
Submitted to the Technical Communications of the International Conference on Logic Programming (ICLP’10)
http://www.floc-conference.org/ICLP-home.html

TIGHT SEMANTICS FOR LOGIC PROGRAMS

LUÍS MONIZ PEREIRA 1 AND ALEXANDRE MIGUEL PINTO 1

1 Centro de Inteligência Artificial (CENTRIA)
Departamento de Informática, Faculdade de Ciências e Tecnologia,
Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
E-mail address: lmp@di.fct.unl.pt

E-mail address: amp@di.fct.unl.pt

Abstract. We define the Tight Semantics (TS), a new semantics for all NLPs complying
with the requirements of: 2-valued semantics; preserving the models of SM; guarantee of
model existence, even in face of Odd Loops Over Negation (OLONs) or infinite chains;
relevance; cumulativity; and compliance with the Well-Founded Model.

When complete models are unnecessary, and top-down querying (à la Prolog) is desired,
TS provides the 2-valued option that guarantees model existence, as a result of its relevance
property. Top-down querying with abduction by need is rendered available too by TS. The
user need not pay the price of computing whole models, nor that of generating all possible
abductions, only to filter irrelevant ones subsequently.

A TS model of a NLP P is any minimal model (MM) M of P that further satisfiesbP—the program remainder of P—in that each loop in bP has a MM contained in M , whilst
respecting the constraints imposed by the MMs of the other loops so-constrained too.

The applications afforded by TS are all those of Stable Models, which it generalizes,
plus those permitting to solve OLONs for model existence, plus those employing OLONs
for productively obtaining problem solutions, not just filtering them (like Integrity Con-
straints).

1. Introduction and Motivation

The semantics of Stable Models (SM) [Gel88] is a cornerstone for some of the most
important results in logic programming of the past three decades, providing increased logic
programming declarativity and a new paradigm for program evaluation. When needing
to know the 2-valued truth-value of all literals in a normal logic program (NLP) for the
problem being solved, the solution is to produce complete models. In such cases, tools like
SModels [Syr01] or DLV [Leo02] may be adequate enough, as they can indeed compute finite
complete models according to the SM semantics and its extensions to Answer Sets [Lif92]
and Disjunction. However, lack of some important properties of the base SM semantics, like
relevance, cumulativity and guarantee of model existence—enjoyed by, say, Well-Founded
Semantics [Gel91] (WFS)—somewhat reduces its applicability and practical ease of use
when complete models are unnecessary, and top-down querying (à la Prolog) would be
sufficient. In addition, abduction by need top-down querying is not an option with SM,
creating encumbrance in required pre- and post-processing, because needless full abductive

Key words and phrases: Normal Logic Programs, Relevance, Cumulativity, Stable Models, Well-Founded
Semantics, Program Remainder.

c© L. M. Pereira and A. M. Pinto
Confidential — submitted to ICLP

2 L. M. PEREIRA AND A. M. PINTO

models are generated. The user should not pay the price of computing whole models, nor
that of generating all possible abductions and then filtering irrelevant ones, when not needed.
Finally, one would like to have available a semantics for that provides a model for every NLP.

WFS in turn does not produce 2-valued models though these are often desired, nor does
it guarantee 2-valued model existence.

To overcome these limitations, we present the Tight Semantics (TS), a new 2-valued
semantics for NLPs which guarantees model existence; preserves the models of SM; enjoys
relevance and cumulativity; and complies with the WFM. TS also deals with infinite chains
[Fag94], proffering an alternative to SM-based Answer-Set Programming.

TS supersedes our previous RSM semantics [Per05], which we have recently found want-
ing in capturing our intuitively desired models in some examples, and because TS relies on
a clearer, simpler way of tackling the difficult problem of assigning a semantics to every
NLP while affording the aforementioned properties, via adapting better known formal LP
methods than RSM’s reductio ad absurdum stance.

