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SUMARIO

Nestce trabalho € consrruida uma teoria para resolver uma classe de
problemas abstractos (definidos de modo prec1so no capitulo 4), que sdo ime-
diatamente inrerpretiveis em termos arquitecturais.

A teoria referida foi construida com vista a suportar processos'de re
solugdo de problemas susceptiveis de tradugdo quasc directa numa linguagem de
programagdo: de facto, foram ¢scritos programas para coirputador que incor-
poram o espago de representagao da teoria e as estratégin.: de resolugao de
probkﬂnas deﬁnldas nesse espago para resolver a classe de probknnas,bonsi-
derada. ' o |
- Em rermos abstractos, a classe de problemas que foi encarada re-
sultou do s\gumte "desideratum": Dada uma lista de ad]acenmas 1mpostas e de
outras ndo permitidas, num conjunto de espagos .planos rertangulares, e dados
mtervalos dimensionais restringindo as extensdes dos espagos e das Suas adja_
cenolas procurar e gerax'todas as disposicBes no plano desse rfnqunto de es
pagos que satisfazem aos requisitos impostos, e elaborar programas para com-
putador que executem os- algorltmos desenvolv1dos, bem como prov1den(~1ar a in
teraccdo entre utilizador e prograrma com victa a alteragao dos intervalos d1- |
mensionais estipulados, especialmente no caso €ém que surjam mcompat1b111dades

Os capltulos le?2 destinam-se a fornecer enquadramento adentro da
metodologia de resolugdo de problemas e adentro da metodologia dos processos
computac1ona1s €m arquitectura, a partir dos quais o restante trabalho pode
perspectivar-se. O capltulo 3 fornece ao leitor as nogoes teérlcas sobre. ara-
fos introduzidos em capitulos posteriores no desenvolvimento da teoria+« ) capi-
tulo 4 apresenta a classe de problemas; os capitulos 5 a8 mostrani como a
‘teoria foi construida para tratar com essa classe de problemas; e dlscutem _
varios aspectos da metodologia de resolugao de problemas segu1da- o) capltulo '
9 ilumina algumas linhas de investigacio futura, e o capitulo 10 conclui o tra-
balho com uma demonstragao de resultados do programa para computador ela- :

borado. ‘ S {
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ABSTRACT

In this thesis a theory is built to solve a class of abstract problems
(defined precisely in chapter 4) rcadily intérprctcd-in architectural L("rms‘ The
referred theory was built so that it could support problem-solving proc Lduxc,s '
susccptlblc of an almost dircct wanslation into a programming. langu ago'
computer programs were in fact written whmh cmbody the thcoxy 1cpuscnta
tion space and the problem-solving | strategics defined in that space for solving
‘thc class of problems under consideration, ,

In abstract terms, the class of problems énvisaged results from
the following "desideratdm"- Given a list of imposed and of non- permissible
adjacencics among o sct of planm rectangular spaces,  and givvun dilm"-nsionnl
llltCI\ldlb constraining cach spaco and cach adjacency, to ozn;h and generate
all possible layouts on the planc of such a set of spaccs Whl(,]l smsfy the
requisites, and to provide for a computer 1mplcmentat10n of the algm 1thms
developcd as well as for user /machme mteracnon in view to the alteration
of the d1mens1onal 1ntervals imposed, espe01a11y in case mcompaublhtlcs ari-
se. These layouts must also respect restraints “upon their contour.

Chiapters | and 2 arec meant to- providce a p:'oblgm--
"s0lvi ng rad g computational archi tecture background agaunst
which the work may be pcirspcctivatcd Chapter 3 furnishcs the reader with
the graph theoretical notions introduced in later chapters for dcvclopmg the
theovy; chuapter 4 prescnts the class of problems: chapters 5 to 8 cxhlblt
how the thcory was constructcd to deal with that class of problcms and
discuss various aspects of the problem solving mcthodology followcd chapter
9 .illuminates further developments, and chapter 10 concludes with a demons

:

tration of program output, ' S )



CHAPTER 1

THE CASE FOR PROBLEM ORIENTED THEORY BUILDING

1. INTRODUCTION
| Considerable experience has been acummulated in the last fifteen years

on the construction and operation of relatively complex computer based pro-
blem-solving systems, of a great variety of types‘ | v

Study of this body of experience is producing a set of concepts, methods,
strategles, and insights that can be regarded as the begmnmgs of a METHO-
DOLOGICAL BASIS for the design of problem- solvmg systems |

Today s computers - their hardware and software - prov1de us, further--d
more, with a SUFFICIENT TECHNOLOGICAL BASIS for embodymg problem-’
-solvmg processes within problem- solving envrronments

Integration of the methodologlcal and technologlcal resources  should
take  place within a theoretical framework The THEORY underlying the pre- |
sent thesis is employed in this way. It was developed using computer ‘and |
problem- solvmg oriented concepts from the start. Theory building becomes._
then inextricabily interwoven with problem-solving RESOU'RCES"‘arld not just
problem oriented. Furthermore, such a theory becomes CONSTRUCTIVE in
character, because its reasonings will be closely imaged by corresponding’;
problem-solving actions. | R

In essence, a problem statelment. contvavins a description of the solutiort
object in one form. A request is made tfo find a description of this object in
anothein specified form. In carrying out:such a transformation, the choice
of approprlate combinations of problem- solving control procedures and pro-

blem formulatlons becomes the core of the problem of demgmng a computer
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-based problemfsolvi_ng system. |

The _essential assumption here is that at some point, in between the
1n1tta1 and perhaps incomplete emergence of a problem and the attalnment -
Aof its solution, a problem statement is formed which governs the ratlonale
of the subsequent solution - seekmg actlons Of course, stating a problemnxay
g requ1re an entire.new system of concepts and/or rules to deal with them .
It may give rise'to a(theory. -
| More often than not, a problem _statement is not communicated in its
'entiﬂrety once and for all.. Often it is presented mcompletely, without an ex- |
phcu spec1f1catlon of a data base. The problem solver must then complete
-'the problem statement by adJomlng to it an dpproprtate data base either com
. mumcated from previous knowledge or acquired anew and updated alongside |
the ‘problem-solving p‘roces’s itself. | |

: The 'data base D that enters into a problem statement contains gene-
ral descr_iptive informat'ion about the problem environment (types of objects
and properties of their relationships,general rules of operation in the envi -
ronment,- etc.) in ter_ms of which the problem conditions can_'be interpreted,
and problem solving actions generated. In general the data base D is a
SYSTEM OF CONCEPTS (a domaln of knowledge a theory, a formal system)
'w1th1n whtch the problem has a deflmte meaning. Most 1mportant to our purq
- pose is the case where it is a theory, and one espec1ally concelved for the
problem or class of problems in question, and where, furthermore, its de-
ductions, are CONSTRUCTIVE in a .computer oriented sense.

To the extent that the descriptlon of a problem in a problem statement

is not nnique, the choice of different descriptions usually influences the so- -

lution-seeking process for the problem in question, and it becomes impor -
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tant to consider the notion of PROBLEM REPRESENTATION. The representﬁ
tion of a given problem P is the c.omponent of the problem statement for P

which describes the desired solution of P, and also specifies the system of

-concepts within which this description is formulated.

Choice of a problem representation determines a SPACE where proce-
dures will be devised for searching for a solution. It is ﬁp to such proce -
dures to carry out an efficient s‘earchvby ﬁsing in the best possible way thé
represent‘ation specified..

To realize such é process it is necessary' to deﬁne STATE, and the
associated notions of TRANSITION between states. .M'oreover,‘ a laﬁguage
has to be constructed for descrlbmg states and state conflguramons (later
called SITUATIONS) as well as other essential entities: for example pro-
blem specific information (initial and terminal conditions, conditions for ap_
plicability of operators and knowledge about propefties of solutions). |

Choice and construction of a description language (the key requlrement
.of the last paragraph) mvolves

a) specification of the primitive objecfs in a universe of .discourse té—
gether with certain properties, named-by ;predicates in the laﬁguage.

b) appropriate functqrs, connectives aﬁd SO on. |

c) a deécription scheme with paradigmatic "co'ncépts" (i.e. classes of
objects and compound objects). |

d) opéraths that act upon objects or concepts.

e) criteria of relevance. »
v }, |
All this requires considerable khowledge about the probiefn or class of

problems under cons1deratlon Further there is a real d1ff1culty with expres-

sing this knowledge in a form expedmously 1mplemented by machine. proce -

LNEC -~ Proc.86/14/4030 o S . © 3



dures.

.Surely,. if.such knowledge ' is integrated": into the body of a THEORY,
and if such}a theory has been built with the prOcedural problem-SOIVing
resourceé in mind, one can, expect the interaction between ;both'_to become
facile and fruitfull. |

'Now, the formulation of an 'initial"" problem representation by human
_bemgs is rarely determmed by consideration of problem- solvmg resources
or, for that matter, of strlctly relevant 1nformat10n If the problem under
cons1derat10n ‘cannot be processed dlrectly by a given computmg system(be-
- cause it is not formulated in a manner that can be easily mterpreted by
the system in qu‘estmn) then th_e 1n1tlal problem statement must be redu-
'ced to an',equivatlent formulation which can be handled directly by the sys -
tem_'.. -
| Such a reductlon entalls the development of a METHOD OF SOLUTION
for the problem, and its ‘expression in the form of a PROCEDURE whlch
cons1sts of statements that are 1nterpretable and exeeutable by the compu-
ter according to a WELL-DEFINED program'.. The repertoire of statements
that_can be used in forming'a procedure is determined by a PROCEDURAL
LANGUAGE L, which, heneeforward, ‘we '.take to include the descrlption
language noted previously and for which tnexsystem is assumed to have the ne-
cessary lingu_istic .and;p,r,oce;ss,ing capabilities so'it will respond effectivvelyﬁto .
any procedure s’tated within L. Snohr a system’is_ characterized by L.

Tbe (:lose.ii the language L (and the, procedures described in L) -are
to the supportive environment of a theory, the easier it is to interpret and
the easier it is to implement a procedural solution in the theory. On .the

other hand, the richer the interconnections and the more direct the trans-
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lation of the theory's system of concepts into a procedural language, the
more CONSTRUCTIVE will be the proof of existence of a solution for some
problem in the theory: i.e., if it shoWs that a solution does exist it will

- also show how to construct ir,

2. DERIVATION PROBLVEMS‘AND' FORMATION PROBLEMS

We first consider a broad classification of problems which is based on _
significant distinctions between two main approaches to the construction' of
solutions -in problem—solving systems The two approaches correspond to two
important families of problems der1vat1on problems and formation problems
(Amarel, 1970). These famllles correspond closely to the two types of pro -
blems discussed by Polya, namely "problems to prove'' and ''problems to
find'". B |

In DERIVATION PROBLEMS, or "problems to prove" the situation is
roughly as follows; We are given problem - condmons in the form of proper-
.tles that the solution BOUNDARIES must satlsfy (that is, _1n1t1a1 and final
conditions as well as kiown COI‘ldlthIlS on some of the sub-problems,if there.
are any). We are then asked to fmd the SOlthlOl’l by constructmg some path,
in an approprlate space, inside the known boundarles, by usmg various path
building routines in accordance with given rules The construction proceeds.
by ' anchormg" the solution path on some (or all) of the sub- problem or
solution boundarles and by extendmg it piecewise to meet other boundarles ‘-
or the path segments that develop from tlhem Deductlve reasonmg problems,

where a derivation is sought  within a formal system, are typical of this ap -

proach.
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In FORMATION 'PROBLEMS,- or “'‘problems to find'". .th_e relationship
” b'e‘tv:veervl,'the problem ‘conditi}ons and the structure of a .solution is more com
,plex tban in derlvatlon problems The determmmg feature of a formation
problem is that the language of pr oblem conclltlom is dmtmct frem the lan-
| guage descrlbmg (or [_‘I‘LSCI‘]bmg) rcsources and the poss1blc methods  of
c}ombmmg'them to build. a solution.‘ Thus the language of conditi'ons and the
language of resources must be reconc1lcd in an adequltcw su uctured problen‘g
representatlon space Tl“e rlch T the  known and exploitable IL‘]dll()ﬂthpS bet§
ween the two languages the easier it is to solve a tmﬁmamon problem. The
_ strucrurmg of the represen .1ti’on space can be carvied out by the develop -
ment of a THEORY combmmg thc ncccssnv for structure Wty the problem-
~solvmg-.resourc‘es which make it operational, |

ln ‘general both problem solwng resources and mcthods (re gaxded as
a body of knowledge) should be dlstmgmshed frem the strateg,y used for
their 1mplementanon on. a given problem solvmg system and, furthermore,
»dlscusmon of the eff1c1ency of the 1mplementatxon kept apart from considera-
thl’lS on the. efficiency of the problem-solving approach wich permiates the
representation space for a given p.roblem,

To coﬁs_t’ruct a solu,rim‘i'is, in a formation problem. 1o build candida-

te objects with the available construction resources. and o Ti"ST  them

3
»

ugumsl the given vproblcm conditions. The camlid;nto objects have the status
of - sclution ,h-y.;_)othe's_isl The essenoe of th.el.problem-—solving activity will be
t0 generate a seqoence of such hypotheses which converges to the desired

solut_ion. The subject_ matter of this thesis is an cxample of this.typc of ap-

proach.
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3. GOAL -DIRECTED PROCEDURES

In the development of a path in a derivation problem, it is normally
possible to go from a glven state in the representation space to several
other ''mext'' states of the same space: theparticular transition that is ef-
fected depends on a choice amongst applicable operators. Thus, there exists'
a NONDETERMINISTIC relationship between a glven state in the developmert
of a derlvatlon and the subsequent state: the assoc1anon betweeen a given
state and the operator-selecting decisions are nondetermi11istic.

"'"Nondeterministic asso-ciation" does not have the connotation of a 'pro'—
babilistic couplmg between problem states and the dec1s1ons that are made
to change them''. It is concelved in terms of the ex1stence of.several alter-
| native decisions that are A PRIORI applicable 1f a state reached. Furthermo
.re, it is-. assumed that a defmlte ch01ce between dec1s1on routmes is not pos
~ sible until some or all of the dec1s1on routines are tr1ed _ and their EFFECTS
are made explicit and exp11c1tly assessed IN THE LIGHT OF GIVEN GOALS

leen a set of nondetermmtstlc assoc1at10ns consider the decision-
-making mode whereby, in a glven problem state a scan 1s carrled out
over alternative possible decision routines. In such a s1tuat10n some or all
of the dec1s1on routines are pursued to a certain depth, their evaluated

Ca C'V\
and, flnally, one of them is ch’osen for i ‘Such a chorce is ba-

3
3

sed on an explicit scheme of purposeful reasomng that combmes rules for '
orderlng the scan over A PRIORI alternative decision methods, for control-
ling the depth of lookahead into the consequences of applymg each method |
for evaluating these consequences and for choosmg one dec181on rlouttne

on the evidence provided by the evaluations.

c _
This gheme of reasoning is at the core of an important class of solu-
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tion methods for derivatien problems, where' a controlled search is I?‘earried
out for a SEQUENCE OF STEPS, each of which based on a giVen sef of non
“deterministic associatior_ls.’v These metheds are suggestively called GOAL -
DI_RECTED METHODS, and the procedures that ‘c.orrespond to them GOAL-
DIRECTED PROCEDURES. The class of goal-directed procedures includes
‘S"L.mple._b’acktracking algorithms, and other methods used in artificiel intelli-

gence. HEURISTIC SEARCH PROCEDURES are typical artificial intelligence
| methods. In this case the rationale for cholosving some of the decision func-
tions that determine the _dynam,ies of search s.tems from various principles
of plausibility, which can eventually be made precise with the assistanee of
a suppofting theofy., |

A goal dlrected procedure that is expressed in a relatlvely low-level

procedural language (say ALGOL) when compared to the high- level proceses
'mvolved in theory formation, produces, during its execution, a determinis-
.tic sequence of corﬁputationél processes, one for each statemeﬁt in the pfg
cedure. It is not distinguishable, in its symbol manipulating detaill. from any
other NON-GOAL-DIRECTED procedure. ‘To make the argued distinction we
must look a.tl higher-level structural properties of such procedures to see
- the organizational prineiples that afe charaeteristic of theif underlying goal-
.--di_rect'e.d methed. In the end it is only recourse to the environmental theory
in which the problem bec0mes defined and solved that can elucidate the goal-
-directedness of the procedure and the semantic content of the decision
. fﬁncti.ons governing the search. In such cases the goal-directedness only be-
comes clear when a corﬁparison is nﬁade, at the theory's higher level of

discourse, between the successive states arrived at by the search and the

(desired) states permitted by the theory. The disparity between them is wha
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provokes the necessary feedback me’chanism for guiding the search. The dis-
parity measures will motivate the choice between decision functions.

The more a procedure's search processes are governed by Iarge num -
bers of non-deterministic associations and by heuristié'r%hles of decision, the
rmore important it is for the procedure designer to work with a suitable
hlgh level system of ideas for shaping his procedures That is especially trie
if the decision rules are to be readily modlfiable by the procedure designer
~or by another procedure, incumbent upon exercising control over the process
as a whole, in pursuit of its goals.

“The notion of a goal as applied to a _ naturdl" system, has .a comple- |
tely dxtterent conceptual status for a des1gner whose obJectlve is to spec1fy
an ''artificial"' system in such a way that it will behave purposwely (prefer-
rably in the specific manner desired by the des1gner) when it is set .to
solve problems of a certain class. Given the statement of a problem selec-
ted 'from this class, the system's goal will be to satisfy the request conve-
yed by this statement, i.e., to find a solution for the problem. Thus, in
the present context a goal is a problem statement that the system "'wants
to Satisfy". In other words, it is a problem statement that‘ has control' OVER
the operation of the- system. Unlike the situation with natural systems here
a goal has the status of an exphcltly formulated control input. |

There can coexist, of course, several concurrent, 1ndependent or con
flicting goals, and the sub- goals they generate W111 not always be free of col
lision. The disparity between one and another is yet another pretext for the
intervention of theory-based. rules aiming at ''best' compatibi-lization.

Now, a goal-directed procedure proceeds - via the choice and applica—

tion of operators - to reduce the initial goal to new goals, or sub-goals,that
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are more'.easily attainable according to the evaluation ‘functions it embodies,:’__
or which offer a msrked increase in the overallvefficiency in solving the proi
blem. The process of bEARCH for sub-goals, thereby convertmg the problem
into . sub problems Or vice-versa, continues until; a) the initial goal is comple"
_.tely satisfied (gwmg a solution to the problem, along with solutions to the ;
.constituent sub problems) or b) there is evidence that no .subgoal can be sa-.
'ltlsfied (this gives a def1n1te "no solution‘ answer - unless the problem condi-
Atssmed flin |
tions can be. modified and the search can be/some form of compatibilization ‘
of requisites funther—s.-r-esumed) or c¢) a fixed,amount of problem-solving ef-
fort is exceeded w1thout a definite result ;f? inconclusive outcome or a fallu-,;
re, dependmg on one's attltude) During the search for SOlUthI‘l it is usual to-
find that several operators are apphcable to a given state. This reflects the

non- determimstic associations induced in the problem bemg handled, by the

'theoretlcal environment in which the solution process acqu1res a meanmg

4. I—IEUR_ISTIC, EXHAUSTIVE AND TIRIAL;AND-'_ERROR SEARCHES

The rules of selection between cqually applicable operators allow a de-
finite choice to be mtlde by _virtue of DESIRABILITY evaluation. Desirability
is judged on':the basis of assessments of values and costs for a situation(e.
g. estimates of closeness to solution expected efforts assocmted with the de
velopment of a solution path from the ‘situation, prospect of easiness and of
fitness of an inevitable compatibilization of requisites). In addition, there aan
| be rules for ATTENTION CONTROL., i.e. to what ''mext'' situation should
the attention of the procedure be directed, so that further exploration from
that situation can take place, and rules for determining the DIRECTION OF

- APPROACH to be used in the application of operators, i.e. once a situation
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is chosen for continuation of search what direction the search should take(e,g.
what sub-problems are to be explored, or what backtracking is to be made).

