in Loops Over Negation.

Example 10. Solving OLONs. Consider the program:
a← not a, b b← c c← not b, not a

which coincides with its residual. Solving a query for a, we use its rule and immedi-
ately detect the OLON on a. The leaf not a is removed; the rest of the body {b} is kept
as the Context under which the OLON on a is “active” — if b were to be false there
would be no need to solve the OLON on a’s rule. After all OLONs have been solved,
we use the Contexts to create new rules that preserve the meaning of the original ones,
except these new ones have no dependency on OLONs. The current Context for a is
now just {b} instead of the original {not a, b}.

Solving now a query for b, we go on to solve c — {c} is b’s current Context. Solving
c we find leaf not b. We remove c from b’s Context, and add c’s body {not b, not a} to
it. The OLON on b is detected and the not b is removed from b’s Context which finally
is just {not a}. As it can be seen so far, updating Contexts is similar to performing a
Partial Evaluation plus OLON detection and resolution by removing the dependency
on the OLON. The new rule for b has its final Context {not a} as body. I.e., the new
rule for b is b ← not a. Again, continuing a’s final Context calculation, we remove b
from a’s Context and add {not a} to it. This additional OLON is detected and not a
is removed from a’s Context which now becomes empty. Since we already exhausted
a’s dependency call-graph, the final body for the new rule for a is now empty: a will
be added as a fact. Moreover, a new rule for b will be added: b← not a. Final program
sent to Smodels:

a← not a, b a b← c b← not a c← not b, not a
it has only one SM = {a} the only LM of the program. Mark layering is respected

when solving OLONs: a’s final rule depends on the answer to b’s final rule.

Dealing with Integrity Constraints ICs are written as just falsum ← IC_Body.
not falsum is conjoined to the user’s query causing the ICs to be included in the
residual program which is then sent to Smodels.

Interaction with Smodels When the meta-interpreter reaches the point where all the
relevant OLONs have been successfully and consistently solved, all OLONs resolutions



are incorporated in the residual program as new rules which do not depend on any
OLONs.

Another two rules are added to the Smodels clause store: one creates an auxiliary
rule for the initially posed query; with the form: lmGoal :- Query, where Query
is the query conjunct posed by the user. The second rule just prevents Smodels from
having any model where the lmGoal does not hold, having the form:
falsum :- not falsum, not lmGoal

This time, we deliberately create an OLON and send it to Smodels as a way of
creating an IC that prevents our top goal from being false. It is thence the Smodels
implementation the one responsible for solving the ELONs. Notice that since all the
OLONs resolutions have added new alternative rules that do not depend on any OLONs
to the residual program, all the OLONs become now “harmless” in what the SMs are
concerned. The OLONs became inactive, already solved in favour of their positive head
— cf. [14]. XSB’s XASP communication with Smodels permits the programmer to
use a “Smodels clause store” to which several rules can be added. This clause store is
then sent to Smodels which will consider only those rules when computing a model.
After adding all the original residual relevant rules, and also the newly created rules
(with the OLON-dependency-free-Contexts as bodies) to the Smodels clause store, the
SMs of the stored program are obtained by asking Smodels to compute one model
(and on backtracking to compute others, if we so wish). All of this is encapsulated
by predicate getOneSM(-Clauses,+SM). The SM obtained is a partial LM of the
original program containing only the literals relevant for the query.

Pseudo-code for the query-solving engine Next we present, in a succinct way, the
pseudo-code for the main procedure of our query-solving engine.

lmquery(+QueryList, -RelevantPartialLM) :-
1. Compute the residual part of the program relevant for

the query
2. Select and remove the first literal from query and add

it to the ancestors list
3. If an OLON is detected in the ancestors list

3.1. Subtract the ancestors from the current Context
3.2. Create a new rule for the head of the OLON

whose body is the current Context
else
3.3. Pick one rule for the selected literal and add

its body to the current Context
endif

4. Send the residual relevant part of the program, plus
the newly created rule to Smodels

5. Get one Stable Model as the RelevantPartialLM

The source code for this implementation of the LM meta-interpreter can be found at
http://centria.di.fct.unl.pt/∼amp/software/software.html. Examples and usage instruc-
tions are also available on this web page.



8 Conclusions and Future Work

Having defined a more general 2-valued semantics for NLPs much remains to be ex-
plored, in the way of properties, complexity, comparisons (namely with the likely equiv-
alent Revised Stable Models[14], where more examples, including practical ones, can
be found), implementations, and applications, contrasting its use to other semantics em-
ployed heretofore for KRR, though SM has been compared often enough.

That the LM semantics includes the SM semantics and that it always exists and ad-
mits top-down querying is a novelty making us look anew at 2-valued semantics use
in KRR. LMs’ implementation, because of its relevance property, can avoid the need
to compute whole models and all models, and hence SM’s apodictic need for complete
groundness and the difficulties it begets for problem representation. Moreover, abstract
partial models, instead of ground ones, may be produced directly by the residual, a sub-
ject for further investigation. An efficient engine level implementation is underway at
XSB-engine level, that we intend to make a practical and usable alternative to Smodels
[13] or DLV [5], where these can be replaced with advantage. This second implemen-
tation will include abduction [1], as well as constructive negation mechanisms [12].