A TM of an NLP P is any minimal model (MM) M of P that further satisfies P̂—the
program remainder of P—in that each loop in P̂ has a MM contained in M, whilst respecting
the constraints imposed by the MMs of the other loops so-constrained too.

A couple of examples bring out the need for a semantics supplying all NLPs with models,
and permitting models otherwise eliminated by Odd Loops Over default Negation (OLONs):

Example 1.1. Jurisprudential reasoning. A murder suspect not preventively detained
is likely to destroy evidence, and in that case the suspect shall be preventively detained:

likely_destroy_evidence(suspect) ← not preventive_detain(suspect)
preventive_detain(suspect) ← likely_destroy_evidence(suspect)

There is no SM, and a single TM = {preventive_detain(suspect)}. This jurispruden-
tial reasoning is carried out without need for a suspect to exist now. Should we wish, TS’s
cumulativity allows adding the model literal as a fact.

Example 1.2. A joint vacation problem. Three friends are planning a joint vacation.
First friend says “I want to go to the mountains, but if that’s not possible then I’d rather
go to the beach”. The second friend says “I want to go traveling, but if that’s not possible
then I’d rather go to the mountains”. The third friend says “I want to go to the beach, but
if that’s not possible then I’d rather go traveling”. However, traveling is only possible if the
passports are OK. They are OK if they are not expired, and they are expired if they are not
OK. We code this information as the NLP:

beach ← not mountain
mountain ← not travel
travel ← not beach, passport_ok
passport_ok ← not expired_passport
expired_passport ← not passport_ok

The first three rules contain an odd loop over default negation through beach, mountain,
and travel; and the rules for passport_ok and expired_passport form an even loop over
default negation. Henceforth we will abbreviate the atoms’ names. This program has a
single SM: {e_p, m}. But looking at the rules relevant for p_ok we find no irrefutable
reason to assume e_p to be true. TS allows p_ok to be true, yielding three other models
besides the SM: TM1 = {b, m, p_ok}, TM2 = {b, t, p_ok}, and TM3 = {t, m, p_ok}.

TIGHT SEMANTICS FOR LPS 3

The even loop has two minimal models: {p_ok} and {e_p}. Assuming the first MM,
the odd loop has three MMs corresponding to TM1, TM2, and TM3 above. Assuming the
second MM (where e_p is true), the OLON has only one MM: the SM mentioned above
{e_p, m}, also a TM.

The applications afforded by TS are all those of SM, plus those requiring solving OLONs
for model existence, and those where OLONs are employed for the production of solutions,
not just used as Integrity Constraints (ICs). Model existence is essential in applications
where knowledge sources are diverse (like in the semantic web), and where the bringing
together of such knowledge (automatically or not) can give rise to OLONs that would other-
wise prevent the resulting program from having a semantics, thereby brusquely terminating
the application. A similar situation can be brought about by self-, mutual- and external
updating of programs, where unforeseen OLONs would stop short an ongoing process. Cod-
ing of ICs via odd loops, commonly found in the literature, can readily be transposed to IC
coding in TS, as explained in the sequel.

Paper structure. After background notation and definitions, we usher in the desider-
ata for TS, and only then formally define TS, exhibit examples, and prove its properties.
Conclusions, and future work close the paper.

2. Background Notation and Definitions

Definition 2.1. Normal Logic Program. A Normal Logic Program (NLP) P is a (possi-
bly infinite) set of logic rules, each of the form H ← B1, . . . , Bn, not C1, . . . , not Cm where
H, the Bi and the Cj are atoms, and each rule stands for all its ground instances. H is the
head of the rule, denoted by head(r), and body(r) denotes set {B1, . . . , Bn, not C1, . . . , not Cm}
of all the literals in the body of r. heads(P) denotes {head(r) : r ∈ P}. Throughout, ‘not ’
signals default negation. Abusing notation, we write not S to denote {not s : s ∈ S}. If the
body of a rule is empty, we say its head is a fact and may write the rule just as H.