The selection of rules for attention control and for direcriovn of search
reflect specific doctrines of search, such as ''pursue the search in .depth, and
consider other alternatives only if there is sufficient evidence that the cur -
rent line of search is fruitless', or. "'work back from the terminal situation
to the source situation'', or "extract all possible COnsequenrces of the latest
trial before embarking on another'

These rules are largely conceived of as h'euris‘tics that summari.ze EM-
PIRICAL (often statistical) evide'nce about the' proble[n class under considera-
tion, and also attitudes and doctrines about how to go about searching for a
solution in this class. But heuristic rules can be of a more THEORETICAL
origin, and dealt with in a more theoretically supported way, (Recent pro -
gress on heuristic evaluation functions in problem-solving AND/OR graphs is
a case in point, as are heuristic resolution strategies in theorem provmg
which have to be theoretlcally pondered as to their efficiency and their 1mp1n
gement on completeness.) Moreover, theoretically inspired heuristics may
eventually become rigorously justified, once the precise .meaning is made
~clear through subsquent development of approprlate concepts within the theory
itself. Such is the case for heurlstlc rules guldmg strategles axe analysed
with respect to efficiency of first solution, non- redundancy of search, | or ex--.
haustiveness in regard to search space. These properties, when oc_curring,
can sometimes be PROVED, and the desirability of the corresponding heuris-
tics ESTABLISHED within the framework of the given theory.

Heuristic rules provide a sensible balance between blind exhaustive Sys-

tematic search and blind trial-and-error search. This result is achﬁﬁved by
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delimiting the_}l regions of state space where trial-and-error search should be
carried out, eventually delineatiﬁg by such trial—and—erro_r search further re
gio.ns to be exploréd while disregarding others.} The example of chess might
is illustrative. In thié’ game, critical regions of the board are usually selec
ted, in the first place, for vfurthe»r analysis by the player. |

- This permits him to exc'ludé from consideration in a methodical fashion
| board 'Situatibns which would arise from some of the moves, whilst retaining
for subsequent explorat"ion those situations which require extra s'ub_division in-
to possible outcomes. |

Tic_homirov~and_Poznyanskaya -(1966) found that master chess players
looked at boards for less time than novices and remembered positions more
accurately, with the expert turnihg his gaze from one significant feature of
the board to vanother., while the novice scarched randomly. If the pieces are
randomly arranged on the bbard; so that the expert has no meaningful search
strategy, his performance on memorizing the board is similar to that of the
novice.

While for'both blind exhaustive and blind trial-and-error search strate-
gies, no information is necded to carry out the search since there is no oc-
casion to make s(»lccfions before a path to a goal has been found, in heuris-
tic. search strategies the main concern is making the appropriate choices
aloﬁg the way, and relevant information becomes crucial.

If it is not empirically gathered, from where can such information be
obtained? i

The answer is ''from the structure of the environment in which the pro
blem acquires a meaning''. The more structured the environment, the greater

the advantage to be gained in accumulating such information, especially if the
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environment is characterized by and gives an interpretation to a theory.

There are two reasons for this advantage: 1) Heuristic search (in cbn-
tfadistinction to blind exhaustive and blind trial-and-error search) makes use
of all the information that can be mustered about theqz problem to be solved,
espec1ally mformatlon pertaining to GLOBAL, properties.; : 2) In a structurcd
environment it is possible to establish tighter coupling between the EVALUA
TION processes and the COMPUTATION pracesses which make up heuristic
~ search procedures. Whilst cvaluation normally preceeds computa-
tion, some or all of the computations that are performed by the EVALUA -
TION may already be, in part or in whole, the COMPUTATION subSequen '
tly required. In the €xtreme case, evaluation is absorved as part of the
computation, i.e. possible outcomes are weighed up in *the course of problem
solving or, 'v1ce-,versa computatlon becomes embodied within evaluation.

Close mteractlon between the twa processes(problem solving and eva-
luation) leads to an overall_ computatlenal efficiency. But close interaction is
‘only feasible if the problem environment is computationally tractable within
limits imposed by the available processor. This is a generél precondition
for subsequent computanons to profit from the computmg effort spent upon
evaluation. By way of a compromise, some effort may be expended in welgh-
ing eat beforehand (by use of an overlooking procedure, for example) the pro
per balance between the two procedures.

- An example is as fol.lows. When solving a quadratic equation in one va
riable on the real numbers, AX42 + BX + C = 0, its solutions can be com-
puted by the well- knowl formula: | |

| =( - B+ (B12 - 4AC)1 (1/2))/24
_ Ad‘mit}that B and 'C are not zero. What happens if A = 0 ?(q-u-e-e-t-re—n
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The equation then becomes a simple fir'st-degree equation in one va-
riable, BX + C = 0, but the above formula gives an undetermined value as
solution. If we are to use the formula in a computer prdgram_ we must be
ready to first evaluate A; and only than compute the above formula in the
case A is nonzero,. or otherwise, in the case A = 0, to use the formula
X= - C/B. |

If we only want ONE solution, a way to obviéte to the sepé}rateness
of evaluation and computation, is to transform the initial equation wifh the
- substitution Y = 1/X. The equation becomes then CY?2 + BY + A =0, and
its sohitions are Y = (- B+ (B2 - 1AC) T (1/2))/2C . | |
Therefore, X = 2 C/(- B + B 2 - 4AC) 1 (1/2)).
| We can  then choose as the wanted solution the one given by
X = 2C/(-BT2 - 4AC)I¢( 1/2)), where, by hypothesis, B and C are nonzero.

Now-when A =0, X takes the appropriate value - C/B. |

Thié example illuétrates that whereas in the> first instance one had to ,:
evaluate A before embarki.ng on the computation leading to a solution,in the
second,” modified form, such evaluation is already BUILT-IN, through the
agency of a theory, into the computational procedurc itself.

As a fﬁrther example, we present a similar trade-off between evalua-
tion and action, occuring in control theory as a trade-off between system
identification and system control (Arbib, 1972).

Identification procedures are verPr important for ¢xercising control. For
instance, supposing one wished to confrol a system, but did not know the
exact values of the parameters figuring in the dynamic cquations  of t n'c
system. Their values might indeed vary according to circunstances.

Then, rather than build a controller specifically designed to control
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any system specified by that set of values, candl

#rm. rather than hook up the controller directly to the system to be
controlled one would interpose an identification procedure. The controller
would thus work at any time upon the set of pérameters which the identifi-
cation procedure provides as the best estimate of the real system's only pa
rameters at that time.

Such a controller, when coupled to an identification procedure, is pre-
cisely what is often referred to as an ADAPTIVI:‘ CONTROLLER: it adapts its
control strategy to changing estimates of the dynatnics of the controlled sys-
tem.

We note, without elaboration here, that is might also be necessary to
have the identification procedure apply test signals to try out various hypo-
theses about the parameters of the controlled system. One would then have
to design a strategy to trade-off the loss of opttmallty we get by not havmg
a very accurate estimate of the state parameters against the loss of optima
11ty we get by having the controller relinquish control to the identification

procedure from time to time.

5. PROBLEM-SOLVING POWER OF DEFINITIONS

Within a theoret1cal system a definition defines a concept (Hempel, 1952)
Concepts on the other hand, make classifications possible, and class1f1ca
thl‘lS have the astonishing power ofdividing and sub-dividing. -

Through definitions concepts can be ’engendered which classify a state
space into regions, .and these into further, sub-regions. Opportune definitions

may reduce a problem to some combination of sub-problems.The " cnemy''

becomes divided. If (as in the next section) we choose to regard problem
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solving as a game like process, one move of the game playing opponent po-
sing'ihe problem is apropitious set of définitions (subdividing all pbssible
problems) reducing the maximum variety of the other playerfs. moves.Whether
or not a particular definition will be fewardi‘ng is a heuristic question. Sets
of definitions may be sometimes qualified in terms of the desirable or pérmi_s_ :

‘sible levels or redundancy; in térms of other features of sub-problem classi-
fication, in terms of descriptive economy, or the facility with which the de-
fined concepts can be manipulated.

For the present purpose the most important definitions are those which
detérmine computable concepts.. For these, a rule can be furnished for de-
ciding whether or not an object ijelongs to the concepi-class (the ri.ile m ay
arise from the nature of the definition itself).

Interest is primarily focussed upon problem-resources-oriented and
theory -based syst'éms of definition, leading to classifications that provide
efficient problem reductions. In such cases, problem classification procedu-

- res may be ‘regarded as a "'look-ahead'' instrument for directing problem -
-solving strategies. And the instrument is especially useful when the (hierar
chical) classification can be closely (or exactly) mirrored by a hierarchy of
problem reduction procedures. In these circumstances, problem perception
by means of classifying criteria is intimately linked. AU FUR ET A MESU-
RE. with problem redi1ction processing. That is. as problem clas.sificationnfﬂ
is gning on, certain corre'sponding problem rveductions are alvcady being
executed. Perception is concomitant wit(h action.

Definitions can be envisaged as active perception devices calling into
attention the pertinent aspects of problem-solving situations for which fur-

ther action is to be taken.
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6. GAME PLAYING AGAINST A THEORY

Choice in a search  strategy corresponds to moves in a game, the
rules of which are theory determined, Consequences of a choice are the
theory's inevitable reactions according to such rules. They are the oppo-
nent's moves. Thus, in this game, one plays against one's lack of infor-
mation regarding the inescapable consequences of particular choices. Eva-
luation is the weighing of possible alternatives within the restriction of mo-
ves imposed by the theory, |

It is thereby profitable to so structure the developed theory, on the |
occasion of its contrivance, in such a ‘'way that the number of possible al-
ternatives is reduced, but without loosmg generahty

Such reduction has the counterpart meaning that knowledge gained about
_the structure of the problem space has been augmented.
| In any case, it is‘ a game ''against nature'' rather than a competitive
game. The theory's moves are neutral, not malicious. |

In this light, of problem-solving as an enterprise within a determinate
theory where there are unknown outcomes to one's problem-solving moves,

' operator applicability acquires both A PRIORI and A POSTERIORI conditions.

The former reflect what is already certain about the structure of the prablem
space. The latter inform us about that of which we vare uncertain. Again, the

first, a priori conditions, remind us of which moves are conceivable. The

others,' a posteriori conditions, show us which of them have a viable out -

come R o ;
.Problem solvmg search procedures become then strategies for playing

a game to be won by fmdmg solutions




7. A NOTE ON MECHANICAL. THEOREM PROVING

Mechanical theorem proving (Chang, Lee. 1973) strikes us as a para-
digmatic example of current artificial intelligence work where most of the
foregoing is Sy mptomatic.

If we do not explore any further such conspicuacy, the reason is that
the specialization of the subject would oblige us to a rather lengthy eprsi~
tion. But, above all, it is because the subject matter of this thesis aims at
providing a detailed account of a more typical case study. in the sense that

it was developed almost from scratch. without previous theorizaticns availa- -

ble.
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CHAPTER 2

FROM AN ARCHITECT'S POINT OF VIEW

1. INTRODUCTION

An architect's work is beset by irregular and context specific conditions
which may become obstrusive as a project develops. The overall effect at
the level of preblem solving and planning cart be summed up by fine charac-
teristics as follows.

First, there exists a very great complexity of decision levels, from the
more strictly functional goals up to the most recondite symbolic expression.

Second, the non-existence or contemporary lack of knowledge of archi-
tectural laws, explaining and governirtg spatial organization of man-made "'ar-
tificial"" phenomena (like in classical tradition).

Third, the impos.}sibility of systematically specifying a plan for a pro-
ject before embarking on a tentative search for solutions.

Fourth, since the problems dealt with are essencially ill-defined, the
non-existence of optimal solutions gives rise to the need for establishing''me
rely satisfactory'' solutions (1).

Fifth (and last), the heuristic nature itself of the process for searching
solutions, does not allow such a process to have a pre-determined trajectory
but, instead, it must re-orient and feed itself upon a succession of tentati-
ve experiments.

Although these characteristics of architecture appear, at first sight, to
thwart any attempt to apply new and computer oriented design techmques they
need not do. so. It is only essential that candidate methods are GENUINE man/

/machine (or even wholly mechanized) design tools. The requirement to crea-
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te such things is a spur to innovation in this area; and, it may be noted,
the requirement is real encugh (2). Traditional design methods are patently
inadequate for dealing with problems arising from the linkage of several

factors (3,9):for éxample, the following:

a) Increasing acceptance of rational and socially relevant norms
(for instance, floor space, access, and service requirements) as
well as cost constraints giving rise to explicit comparison of al ~
terpatives and schemes of gradual decision, by mean; of step‘ by

step optimization methods and the application of means/ends ana-

lysis,

b) Studies of architectural artifacts (houses, public buildings, etc)
whose form and organization is designed with respect to the

behavioural patterns of their inhabitants,

¢) The possibility, in buildings design and urban planning at least,
that the solutions may be adapted (whilst building or use is in

progress) to information received during the process.

Of the factors, c) is perhaps the most likely to introduce dramatic -
modifications m architectural design, because any one building (at any rate
with existing and foreseeable construction techniques) is planned, built a‘f'ld
not altered._Hen;ce,‘ to realizé 2 measure of adaptation, the architect is bound

to employ predictive modelling: of the unstructured kind or through the me -

diacy of an appropriate system. The advantages of the computer approachhave
been analyscd, for example by (4), and appear to be pragmatically justifiableon
several grounds, e, g. communication between planners, greater possibility

of interaction between the architect and the client by way of rapidly generat
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ed graphical outputs and the like.
Henceforward we shall refer to this gamur of procedure modelling

and adptation methods, used "online", as MONITORING.

2.- METHODS

It is useful, for exposition at any rate, to distinguish between methods

tailored to describe better formulations of problems to be solved (and the back

ground of knowledge in which solutions are possible) and methods intended to

find exact or optimal compromise solutions for well defined (sub) problems.

The difference between'these points of view is identical with the distinc
tion considered in chapter one, when PROBLEM REPRESENTATIONV was u_nder
discussion. From the perspective of computer implementation we require a
capability for en'nouncing a problem: within the frsmework of a PROBLEM
REPRESENTATION and'thé ability of mustering procedures able to solve it.

If this distinction is agreed, any problem is automatically reduced to

two subproblems, First, the problem of contriving a suitable problem represen

tation. Second, the elaboration of efficient problem-solving strategies for the

representation devised. Correspondingly, the architect, as a user of a pro-

gram's problem-solving resources, is. confronted with two problems. In the

first place, he must be able to secure the formulation of HIS problems within

the theoretlcal framework which Serves as a structured problem- solvmg en
vironment appropriate to the program's problem solving capabilities. Secon
dly, he must be aware of the MEANING to be ass1gned to the programs for

mal solutlons or to its "no solutron" 1nd1cat10ns in terms of HIS 1nterpreta— '

_ uon of t', e theoret1ca1 obJects concepts and propertles mvolved Moreover
Bl S - - -‘.{:,.. o '3,‘,,.

. reahsuc'mteraction thh the program and 1ts prOposals depends upon a sha—‘_

,,,,,
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red (user/machine) usage of the program's (syntactical) capabilities and cons-;:
traints and the architect's (semantical) desires. This "understanding" hinges, -
in turn, upon the versality of the available interface and its ability to cope

with the attempted transactions,

3. GENERAL COMMENT ON RESULTS

The main results considered in this thesis refer to a very limited
subset of architectural problems. The methods developed help the architect,
in a user/machine system, to handle topological arrangements, en the plane,
of a set of conventional rectangular spaces with given dimensional limits,
which obey a»relationship of adjacency and respect given restraints upon the
resulting contour. |

Although dimensional constraints and control over the Qverall contour
havcbeemﬁnﬁﬁod\nced-;(and'fbr‘exarnple T-shaped and L-shaped spaces can be
envisaged in terms of a proper combination of rectangles) it is true that
acute difficulties still persist at the level of PROBLEM FORMULATION, and
in the previous specification of the design steps required to teckle that pro
blem formulation. | |

In a userymachine interaction such as the one developed, which is -

still quite rigid, an eppearedly better "architectural” output could be

achieved as a result of very real information loss. The price to be paid

for any facile realization would be a premature restriction of the problem

and blind elimination of hypotheses i;vhich could show promise, onee some

adjustments or compromises were made, by dint of external heuristic pro-

cesses, present in the designer himself. Such processes, as a means to

evaluate and decide, are characteristically difficult to "translate" into a pro-

29 ' LNEC <« Proc.86/14/4030:



gram and their description hinges upon further knowledge about problem-solving,
not only in a general sense but in particular design situations as well.
An important point can be made for the generative algorithms employed,

in that not only "positive" information is output in the form of feasible layouts.

"Negative" information is also provided to indicate that a proposed layout has

incompatible components‘ which are duly localised. Appropriate reformulation

of such layouts can be a stimulus to the user which leads h1m to rethink his

deSign requ1rements "online". Interaction with the computer makes this pro -

cess less burdensome and more effective, Interaction also has a training ef-

fect, as a result of which the user becomes more familiar with his own men-

tal processes, the problem solving operations of the program, and the possi-

bilities of user/machine mutualism.,

One major debility of present methods lies Vin- the reductionism they

impose on the formulation of problem statements, be that on a semiotic level

or inclusively from a functionalist point of view,

In the methods we have developed, reductionis'm‘ manifests itself insofar
as the type of resulfs obtained tends to be detefmined only b§i those semantioal
or pratical contents which can be conyeyed a priori in terms of adjaoencies on
the plane, etc. . Thus, strictly topological concepts like those of "compatibility"

(within a space) and "connection” (contiguity) between elementary ‘units of

act1v1ty/space have to be explored, in order to show how the designer can ex-
press culturally significant contents by means of adjacencies."(This has been
done to some extent in (5)).

!‘ .
Naturally, an input consisting almost only of adjacencies, impliesa deep

prior examination of the problem's requisites, especially in the sense that an

all-or-nothing dependéncy between each pair of spatial elements is already a

form of architectural output which carries an implicitly chosen (and unchosen)
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decision about the pattern of spatial relationships. However, the formal con-
ception of an architectural system can be distorted by giving priority to ,Obtaié,'
ning a set of optimum relationships among its internal component spaces.(It
may not bé optimum to optimize anything at éll.)

The .problem' should be solved instead by reconciling a RELATIVELY
satisfactory subset of geometric adjaéency relationships with other principles

of form correspoﬁding to additional INPUT solicitations.