The above reported convivial hybrid implementation of LMs and SMs, demon-
strates the usefulness and praticality of a NLP semantics, and attending mechanisms,
promoting a best of both worlds stance, and attract closer together the LP communities.
The applications afforded by LMs are all those of SMs, which it extends, plus those
requiring OLONs for model existance, and those where OLONs actually are employed
for problem representation. The guarantee of model existance is essential in applica-
tions where knowledge sources are diverse (like in the semantic web), and where the
bringing together of such knowledge (automatically or not) can give rise to OLONs
that would otherwise prevent the resulting program from having a semantics, thereby
brusquely terminating the application. A similar situation can be brought about by self-
and mutually-updating programs, including in the learning setting, where unforeseen
OLONs would stop short an ongoing process if the SM semantics were in use. Finally,
codings of ICs via odd loops in SM semantcs found in the literature can be readily
transposed to IC coding in LM semantics.Hence, apparently there is only to gain in
exploring the adept move from SMs to their more general extension of LMs.

Another topic for future work is exploring the definition of a Well-Founded Layered
Model (WFLM). In a nutshell, the WFLM is a partial model which, at each layer, is
the intersection of the all LMs. Floating conclusions are disallowed by this definition.
Incidental to this topic is the relationship of the WFLM to O-semantics [15]. It is readily
apparent that the former extends the latter.

Yet another topic consists in defining partial model schemas, that can provide an-
swers to queries in terms of abstract non-ground model schemas encompassing several
instances of ground partial models. This is closely related to consistent abduction of
non-ground literals.

9 Acknowledgements

We thank José Júlio Alferes for his much lighter version of our definition of LMs, and
Robert Kowalski for his helpful comments on our previous characterizations of LMs.



References

1. J.J. Alferes, L.M. Pereira, and T. Swift. Abduction in well-founded semantics and general-
ized stable models via tabled dual programs. Theory and Practice of Logic Programming,
4(4):383–428, July 2004.

2. K.R. Apt and H.A. Blair. Arithmetic classification of perfect models of stratified programs.
Fundam. Inform., 14(3):339–343, 1991.

3. L. Castro, T. Swift, and D. S. Warren. XASP: Answer Set Programming with XSB and Smod-
els. http://xsb.sourceforge.net/packages/xasp.pdf.

4. L.F. Castro and D.S. Warren. An environment for the exploration of non monotonic logic
programs. In A. Kusalik, editor, Proc. of the 11th Intl. Workshop on Logic Programming
Environments (WLPE’01), 2001.

5. S. Citrigno, T. Eiter, W. Faber, G. Gottlob, C. Koch, N. Leone, C. Mateis, G. Pfeifer, and
F. Scarcello. The dlv system: Model generator and advanced frontends (system description).
In Workshop Logische Programmierung, 1997.

6. J. Dix. A Classification-Theory of Semantics of Normal Logic Programs: I, II. Fundamenta
Informaticae, XXII(3):227–255, 257–288, 1995.

7. J. Dix, G. Gottlob, V.W. Marek, and C. Rauszer. Reducing disjunctive to non-disjunctive
semantics by shift-operations. Fundamenta Informaticae, 28:87–100, 1996.

8. M. H. Van Emden and R. A. Kowalski. The semantics of predicate logic as a programming
language. J. ACM, 23(4):733–742, October 1976. ISSN:0004-5411.

9. F. Fages. Consistency of Clark’s completion and existence of stable models. Methods of
Logic in Computer Science, 1:51–60, 1994.

10. A. Van Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics for general logic
programs. J. of ACM, 38(3):620–650, 1991.

11. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In
ICLP/SLP, pages 1070–1080. MIT Press, 1988.

12. J. Y. Liu, L. Adams, and W. Chen. Constructive negation under the well-founded semantics.
Journal of Logic Programming, 38(3):295–330, 1999.

13. I. Niemelä and P. Simons. Smodels - an implementation of the stable model and well-founded
semantics for normal logic programs. In Proceedings of the 4th International Conference
on Logic Programming and Nonmonotonic Reasoning, volume 1265 of Lecture Notes in
Artificial Intelligence, pages 420–429, July 1997.

14. L. M. Pereira and A. M. Pinto. Revised stable models - a semantics for logic programs. In
G. Dias et al., editor, Progress in AI, volume 3808 of LNCS, pages 29–42. Springer, 2005.

15. L.M. Pereira, J.J. Alferes, and J.N. Aparíco. Adding closed world assumptions to well-
founded semantics. Theor. Comput. Sci., 122(1-2):49–68, 1994.

16. A. M. Pinto. Explorations in revised stable models — a new semantics for logic programs.
Master’s thesis, Universidade Nova de Lisboa, February 2005.

17. T. C. Przymusinski. Every logic program has a natural stratification and an iterated least
fixed point model. In PODS, pages 11–21. ACM Press, 1989.

18. T.C. Przymusinski. Perfect model semantics. In ICLP/SLP, pages 1081–1096, 1988.
19. K. F. Sagonas, T. Swift, and D. S. Warren. The xsb programming system. In Workshop on

Programming with Logic Databases (Informal Proceedings), ILPS, page 164, 1993.
20. T. Swift. Tabling for non-monotonic programming. Annals of Mathematics and Artificial

Intelligence, 25(3-4):201–240, 1999.