Throughout too, we consider MMs of programs, and write MMP (M) to denote M is a
minimal model of P . When both MMP (M) and M ⊆ heads(P) hold, then MN denotes the
union of M with the negations of heads of P absent in M ; i.e., MN = M∪not (heads(P)\M).
We dub MN a completed minimal model of P .

Definition 2.2. Rule dependencies. Given an NLP P build a dependency graph G(P)
such that the rules of P are the nodes of G(P), and there is an arc, labeled “positive”,
from a node r2 to a node r1 if head(r2) appears in the body of r1; or labeled “negative” if
not head(r2) appears in the body of r1.

We say a rule r1 directly depends on r2 (written as r1 ← r2) iff there is a direct arc in
G(P) from r2 to r1. By transitive closure we say r1 depends on r2 (r1 � r2) iff there is a
path in G(P) from r2 to r1.

Dependencies through default negation play a major role in the sequel and so we also
need to define the following: we say a rule r1 directly depends negatively on r2 (written
as r1 ← −r2) iff not head(r2) appears in the body of r1. By transitive closure we say r1

depends negatively on r2 (r1 � −r2) iff r1 directly depends negatively on r2 or r1 depends
on some r3 which directly depends negatively on r2.

4 L. M. PEREIRA AND A. M. PINTO

Definition 2.3. RelP (a) — Relevant part of NLP P for the positive literal a. The
Relevant part of a NLP P for some positive literal a, RelP (a) is defined as

RelP (a) =
⋃
{r, r′ ∈ P : r � r′ ∧ head(r) = a}

Intuitively, RelP (a) is just the set of rules with head a and the rules in the call-graph
for a.

Definition 2.4. Loop in P . We say a subset PL of rules of P is a loop iff for every
two rules r1 and r2 in PL there is a path from r1 to r2 in G(P) and vice-versa. I.e.,
∀r1,r2∈PL

r1 � r2 ∧ r2 � r1. We write Loop(PL) to denote that PL is a Loop.

Definition 2.5. Program Remainder [Bra01]. The program remainder P̂ is guaranteed
to exist for every NLP, and is computed by applying to P the positive reduction (which
deletes the not b from the bodies of rules where b has no rules), the negative reduction
(which deletes rules that depend on not a where a is a fact), the success (which deletes
facts from the bodies of rules), and the failure (which deletes rules that depend on atoms
without rules) transformations, and then eliminating also the unfounded sets [Gel91] via a
loop detection transformation. The loop detection is computationally equivalent to finding
the strongly connected components [Tar72] in the G(P) graph, as per definition 2.2, and is
known to be of polynomial time complexity.

Definition 2.6. Program Division. Let P be an NLP and I ⊆ heads(P)∪not heads(P)
a consistent interpretation of P . P : I denotes the subset of P remaining after performing
this sequence of steps:

(1) delete rules with not a in the body where a ∈ I – similar to negative reduction
(2) delete all a in the bodies of rules where a ∈ I – similar to success
(3) delete all not a in the bodies of rules where not a ∈ I

The rationale behind program division is to obtain the subset of P remaining after
considering all literals in I true. Step 1 eliminates the rules of P which are already satisfied
(in a classical way) by the literals in I. Step 2 is similar to success but deletes all positive
literals a from the bodies of rules where a ∈ I. Step 3 is a negative counterpart of step 2;
one could dub it negative success. Thus, steps 2 and 3 are slightly more credulous that the
original success.

3. Desiderata

Intuitively desired semantics. Usually, both the default negation not and the← in rules
of Logic Programs reflect some asymmetry in the intended MMs, e.g., in a program with
just the rule a ← not b, although it has two MMs: {a}, and {b}, the only intended one
is {a}. This is afforded by the syntactic asymmetry of the rule, reflected in the one-way
direction of the ←, coupled with the intended semantics of default negation. Thus, a fair
principle underlying the rationale of a reasonable semantics would be to accept an atom in
a model only if there exist rules in a program, at least one, with it as head. This principle
rejects {b} as a model of program a← not b.