Let us for the moment assume that in architectural design there is a
dialectic "composition” of two main processes, sometimes overlapping some
times sequential, along the actual design process. Tae first, call it deducti-

ve, permits, in our case, to generate candidate solutions and test them

against an explicitly defined grammar of spatial well-formedness according

to very definite rules expressing what is FEASIBLE, at the articulation le-vi\

vel of elementary or LOCAL requisites. The second one, call it inductive, |

tries to enact generic principles of DESIRABLE forms, und'erlying architgg

tural typology, which can be input, in the programs, as GLOBAL propertieé

of the layouts. These global properties, to be considered by a program in’

the form of INPUTS, must also be amenable © some grammar, as is the cas
for cxample with the permitted types of contour form that we a»lready consi-
der. |
The inductive steps, i.e.. the building up of gammars regulating global
properties, are particularly important fdr ensuring the correct deployment
of the layouts being generated, thus ’,embodying in them formal structures
which could not arise by simple deduction on the logic of elementary inter-

relations.
L.ocal and global requirements are however diverse, and timing interac
tion is inevitably ambiguous. For one thing, a hierarchical relation of impo
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tance among local and global input rcquirements is hard to establish, inas-
much it cannot be transposed into a pre-determined sequential ordering of
design-process decisions: for another, as wc have remarked, the architec -

tural problem-formulation itsclf is neither independent nor necessarily pre-

vious to the automatic generation of hypotheses concerning the structure of

would-be sqlutions.. Especially because it is only by means of such propos-
ed solutions that the local/global interaction Hheconies more fully deployed.

In this work, one aim was to establish an interplay between the desi -
gner and the program and vice-versa, as well as reconciling local require-
ments (input adjacencies, dimensions, and others) withthe global topological

~ inputs, i.e. pre-established principles of form embodying more complex and
generic systems of requisites such as the contour form. On implementiﬁg the

se intéractions, an attempt was made not to determine beforehand the precc-

dence of one type of input over another, and also to explore the pbssibility of

reconciling them in a cost effective manner (Quantified in terms of a measure

of disagreement between dimensional requisites and the actual values obtained).
A step by step evaluation of alternative dimensional inputs allows this expe -

dient, through appropriate user/machine interaction aimed at tﬁe re-orientation

or reformulation of the initial and subsequent problem statements themselves.

4. .NOTES ON PREVIOUS WORK

Until recently a widespread method in computer-aided architecturaldc_é&
sign had been the HIDECS (Hierarchical DECompositioh of Systems) approach
devcloped by Christopher Alexander (6). Inithis method, a design problem is sub
divided into smaller problems through the identification of which subsets of
the design requirements interact highly among themselves and minimally with

the requirements of the other subsets. Then, in the synthesis phase of
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the deS1gn each subset of requ1rements havmg been‘ "SOIVed"
iead to some subcomponent that is reconcﬂed into th‘e complete deS1gn (The
same aim led to the development of the AIDA technique (7, 8)) N

But just because a design problem may be decomposed according.tocg%};‘]
tain subsets of requirements, it does ﬁot mean that it is effective to decompose“ﬁf‘
avdesigh program in the same (or in an isomorphic) way. Indeed, as it was
argued in chépter one, a close reIationshipe should exist between the problenf®
representation and the problem solving resources which are viable within it,

A complementary point of view on representations, particulary applica

ble to the design process and expressed by Alexander (9), considers that, to

be useful, a diagram representation should simultaneously be a'requirement

diagram and a form diagram (at least isomorphieally so). That is to say,the
design requirements should be embodied in the design diagram:. in terms of
the form components (or their equwalent) Wthh convey the design solutions
that satisfy tl;em

Furthermore, if each design requirement maps directly, mdependently,
and umquely mto a single form component (or a propcr composmon of them),,
of the design diagram, then the synthesis task amounts to carrying out the
indicated mapping (or some derived mapping) of requirements to form. The,_{j
designer is, of course, at liberty to experirhent with various sets of requi-
rements, by'edding, deleting or composing independent form componentstome?
design require%;ﬁnents, however, are not independent of one another, and so can-
not lead to independent form components. Thus, inter-acting requirements shoul
be‘present in the design diagram, but | those - which should not interact shoukf
not be inavertently represented as interacting,

Most prograns  used for computer implemented design of floor plan
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layout do not use problem representations with the aforesaid characteristics.
A common representation in the last tén years has been a ’square grid of mo-
dular areas, of usually small size. On this grid an activity space is located
by assigning to it a number of contiguous squares, but the pattern of squares
assigned to a given space need not itself be rectangular in shape.

Y»Two distinct space allocation strategies are usually employed with this

representation. The first, used for example in (10),(11)and (12), requires an

initial assignment .of Squares to spaces, to be made by the program or the
user in some arbitrary way . Next, the assignments of squares to spaces are
hiethodically interchanged in some manner, and a space allocation optimiza-
tion function is evaluated for each new arrangement. The arrangement which
achieves the highest value of the optimization function until no further impro-
vement is found after some search effort, is the one adopted. This is the fa
miliar "hill clvimbing" approach.

The second approach used in (13), (14) and(15), among others, starts by
assigning a first activity space (usually the one which has strongest proximi
ty requirements with the others) to some Squares in the center of a ‘grid. It
then proceeds by assigning the other activity Spaces to squares areund the
periphery of the first space, according to decision rules that ponder the re-
lative strenghts of the locational relationship extant among the activity spaces,

Both of these approaches deal with design requirements which are sta-
ted in terms of an area Specification for each activity space, and one kind‘or
another of relational matrix that expresses weights glven to the degree of pro
x1m1ty desired for each pair of spaces. The area requirements are easﬂy
SatISfled by assigning a number of Squares on the grid to an activity space,

and the relational matrix ]ends itself well to the evaluation of an optimiza-
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tion function based on the communication costs within a given spatial arrange-

ment.

A second type of representation considers each space to be located to
have a rectangular form, but does not limit their location to any grid. Ins-
tead, the rectangles are drawn freely on the plane, sometimes partially over-
lapping one another, and usually conveying the impression of an approximate
layout.A Such representation is used in (14).

These representations do not have the desired characteristics described
earlier because they deal "too directly” with planar representations of spaces
having a definite size and shape and a definite location with respect to one
another. Thus, if one wishes to satisfy the requirement "space A is adjacent
to space B", one cannot indicate that fact unless one also assigns some arbi
trary size and shape to eaci space, and places the two spaces next to one
another so that they contact along some particular "wall' segment. But the
sizes of the spaces and the "wall" segment along which they are adjacent,
may not have been specified as design requirements, and determining them
arbitrarily so that the two spaces can be drawn, may introduce unnecessary
conflicts later in the design process. Similarly, it would be impossible to
satisfy a size requirement on the design diagram without arbitrarily placing
the space being eized somewhere on it. Thus, although these planar layout
representations may allow a direct mapping of some of the requirements .,
for a space on to form, the mapping is neither unique nor independent of

the other design requirements for the same space.

The linear graph approach. The use of a linear graph as a design re-

presentation can overcome the major difficulties arising from layout represen

tations which are "too literal”. In this other representation, the spaces are
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pictured as labelled nodes of a graph, possessing individual attributes such a:
intendent use, area, perimeter, shape, and oriéntation. Adjacencies or pro-
ximity between spaces can then be indicated by edges connecting these nodes.

Thus, a space does not have to be physically drawn, since the indica-‘
tion that an adjacency requirements is satisfied Oor not is given by inspectic
of the edges connecting the nodes. A rudimentary application of this techni g
que as a pencil and paper design method was described Levin in (16). Casgg
laina and Rittel (17), in an unpublished paper, also discussed thé use of a 5
linear graph representation for planar léyouts.

The work of Krejcirik (18) and especially the work of Grason‘ (19, 20
21) should also be mentioned, inasmuch many of the aspects dealt with _in
their work were treated independently by the present author, although inquit
different ways. This is not surprising since the parts in this work that are
similar to their's had already been established and published (22, 23) before
knowledge was gained of their own publications. A posterior publication is
(24).

A more extensive reference to these two works can be found in (25) .
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CHAPTER 3

GRAPH THEORETICAL NOTIONS

1. INTRODUCTION .
ot ¢}

In this chapter the reader will find gH the graph theoretical notions
needed in the course of exposition in later chapters, These notions have
been condensed in a single chapter for easier reference. |

If some of the notions here expounded are standard, there are others
whose introduction and development were motivated in the course of work
by the necessity to deal with pa'rticular subproblems. They are, thus, of
the present author's sole responéability;" Attention will be drawn to this .
particularity in thé chapters where such notions are first exploited. Further
more, all motivation for the notions in this chapter is relegated to the ap-

propriate chapters of this work where the need for them is first encounter-

ed.

2. INFORMAL PRESENTATION OF GRAPHS
In this section we will consider that all sets referred to are finite.
Under certain conditions, a graph can be envisaged as a set of
points on the plane, some of which, eventually none, are linked by lines_
on the plane also called edges. The following figure exemplifies one .such

graph.
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The points on this graph are represented by smali circles, so that
they may not be misinterpreted as edges eventually crossing one another or
themselves. They are points 1, 2, 3, 4, S5, 6, and 7. The edges are con-
sequently the lines linking these points, and may be represented as unorde-
red pairs of points. Thus, (3,5) means the edge linking point 3 with point 5,
This edge may also be denoted by the pair (5, 3). (2,.2) is the edge linking
point 2 to itself, etc.. Notice that point 7 is not linked to any point whatsoe
ver.

- This notation for the edges is ambiguous. It does not distinguish for
example the two different édges linking points 3 and 6. The ambiguity is

abolished however since we impose on the class of graphs we are interested

in, the following two restrictions:
1) Given any two points there is never more than one edge linking them.
2) No edge links a point to itself,

Let us now consider the two next figures:

1 2
K (
3
£ " s

It can rightly be asked if these two figures are the same graph. The

Question becomes the more pertinent since we have not formally defined

“hat we mean by a graph,
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It can easily be seen that the points and edges of both figures can be
put into correspondence by means of the numbers assigned to the points of

each figure that are the same in both.

We shall not say that the two figures are the same graph but that the

are two different realizations (or representations) of the same graph.

What is important for the definition of graph are the points which be-

long to it, and the edges joining some of them, independently of any parti-

cular form of representing or realizing them on the plane.
Because in this work we shall have to deal with different realizations
of the same graph, it becomes advisable to make a clear cut distinction

between "graph" and "realization of a graph”.
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3. FORMAL DEFINITIONS

Graph. By a graph G we mean a set L (G) of edges, a set V (G) of

nodes (or vertices), and an incilence relation which assigns to each edge

a (non-ordered) pair of nodes, distinct Oor not, which are its extremities.
An edge is an arc if its extremities are different, and a loop if they are
the same.

Subgraph. A subgraph of G is a graph H such that F (H) & E (G),
V (H) & V (G). énd €ach edge in E (H) has the same extremities in H and
in G: a subgraph H with E (H) = P and V (H) = @ is denoted by 9; H is

proper if H # G and H #3.The union and intersection of subgraphs of a gi-

ven graph are defined in the usual way. Given two subgraphs, H and K, of

G, the intersection I of H and G, defined by V (1) = V(H) ] V(K) and E(I) =

= E(H) 1 E(K), can easily be shown to be a subgraph of G. The union of
H and K is also a subgraph of G, and can be similarly defined.

Any subset W of V (G) determihes a subgraph G (W) of G, by defi-
ning V (G(W)) =W, and E (G(W)) as the set of all edges of G with both
txiremities in W. Any subset F of E (G) determines a subgraph G.F of
G, by defining V(G.F) as the set of the extremities of the edges of F,and

¥ (C.F) = F.

Finite and Simple Graphs. A graph G is finite when E (G) and V(G)
#r¢ both finite: ir is simple if it contains no loops, and for each pair of
#2ice there exists at most ope edge having them both as extremities, If

-2 soan ¢dge whose extremiries are X and y , we shall indifferently re-

-
-

o

SERUIU by (x,y) or (y, x), and shall write a = (x,y) = (y, x).

N.B. in what follows, "graph" will always be taken to mean "finite siny
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An edge (a,b) is an edge of node p if p=a or p = b. By the edges
of node p we mean the set of all edges of p.
Consider the two following figures:

2 3
I/;——-—o
é 7 é

The one on the right represents a subgraph of the graph represented
on the left: in fact, it is the subgraph determined by the set of nodes of
that graph which possess at least four edges.

The next figure shows a proper subgraph of the same graph:
' /

Q
2 3
20 :? 4
9
s 6 5
] 7 6

Path. A path C in a graph G is a finite sequence of terms which are
nodes and edges of G,

C=W, ey Vp Vo oov €, Vi)
with at least one term Vs and where

1) the terms of C are alternatively nodes v; and edges € of G, and
C starts and ends with nodes, its extremities.

2) vi-] and v{ are the extremities of e; in G, for 0 i<k

A path is degenerate if it has only one term Vos it is simple if all
its terms are distinct; it is circular if it is not degenerate and all its
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terms are distinct except for Vo = V.

Polygon, Segment, Cycle. The edges and nodes of a path C define a

subgraph G (C) of G; if C is circular, G (C) is called a polygon ; if C is
simple and.non-degenerate:G(C) is called a segment, and vo and v, are
its extremities.

A cycle of G is a subset K of E(G) such that the number of edges of

K of each node in G is even., If C is a polvgon then E(C) is a cycle; if a

cycle results from a polygon it is said elementary.

Intuitively, a cycle is a closed path which eventually passes more than
once twough the same node or edge. An elementary cycle is then a -ci&le
which paSses only once through any of its nodes or edges, except for its

first (or last) node.

Connectedness. Separateness. [et G be a graph. Consider the (binary}
relation in V (G) determined by the following predicate: "there exists in G
2 path with  x and ¥ as its extremiries ". It is easily proved that it is
a0 cquivalence relation, and that it consequently induces in V(G) a partition
P o= (W, ..., W_); the subgraphs G(W1), .., G (Wp) have no nodes in
Fomaion, and it is clear thar, if i #1i , no edge in G has one extremity in
G (W) and the other in G (Wj). If there exists only one block Wj in P,

*n G is said to be connected and G (W;) is the only connected component;

Favrwise, each G (Wi) is a connected component of G. The number of con-

f=cted components of a graph is called its connectivity.

Let us now consider the fcllowing predicate, which determines an equi

€@ 1

“ethce relation in E (G): “there exists in G an elementary cycle containing

B )

s s ang b". The resulting partition Q = (Fp ..., F.,) determines
M3 subgraphs G.F,, ..., G.Fiy of G, which have no edges in common.
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If the partition Q has only one block G.Fj, G is said non-separable or

2 - connected; otherwise, G is separable and each G.F; is a block of G.

Addition of Cycles.We will now define a binary operation on cycles,

called addition and represented by @ . Given two cycles C; and Cos their

sum C1 @ C2 , which is the result obtained by their addition, is a cycle
C whose edges are those that occur once , and only once, in the union of
C; and C2; is indeed a cycle: fbr any node v of V(G), all its edges a,
seees Ay which are terms of Cl’ and all its edges bl’ Cay bm which are
terms of Cyp, are either different, in which case the number of edges of
v that are terms of Cl 9] C2 is even, since m and n are even, Of, there
are pairs (i,j) with a; = bj , and in that case the number of edges of v Qf
Cp®Cyism+n - 2 k, where k is number of pairs (i,j) with a; = bj’
and in that case the number of edges of v in C{ ® C, is m+n - 2 k,
where k is the number of lpairs (i,jv) satisfying the above mentioned condi--
tion. |

The operation @ is clearly associative and commutative: thus, it is
legitimate to speak of the sum C; @ ... ® Cp of the list of cycles
Cp -vv Cn.Note that in such a list the same cycle may figure more than
once.

Example . Let us informally consider the following diagram,

13

3 14

of6

/"

12
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as expressing a graph whose edges are,

@A, 2) (5,7) (11, 12)
(2, 3) (6,7) (13, 14)
(2, 4) (6, 8) (14, 15)
(3, 4) (6, 9)

(3, 5) (7, 10)

(3,7) (8,9)

(4, 5) (10, 11)

(4, 6) (10, 12)

and whose nodes are numbered from 1 to 16. F (G) has then 19 edges and
V(G) 16 nodes. An example of a subgraph of this graph is given by the fol-

lowing set of edges

(3.7) _ (10, 12)
(7, 10) ) (11, 12)
(10, 11)

and a set of nodes comprised by nodes 3, 7, 10, 11 and 12.
An example of an edge of a node, node 7 say, is the edge (5,7). The

edges of node 7 are:

37, (5.7), (6,7), and (7,10) .

The following is a path in G:
(2. (2,4), 4, (4, 3.3, 3,7), 7, (7, iO), 10, (10, 12), 12, (12, 11),11, (11, 10), 10).

Now, since G is simple and has more than one node, any non-degene
Fale path in G, as the one above, can more concisely be expressed by an
ordered sequence of the extremities of the edges of the path. In this nota-
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tion the above path is described as:

(2, 4, 3, 7, 10, 12, 11, 10).

The same can be said regarding cycles : in this graph the cycle
((3,3), (5,7), (7,6), (6,4), (4.5), (53) (3,4) (4,2), (2,3))
is expressed less redundantly by the sequence of nodes
3,5 7, 6 4, 5 3, 4, 2, 3).
In this notation, an elementary cycle of G is, for example,
6, 4, 2, 3, 5 7, 6).

In G, the set made up of edges
(3, 5), (5, 7), (7, 6), (6,4), and (4, 3),
and the set made up of nodes 3, 5, 7, 6, 4, and 3 define a polygon P of

G, since P = G (C) where C is the circular path expressed concisely as

3, 5 7, 6 4, 3).

Graph G is not connected. There is no path, for instance, between
nodes 4 and 13.

The subgraph of G comprised of the edges of nodes 1 to 12 and these
nodes is, howeyer, connected. Connected are also the subgrapi determined
by nodes 13, 14, 15 and its edgés, and the subgraph H witih V(H) as the
set containing node 16 only, and with E (H) = @ . Note that H is a connec-,
ted component of G,

The union of these three subgraphs of G is G. Since they are also its
connected components, the connectivity of G is three.

An cxample of a non-connected subgraph of G is given by the edges
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(1, 2) (4, 6) (10, 11)
(2, 4) (4, 5)
and the nodes 1, 2, 4, 5, 6, 10, and 1l.

Nets. The notion of "connected component”, or more simply, "com-

ponent”, can be usefully generalized.
According to previous definitions, the connected components of a

raph G result from the partition induced in V(G) by the predicate "there

L2

cxists in V(G) a path with x and vy as its extremiries". The generaliza-
tion of the notion of component is established by imposing that the nodes
on the path satisfy some given predicate P, such that the résulting partition
e fines in V(G) an equivalence relation.

Given such a P, a component relative to P is a connected component

whose nodes satisfy predicate P. P itself may be any logical combination of
pruedicates,

Let P be one such predicate, with V(G) as its domain. Let W, be the
Block of a component relative to P.

Consider the set S5; of all edges of G having at least one extremity in
®._. lach 5; determines a subgraph G.S; of G, with V(G.S;) as the set of

24 oxtremities of the edges of S;» and with E (G.5)) = S;. We shall call

#y sych G.5; a net relative to P , or simply a net, whenever P is made
rzra from context.

anmQ]es. Let P be defined as follows:

"P is true of node x if and oi;ﬂy if x has four edges”,

The components relative to P of the graph depicted in the last figure
Uil one: namely the one whose block is the set comprised of nodes 3.

i A

-.:5;} 7'
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[ts edges are:

(3: 4)’ (4, 6)) (6, 7), and (3, 7).

The only net relative to P has edges

(3, 2) (4, 2) | (6, 8)
(3, 4) (4, 5) (6,9)
(3, 5) (4, 6) (7, 5)
(3.7) - (6,7) (7, 10),

and as nodes the set of extremities of the above edges.

In the graph depicted in the next figure, there exist two nets relative
to P. One is determined by the block having nodes A and B as its elements;
the other by the block having C as its only element. ‘ Their edges and nodes

can be identified easily.

Note on Notation. If H is-a subgraph of G, we write simply HC G.

If a is an edge and vV is a node of G, we denote these facts by a € G and
v € G.
This slight abuse of language will not raise any problems whatsoever,

but will contribute to easiness of communication.