When rules form loops, the syntactic asymmetry disappears and, as far as the loop only
is concerned, MMs can reflect the intended semantics of the loop. That is the case, e.g.,
when we have just the rules a ← not b and b ← not a; both {a} and {b} are the intended

TIGHT SEMANTICS FOR LPS 5

models. However, loops may also depend on other literals with which they form no loop.
Those asymmetric dependencies should have the same semantics as the single a ← not b
rule case described previously.

So, on the one side, asymmetric dependencies should have the semantics of a single
a← not b rule; and the symmetric dependencies (of any loop) should subscribe to the same
MMs semantics as the a ← not b and b ← not a set of rules. Intuitively, a good semantics
should cater for both the symmetric and asymmetric dependencies as described.

Desirable formal properties. By design, our TS benefits from number of desirable prop-
erties of LP semantics [Dix95], namely: guarantee of model existence; relevance; and cu-
mulativity. We recapitulate them here for self-containment. Guarantee of model existence
ensures all programs have a semantics. Relevance permits simple (object-level) top-down
querying about truth of a query in some model (like in Prolog) without requiring production
of a whole model, just the part of it supporting the call-graph rooted on the query. Formally:

Definition 3.1. Relevance. A semantics Sem for logic programs is said Relevant iff for
every program P , a ∈ Sem(P)⇔ a ∈ Sem(RelP (a)).

Relevance ensures any partial model supporting the query’s truth can always be ex-
tended to a complete model; relevance is of the essence to abduction by need, in that only
abducibles in the call-graph need be considered for abduction.

Cumulativity signifies atoms true in the semantics can be added as facts without thereby
changing it; thus, lemmas can be stored. Formally:

Definition 3.2. Cumulativity. A semantics Sem is Cumulative iff the semantics of P
remains unchanged when any atom true in the semantics is added to P as a fact:

Cumulative(Sem)⇔ ∀P∀a,b_a ∈ Sem(P) ∧ b ∈ Sem(P)⇒ a ∈ Sem(P ∪ {b})

Neither of these three properties are enjoyed by SMs, the de facto standard semantics
for NLPs. The core reason SM semantics fails to guarantee model existence for every NLP
is that the stability condition it imposes on models is impossible to be complied with by
OLONs.

Example 3.3. Stable Models semantics misses Relevance and Cumulativity.
c← not c c← not a
a← not b b← not a

This program’s unique SM is {b, c}. However, P ∪ {c} has two SMs {a, c}, and {b, c}
rendering b no longer true in the SM semantics, which is the intersection of its models. SM
semantics lacks Cumulativity. Also, though b is true in P according to SM semantics, b is
not true in RelP (b) = {a← not b; b← not a}, shows SM semantics lacks Relevance.

In fact, the ASP community uses the SM semantics inability to assign a model to OLONs
as a means to impose ICs, such as a← not a, X, where the OLON over a prevents X from
being true in any model.

TS goes beyond the SM standard, not just because in complying with all the above
3 properties, but also in being a model conservative extension of the SMs semantics, in
this sense: A semantics is a model conservative extension of another when it provides at
least the same models as the latter, for programs where the latter’s are defined, and further
provides semantics to programs for which the latter’s are not defined. Another way of
couching this is: new desired models are provided which the semantics being extended

6 L. M. PEREIRA AND A. M. PINTO

was failing to produce, but all the latter’s produced ones are nevertheless provided by the
model-conservative extension.

While encompassing the above properties, TS still respects the Well-Founded Model
(WFM) like SM does: every TS model complies with the true and the false atoms in the
WFM of a program. Formally:

Definition 3.4. Well-Founded Model of a Normal Logic Program P . Following
[Bra01], the true atoms of the WFM of P (the irrefutably true atoms of P) are the facts
of P̂ , the remainder of P (their definition 5.17). Moreover, the true or undefined literals of
P are just the heads of rules of P̂ ; and the computation of P̂ can be done in polynomial
time. Thus, we shall write WFM+(P) to denote the set of facts of P̂ , and WFM+u(P) to
denote the set of heads of rules of P̂ . Also, since the false atoms in the WFM of P are just
the atoms of P with no rules in P̂ , we write WFM−(P) to denote those false atoms.