: LNec
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Removing a node from a graph. Let G be a graph, and let v € G.

- the subgraph obtained from G by removing v we mean HC G defined
H=G6 (G ~{v})

Realization. Planar Realization. Planar Graph. Often a graph is repre-
En:ed by a diagram on the plane as the ones we have been using. We are

- going to give a precise definition of such "representations" so that we mav
w going g P P A

t ine "planar graph!.
A realization of a graph G is an assignment r defining a corres-

pxidonce between each node v € G and a different point r (v) on the plane,

b5 image, and to each edge a € G a different line r (a) on the plane,which

kxs not intersect itself, such that

) if a =(x vy) r(a)has endpoints r (x) and 1 (y);

2) for each edge a, r(a) does not pass through any image of a node

of G, besides the images of the extremities of a .

N.B. We will not always make a distinction between nodes and their ima

= and edges and their lines. However where it- may cause confusion, we will
:

BRXin 2in the distinction.

-

It can be readily recognized that any graph has a realization. However,
*‘:‘: + dtmanded that the realization be planar, i.e. that all lines should not
5“*"' “xcept at the images of common extremities, then there are graphs
¥t 4o not have any planar realization whatsoever: a planar graph is one

’ % a
Fm (bftg,

4 planar realization. For example, the graphs realized by the following
e e |

L

FREILS are not planar.
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Other realizations of these two graphs are shown next.

P

Let us call Kuratowski graph to any graph obtained from these by

substituting arbitrary segments for any edge.

The well-known Kuratowski theorem for planar graphs can then be
phrased thié way:

Theorem. A graph is not planar if and only if it has a Kuratowskiﬂ
graph as a subgraph.

However, this theorem is not in general propicious for detecting grap
planarity. We shall rely on another v&i/ay of characterizing planar graphs Wi

lends itself better to algorithmic detection of graph planarity. It is due &
Mac Lane (1,2) and makes use of the concept of " planar

mesh".
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Planar Mesh. A planar mesh of a graph G is a list R=(Cl, - C)

of elémentary cycles of G, not necessarily distinct, such that:

1) if an edge belongs to a cycle of R then it belongs to exactly two

cycles of R.

2) any cycle not belonging to R is the sum of cycles of R,

We can now ennunciate the following theorem (Mac Lane);
Theorem, A graph is planar if and only if it has a planar mesh.

The proof can be found ip (2).

Face. Contour. Consider the following planar realization of a graph,

Obserye that the image of any cycle divides the plane into two or more .
disjoint reéon‘s, and that, furthermore, there are cycles (e.g.(a, b, c, d))
fuch that one and only one of its regions does not contain any (images of")A
rodes or (ines of) edges; we shall cal] such a cycle a face if the region

Telerred to s bounded, and a contour, if it is unbounded.

Examgle. In the last figure, the graph realized presents three faces,

They  are faces C, = (a b, c d), Cy =(e, 1, j, h), and Cy =(f, g j,i),

_SoFresponding to regions A, B, and C, respectively. The only contour, Cy=(a,
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b, c, d e f g ﬁ), which is not an elementary cycle, corresponds to re-
gion D. C4 is the sum the two elementary cycles C; and CS = (e, f, g h).
A planar mesh for this realization is R = (Cp Co, Cs Cp, Co)

Note on the Class of Grap'hs Considered.  From here on we shall restrict

our interest, within the class of finite simple graphs we have been conside-
ring, to the subclass of non-separable connected graphs of this class.

There are four main reasons for doing so:

1) it is known that "a graph is planar if and only if each of its

blocks is planar"” and "a graph decomposes uniquely into blocks" (3).

2) each connected component of a graph can be treated separately
as a graph.

3) there are algorithms for determining the connected components
and the blocks of a graph.

4) the semantiés of the global problem dealt with in this work, of
which graph planarity and other notions such as "dual graph" are only sub-
problems, leads us, "in a natural way",} to consider "connected components"%
and "blocks" as semantically more primary and relevant concepts rather than§

the general notion of graph.

N.B. Henceforth, when not explicitly stated otherwise, by "graph" we shall

mean a "simple non-separable connected graph”.

Equality Between Planar Realizations. By definition, two planar realizations

R and S of the same graph G are equal |,if for every face F of R there

exists a face H of S such that H = F, and vice-versa.

Euler's Theorem. For any planar realization of any graph, FEuler's
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theorem states that the following equality holds,
F+V =FE+ C,

where F, V, FE, and C are, respectively, the number of faces, nodes,

cdges, and connected components. Note that no external face is included

in F.

No proof is given here of this theorem; however, it can easily be

proved by induction on F, V, E, and C.

Uniqueness of the Contour. Boundary. A connected graph is non-separable

if we cannot break it at a single node into two graphs, each containing at
least one edge; the equivalence of this definition with the previous defini -
tion for non-separable graphs is given in (3).

Now, the unbound outside region of a planar realization of a graph
{rom the class of graphs we are considering, is separated from the re-
gions inside by a closed path, the boundary, If this path had any repeated
#xe (or edge) it would be possible to cut the graph, thus contradicting
the hypothesis that it is non-séparable. Hence the path gives a polygon, the

o ot ey : : .
*wgvs of which definea unique cycle: the contour.

fzernal Face. Call the contour of a planar realization R of graph G the

fxivrnal face of G in R, |

“Ecrmr Node. Interior Edge. Exterior Nodes and Edges. An interior node

Ered
-

£iven planar realization of graph G, is a node which isnot an extremiry

) ? tdge belonging to the contour. An interior edge of the same reali-

(7T 15 any edge with at least one interior node as an extremity.

If rot interior, any edge or node will be called exterior . According
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to this definition, an exterior edge does not necessarily belong to the

contour.

Example. In the last figure, the graph there realized is separable. In fact,

node two allows to break the graph,
Fl = (a) b’ C: d) and Fz = (ey f) g) h» i’ J)

determine its two blocks G.F1 and G.Fz.
G has a boundary in R which is not a polygon , and so does not
give rise to a contour. G. F2 » on the other hand, has its contour formed
byedgesg,_f,g,and_ll. |
Node eight and edges i and j are the interior node and edges of
G.F,, all its other nodes and edges being exterior for this realization.
Suppose that in G.F| there was an edge with nodes two and four for

extremities. This edge is an exterior edge in the realization shown of G.F;.

It would in fact be an exterior edge in any of its planar realizations.

- Dual Graph Given a simple connected non-separable planar graph G, and a
planar realization R of G » we will next define, in a constructive way,

what we mean by the planar realization relative to R of the dual graph G

of G relative to R, or more simply, the dual realization of R, or

simpler still, the dual of R.

When no confusion is possible, we will speak of "the dual graph of

G" or of '"'the dual of G'' when referring to the dual of R.
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Consider the following figure,

In i, the lines in full linking numbered points correspond to the

edges of a planar graph G. The numbered points are the images of the
_.mades of G, The lines and points referred to,determine a planar reali-
_ #uon R of G. It can easily be seen that G is simple, connected, and
_mm-scparable, Given these circunstances, we will now define the dual

-#! G by means of three constructive steps:

} - To each face of G in R make correspond a different point on
!M‘ plane. Fach such point is the image, in R', the dual of R, of a

#exde of 2 graph G' realized by R'.

2 - Consider one further point, also the image of a node of G', any-

L %5eTe in the unlimited region determined by the contour of G.

3 - Link by exactly n lines any  two points above obtained, if and

correspond to a face and the external face, or to two faces,

e

o, -
2ZH have D edges in common; make sure the lines obtained by this pro

f&'ﬂa
49 not intersect themselves or one another.
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These lines correspond to the edges of G' in R',
N.B. Often, the lines linking a point corresponding to a face and ke [;(m

correspending to the external face are only partially depicted, since this

last point is net always depicted itself. No confusion however arises from

this,

The simple and usual way to carry out setps one to three, is to pod
tion each point corresponding to a face inside the empty regicn delimited;
the face, and to draw the lines between points in such a way that they cr4

different ‘common edges of the faces corresponding to the points they link

(or the different common edges of a face and the external fac2). In our 0

vious figure, the dashed lines linking lettered points have resulted from 4

1

ryng out the above steps in this usual way.

Properties of a Graph and its Dual, for a Given Realization. Now, it is f

sible to prove (see (3)), that if a graph is planar, the dual graphs obtair
from any planar realization are the same. This naturally leads (see also§

5
(3)), to state the following condition, relative to any graphs "dual” to oncg

another, and Wthh the previously defined dual graphs cbey. Furthermore,.

Eie

iu st e s

glves yet another characterization of planar graphs: A graph is planar if &%

u':

only if it has a dual. It is not difficult to acéept that a graph and its duall

have the following properties:

&

I - to each node of the dual there corresponds one and only one faCc~

of the original graph.

( |.-_
2 - to each node of the original graph there corresponds one and oni.

one face of the dual. . _ -

3 - there is a one-to-one correspondence between the edges of both -

graphs,

0 LNEC = Pro-.86/14/4030%



4 - the dual graph of the dual graph is the original graph (3) (thus

the reason for the word "dual").

5 - the dual of a non-separable graph is non-separable (3).

Avoiding segment. Let H be a subgraph of G, L a segment of G.L avoids

i{ if at most the extremities of L. belong to H.

Segments determined by V in P. Let P be a polygon, V a non-void set of

rodes of P. It is easily seen that there exist segments Sy ..., S, contai-

ned in P, such that;

(1)
u S, = P
i i
2 . . .
(2) each Si contains exactly two nodes of V, which are its ex-
tremities; the segments S5y, ..., S, are the segments determined by V in

tranch Graph. A branch graph B of graph G is a segment of G such that

the cxtremities of B are the only nodes of B which are possible extremities

ol vdges of G not in B.

 Bridges, Residual Segments. Peripheral Pclygon. Let P be a polygon of G.

~ We now define in E(G) - E(P) the equivalence relation: "a relates to l:;’ if

a1 NS . . . . . - "
@i enly if there exists in G a path avoiding P which contains a and b ".

hT?:aa tQuivalence relation induces in 'E (G) - E (P) a partition Ei . Each

- ®Eraph GLE; is called a bridge of P (in G).

For example, in the next figure the polygon determined by cycie (a, b,

ez

A Y

€t ) has as bridgés the subgraph determined by edges f, g, and h, the

e
Ll
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one determined by edges j.and k, and the one determined by i.

From here onwards, whenever ambiguity does not arise, we shall

simply say "bridge of P", being understood that it is "of G".

Let u and v  be nodes of a bridge B of polygon P; there exist edges
a and b with an extremity in u and v, respectively, belonging to E (B),

and so, there exists a segment in G avoiding P and containing u and v. Thus

(1) Any bridge of P is connected; |
(2) Let B and B' be distinct bridges of P. If x is a node of B and B'

then x belongs to P.

Proof. If x ¢P and .x belongs to B and B', then there exist edges
a € E(B) and b € E (B') with x as an extremity. Thus, L =G.{a, b}
is a ségment avoiding P and intersecting B and B'. Hence B and B' are not

distinct, in contradiction with the hypothesis.

Let B be a bridge of P. The feet of B in P are the elements of V(BNP)

|
by definition E (BNP) = @. We shall leave without proof the fact that any bri-

dge of P has at least two feet im P.
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Now let V be the set of feet of B in P, We call residual segments

of B to the segments determined by V in P.

If bridges B and B' of P obey one of the two fbllowing conditions we

say that B and B’ avoid each other, i.e. are avoiding bridges of P;other-

wise, they are called overlapping bridges of P. We will not prove the

equivalence between these two conditions.

(1) the feet of one bridge are contained in a residual segment of

: the other;

(2) there exist residual segments R of B and S of B' such that P=RUS.

- A polygon of a graph is said peripheral if all its bridges avoid each

other,

}::~- 5. For the purpose of the graph planarity and graph realizations algorithr
glven in chapter eight, we will now state without proof, the three following

f:f'”trworems (see (4)).

“Theorem. If a polygon has three mutually overlapping bridges, the graph i:

m____‘_?re\m If a graph G is not planar, each peripheral polygon of G belongs

30 2t least one planar mesh of G.

!’

-l"*iﬁsm If a graph G has two subgraphs H and K such that:

(1) H and K are planar, with planar meshes R an R', respectively;
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(2) there éxists an elementary cycle C of G such that C Rand C

then G is planar and a planar mesh is obtained for G by determining the
symmetric difference of R and R',
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CHAPTER 4~

pROBLEM FORMULATION AND PROFILE OF ITS RESOLUTION

1. INTRODUCTION

In this chapter we state the initial problem formulation, and justify
~the way we divide it into subproblems within a given representation. In ad

. lﬁmon, we delineate the methods used for resolution of these subproblems.

".2. INITIAL HYPOTHESES

llypothesis 1: By a space we mean the area inside a closed polygon

on the plane, convex or not, whose consecutive sides

form angles of 90 or 270 degrees between themselves,

Example of a space: .

By layout scheme we mean any partition of a certain space, whose

:'».?’!?Zf)n defines the contour of the layout scheme, into a finite number of

S spaces. Examples of layout schemes:
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- The spaces of the partition are identified by the first positive integers,
and. any two different spaces whose polygons or boundaries have a common
side are said to be adjacent. Fach adjacency is expressed by an unordered
pair of the appropriate numbers.

The following is a complete list L of the adjacencies occuring in‘

one of the above layout schemes:” - el

LA 2 (L @3 C0,@5), G @s).

Hypothesis 2: It is given a list of pairs of positive integers, and each

pair (a, b) is 'interpreted as meaning that a and b are spaces and that spa -

ce a is adjacent to space b.
For our purpose (a, b) = (b, a), an‘dr since we do not consider any spa
ce to be adjacent to itself, we note that all pairs of the form (c, c), where

€ is a space, are absent ffom any given list. ,
The given list clearly defines a graph, whose nodes and edges are

spaces and adjacencies, respectively.

Hypothesis 3: It is understood that all spaces figuring in any given

. . . . . ; . -
list are rectangular, i.e. have a four-sided boundary.

Hypothesis 4: For each rectangular space, two tolerance intervals are

specified on the positive integers, i.e. for each of its two dimensions an or-
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dered pair consisting of a minimum and a maximum value is stipulated b
mecans of two positive integers. When no tolérance iﬁtervals afé given, the
se are understood to be any. Of course, a general condition is that any
maximum value must be greater or equal than its corresponding minimum.
Furthermore, an -excess integer is uniformly‘assbigned to each tole-

rance interval, indicati‘ng by how much its maximuns or

minimum values may be exceeded, given the purpose of assigning di-
mension values to every space, within the limits imposed by the tolerance

intervals and the excess.

Hypothesis 5: For each adjacency pair (a, b), a tolerance interval is

: specified on the non-negative integers, which regulates the extent of contac:
between spaces a and b, along the adjacency expressed by (a, b). When

PO particular tolerance interval for an adjacency pair is required, it should

-be considered to be an unlimited interval on the non-negative integers havir

Ztro as the minimum value.

_}jﬁ)othesis 6: A class of<form_s is specified for the contour, by giving

-# description of the class of sequences of convex and concave angles allo-_

‘ltd for the contour polygon. Tais description must be made through an ap-

§fP§opriate grammar, developed to that effect, ﬂ

=. lf no such description is given, a choice has to be made whether

[

e class of forms allowed for theicontour is comprised of all possible po

f"%gf-ms, Or if it to "be restricted to rectangular polvgons alone.
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Hypothesis 7: Some of the spaces, eventually all or none, may be

marked as nééessarily exterior spaces, i.e, as spaces having at least 3
point of their boundary in common with the contour,

- (If the appropriate adjacency pairs and tolerance intervals are presey
some of these exterior spaces may be semantically interpreted as "the pg
""the séuth", "the east", "the west", "the garden”, ''the | street”, "the pas

etc.. )

Hypothesis 8: Since in a layout scheme any side of a space has ong

and one only, of two possible relative directions (call them horizontal and
vertical), two lists of adjacencies may be given: one with vt;h‘o‘se_ refer-
ring to common sides of adjacent spaces which have necessarily to be ho-

_ rizontal; the other with those referring to necessarily vertical sides.

Note: There are no other-initial hypotheses besides the ones explici-
tly stated until now. All other hypotheses, if any, will be outwardly expres

sed.

- 3. INITIAL PROBLEM FORMULATION

Initial Problem: Given the initial hypotheses one through eight, obtait

all possible layout schemes in agreement with them, and with the particu-

lar data they convey.

4. CHOICE OF A PROBLEM REPRESENTATION SPACF

As was argued in chapter two, we should look for a representation

58 LNEC = Proc.86/14/4030



—.space expressing both requirements and _forms.
In chapter three we introduced sufficient graph theoretical notions to
stiow how to cope with the requirements of some of the initial hypotheses.
Indeed, the grapis determine:! by_ .ooans ¢of  HIZ, have no
isolated nodes (i.e. nodes without any edges), and no loops. From H2
it follows, howey{er, thét 'é.uch a graph must—also Ibe simple since any two
dizjoint rectangles car; ‘or'lly be adjacent along one common side at the
most, and, according to Hl, they are disjoint . Hypotheses 4 and 5 can
. be dealt with by considering flows within the graph in a way to be shown
later on, when the problem of introducing the dimensions of the spaces is
discussed,

The way hypotheses one, three,-six,; seven, and eight are accounted

for, in a graph representation space’, will now be mentioned. With that

purpose in mind, consider the’ fOl'IOWi‘r;ghf'i‘g’ufés, -
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In the first one, a planar realization of a graph is shown (with num
" 'bered nodes and full edges), superimposed by its dual (with lettered nodes
" and dashed edges). This is an example of the'vgraph referred to in H2.

In the second one, an assi nment of H's and V's has been made to
g

Tkihe edges of the numbered graph: call it an HV - assignment,

Since there is a one-to-one correspondence between the edges of the

zsfaph and its dual, there is a resulting assignment of H's and V's to the

?ingcs of 'the dual, which is shown in the third figure.

We now define, relative to the horizontal and vertical axes of the

% of paper properties "horizontal" and "vertical” and interpret "H" a’nd
288 meaning that and edge must be drawn horlzontally or vertically, res.
;;m!selv ,’

The dual can now be fedx‘awn, attending to the assignment of H's and
=% toits edges, in the unique way shown in the fourth figure, where

ehed Tectangular contour has been added: this contour results from con
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sidering all spaces rectangular, Note that the particular dimensions utili-
zed for drawing the figure are at the moment, irrelevant; what is essentiap
is the orientation of the edges, and the fact that they were redrawn attending
only to their assignment value and the general condition that they could nor
have any ccmmon points except the extremities; this condition follows from
the fact that the dual of a planar representation of a graph is itself planar,
We have th1s way obtdmed a layout scheme of rectangular spaces with
a rectangular contour. Of course, not all HY - assignments in a given
graph determine a layout scheme of rectangular spaces. There are also

graphs for which there is no HV - assignment giving a layout scheme of

rectangular spaces: or a  R- layout-scheme.,

This leads us to state Problem 1 and Problem 2.

5. PROBLEM DECOMPOSITION

Problem 1. Given a graph G, under what necessary and sufficient conditions
does there exist at least one HV - assignment leading to a layout scheme

of rectangular spaces; i.e. a permissible HV - assignment.

Problem 2: When does a permissible HV -.assignment, or PHV - assignment,

lead to a R-laycut-scheme with a specified type of contour, eventually, rec-
tangular, |
Now, these two problems immediately suggest several others.
One obvious necessary condition of fProblem I is for graph G to have
at least a planar realization, and hence to be planar. It may have however

various planar realizarions: for each such realization R, the question then

arises if there exists at least one PHV - assignment giving rise to a
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R - layout-scheme by means of the dual of R.
These comments lead us to decompose Problem 1 into the following
five subproblems.