Definition 3.5. Interpretation M of P respects the WFM of P . An interpretation
M respects the WFM of P iff M contains the set of all the true atoms of the WFM of P ,
and it contains no false atoms of the WFM of P . Formally:

RespectWFMP (M)⇔WFM+(P) ⊆M ⊆WFM+u(P)

TS’s WFM compliance, besides keeping with SM’s compliance (i.e. the WFM approx-
imates the SM), is important to TS for a specific implementation reason too. Since WFS
enjoys relevance and polynomial complexity, one can use it to obtain top-down—in present
day tabled implementations—the residual or remainder program that expresses the WFM,
and then apply TS to garner its 2-valued models, foregoing the need to generate complete
models.

For program a← not a, the only Tight Model (TM) is {a}. In the TS, OLONs are not
ICs. ICs are enforced employing rules for the special atom falsum, of the form falsum← X,
where X is the body of the IC one wishes to prevent being true. This does not preclude
falsum from figuring in some models. From a theoretical standpoint it means the TS
semantics does not a priori include a built-in IC compliance mechanism. ICs can be dealt
with in two ways, either by (1) a syntactic post-processing step, as a model “test stage” after
their “generate stage”; or by (2) embedding IC compliance in the query-driven computation,
whereby the user conjoins query goals with not falsum. If inconsistency examination is
desired, like in case (1), models including falsum can be discarded a posteriori. Thus,
TS clearly separates OLON semantics from IC compliance, and frees OLONs for a wider
knowledge representation usage.

4. Tight Semantics

The rationale behind tightness follows the intuitively desired semantics principles de-
scribed in section 3. On the one side any TM M is necessarily an MM of P̂ which guarantees
that no atoms with no rules are in M . This is in accordance with the principle of intuitively
desired semantics for asymmetric dependencies, and is also what guarantees that TMs re-
spect the WFM, as proved in the sequel. On the other side, implementing the intuitively
desired semantics for symmetric dependencies, the TS imposes each TM to have the internal
loop congruency of tightness: the semantics for each loop is its MMs, as long as a chosen
MM for it is compatible (via program division) with the model for the whole program, while
the rest ML of the original model M is itself Tight.

TIGHT SEMANTICS FOR LPS 7

Definition 4.1. Tight Model. Let P be an NLP, and M a minimal model of P̂ , such
that MN is a completed minimal model of P . Let P̂L denote a Loop(P̂L) strictly contained
in P̂ ; and given MM bPL

(ML), let ML denote (M \ML) ∪ {ML ∩ heads(P : MLN
)}. We say

M is tight in P — TightP (M) — iff

∃P̂L ⇒ ∃ML : MLN
⊆MN ∧ TightP :MLN

(ML)

The Tight Semantics of P — TS(P) — is the intersection of all its Tight Models.

Example 4.2. Mixed loops 1. Let P be
a← k k ← not t t← a, b
a← not b b← not a

P̂ coincides with P , so its MMs are M1 = {a, k} with M1N = {a, not b, k, not t}; M2 = {a, t}
with M2N = {a, not b, not k, t}; and M3 = {b, t} with M3N = {not a, b, not k, t}. Of these,
only M1N and M3N are Tight. M1 in particular is also an SM. To see that M2N is not
Tight notice that there are three loops in P : PL1 = {a ← not b; b ← not a}, PL2 = {a ←
k; k ← not t; t ← a, b}, PL3 = {a ← k; k ← not t; t ← a, b; b ← not a}. The MMs of
PL1 are ML11 = {a} with ML11N

= {a, not b}, and ML12 = {b} with ML12N
= {not a, b}.