Subproblem l.1: Given graph G, find out whether or not it is planar.

Subproblem 1.2: If G is planar, find all its planar realizations.

Subproblem 1.3: If G is not planar, how to alter G to make it planar. Th:

different ways of transforming G, result into corresponding subproblems;
~such transformations however, to be efficient, should be closely matced

to the conditions of Subproblem 1. 4.

Similarly, any problem or subproblem arising from the necessity to
- transform initial data so as to comply with given conditions, should be
- solved by considering only those transformations which also comply to

subsequent problem or subproblem conditions, if they are to be economic.

-

Subproblem 1.4: For any planar realization of G, under what conditions

docs it allow ar least one PHV assigniment.

Subproblem 1.5: For each realization of G allowing at least one PHV -

. assignment, ﬁnd>alli‘ its PHV - S;SSi.gl;lmEI’ltS.

Problem 2 is actually made up of two subproblems.

-Subproblem 2.1: How to spec1fy, using a graph theoretlcal representation,

‘th‘ t) pe€s of contour forms to be allowed for the R-layout-schemes derived
' |

“from the dual of a planar realization of a graph.

Subproblem 2. 2: Once a given type of contour form is specified, in graph

theorerical terms, for a given planar realization of a graph, derive only
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those PHV - assignments leading to R-layout-schemes with that type of con-
tour form.

We will relegate the statement of problems and subproblems pertaining
to questions of dimension to a specific chapter, after having given solution
to the merely topological problems stated up to this point. Indeed an im -
portant property of the solution method utilized for solving the Initial
Problem, is that the merely topological questions can be and havé béen se-
parated from th_e ;nétricgl ones, This is éccomplished by having an overall
generative mechanism producing topological solutions, which function as in-
put candidates to the dimension giving mechanisms for producing metrical
layout ‘schemes.

Separateness is in fact a characteristic which manifests itself throu-
ghout the overall sqution. me'thod. It occurs, for example, when Problem
one and two are decofnposed into the sequence of steps:

a) finding if a graph is planar |

b) discovering one of its planar realizations;

c) extracting from it all its other planar realizations;

d) finding for each such realization those allowing at least one PHV-
-assignment ; o

e) obtaining all PHV - assignments, of any realization having at least
one; A

f) resctricting the PHV - assignments to only those which conform to

a specified contour type.

Other situations where separateness also occurs are those of:
a) dividing any given PHV - assignment of a given representation in-

to the unique partial assignment present in all PHV - assignments
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for that representation (its nucleus) and the particular completion
of that partial assignment corresponding to the PHV - assignment

considered.

b) considering that the absolute orientation of each edge is composed

c)

of its orientation relative to the layout scheme plus the absolute
orientation of the whole layout. It will be shown that in'a PHV -

- assignment the relative orientation of every edge is simply de-

termined by the "H" or "V" assigned to it. Thus, the edgés of a

graph need not be oriented; only the layout as a whole will ha-
ve to be oriented, relative to an external referential, for the pur-

pose of being drawn.

since the spaces considered are rectangular the dimensional flow

of each dimension through a given R-layout-séheme is indepen-
dent of the dther, and can be treated 's-eparately by considering an
appropriaite subgraph c'>.f the o-riginal orie, which expresses only thes:
adjacencies pertinent to the dimensional flow in question. Furthermo:
when no tolerance intérvals are supplied (i.e. no dimensions are
stipulated whatsoeve'r‘),H bne can always draW a R-layout-scheme,
g'i\;en its KPHV - ‘asbsi'gnment, by finding, for example, the minimum N
dimensions each space must have in terms of a unit module (i.e.
any dimension will be 'sor-ﬁe multiple bf the module). THus, a com-
plete separeteness is possib}é between any PHV - assignment defi-

. . I
ning the relative positibns of the spaces of a R-layout-scheme, an:

the desired dimensions for those spaces conveyed by given toleranc:

intervals.
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The import of separateness resides in the fact that diverse heuristie,
can be used for each se€parate subproblem, and more easily implementeq.

Moreover, interaction facilities become better located and defined.

Separateness also Permits program modularity and easiness of refor-
mulation, because the design of each component can be carried out with S0~
me degree of independence of the design of others, since each will affect )
the others largely through its function, and independently of the details of
the mechanisms thar accomplish its function. (This approach to the design;
of complex structures was explored by Christopher Alexander in (1) ). |

[4

One way of considering the decomposition, but a}'knowledging that the
interrelations among the components cannot be ignored, is to think of the
design process as involving first the generation of alternatives and then the
testing of these alternatives against a whole array of requ1rements and
constraints. There need not be merely a single generate-test cycle, but
there can exist a whole interconnected series of such cycles. The genera
tors implicitly define the decomposition of the design problem, and the
tests guarantee that undesirable consequences will be noticed and pruned.

Alternative decompositions correspond to different ways of dividing the

responsabilities for the final design between generators and tests (2).

6. LAYOUT SCHEMES FROM GRAPHS

To solve Problem 1 completely we need to solve its five Subproblems-
Subproblems 1.1 and . 2 have already beén treated in the chapter on graph
theory, and Subproblem 1.3 is will not concern us in this work because
W€ presume that alteration of a graph to make it planar will always be car

ried out by the user, although the planarity algorithm gives relevant in -
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formation to that end.

The solution given to Subproblem 1.5 only -becomes comprehensible
afier we state the conditions referred to in Subproblem 1.4, and show tha
they constitute indeed its solution.

However, the actual details of the solution contrived for Subproblem
1.5 will be dealt with later on, sinc‘e they are rather complex to introdu-
ce at this stage.

We will now work out the conditions mentioned in Subproblem 1.4,
dividing them into twb groups _- conditioﬁs A and conditions B. |

Group A expresses those conditions which are "rigid", i.e. that either
are or are not bbeyed by a graph , independently of any HV - assignment.

Group B refers to cdnditions stipulating which HV - assignments, are
Jpermissible, if any, once it is known that conditions A are met.For each

~ realization of a graph, since there may be several HV - as signments
obeying conditions B, finding all of them gives rise to the family of the
R - layout - schemes obtainable from each given planar realization. This
way, the set of all planar realizations produces the set of all such families.

Conditions A and B will first be presented jointly, and then jus-
tified.

Conditions :A.

AQ - Graph G must be finite, simple, connected, non-separable,gnd
Planar, admitting at least one planar realization R which obeys all subse-
Quent A and B conditions. ’A

Al - Every interior node of G in R must have four or more edges.

A2 - FEvery face of G in R must have either three or four edges;

-4.€. each of them is either triangular or quadrangular in shape.
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Conditions B.

BO - Each edge of G in R must be assigncd eitner an 'iI' or a 'V', such
that all other subsequent B conditions are met. We will often speak of 'H'
and 'V' as two differsnt colours, 'E' and 'V' respectively, and speak of an

HYV - assignment as a colouring of the graph, . = . .

Bl - No triangular face of G in R can have its three edges assigned
the same colour.

B2 - All quadrangular faces of G in R must have opposite edges as -

signed the same colour, and non-opposite edges with different colours.

B3 - The edges of any interior node of G in R must be coloured in
such a way that they ‘may be grouped into four successive colour groups
around the node, opposite groups having the same colour, and non-cpposite

groups having different colours.

Justification of conditions A.

A0 - Since the layout-schemes are to have rectangular spaces the
graph-must be simple, because two disjunct rectangular spaces cannot be
adjacent on more than one side. Note, however, that the process of obtai-
ning the dual would work as well with non-simple graphs, giving then rise
ln 2 natural way to non-rectangular spaces, ds we saall sanw ;)n tie.
section on lines for further research (chapter 9).

We assume that the graph is .connected since if it were not, each-
of its connected components could be separately considered without loss
of generality. For.the same reason, we also assume that the graph is

non-separable, since each of its separate blocks could be considered se

parately, given a planar realization of the graph.
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The graph must be planar if one of its realizations is to have a dual.
Furthermore, only its planar realizations can eventually determine R-layout

-schemes.

Finiteness is assumed by hypothesis one.

Al - FEach interior node of G in R is going to determine a space in

~a layout-scheme. If such a space is to be rectangular, and surrounded by
rectangular spaces adjacent to it, then each interior'ﬁode mast have four

~or more edges since a rectangular space cannot be completely surrounded

”b\ less than four other rectangular spaces adJacent to it.

A2 - First of all, each face will necessarily have three or more

edges because the graph is simple.

Now, in the dual R' of R, each node stands for a corner where seve-
Tal spaces meet, and correSponds to a face of G in R. Since, by hypothe-

ms three,, all spaces are rectangular each of the spaces meeting in a

mdc of R'will occupy, around. the node, an angle of either 90 or 180 de-

‘7:'“-

.mﬁs Because around the node only 360 degrees are ava1lable A this gives

i maximum of 360/90 4 spaces meetmg in any corner; i.e. each face of

[T

=& in R will have to have a maximum of four edges, otherw1se it would give

',.ﬁﬁ' to 4 node in R' with more than four edges thus d1v1dmg the region
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provided,- the whole layout scheme can be oriented in such a way that the
partitions between the spaces are either parallel or perpendicular to that
direction. Thus, we have adopted the designations horizontal and vertical
to express the relative orientation of the edges of any layout scheme.

| Up to this point, we have been using H and 'V', or 'E' and 'V’,
when referring to the edges of G in R. Because a one-to-one corresponden-
ce exists between the edges of G in R and the edges of'the dual R' of R,
W€ may also refer to each edge of G in R as being necessarily either hor_i:
zontal or vertical. Hence‘i:‘he reason for having to assign to each and every-
edge of G in R one of two different colours, denoted by 'E' and 'V'. |

Whereas conditions A . estabhsh necessary properties G must have

for at least one PHV - assignment to be possible, conditions B 1nd1cate
the restrictions to which a HV - ass1gnment must comply with for being
a PHV - assignment, since it is clear ﬁé‘)‘m\meir justifications that not

all HV - assignments are permissible.,

Bl - To a triangular face of G in R there corresponds a node in the
dual R’ of R with three edges. These edges are the partitions dividing the'
region around the node into rectangular spaces. Now these partitions can
only be horizontal or vertical, as has been argued. It is apparent that no
more than two partitions of the same type (i.e. horizontal or vertical), can
meet in any given node. It follows that the edges of a triangular face cannot
all have the same colour.

| |
B2 - The same way as before, each quadrangular face gives a node

where four partitions meet; two of them will have to be horizontal and
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the other two vertical. Furthermore, the horizontal and vertical partitions

will have to alternate around the node. GCondition B2 follows.

B3 - An interior node 1 of G in R, in any R-layout-scheme obtaina-
ble by a PHV - assignment gives a rectangular space which is completely
5Lzrr6unded by other rectangular spaces. Tne partitions between that space
¢ and the surrounding ones, are the four sides of its boundary. To each
side of S there corresponds a number of edges of G in R, one for each
surrounding rectangular space adjacent to S 6n that side. Taus, the four
jjsv.-ies of S determine four groups ‘of edges around node I, each group cor-

értsponding to the space adjacent to S on one of its sides.

-

Since the four sides of S are alternately horizontal and vertical, the

"fgroups of edges around node I are also alternately horizontal and vertical,

~®ith all the edges of any one group being of the same type. By a horizon-
%‘

7
>

’;i} (vertical) group of edges of:anode I, we mean a group of successive

*s around [ which are all ﬁorizontal (vertical). Of course, all edges of
B

;%_g_:roup of edges have the same colour. Condition B3 follows.

Lomments on conditions A and B. Conditions C.

- :

It should be remarked that colouring conditions B, expressed above,

Jﬁﬁ&t tnto account all necessary rules for colouring a realization R of a

whose colouring rules are dependent upon the contour des-
"o prescribed by Hypothesis 6.

:"1“ fact, conditions 'B apply to all edges through BO, to all facestroug
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.Bl and B2, and to all interior nodes through B3.

N

Since without a further condition on the exterior ncdes we cannot pm.

perly speak of PHV - assugnments we shall gwe without for the MOmeng -

proving them, three contour conditions, CO, CI, and C2.

Cl is the most general condmon on contour forms i.e. it admits a}}
contour forms complymg w1th HypotheSLS L. Condition C2 expresses the ra~
quirement to be met if the contour is rectangular CO 1$ a.rectangularity
condition on any exterlor space of any contour.

Let Nl be the number of exterior nodes with exactly one group of
edges. Let N2 be the number of exterior nodes_ with exactly two differently
coloured groups of edges and with its two boundary edges of a different co-
lour. Let N4 be the number of exterior nodes with exactly four alternately
coloured groups of edges around them.

Iutuitively, a node contributes to NI if it gives rise to a rectangular
space occupymg exactly tWo convex corners of the contour of the layout
scheme; to N2 if just one convex corner is occupied; to N4 if just one con
cave corner is occupied. If no corner is occupied then the node contributes

to NO: i.e, all other nodes.

CO - No exterior node may have more than four alternately coloured
groups of edges around it. Thus it can only have one, tvo, or four groups,

because three groups is impossible to have.

Cl - All contour forms allowed by Hypothesis 1, comply to the follow-
i

ing equation:

(2 X Nl +N2) - N4 = 4

This result means intuitively that the difference between the number of

convex and cancave rectangular corners of the contour of the hayout scheme must b¢
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four; i.e. the layout must be closed,

- All rec_tadgolar Vcontour‘“ ‘forrns and only them comply to the fol-

Jowing equation, besides the general equation stipulated by condition Ci:
N4 =0..

.. The introduction of this condition i_nto, the general equation of CI gi-

wes  the intuitive result that .the total number of convex corners of a rec-

nngular contour form is four

. Let us now proceed with our comments on conditions A e B,

First we show, by exhibiting a counter -example, that a planar rea-

, does not necessarily: admit a PHV-assignment;

. a@s one proceeds to colour 1t respectmg condmons B one m1ght find it im

. 1ble to complete the colourmg process. A simple counter-example is

®  next figure.

Tms realization obviously obeys conditions AO; furthermore,” all its

9r nodes have four edges,

-and all its faces are either triangular or
4 aogular

Since there are only two colours, two of the edges of the tnangular

-dt'ttrmmed by the three mterlor nodes w1ll have to have the sé"fne
_But both edges be]ong to one ‘same mterlor node whxch havmg
Two more edges ‘cannot have

its edges coloured in comphance wxrh
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© condition B3.

Thué, conditions A and B place a restr1ct10n on the classe of plana‘_;
reahzat1ons that can produce R-layout-schemes through PHV - ass1gnments
Some such restrictions can eventually be express in purely ' geometrical"-,_j
terms, as we have done with the five Properties enounced below, all of .
which are deducible from conditions A and B.

One is then confronted with the question of deciding to vhat extent
should ever more sophisticated "geometrical” conditions be derived. f on
the one hand they make it possible to "filter" unproductive realizations,on
the other being difficult to eva luarc tacy raay well lead to.a decrease in effices

These comments are meant to call into attention two different pers- .

pectives from which to envisage conditions B:

(1) as originating the rules to be followed for the process of colou -

ring a planar realization.

(2) as providing tests to be carried out at each step of that colouring

process.

‘These two perspectives will be given further consideration when the

colouring methods of the colouring process are expounded in detail.

Five "geometrical” properties. The five "geometrical" properties deduci
2 prop g prop

ble from conditions A e B that we present,, are effectively used, in the

computer program developed, to "filter" input planar realizations.
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w_}_ At least one of the nodes of every triangular face ‘linking inte-

::;}wriodes’"must have ‘five or more edges.—~ -~ - - -~ -

The situation referred to is depicted in the following figure:

where, by hypothesis, each node has only four edges, and is supposed

e interior.

e

- According to BO, each edge must have one of two colours. It follows
wo of the edges of the triangular face will necessarily be of the same
Wr, in any colouring not infringing condition Bl. But both edges belong

e same interior node which, having only two more edges, cannot have

>

M No triangular polvgon may enclose interior nodes.
f;

Coensider the three nodes of a triangular polygon and their corresponding

T i .

Papular spaces. Now, the three rectangular spaces are not sufficient to
“Ny combination of rectangular spaces corresponding to the interior

toclosed. This proves property 2.



Property 3: There may not be a quadrangular polygon enclosing a quadranp-

gular face having two consecutive edges in common with it.

Consider the next figure with edge (C, B) absent. Suppose

it was pos--
sible to colour it according to conditions B,
D
[t would then be possible to obtain from it the above figure, with

xdge (C, B) present and with a legitimate colouring, since the colour as-

signed to (C, B) is irrelevant from the point of view of the previous colou-

red situation. But that would contradict Property 2. This proves the stated

Jroperty.

Property 4: There may not be a quadrangulau,‘T polygon enclosing a quadran-

sular face having one edge in common with it.



Consider the next figure. Suppose it was possible to colour it accor-

ding to conditions B.

From it one could still obtain a duly coloured figure by fusing nodes

%;1 and B into one and abolishing edge (A, B), whatever, colour it had. But

:E“’"then Property 2 would be contradicted. This proves Pfoperty 4,

“imperty 5 : If there are interior nodes enclosed by a ‘quadrangular polygon,

=then each node of the pblygon must link to at least one such node,

Consider the following figure, where there is no edge from node X

A B

3m interlor node enclosed by the polyon. Nodes Y and Z cannot be lin-

v}m by an edge mterlor to the polygon, as deplcted by the dashed

because that would infringe either the planarity
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condition or pricperiy Sz, s, "noede X must belong a quadrap
gular face derermined by it and nodes Y, Z, and one more node, a . Pro-

rerty 5 now follows from Prcperty 3.

Wiih these propertices stated, we end our comments on conditions A

and B.

R=2farances

‘1) Alexander, C. (1964, - "Notes on the synthesis of from", Harvard

 University Press, —

t2) Simon, H. (1969) - "Tre sciences of the artificial”, M.I.T.Press.
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CHAPTER 5 .
OBTAINING ALL POSSIBLE LAYOUTS FROM A REALIZATION
OBEYING CONDITIONS' ‘A’

1. INTRODUCTION

Once a given realization ig known to obey conditions A, then,to obtain -
all its PHV - assignments, one must obtain all possible HV - assignments
obeying conditions B, C0, and Cl, stated in chapter four. Of course, it
may happen that no PpHY - assignment exists for the given realization. If
that is the case, it will always be recognized by the above mentioned con
ditions; one Or more of them will not hold for any of the possible ways of
colouring the edges, as they are tried out;

Properties one to five of chapter four; can be used to weed out unpro
ductive realizations, but from a strictly theoretical point of view, they are

o

redundant and may be ignored.

It should now be remarked that, from a problem - solving perspecti-
V€, once it is knOWnthat a given realization conforms to conditions A,the
Questions of-determining if there exists at least one PHV - assignment and
of finding them all, have been fused into one and the same prqces;s.’[husz

the methods used are of a constructive character., This means that, instead

of analysing in detail, by various calculations, if the said realization has
,_:_,,_ .- : / -

0* has not ar least one PHV - assignment, running the risk it does not, and,
in case it does, of then having to find them, we rather prefer to start at

“ace by computing, in an efficient way, all possible "sensible" colourings,

?hereby compensating the risk of not finding any complete permissible
%EC ~ Proc.86/14/4030
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-.Zn":

”ﬁi

reahzatlon and from detectmg why the

lc')uri'rilg“(i.e.” a PHV - assignment) with the mform)tlon that can be glea

frem a parfial'eolouring of the

%

...,ja

completion of that colouring is impessible,

3 e J.i'-»&

"To sum up, the methods ud}

zed are said CONStructive because,

ikt gl

while determmmg whether or no.:

there exists at least one PHV - assignment for a given realization, “Cne

Ein i m‘&.xﬁ

-already obtains, in the affirmative case; the peossible PHYV - assignment(

s g

2.  THE COLOURING METHODS

In this secticn We present and justify the methods that lead us to

all PHV - assignments for a realization complying with conditions A,

General Considerations. A first question that can be posed is if there

Yy exists a systematic process of engendermg all PHV assxgnments
Fhere is one eas1ly conceived process we will now examine.

K'lowmg that there is only a fmu:e number say N, of' e”dges,kwe know -

that the number of a]j different HV - assignments will also pe finite, and

in fect equal to 2N, However we do not distinguish two HV - assignments -

resultmg one from the other by exchangmg the H's and the V's throughout.

Such a c:hange is 1mmaLerlal because conditions B and C are symmetrical

in regard to 'H' and 'V', and also because, taking an external direction

as reference, that exchange amounts s1mp1y to a rotatxcn of the correspon

dent R- layoaf scheme by ninety degrees in any roca*lon sense,

Thus, the nunber of ' distinguisha.ble" HV -

l
in generating all Hv- assignments

and prumng them with the cclouring. and contour conditions,

assignments reduces to

/2 =2N-1 o process itself consists

Its principal

drawback is its lack of selectiveness, given that the number of PHV ass1

guments is always much smaller than the number cf HV - assignments.
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That is why we have us ed the phras‘e all poss1b1e sensible colourmgs

To give an idea of the disparity between the two numbers we present

lbt followmg realization, where the edges are fifteen. The number of HV-

signments is 214 16, 384, whlle the number of perm1581ble ones with

' vcontour is 40, and the number of ‘permlssmle one with a Trectangular
mour is 32. Note that only one of the exterior nodes can give rise to a

since only one of them has four edges (as pointed out in the

er corner,
fscussion prpceeding the statement of conditions C).

A permissible assignment is:

o

T')L same assignment assignment will as well be represented as:

T Proc.86/14/4030"
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- This assignment gives the layout-scheme Helow:

4 ?

A sensible way of colouring will' be one that explores the structure’”

of the problem so as to:

1) avoid the repetition of assignments and, consequently, of solutions,

“a

2) be efficient in terms of number of solutions relative to effort dig-

pended; i.e. avoid as many as possible non-permissible' HV - assi-

‘

gnments.

Between the two extremes of Systematically trying out all assignments

and of randomly generating assignments, the methods for colouring will havef

to be able to profit from information about the problem structure. In this

Sense, they will be heuristic methods. As noted in chapter one, being heu-

ristic does not necessarily mean that they = cannot be sensible and thorough.

To gather information about the structure of the problem of colouring -

any particular realization, we will have to carry out a detailed analysis en- !

4

compassing the generality of all possible: colouring "situations "; and by colow

1
{
|
i
i

realization. The

set of all colouring situations of a realization defines the representation spa-

ce for the problem of colouring that realization, where each state is a colou

ring situation,
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The above referred analysis will consist,’ 'ﬁrstly, in discerning some

fc]evant propertles of a Tealization from the point of View of colourmg it;

',secondl)’: in establishing a typology of colouring situations fundamented upon

lbe properties encountered. = - ‘ T

s

The 1mportance of such a class1f1cat1on is that by deﬁmng appropriate

‘g{s of colouring situations, one can construct a hierarchy of problems and

mroblems,' from which the methods to be - proposed will easily follow.
ed, it was premsely such a problem decomposmon that lead us to enoui

- the said methods i.e. by defmmg certain sets of colourmg situations,

- accomplished a problem ‘decomposition '-leading to the stipulation and to

"":'lour Properties and Colour: Consequences

Two 1mportant notions will now be glven those of "colour property”

md -of "colour consequence". -

By a colour property of a realiiation we mean a well - defined set

o Colourmg situations which is specified in terms of the geometrlc ‘com

K _'nts alone of the reahzatlon (i.e. nodes, edges faces, and boundary).

By a colour consequence of a colouring situation, we mean a unique

ignment” of colour to a set of non-coloured edges of the colouring situa

3, which follows inevitably from the apphcation of colourmg COTldlthHS

B €. given a colourmg situation, there is. only one way of colourmg SO-
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The reason for not taking conditions C into account, is that, since
the contour forms desired may vary, we do not use them for extractma ;
colour ¢ consequences in the general program elaborated Instead, condmons
C-are used as tésts for prumng undesrrable or unpermissible contour fOr:a
of completed colour assignments. This decomposing of a realization mtolﬂ
contour and its, 1nter1or 1s after all, a way of dividing the colouring pro»«
blem into two, makmg it easrer, furthermore to conceive and 1mplemen:

man/machme .interaction facilities aimed at the reformulation of contour

i P

requirements, separate from those providing for the modification of cons-«

traints mterlor to a given realization. However it will be possible, and m P

certain cases des1rab1e to use conditions C to glve colour consequences

This poss1b111ty shows that, s1m11ar1y to conditions B, conditions C may alsg

2%

be envisaged either as generating or as testing devices.

Let us next examine some general colour consequences.

(1) Triangular faces. If a triangular face has two of its edges assi-*
gned one-same colour, and the third edge uncoloured, then, a colour con-
sequence of such a colouring situation is, by condition Bl, that its remai-

ning uncoloured edge be assigned the other colour.

(2) Quadrangular faces. Any quadrangular face having one, two, or

three of its edges already coloured in a permissible way, has, as a colour.

consequence, the :assignment of colours to its remaining non-coloured edges

in the way determined by condition B2.

(3) Interior nodes with four edges. An interior node with four edges, ‘

having one, two, or three of them already permissibly coloured, has, as

a colour consequence, the assignment of colour to its remammg uncoloured

edges, in the way determined by condition B3.
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== (4) Interior nodes with more than four edges. -There-exist a great

;ﬁricty of colour consequences for an interior node with more than four

iws, having some but not all of its edges already permissibly coloured.

s-;jn colour consequences result, however, from applymg condmon B3 to

«

situation, Next,

we shall glve a few defmmons Whlch make it possmle
tegorize all concelvable situations into 25 cases, where 9 present a
-._eémpry colour ‘consequence, 9 an empty colour -consequence, and 7 are

ermissible colouring situations, so that the colourmg process should

V, them as part of a colourmg situation.
The -classification into categories of the colouring situation of an in-
“node with more than four edges,l corresponds to the evaluation the

KCIr program carries out before extracting any colour consequences,




ek

It is easily recognized . that edges [CX 6) and (3 6) W1ll have to be

coloured 'V', . and that. edge 4, 6) will have to. be .coloured E' SO

that - the. four groups -of edges stlpulated by B3 may be formed.

In the colourmg sxtuatlon shown on the rlght of the above figure,

the only colour consequence is that of edge (2 7) which will have to
be asmgned V Note that edge (6 7) can have any colour, thus show -

1ng that coIour consequences may not be exhaustlve

-+ Let 'us' now. proceed to the detailed description of the colour conse
quences that may follow from colouring situations regarding the edges

of interior nodes with five or more edges (or, simnly, INS nodes)

+ Consider the following. figure. L ~ N -

Six. co‘lvoured :edges are shown, and also three non-coloured ones,
belonging to the same INS, x . The arrov has the purpose of giving

meaning to sentences such as, for example, "consider the edges between

edges (3, x ) and (6, X ) '. We are then referring to edges (4, x ) and
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{5. x ), in the order given by the arrow, and starting with edge (3, x);

%{Lon the other hand, we would have said "the-edges between (6, x ) and

iﬁ x )", then we would be referring to edges (7, x), (8, x ), (9,x) (1, x).
f.aj (2, x).
. N.B. In the following figures we shall omit the arrow but maintain

the convention.

. S
~ We will now introduce four concepts. The first if that of number of

Bgan-coloured edges of a INS, which we denote by NA. In the previous figure

‘The second concept is'that of number of groups of coloured edges of a [N,

Shenoxed by NG - a method for determining NG is now explicitly given. The

hod is as follows:

- (1) if the INS5 has no coloured edge NG = 0;
© (2) if the edges of the IN5 all have the same Cblodf, either E or V,
then NG = 1;
" (3) if both colours coexist in the edges of the INS, we proceed in the
following way:
(i) take any coloured edge such that the first edge encountered
after it in the counter-dockwise sense has a different colour.
In the previous figiire',ﬂariy~ of edges (4, x ) (6, x ), (7, x )

or (9,' x ) could héve’been chosen. Make NG = 1; -
|

(ii) next, rotate in sense indicated by the arrow and add one to
NG every time a coloured edge is found with a colour diffe-

rent from the colour of the most recent coloured edge found.



This process ends when the edge immediately before the:

chosen in (i) is found.
The value of NG is the one it has after (ii) has been carried out.
*This process .cﬁ>f"ildent:ifying‘IN5 nodes is the one used in the Comg
program developed. We will exemplify its application to the last flguren

. Suppose that, in accordance with (i), edge (6,x ) is chosen; NG i

.bd’:i&’giﬁ# x it

de 1 and, followmg (ii) , the edges from edge (7,x ) to edge (5, x) at

considered in succession.

(7, x ) has a colour, which"is: opposite to the one of the most rece:

edge encountered, (6, x) thus, NG = 2 -

3 P I

(8, x) is not colouréd; NG = 2;

(9 x) has a colour different from the last found one; NG = 3;

(I, x ) is coloured but has same colour as last one; NG = 3;
(2, x) is not coloured; NG = 3_

(3, x ) has same colbur as last; NG = 3;

(4, x ) has different colour from last; NG = 4;

(S,IAx) is not coloured; NG = 4.

There are, then, in the INS inspected, four groups of coloured edé-'!

It can be easily recognized that NG can never be odd, except L.

Now we arrive to the third coﬁcept to be defined, which only plays
_part when NG is d1fferent from zero_and one.

In a INS, an edge is between two groups if it is not coloured and:

the colour of the first coloured edge found in the sense of the arrow is -
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gerent from the colour of the first coloured edge found in the other sense,

The non-coloured edges that are not between two groups,

T group.

Still referring to the lagt flgure

are edges within

of its three non- coloured edges only

fﬁg‘c (2, x ) is an edge within a gloup The concept that interests us is, ho-

mer, that of number of edges W groups, denoted here by N3. In the

;rnlOUS example, one has N3=2,

The fourth and last concept is that of maximum number of consecutive.

n;gm-coloured edges, NAR. Observmg the

last figure, NAR is seen to be |,

bquences of any NS colour situation, or that the colour situation does not

%it contmuatlon

€ now proceed to present all the Various Cases that may be,

x.

- W

-1 - NG greater than four.

It is easﬂy seen that whatever the colour

:gned to the remaining non-coloured edges,

NG will keep being greater

8., Bgiinlr i

Exs 5 B K

£ i

£ A gt N
H

four, Condition B3 is thus violated.
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The colour of (a, x) is arbitrary; that of (b, x ) must be E, that of

(a,x )and (d, x ) must be V.

1L - NG = 2. (We know NG cannot be 3).

(1) NA = 0. Condition B3 is infringed.
(2) NA =1,
(a) N3 = 1.
oa
7 v AX v
. —
£ T \\\
o

N.B. In this figure and in the following, each line jegment represents

any positive number of edges, all of them with the ass{gnec\l colour or allof

them non-coloured, as the case may be.

i
\'\
In the previous figure, condition B3 is not respected.
(b) N3 = 0.
V s
L
XJ}f —0 '
£

The colour of (a, x ) is necessarily F,

9a
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@) NA = 2.

(a) N3 = 0. The following situations may occur:

Q
v v
¢ £ £ | v
L)
There are no nécessary consequences.
(b) N3 = 1. Thé foiiéwing situation arises:
O«
v
Y X $ e —9 0
£ a £

Edge (a,x ) must have colour F.

(c) N3 = 2.

(i) NAR = 2. (ii) NAR = 1.
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(a,x ) with E and

(b, x ). with V,

(4) NA = 3,
S @ M=o

The following situations occur:

Any colouring infringes

condition B3.
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In every case, there is no colour consequence.

(b) N3 = 1.

Here there is also no necessary colouring.

) N3 =2.
(i) NAR = 1.

P

The only case is this one:

f
Edge (a, x ) is necessarily coloured with V.

(ii) NAR = 2.

" Proc.86/14/4030
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There is just one case.

There are no colour consequences,

. (d) N3 = 3,

(i) NAR = 2,

(a,x ) must be V, and (b, x ) must be E.

(ii) NAR = 3.

Condition B3 is not met.

H
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(4) NA = 3
(i) NAR = 1.

There are no consequences. ;'

(ii) NAR = 2. | fe [’*VQ T

There are no consequences. S ]

quences:
(5) NA = 4.

By joining, in all conceivable ways, a non-coloured edge to each ‘of

the cases with NA = 3, it is easily verified that none of them leads to
colour consequences. By this reasoning, the same is also easily checked

fOr NA greater than four.

LEEC - Proc.86714/4030



IV - NG =1.

(I) NA =0. B3is not respected,

(2) NA

1l
ot

B3 is infringed,

(3) NA = 2,
(i) NAR = 1.
.
?
; JL £

» O

.Edges (@, x) and (b, X) must be coloured V.

(ii) NAR = 2.

Edges (a, x) must be coloured V.

96
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_(iif) NAR = 3.

£
NS S
[-) b 4 [

o 0—

‘ The colour consequences are: (a, x) and (c, x) with V and (b, x)
wilh E.

po— g 18
(5) NA = 4,

By joining, in all possible ways, a non-coloured edge to the cases

Iﬁcrc NA = 3, it is seen that no consequences follow. By the same rea-

mmng, one verifies that a similar thing happens for the -cases where NA

is greater than four.

v . :
V - NG = 0. ObviduAsly,‘ no colour consequences follow.

= The possible colour situations for-a INS -node have now been all
sxamined. - o

g’gﬁnponents of interior nodes with four edges.

Consider the followmg flgure where nodes 4 and 5 are agreed to

Imc rior, 7/ 2
T 7
- 7 %ﬁ -9
70 58

. Froc.86/14/4030.
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What consequences follow from colouring edge (3, 4), for example,
with E? It can easily be verified that »conditionI B3, applied to node 4,
| imposes the colour E to edge (4, S). Thus, it makes it possible to apply
condition B3 again, this time _(t»qwnqd_e: 5, and §0 to colour all its edges in
the only permissible way.ij

Furthermore, as this example suggests, if any of nodes 1, 2, 3,
6, 7, or 8 were an interior node with four edges, all its edges would

also be coloured in an. inevitable way, after _the assignment of any

one colour to edge (3, 4) say.

In chaptér three we defined the concépts of "net" and of "component
re!étive t_o'E",-. where P is"a}p:edic_ate, to deal with this and sirpilaf situa-
tions. In the examples giverf there,we used the predicate defined as fol-
lows: |

"P is true of node x if and only if x has four edges”.
We will now apply it to the following planar realization R:

! 2 3

In thi$ realization, the connected cd)mponents relative to P define a

sub-realization,

called a R4 sub-realization, which has two components:.
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O

From condition B3, the following property is easily derived. The

‘examples given will have convinced the reader of its validity, Furthermore

.according to a previous definition, it is a colour. property.

-

Property R4: Let R4 be the sub-realization of a planar realization R, de-
;_iermined by the components of R relative to predicate P stated above. Let
~C be any one such component, and N its cprreSpdnding net relative to P.
?In‘these ciréunsfances, the assignment of :a' colour to an edge of any node
;.bf C has, as a colour coﬁseéﬁence, : é'—uniqﬁe as31gnment ”of coloﬁf to all
Ertl')e edges of N, in the case no colour conditions- are violated; otherwise,

fi}realization R cannot be coloured (i.e., R has no HV - assignment confor-

pre

mlng to all the colour conditions).

This property explains why we made the initial distinction, among

gi‘?"?rior nodes, of those having four and those having more than four edges.

Mts of quadfangular faces |

This section is similar to the previous one, because in it we will

f’_’“ﬂder components of nodes with four edges, but in the dual R' of a

w5

Planar realization R. To each such node of R' there corresponds in R a



quadrangular face Thus we shall be dealing in fact with connected sub-
graphs of G in R, made up en_t—lrelyﬂo; quadrangular faces. Furthermore,
each face of any one such subgraph must have an edge in common with
at least one other face of the same subgraph since the two faces w111
correspond to two connected nodes of one same connected component in
R' of nodes with four edges.

Let 11s: startvn}itn: a—n~ example Consider tne followmg f1gure .

! 2 .. :&’

&

LB

Q?‘*.

NS

Bearing in mind colouring rule'_BZ, it can be easily ascertained that,
for example, once edge (1, 6) is coloured, the assignment of colour to
all other edges immediately follows.

Consider next the figure below.

X —— i ¢
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Admit that Xx is an interior node. If edge (1, 6) is coloured,

the co-

jwr consequence --relative to quadrangles determined by -colour condition B2, in

_poses a definite colour to each of the edges of face A. Let us now distin -

~guish between two cases:

” (1) Suppose node X d1d not have any other edges bes1des those belon

-

;ing to faces A and B in partlcular that edge (x, y) did not exist. In that

case x would be an interior node with four edges w1th edges (l x)and

{5, x) already coloured, and edges (2, X) and (4, X) without any colour yert.

'Rr: colours of edges (1, x) and (5, x), which were given by the colouring of

33(:6 A, do not however go against _condition B3. The colour consequence for

o

‘tms node is the assignment of colour to edges (2 X) and (4, x), which, in

turn imposes an inevitable colourmg of face B. T_hus, in this case,

the

‘eolour consequences from face A to face B, are mediated by node x.

(2) Suppose edge (x,

face A is coloured, x is

a
NG =2
NA =3
N3 =3
NAR=3.

€

y) does exist, and that it is not coloured.,

INS node with following characterization:

After

If the reader consults the section on the COlOUI‘ll’gO INS noae", he will

"'*nfy that for the case in question there follow no colour consequences for

Yfr" edges of x. Thus,- in this case,

Ehe colouring of A is prevented by no-

# X from transmiting colour consequences to face B.

These two examples show that even if two quadrangular faces have a

'“dc In Common the colouring of one does not necessarlly give consequen-

. - . iy
_.*»'*‘(I-C = Proc.86/14/4030

101



ces for the colouring of the other, unless they have also an edge in common,

-

"~ Now given .a planar realization R of G, with at least one quadrangular
face, define the subgraph Qg of the dual G’ of G relative to R as follows:' .

QR is the union of the components of G relatwe to the property P’

R TN et

’ node x' has four edges : Wthh amounts to say "the face of R correspondmg

to x' is a quadrangle".

Example. Consider the following realization R:

The nodes of QR are I, II, and III; it has only one edge: (I, II).Thus,

QR may be represented as;

It may be observed that QR has two connected components. These
correspond to two subgraphs of G in R: the one made up of face [ and II,
and the one consiéting in face IIl alone. The two components of QR are
in fact the connected. components in G' relative to property P'.

r’
We shall now state a colour propefty relative to components of qua-

drangles, whose proof we omit, since its validity can be readily recognized

after the previous examples.
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Property Qg : Let R be a planar realization and C a connected com-

ponent of QR . The assignment of colour to any edge of a face correspon-
ding to a node of C has, as a colour consequence, a unique assignment of
colour to all the edges of the faces correspondmg to the nodes of C, in the
case no colour.‘condmons are v1olated otherw1se feallzatton R cannot be
coloured (i.e., R has no PHV - assignment). |

| Now, to each component C of Qpr corresponds a subgraph C' of G
whose nodes and edges are the nodes‘ and-edges -of the' quadrangular polygons

dual to the _nod_es of C; such a subgraph C' is called a component of quadrar

“g €s. Note that it is posstble to have dlstmct components of quadrangles WALl

~

nodes in common. For example m the reahzatton of the preceeding ftgures
‘the component defmed by quadrangles I and I1 has a node (the only mtertor
node of the reallzat1on) in common W1th the component deflned by quadran -

gle I11. ,
In the next section we will explore the fact that the two types of com-

ponents, 'components of interior nodes with four ‘edges and components of
?'_qu'adrangular faces, "may have commom nodes and/ot edges, making it possi-
ble, in certain circ'un_stances,A Vto 'speak of the union of components of diffe -
Tent type, to form what we call a “general component” or simply "G-compo-

pent™, . -

;f}eneral Components,
Let us denote " an interior node with four edges" by IN4..