Dividing P by ML11N
we get P : ML11N

= {a ← k; k ← not t; t ← b}. ML11
is now

({a, t} \ {a})∪ {{a} ∩ heads({a← k; k ← not t; t← b})} = {t} ∪ {a} = {a, t}. But {a, t} is
not Tight in P : ML11N

since it is not even an MM of it.

Example 4.3. Difference between TS and RSM semantics. Let P be
a← not b, c
b← not c, not a
c← not a, b

TS accepts both M1 = {a} and M2 = {b, c} as TMs, whereas the RSM semantics [Per05]
only accepts M1. Neither are SMs.

Example 4.4. Mixed loops 2. Let P be
a← not b
b← not c, e
c← not a
e← not e, a

In this case, TS, like the RSM semantics, accepts all minimal models: M1 = {a, b, e},
M2 = {a, c, e}, and M3 = {b, c}.

Example 4.5. Quasi-Stratified Program. Let P be
d← not c
c← not b
b← not a
a← not a

The unique TS is {a, c}, and there are no SMs. In this case it is quite easy to see how
the Tightness works: {a} is necessarily the unique MM of a ← not a. Dividing the whole
program by {a} we get {d ← not c; c ← not b}. Its unique TM is {c} providing the global
model {a, c} together with the {a} model for a← not a.

8 L. M. PEREIRA AND A. M. PINTO

5. Properties of the Tight Semantics

Forthwith, we prove some properties of TS, namely: guarantee of model existence,
relevance, cumulativity, model-conservative extension of SMs, and respect for the Well-
Founded Model. The definitions involved are to be found in section 3.

Theorem 5.1. Existence. Every Normal Logic Program has a Tight Model.

Proof. Let P be an NLP. P̂ is guaranteed to exist. So are MMs of any given NLP, in
particular, for P̂ too. If P̂ has no loops, then every MM of P̂ is trivially Tight. In particular,
if P̂ has no loops it means P̂ is stratified and the unique TM is its unique MM.

Consider now P̂ has loops, and that PL is any such loop in P̂ . Assume P̂ has no TMs.
In this case, for every PL there is no ML ⊆ MLN

such that TightP :MLN
(ML) holds. Since

for every PL it is always possible to compute an ML and its respective MLN
, the tightness

condition must fail because TightP :MLN
(ML) fails. But any PL which does not depend on

any other rule outside PL is unaffected by any program division P : ML′N
where ML′ is

an MM of some other PL′ . Hence the hypothetical failure of tightness in holding of ML in
P : MLN

must be because all MLs of all PL are not Tight in some PL′′′ = PL′′ ∪ PL such
that PL depends on PL′′ and vice-versa. I.e., for all ML of PL, TightPL′′′ :MLN

(ML) must not
hold. Since it is always possible to compute ML = (M \ML) ∪ {ML ∩ heads(PL′′′ : MLN

)}
it must be the case that for every ML′′ of each PL′′ , ML′′ ∪ML is not a consistent MM of
PL′′ ∪ PL, which is an absurdity because consistent MMs of any given program are always
guaranteed to exist.

Theorem 5.2. Relevance of Tight Semantics. The Tight Semantics is relevant.

Proof. According to definition 3.1 a semantics Sem is relevant iff a ∈ Sem(P) ⇔ a ∈
Sem(RelP (a)) for all atoms a. Since the TS of a program P — TS(P) — is the intersection
of all its TMs, relevance becomes a ∈ TS(P)⇔ a ∈ TS(RelP (a)) for TS.
⇒: We assume a ∈ TS(P), so we can take any M such that TMP (M) holds, and

conclude a ∈ M . Assuming, by contradiction, that a /∈ TS(RelP (a)) then there is at least
one TM of RelP (a) where a is false. Let us write Ma to denote such TM of RelP (a) where
a /∈ Ma. Since all TMs of P are MMs of P̂ we have two possibilities: 1) a is a fact in P̂
— in this case there is a rule (a fact) for a and hence this fact rule is in RelP (a) forcing
a ∈Ma; 2) a is not a fact in P̂ — by definition of TM a can be in M only if a is the head of
a rule and there is some MM ML ⊆ M of a loop PL ⊆ P such that a ∈ ML. Since a must
be the head of a rule in loop, that loop is, by definition, in RelP (a). Since M is Tight in P ,
by definition so must be each and every of its subset MMs of loops; i.e., a ∈Ma.
⇐: Assume a ∈ TS(RelP (a)). Take the whole P ⊇ RelP (a). Again, a will be in every

TM of P because a is in all TMs of RelP (a), and, by definition, every TM of P always
contains one TM of RelP (a).

Theorem 5.3. Cumulativity of Tight Semantics. The Tight Semantics is cumulative.

Proof. By definition 4.1, the semantics of a program P is the intersection of its TMs. So,
a ∈ TS(P) ⇔ ∀TMP (M)a ∈ M . For the TS semantics cumulativity becomes expressed by
∀a,b(a ∈ TS(P) ∧ b ∈ TS(P))⇒ a ∈ TS(P ∪ {b})

Let us assume a ∈ TS(P) ∧ b ∈ TS(P). Since both a ∈ TS(P) and b ∈ TS(P), we
know that whichever TM M and ML ⊆M such that a ∈ML, b ∈ TS(P : MLN

) holds; and
in that case P : MLN

= (P ∪ {a}) : MLN
. Hence, b ∈ TS(P ∪ {a}).

TIGHT SEMANTICS FOR LPS 9

Theorem 5.4. Stable Models Extension. Any Stable Model is a TM of P .

Proof. Assume M is a SM of P . Then M = least(P/M) where the division P/M deletes
all rules with not a in the body where a ∈M , and then deletes all remaining not b from the
bodies of rules. The program division P : M performs exactly the same step as the P/M
one, but then only deletes the not b such that not b ∈ MN . Moreover, the P/M division is
performed using the whole M at once, whilst the P : M considers not the whole M but only
partial MLN

s of M . Tightness requires consistency amongst the several individual MLN
s

whilst the M = least(P/M) stability condition requires consistency throughout the whole
M . We can thus say the division P/M performs all the steps the P : M division does, and
then some. In this sense the M = least(P/M) stability condition demands from M all that
Tightness does and even more. Hence, a model passing the stability condition is bound to
be also a TM.

Theorem 5.5. Tight Semantics respects the Well-Founded Model. Every Tight
Model of P respects the Well-Founded Model of P — ∀M :TMP (M)RespectWFMP (M).

Proof. Take any TM M of P . Since all TMs are MMs of P̂ , M must contain all the facts of
P̂ , i.e., M ⊇WFM+(P). Also MMs of P̂ are bound to be a subset of the heads of rules of
P̂ , hence M ⊆WFM+u(P).

Due to lack of space, the complexity analysis of this semantics is left out of this paper.
Nonetheless, a brief note is due. Tight Model existence is guaranteed for every NLP, whereas
finding if there are any SMs for an NLP is NP-complete. Since TS enjoys relevance, the
computational scope of Brave Reasoning can be restricted to RelP (a) only, instead of the
whole P . Nonetheless, we conjecture that Brave reasoning — finding if there is any model
of the program where some atom a is true — is a Σ2

P -hard task. This is so because each
relevant branch in the call-graph can be a loop. Traversing the entire call-graph is in itself
an NP-complete task. For each loop, the TS requires the computation of a minimal model
— another NP-complete task. Hence the conjectured Σ2

P -hardness. Still, from a practical
standpoint, having to traverse only the relevant call-graph for brave reasoning, instead of
considering the whole program, can have a significant impact in the performance of concrete
applications. By the same token, cautious reasoning (finding out if some atom a is in all
models) in the TS should have the complementary complexity of brave reasoning: co-Σ2

P -
complete.