We shall say that a component C of quadrangles is linked .to a compo-

___»nem D of IN4s, if there exists at least one IN4 in D belongmg to at least

One quadrang]e of C. In that case the union of D with the net of C is call-

&d their G - component.
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_ Example. 2

:.:6 v — - . p
~“In this p‘lanér" ree'l‘iiation there exist two cor'nponents of IN4 5. | Com-
poﬁéi{é"pi“haé 7 and 8 as nodes, and component D, jUSt node 10 There
is only one’ component C of quadrangles made up of quadrangles 1 and 1I.

Both D and D. are li_nked to C.

1 2

Tia

Property G:

_ Given a planar realization R, when a component. C. of quadrangles is
linked to a component D of IN4s, thus determlnmg a G- component F, the

colourmg of any one edge belongmg to a quadrangle of D or to a node of

C, i.e. an edge of F, has, as a colour consequence,. the colouring of
all the edges of the quadrangles of D and of all the edges’ of nodes of G
i.e. of all the edges of F, in the case no colour condmons are v1olated

in the process of extracting consequences: otherwise, realization R cannot -

be coloured (i.e., 'R has no PHV - assignment ).

This colour property will not be proved, since its vahdlty follows
AS-O
easily from the validity of the twe previous colour propert/ it
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f?-v;ﬁn be seen

wﬂi Consider this realization:

in _ the examples given, and in the following one:

The components of Pl4's are:

9

Lo

Graph QR may repfesented by:

I

o

IXEC - Proc.86/14/4030-
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“The G- components of a planar realization R of G, provide structy.

-

ral information about the R - layout - schemes of R.

T

Take the largest G - component of R (i.e. the one with greater num"‘

ber of nodes), and obtam all its colour consequences within R. The colg

-~

subgraph of G in R thereby obtatned when 1t ex1sts defines the nucleus gq ,;:

R, in case no colourlncr COl’ldlthl’lS are v101ated Such a nucleus is mvarta

in every R- layout scheme rendered by R. Furthermore each -of the other

T—

-components of R together w1th its colour consequences, | 1n the case no

wﬂ&mm ﬁuﬁ it 3

louring condltlons are v1olated is also a coloured subgraph of G in R, 1n-

,;L-.QLH-XE’;L

variant in every R- layout- scheme the subgraphs obtamed are called the sa-

tellite nuclei of R,

Of course this means that when carrylng out the colour consequences
for obtaining the nucleus or the satellite nuclei of R, "if the nucleus and sa-
tellite nuclei are pairwise dlS]OlIlt and lf any colour condition is infringed
then there are no PHV- assrgnments whatsoever respectmg all the colour con-
ditions, since the nucleus and the satellite nuclei are invariant from assign- '
ment to assxgnment , €except oerhat)s for an exchange of one colour for the
other. However, since all colouring conditions are Ssymmetrical with res -
pect to colour, any impermissible colourmg situation transforms by such an
exchange, also into an impermissible colouring situation.

We have been consrdermg the case where all the nucle1 are disjoint; if

necencle
that is not the case, it may be possible to cemeiliete two or more nuclei,
whose colour assignments are mcompatlble by exchanging the colours in
only some of them. The process is in reallty done pairwise. Everytime the
colour consequences of the nucleus extend into some satellite nucleus, if an

incompatibility arises between the two (since all the nuclei are coloured in-

dependently), an exchange of colours is trted for the satellite nucleus If it

106 LNEC 34-Proc.86/l4/4030



i

“goes not hft the colourmg 1ncompat1b111ty, then the two nuclei are incomp:
ﬁble whatever the way they are coloured. If they are compatible, then a
L 'pgnial subgraph has been permissibly coloured which may extend to some

satellite nucleus, etc.. We shall deal with this process in g;reéter detail

“in subsequent sections.

Of course, G - components (when they exist) reduce ‘the total of assi
: N-1 S .
gnments (2°° 7) to a much smaller number of sensible assignments. Each
G component determmes a set of edges acting as a whole from the colou-

_;_:rmg point of view (i.e. as a colourmg subproblem).

s

. The colouring tests,

In chapter three we have already drawn attention to the double pers-
f'pective from which colouring conditions B should be envisaged. In fact, thev
; are utilized both as colourmg rules and as colourmg tests. Evaluation

;

- of colourmg suuatlons is mmgled w1th the computatlon of consequence:

according to the colouring rules: i.e. colour consequences are carried out
| from colouring situations evaluated as legitimate, and their effect 1is
'accepted on the basis of the evaluations performed by the same colour con
ditions \;vhich were used for generating the colour consequences; thereby
starting another cycle until no more consequences can be derived. ’

In chapter one, we have already hachlut-he' eccasion to comment upon
this type of process. At the moment, we only want to point out that the

!

referred cycle of testing-operating-testing is responsible for the outsprea.
of colour consequences, given only purely local colour conditions on purc
_local colouring situations. G-components and other colour components are

simply large colouring steps which have been built up from the colour con-
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ditions’' cycles.
'Before we expound the colour conditions relative to the contour and

its form, which we shall do in the section oncawur prrvs, we will now sta -

te the process of colouring a realization so as to obtain the first PHV -
-assignment obeying colour conditions B, and contour conditions C, he they

the already defined-ones or newly defined.

Colour operations and colour options.

We shall now describe the colour operations and the colour options

to ke considered.

‘I) The colour operations, which include the colour options,are enoun- -

ced as follows:

(l). If, in a realization tc; be coloured, having already some coloured
edges or not, there follow no more colour consequences a colour opera-'
tlonﬂtakes place which consists in colourlng any one non- coloured y edge

wnn an arbltrary colour this type of colour operatron is called a colour

option; it will be further detailed in paragraph II.

(2) Otherwise, all colour consequences are carried out, recurrently.
These may be:
(a) to cclour the edge of a triangular face;
(b) to colour edges of a INS;
(c) to coleur the edges of a G-component, (which, of course, may
be made up only of quadrangular'l faces or only of IN4s).
(3) If at any stage of the process ofcolouring the realizétion, there

¥
arises an infraction of conditions B or conditions C, proceed as follows:

108 LNEC - Proc.86/14/3040



(a) detect the edge coloured when operation (1) was last applied; if

N such edge exists stop: the realization given cannot be coloured permiss_i

“Bly;

(b) remove the colour from all edges coloured subsequently to the

ﬁge found in (a); ' _", R

..... -

(c) colour the edge determmed in (a) w1th the other colour 1f this

hss already been done before for that edge stop: the realization given

‘-cannot be coloured perm1ss1bly.

-"’Ivh.e eolour, ovp.‘ti‘one‘ :aﬁse,.as:‘ we h'ai\'/e_”ee'e‘ri‘,,inw tliose c'olod;rihg's‘"ituations where
:colour. operation(l)is applicable,, Aa'uid' their purpose is to, malte ekffectzi've and
;jtefficient the choice of the edge to be coloured as well as its colour, to be
'ntm-ede in an z;rbit-ra-ry-—wey— frornthe set of candidate edges; ie. they define

13

the candidate set in such a way that the number of colour consequences is

‘probably large. - : i

The existence of such colouring -situations explains how a -given rea-
lization may give rise, by mediacy of ‘the colouring process being defined,

4

to various colouring solutions (i.e. PHV-assignments satisfying particular
" contour eonditioris," if any).- 77
In fact, when an edge is chosen ‘in (1), the ‘colour to be giv\en it s,
in principle, arbitrary; which means that there ‘may be (at least) two so-
~lutions that -are different,if only‘on ‘the ‘colour assigned to that edge. The
Teason why we say "in princ'iple", i‘s that either one or both of the colours

assigned to the edge may produce unpermitted colour situations while colour

-Operation (2) is carried out.
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I[) ‘Tae colour options we consider are'described as follows,

(l) If there are no coIoured edges two cases are distinguished:
(a) There exists at least one G- component In this case, any G:

-component is chosen wh1ch has the greatest number of nodes and one of=

-
=

its edges is arbltranly coIoured with E. (We remark that all G componenu
may be coloured at thts stage wh1ch 1s ‘more efﬁc1ent Then at step (2)
(c) of I) the1r colourlng is e1ther malntamed or the Es' and Vg are inter-

P

changed throughout the component)

(b) If there are no G components i.e. if there are-'no quadran-
gles or IN4S, twWo cases are d1stlsgu1shed
(1) If there exist 1nter10r »nodes, one arbltrary edge, belonglng

to any of such nodes havmg the minimum number of edges,is

coloured with E

(ii) Otherwise, colour with E any arbitrarily chosen edge.

- We remark that, since the edge to be-coloured and its colo_ur: are
in principle arbitrary, the colour options put forward are profltmg from
such arbitrariness by deflnmg a.candidate set of edges in each of the ca
ses also defined at will. Of course, other cases and other candidate sets -
could have been defmed ~The reason for our. particular choice of cases
and. sets is heuristic: it S€ems to us that they are the more fruitfull ones,
from the point of view that a greater probability exists, over all possible

I

realizations, of a large nuinber of ed ges bemcr coloured through the co-

louc consequences. -
The cases considered cover the totality of situations that may occur
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%_a_—non-coloured realization. "It is clear then that, if there are G-compo-
pents, the first colour operation determines immediatly the colouring of all
!bt edges of the nucleus, wtthout further -application of colour operation (1);
uhchlse, to the set of edges formed by the first edge chosen and by all

%059 edges belonging to the ensuing permltted colour consequences we also

g;u nucleus of the reahzatlon, or 81mply nucleus.” The nucleus is thus a per-

gissible colouring situation common to all possxble assignment solutions. Its
ﬁctcrmination is alwayscarried out at the~ start of the colouring process, for
thr sake of efficiency.

To clarify these points we present an example. Consider this realiza-

3 Its G- components are two. One is made up of quadrangular faces I

% II and node 11. The other, just of node 9. = - o
Applying option (1) (a), we. start by choosing the G-component with the

;:?fer number of nodes and arbitrarily, edge (8, 10) belonging to -it, which

r“k then coloured with E.
The assignment of colour to this edge originates colour consequences

E&:{"‘according‘to property G, extend to all the edges of the component. Co-
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lour operation (2) (c) stipulates just that, Upon applying it one Obtains poy

following colour ‘Situation:

/
O—
9
aJ 4
{ -
v I
7Jg~ £

é
Since there are no more colour consequences, the nucleus is cons-

titwed by edges (4, 5), (4, 11), (6, 5), (6, 1), (7, 8), (7, 11), (10, 8), and

(10, 11), since this colouring situation PI€sents no contradictions (i.e. one

We now proceed to colour the remaining edges, but first we must
continue to describe the colour options, for the case of a realization with

already some coloured edges.

(2) Two cases will be distinguished:

(a) 1If there are no non-coloured inteﬁor edges, an exterior edge is
arbitrarily chosen and the colour F is assigned to it. Preferrably, the edges
chosen in this case should be in succession around the boundary. We recall

that an edge is interior if it has at leastione interior node as an extremity.

and exterior otherwise,

(b) In case there exists at least one non-coloured interior edge, . the

colour E s given to any one such edge belonging to an interior node havins
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¢he minimum number of non-coloured edges, and preferrably with already

some coloured edges.

In the example that follows, showing how to obtain a colouring solutior
f>r a realization obeying conditions A, we will consider that the contour
must be rectangular. We have previously stated conditions CO and C2

" pcriaining to that case, although . their proof .will only be made in the sec-
tion on contour forms.

However, we still need one more result, applicable to the case of

_rectangular contours. This result is an equivalent formulation of both con

:Adzzions C2 and CO. Its usefullness derives from the fact that it transla-

1;';_':'.‘5 the global rectangular constraint into a local constraint on every exte-
- nor node.

First recall that NG is the number of coloured groups of edges arounc
-any one node. Let the node in question be denoted by x; we shall write NG
{x) to denote the number of groups of x.

Condition C0-2 may now be expressed through the following theorem:
L0-2 - It is a necessary and sufficient condition for a coloured realization
~Sbeying conditions A and B to have a rectangular contour form, that NG

{x) < 4 for every exterior node.and that condition Cl holds.

zXample. Let us use the previous example and continue to colour it, from

he

point where the nucleus had been coloured.
i
Given that colouring situation, colour operation (2) (b) of II) is appli-

C2ble. As a result, edge (9, 10) may be coloured with E. Since the edge
b—:-longs to a IN4, colour operation (2) (c) of I) is applicable to the compo-
*Nt made up of node 9, its edges, and nodes 1, 2, 8, and 10. This

Fu. : '
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figure is obtained:

4,
Note that, altefnatively, we could have decided to apply colour ope-
rétion (2) (@) of 1), from which would result the colouring of edge (8, 9)
with V. But th'at would not avoid the. subsequent application of colour Opé'i
i‘ation (2) (c) of I), SO as to colour edges (1, 9) and (2, 9). This suggests :
that the order of application of the colour operations may profit from not
being arbitrary. |
We shall respect the rule that gives priority going from operation

(2) (c) to operation (2) (a) of I.

N.B.  The final result of a succession of colour operations, is indepen-
dent  of the particular sequence- observed, as a little: reflexion will con-
vince the reader, Some sequences, however, are more efficient, in that

some of its operations may become superfluous.

The figure shown last, still has some non-coloured interior edges:
let us this time choose edge (2, 10) and give it colour E. We can now

apply colour operation (2) (b) of 1) to INS 10. Indeed, node 10 is chara-
cterized by NG = 2, NA =2, N3 = 2, NAR =2, Upon consulting the sec-
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: o on the colour consequences for a INS, it is easily seen that the follow-

;g?colouring situation arises:

At this stage, only exterior edges remain to be coloured. Consequen
tb, the only operation applicable is colour option (2) (a). Since, according
% that option, we should choose the exterior edges in succession around
ﬁc boundary, we shall agree to choose the edges in the sense indicated by
;ﬁ‘ arrow in the previous figure." The first edge chosen is (1, 2), and its
Wiﬁur E.

In this example we conclude that we may colour edges (2, 3),(3, 4)

3

znd (6, 7), successively with E,

o.,-.-

since the only colour conditions in case, con

wns Bl and CO-2, are complied with. However, upon applying option (2)

ﬂ) 1o edge (8, 1), colouring it with E, condition CO-2 is infringed since NG

ﬁ) = 4. Next, to know if operation (3) of 1) is applicable we must detect

f&ith edge was most recently coloured by operation (1) of I) (in this case

'%C*Ugh option (2) (a)) Colour operation (3) (a) of I) gives us precisely

;}w‘ (8,1). Since no other edge was col‘ouxed after (8, 1), there is no need

for Carrying out operation (3) (b) of I). Finaly, according to (3) (c) of 1),

:ﬁf (5, 1) is given the colour V. With this change in colour, the infraction
e Y

“ondition C0-2 no longer persists, and the R-layout-scheme (with rec-

shown, is obtained by mediacy of the duval of the realiza-
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tion.

If, however,

but only general conditions CO and C1,

two figures,

2 3
{ g
10
a
11
7
é

3
e !
b
/0 4
d
b
/1
L ¥
(o} S5

we had not put the rectangular constraint on the contour

we could have obtained the following

10

12

5

The one on the left differs from the first solution presented m that,

according to the contour conditions now being con51dered NG (8) = 4 is

permissible. Thus,

tion is the colour of edge (8, 1),

116.

the only difference between this

and the previous solu-



The one on the left differs from the first solution presented in tha:
according to the contour conditions now being considered, NG(8) = 4 is pe.
missible. Thus, the only difference between this and the previous solution
is the colour of edge (8, 1).

The layout on the right differs from the one on the left only in the

colour of (1, 2): in this third layout NG (2) = 4.

The colouring process.

The example put forward in the previous section gives already a
first idea of the process of colouring a realization satisfying conditions A. |
Although the example given constitutes a particular case (it has G-compo-
nents, for example), we may easily abstract from it the essentials of
the general process for obtaining a first solution. After all that has been

said, we think the steps enounced below are self-explanatory.

’

I - An edge of the realization is chosen, and E is assigned to it;

\

Il - Colour consequences are extracted (if any);

IIl - In case contradictions arise, the realization cannot be comple-
tely and permissibly coloured, and the process stops; otherwise, the pro- _

- €€Ss continues with step 1V;

[
S

- IV - If there are still non-coloured edges, one such edge is chosern

2nd F is assigned to it; otherwise, the process stops and a first solution

‘has been obtained;
V - Colour consequences are extracted (if any);

VI - If there are no contradictions the process returns to IV;other-

S wise, it proceeds to VII;

ﬁ&m--w -
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VII - The most recent edge coloured in IV is searched for. If no
edge is found,the process ‘terminates with the indication of "no solution",
Othérwise, the colour is removed from every edge coloured after the edge
detected: that edge is coloured with V, and the process continues with Step

five.

This process originates a simple backtracking mechanism to’which we
will devote some consideratio_n, inasmuch its discussion will prove ‘use ful
when we consider the problem of obtaining all PHV-assignments of a realiza
tion, subject to some contour cond.ition.

~Let us then consider a class of mazes called trees, a specimen of

which is depicted in the following figure:

ENTRANCE

/ T-JUNCTION
e S, .

L
SN
I *‘ ;END
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Informally this type of maze has an only entrance, located at the root.

‘and one or several exits, corresponding to some of the terminal nodes; to

the other terminal nodes there correspond dead ends. At each T-junction
ane may choose between two branches, the one to the left and the one to
a2 right, say. Furthermore, there are no cycles (i.e. if one always goes
forward, one never passes the same point twice).

A systematic method for finding a way out consists in:

(1) At any T-junction choose always the branch to the right, for exam

ple;

(2) Whenever a dead end is reached, get back to the last T-junction

',l}wjmose left branch has not been followed, and take that branch.

It is easily ascertained that if there is an exit, it will most surely

tx found through this élgorithm.

Of course, if some additidnal information is available, for example
ibour the distribution of dead ends in the tree, one should try to profit
?Erom it. Suppose that we knew the tree to be symmetric; then we would

J®eed at most to explore half of it.
Let us now establish an analogy between the search in this type of
PE*'“ and the search of colour solutions for a realization which colours

= edge at the time:

(2) At it stage, the choice of a colour for an edge corresponds to

*hoosing between the two branches of'a T-junction, which is added to the

*¢ when the edge is chosen. We may always choose colour F first, by

5

ﬂr;.z In gy w

ith step (1) of the tree searching algorithm;
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(b) Whenever an infractiorvl of a colour condition occurs, we search
tor the.last edge coloured with E, colour it with V, and "uncolour"ever-}- -
edge coloured after it. This is similar to step (2) of the algorithm, \VhE:rr:_ai
tc "uncolour” an edge means to backtrack a T-junction. If no such edge cam

be found, the realization cannot be coloured; this is analogous with not fin-+

ding any T-junction in step (2), which means that the maze has no exit.