One common objection to these kind of semantics concerns the notion of support. Tight
models are not supported, considering the classical notion of support. However, we abide
by a more general notion of support: an atom is supported iff there is at least one rule with
it as head and all the literals in the body of the rule which do not depend on the head are
also true. This loop support is a generalization of the classical support. This ensures the
truth assignment to atoms in, say, a loop L2 which depends asymmetrically on loop L1, is
consistent with the truth assignments in loop L1 and that these take precedence over L2 in
their truth labeling. As a consequence of the loop support requirement, Tight model comply
with the WFM of the loops they asymmetrically depend on.

10 L. M. PEREIRA AND A. M. PINTO

6. Conclusions, Future and Ongoing Topics, and Similar Work

Having defined a more general 2-valued semantics for LPs much remains in store, and
to be explored and reported, in the way of properties, complexity, comparisons, implemen-
tation, and applications. We hope the concepts and techniques newly introduced here might
be adopted by other logic programming semantics approaches and systems.

We defined TS, a semantics for all NLPs complying with the express requirements of:
2-valued semantics, preserving the models of SM, guarantee of model existence (even in face
of odd loops over negation or infinite chains), relevance, cumulativity, and WFM respect.

Relevancy condones top-down querying and avoids the need to compute whole models. It
also permits abduction by need, avoiding much useless consideration of irrelevant abducibles.

That TS includes the SM semantics and that it always exists and admits top-down
querying is a novelty making us look anew at 2-valued semantics use in KRR, contrasting
its use to other semantics employed heretofore for KRR, even though SM has already been
compared often enough [Bar03].

A current avenue of further work already being taken follows the line of thought we
laid out in [Per09] by partitioning an NLP into layers, a generalization of strata, to further
segment the program and thus reduce the combinatorics of the Tightness test. Although not
reducing the theoretical complexity class of the Tightness test, in practical implementations
the syntactical partitioning of layering can have a substantial impact on performance.

References
[Bar03] C. Baral. Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge Uni-

versity Press, 2003.
[Bra01] S. Brass, J. Dix, B. Freitag, and U. Zukowski. Transformation-based bottom-up computation of the

well-founded model. TPLP, 1(5):497–538, 2001.
[Dix95] J. Dix. A Classification-Theory of Semantics of Normal Logic Programs: I, II. Fundamenta Infor-

maticae, XXII(3):227–255, 257–288, 1995.
[Fag94] F. Fages. Consistency of Clark’s completion and existence of stable models. Methods of Logic in

Computer Science, 1:51–60, 1994.
[Gel88] M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In ICLP/SLP, pp.

1070–1080. MIT Press, 1988.
[Gel91] A. Van Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics for general logic programs.

J. of ACM, 38(3):620–650, 1991.
[Leo02] Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gottlob, Simona Perri, and

Francesco Scarcello. The dlv system for knowledge representation and reasoning. ACM Transactions
on Computational Logic, 7:499–562, 2002.

[Lif92] Vladimir Lifschitz and Thomas Y. C. Woo. Answer sets in general nonmonotonic reasoning (pre-
liminary report). In KR, pp. 603–614. 1992.

[Per05] L. M. Pereira and A. M. Pinto. Revised stable models - a semantics for logic programs. In G. Dias
et al. (ed.), Progress in AI, LNCS, vol. 3808, pp. 29–42. Springer, 2005.

[Per09] L. M. Pereira and A. M. Pinto. Layer supported models of logic programs. In E. Erdem, F. Lin,
and T. Schaub (eds.), Procs. 10th LPNMR, LNAI, vol. 5753, pp. 450–456. Springer, 2009.
URL http://centria.di.fct.unl.pt/\simlmp/publications/online-papers/LSMs.
pdf(longversion)

[Syr01] Tommi Syrjänen and Ilkka Niemelä. The smodels system. In T. Eiter et al. (ed.), LPNMR 2001,
LNAI, vol. 2173. Springer-Verlag, 2001.

[Tar72] R. Tarjan. Depth-first search and linear graph algorithms. SIAM J. Computing, 1(2):146–160, 1972.