Of course, the "colouring tree" of any realization is always symme-
iric since all colour conditions are symmetric with respect to the two co;
lours. Consequently, if the edge determined in (b) is the first edge colourcd
he process~shou1d stop there; that is why we distinguished steps I and LV
in the colouring process.

Additional information to be taken into account is that which refers
10 colour consequences. If a colour consequence is unpermissible that means
that the T-junctions added by the edges belonging to that colouf consequen-
ce would only lead to dead ends: thus, all those T-junctions should be igno-
ved after the appropriate backtracking is made to the T.-junction correspon-
ding to the most recent edge coloured with E.

If, hQ\vever, a colour consequence with n edges is permissible, this
means that in the corresponding T-junctions we always take only one of
s branches, and so that n branches may be ignored (since the edges of
t colour consequence are always coloured as a group; i.e. they correspond
" the construction of a definite path). r

This way , every time an edge is coloured (by means of [, IV or VII)
-ne should find out if there are any colour consequences, and, in the affir
NATVe case, carry out such consequences; this justifies s:teps Il and Vv, as

~zll as the reference made to V in IV and in VII. The reason for III is the
20 LNEC < Proc.86/14/4030



~fact the tree is symmetric. This fact justifies that hereafter we use "co-
puring tree” for referring to one of its symmetric parts only; namely to

the one that corresponds to always choosing the colour E for the edge co-

~Joured first.

Now, the obtention of all PHV -assignments (subject to contour conditions)

‘for a realization will consist in exploring the colouring tree so as to find

| its exits (i.e. non-contradictory terminal nodes). This can be accompli-

md by the repeated application, in a controlled manner, of the colouring

rh’,

;;p:rocess already described; to do so, we will modify that process by subs

;&:iﬂtﬁutmg steps IV and VII, described below, for steps IV and VII, respecti-

~yely.
IV' - If there are still non-coloured edges one such edge is chosen,
!'“‘«:i ts assigned to it, and the process continues with step five; otherwise,

Wa colour solution has been found and one proceeds to VII',

VII" - Search for the most recent edge coloured in IV'. If no edge is

“nd, two cases are distinguished:

(i) if one or more solutions have already been found then stop: there

ft N0 more;

(ii) if no solution has been found yet, sop: there are no solutions.
!

If, on the contrary, an edge is found,

”h Ty edge coloured after that edge; the edge is coloured with V, and the

then the colour is removed fro:

- .. . PN



process continues with step five.

Note that in all steps any reference made to IV or VII is substity- )

ted by a corresponding reference to IV' or VII'.

We will next express the whole colouring process in terms of colour
operations and colour tests. [t will be expressed in the form of.a Blocks
Diagram in next page. We think no further explications need be given; an

example will however be presented going through the various stages.

Example . Consider the problem of obtaining all PHV-assignments of the
realization shown, but subject to a rectangular contour. There are four

such assignments.

To apply option (1), we start by noting that there is only one G-com-

ponént. Using option (1)”(a), we may choose as initial edge (2, 8). There re-

sults the nucleus shown below:
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Since there are still some non-coloured interior edges, we next make

option (2) (b) and choose edge (2, 9):

In this figure edge (2,9) is signalled with "(1)". By that we mean to
<xpress that it ts the first edge from option (2) (b). If edge (2,9) had origi-
nated colour consequences, we would have identified the consequent edges

with” (1), We may now repeat the application of option (2) (b), and choose
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edge (1,9). The following figure obtains:

In this figure, the colouring of (7,9) was executed through operation
) (b) of 1), and that of (1, 2) through (2) (a) of 1).
There now remain only non-coloured exterior edges. Applying in suc-

;fgtssion option (2) (a), we get the figure shown next.
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The corresponding R-layout-scheme is:

If we did not impose a rectangular contour, only node 2 coﬁld give
rise to a concave corner since it alone has at least four edges, among the
exterior nodes. Let us exa'rhing how the previous assignment could be.transl
formed regarding node 2, so‘ as‘to make NG(2) = 4. Since the colour of
(1, 8) is fixed because it belongs to the nucleus, there is actually only one
way to alter the colours of the edges of node two, which is to colour edges
(2,3) and (2, 9) with V, and the others with E

That modification originates the following R-layout-scheme, not having

a rectangular contour:
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To obtain the next solution with rectangular contour, we apply ope-
ration (3) of I). (3) (1) of I) stipulates that one should look for the edge most
recently colouréd in operatlon (1) of II). That edge is (1, 7); since no other
edge was coloured after it, there results no consequence from applying (3)
@) of I); applying (3) (c) of 1) makes us colour edge (1,7) with V. Since a
solution is obtained, we could return to operation (3) to search for the next

:—mc, edge (6,7) resulting from operation (3) (a) of 1), etc..

In this example, however, we shall use a modified version of (3)(a)
-of 1), which stipulates that we shall search for the last interior edge co-
burcd as a result of (1) of I); i.e. the backtracking goes back to an inte-
nor edge because W€ expect a greater difference to .arise between solutlons

‘differing at least in the colour of an interior edge than between solutions dif

= L

dering only in the colour of exterior edges. This will, of course, reduce the
-#umber of solutions, but will permit us to obtain faster the "more different”

#xes from a topological point of view.

The interior edge detected by the new operation (3) (a) of 1) is (1, 9)

M:cr applying (3) (b) and (3)(c) of [) we obtain the next colour solution:
2
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Edge (1, 9’) has been ‘coloured V, and the symbol " [1} means thar
the éolgur of that edge will have fo be removed if, in a'subsquent step Qf
the-“c.olouring p—r‘o-cess, the éolour of edge (2,9), marked with r"(l)", is Cha;
ged to V ‘ | o ;‘

Now, since there are no more non-coloured interior edgés,‘ we canJ
apply option (2) (b) énd thus colour edge (7,9) with E. We wouid next apply‘i;‘
ope‘rati'on. (2) (a) of 1) thus coloufing edge (6,7) wi.tﬁ V. The remaining non:
-coloured exterior edges would then be coloured by the repeated application
of option (2)» (a)..Wh.en a solution would have been reached, we would on-{?
'ceé more use operafion (3) of I) to search for another solution, théreby re-
sulting, fromr (3) (a) of 1), the choice of interior edge (7, 9), and so on.

~ Carrying out that routine, we would.st’ill obtain the following three

cdour solutions:
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We shall leave to the reader the obtention of the R-layout-schemes
«eorresponding to these solutions. However, after the next sections, on con-
tour forms, we shall describe a simple method for obtaining the layouts

from the coloured realizations. Indeed, that will be dealt with in chapter 6.

“The contour form . In this chapter we have been concerned with solving

&bprob]em 1.5, given no conditions on the contour form except for gene-

»nl conditions CO and Cl. NevertheleSs, we have already considered a

*?ecific type of coﬁtour form —the rectangle; that we have done by means
conditions CO and C2, or equivalently, by means of condition C0-2. Up

fow, none of the theorems ‘resulting from such conditions have been p;b-
ﬁ 2. nor the eQuivalency of conditions, such as the one just mentioned.

f

We will next engage in solving in detail Subproblem 2.1; the resolu-

e of Subproblem 2.2 will result from imposing that the PHV-assignments

%ln“d through the colouring process which solves Subproblem 1.5 , must.
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sat;xsfy desirable éontoml form conditions. To be ablé to do so entails thay
such desirable contour forms be expréssible in terms of colour conditiong
to be imposed upon the (exterior) nodes of the realization,

Tu fully solve Subproblem 2.2 we must alsQ be able to speéify a prg'
cess for obtaining a R-layout-scheme with modul.ar dimensions once a PHY-

-assignment is obtained satisfying any specific contour conditions (i.e. a

CPHV -assignment). That problem shall be dealt with in the next cnapter, -

Let us start by remarking that any exterior rectangular space of a
R-layout-scheme {derived from a hon-separable realization) may only be adp
cent to one, two, three, or four segments of the bouhdary. The' latter case
is of no interest since it corresponds to a layout scheme with just one spact
Let us carry out an analysis of the remaining cases. In this analysis, X

represents an exterior space, and x the exterior node that originates X.

Case I. X is adjacent to just one boundary segment.

BOUNDARY 4

In the figure, we represent both X and x. Any of the coloured lines -

shown refers to a group of edges with the colour indicated. The relation
between both figures is straightforward, if we recall that, by convention,
"V" designates "horizontal” and "E" designates "vertical". This type of
exterior space is thus characterized by NG (x) = 2 , and the fact that the

two boundary edges of x have the same colour.
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Ccase II. X is adjacent to exactly two boundary segments.

BounoARY (——¢ -t __ox
iv

‘

In this case, x is characterized by NG (x) = 2, and the fact that

the tWO bour;dary edges of x have a different colour.

Case TII. X is adjacent to exactly three boundary segments.

BOUNDARY (¢ Tx

In this case, x is characterized by NG = 1; i.e. all its edges have

‘e same colour.
We shall now prove the theorem on condition CO-2,which states that:

Theorem C0-2. It is a necessary and . sufficient condition for a rea-
i : . ces )
zation obeying conditions A and B to have a rectangular contour form, that

NG(x) € 4 for every exterior node x, and that condition Cl holds.

Proof. We must show that the stated theorem is true for any of the

) ree types of exterior nodes possible (we- omit the case where the layout

_*=1eme has just one space because, since the corresponding node has no

" *dges, any condition on its edges is true).

The fact that only the three types of exterior spaces noted, as well



as the types Qf groupé of edges corresponding to them, are viable, alrea;‘}{
shows that CO-2 is a necessary conditibn. It now remains to be proved M
it is also sufficlient.

What does it mean to say -that a closed contour is not rectangular?
According to hypothesis one, the contour polygon can only have right ang}!_.;
or their complements to the circle ; i.e. in any non-rectangular contoy-

form, something of this sort must happen:

J

The fact to bear in mind is that, in the'non-rectangular case, there
exist concave corners such as the one pointed out by the arrow.

Now, may a rectangular space be adjacent to the two consecutive bauss
dary segments of a concave corner? No. In the vincinity of a concavity onlr
two situations may in principle occur, .in respect to a rectangular space.
They are depicted in the two following figures:

| 1

] |
1! , 1
BOUNDARY ¢4 BOUNDARY (4 |
@ X . ——-{— _ X »
______I_J £l ___ - FEN U & B
2 x] 4 2 ] 4
X X
v 14
[ :
3 3,
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In either of them x is an exterior node with NG(x) = 4, and X is
the corresponding exterior space. In the figure on the left, groups 1 and 2
of edges are indispensable for establishing the concavity. In the figure on
the right, however, one might suppose that group twois not indispensable.

But, from the adjacencies’' point of view, there ‘is no reason why this
figure should no reduce to the one on the left, by sliding the side correspon
ding to group 2 to meet point P of the concavity. In those circunstances, if
group 2did not exist, the concavity would not be genuine from a strictly non-
-metrical standpoint, since no particular dimensions would be then taken in
~ to account.

‘It thus seems to us clear that for a concavity to be "genuine", theexis
tence of groups 1 and 2 is indispensable. On the other hand, if any of
~groups 3 or 4 did not exist,the realization would then be separable, thus con
tradicting condition AOQ. o

Thus, in any non-rectangular contour, | there must be at least one ex-
trior node x, such that NG (x) = 4. But that amounts to saying that if NG(x.
15 less than four for every node x of the boundary of a realization, than
the  contour of the corresponding layout-scheme cannot be non-rectangular.

Now, condition Cl stipuiates in this case (since N4 = 0) that the total
number of convex corners must be four. Thus, CO0-2 is also a sufficient

cundition for a contour form to be rectangular. This ends the proof of theo

fem CO-2.
;

Note that, however, if dimensions are taken into account, we will al-
“#Vs be able to obtain the figure on the right from the figure on the left,

-¥ithout endangering the existence of a concavity at node x.
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This Way, the figurc on the left shown ﬁext reduces to the one on
the right- (.unless some other spaces are created corresponding to, say,
"north", "weét",‘ "gardcn", "street", "rivef", etc., and if, in the layoyc-
-scheme obtained they are not drawn, as well as their corresponding ng

des and its edges).

w
.

o

Next, we will have to Si’lOW that CO and Cl are necessary and suffi-
cient conditions a (closed) contotir must respecf to comply to Hypothesis 1,
and also that CO and C2 (which includes Cl) are necessary and sufficient
conditions for a contour to he vrectangular.

‘The equivalence of condition C0-2 to conditions CO and C2 taken simul
taneously, will follow from the proof that these conditions, taken in conjunc-
tion, are also necessary and sufficient for any realization obeying conditions
A and B to have a rectangular contour form.

To sum it up, we will then have shown that;

(1) CO and Cl are, in conjunction, necessary and sufficient conditions

for a contour to be permissible;

(2) CO and C2 (which includes Cl) are, ' in conjunction, necessary and

sufficient conditions for a contour to be permissible and rectangﬁlar;

(3) CO0-2 (which includes CO. and Cl) is a necessary and sufficient con-

dition for a contour to be permissible and rectangular;
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(4) From (2), (3), C2, and C0-2, that CO-2 is equivalent to the con-
junction of CO and C2, and that condition "NG(x){4 for every exterior node
x" is equivalent to condition"N4=0" (i.e. "the contour has no concave cor-

ners").

Theorem of contour permissibility: It is a necessary and sufficient condi-

tion for the contour form a realization satisfying conditions A and B to com-

ply to Hypothesis 1, that conditions CO and Cl are both verified.

Proof. Note that:

(a) CO states thaf NG(x) & 5 for every exterior x:

(b) NG (x) = 3 is impossible;

(c) NG (x) = 2 with the two bouq_d‘ar,y edges of exterior node x of
the same colour does not give rise_ t0 a corner space;

(d) According to the deﬁﬁitions of N1, N2, and N4, Cl takes into
account all types of exterior nodes except the ones made irrele-

vant by (a) and (c).

Thu_s, .all that remains to be shown is that equation (2xN1+N2)-N4=4
's a necessary and sufficient for contour permissibility.

That it is a necessary and sufficient condition can be seen from the
' fact that (2XN1+N2) is the total number of convex corners and that N4 is
“?*C' total number of concave corners;itheir difference must be 4 (convex
€orners) if the contour is to be closed and admit only right angles or their
complements to the circle (i.e. if Hypothesis 1 is assumed),and vice-versa.

This ends the proof.
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We shall now state and prove the following

Theorem of contour rectangularity: It is a necessary and sufficient Conds
for the contour form of a realization satisfying conditions A and B to be

tangular, that it verifies conditions CO and C2.

Proof. Since C2 includes condition Cl, it follows from the previous
rem that -equation (2xN1+N2)-N4=4 holds, which states that the contour is 4
missible and closed,

Because C2 stipulates that N4=0,that equation reduces to 2XNI1+N2=,
stating that the number of convex corners is four. Since N4=0 means thes
are no concave corners, it follows that the contour is a rectangle and the
theorem condition sufficient. )

On the other hand, if the contour is a rectangle, it is obviously per4
missible, closed with no concave corners, and with exactly four convexcé

ners; so, the theorem condition is necessary.

This ends the proof.

Imposing other contour forms.

In this section we describe how a closed contour form can be presc
by use of the notions of number of convex corners, number of concave ¢
ners, and of sequences of both types of corner, with the help of the g™

|

equation of condition Cl.
. . - . ’Y:ﬁ
Let us first write that general equation in the form we have been &

up to now:
(2 x NI + N2) - N4 = 4
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Note that the expression within parentheses is the total number of
convex corners, which we shall denote by cv . Furthermore, the total
number of concave corners, N4, will henceforth be denoted by cc. Rewri-

ting the equation one has:

1l
TN

Ccv - CC

Suppose now that we are interested only in those layouts having two
concave corners; i.e. those for which cc = 2. The two concave corners
will separate the convex corners into two groups of consecutive corners:

cvl and cv2. Thus, the above equation becomes:

cvl + ¢cv2 = 6 .

The various possible forms of layout schemes with two concave cor
ocrs, become determined by all the different pairs of non-negative integers

that satisfy this equation. They are four:

- 0 6 |
b 1 5
c 2 4
a | 3 | s |
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Form a :-

—
!

Form c¢ :

Form g_ :
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cc cv
Let @@ and gg denote, respectively, a concave and a convex corner.

Define concave indentation as the sequence of corners expressed by:

CV - CC - CC ~CV

Define convex indentation as the sequence of corners expressed by:

CC - CV - CV - CC

Define isolated concave corner as the sequence of corners expressed

by:
Cv - CC - CV-.

I) Let us next suppose that we wanted to characterize, in terms of

sequences of corners, those contour forms obgying the following conditions:

(1) it may have isolated concave corners, such as the ones exempli-

fied in Form d ;
(2) it may have concave indentations, as the one exhibited in Form a ;
(3) it may have convex indentations, as the one illustrated in Form ¢ :

(4) it may not have any other types of concave and convex corner arrai

gements, besides (1), (2), and (3).

It may be seen that the contour forms that .interest us may have any
Bumber of concave corners as long as the following sequences of corners are
;
zlways observed : - L

(a) the sequence around the contour must verify: cc - cv = 4; this is

the general condition on contours, and the only restriction on convex COIner:
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(b) from (1), (2), (3), and (4), it follows that no sequence of more

than two consecutive concave corners is permitted.

(c) it follows from (2) that any two sequences of consecutive concavé
corners must be separated by at least two consecutive convex corners. In-
tuitively, this means that any concave indentation must be "undone'' before

another is possible.

These three rules are the ones actually used in the computer program

developed; we shall refer to the type of contour they define as the Indented

contour form.

An example of an indented contour form is:

»
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Other examples of contour forms:

II) A spirdl is any sequence of consecutive concave corners followed

by the same number of consecutive convex corners plus four:

III) A ladder is any sequence of concave corers alternating with

convex corners, starting with a concave corner, and followed by four

convex corners: B

IV) Looked at from inside, a pérmissible contour form obeys this

€quation:

This is so because in that case €Very concave corner becomes convex

2nd every convex corner becames concave. Thus, if one imposes on the con

tour of a representation the equation:
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equivalent to the previous one, an interior patio is being specified, whose
> <

form can be contcolled by supplementary rules,

V) Let us now derive all possible contour forms with three concave

corners, First of al|l we have:

cvl + cv2 + ¢cv3 = 7.

The possible combinations of values are shown in the following tablea.

disregarding all svmmetries:

! ]
i a 0 l’ 0 : /
f | ;
i b | 0 ' | : 6
i c é 0 ‘ 2 5
| ; :
L d 0 3 4
g i o
L e ! 1 1 | S i
! f |
£ 1 2 4
I
g 1 3 3
h 2 2 3

f‘
From it, we dcvive the eight possible contours forms exhibited

below:

[N

LS
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Form a:

Form 1_7: \l—l_-l—'

Form c:

Form d: j——l
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Form e : ——_1L__—1»—————1F—_
Form f : —_—_—l_————_L___;_
]
Form g : ——___—l_——_iL—————
___T
|
Form h : o——
Lo |
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CIHHAPTER 6

HOW TO DRAW A MODULAR LAYOUT FROM A PERMISSIBLY

COLOURED REALIZATION

|, INTRODUCTION

In this chapter, a way is given for drawing any R-layout-scheme resul
ting from a permissibly coloured realization and having an indented contour
form (eventually rectangular),

The process consists of two stages:

(1) Given a dimensional rectangular module (for example), each of the
dimensions of every space is computed as a multiple of the correspondent
modular dimension, such that the spaces can be juxtaposed on the plane in

the unique way specified by their adjacencies.

(2) Given the absolute coordinates of the centre of one exterior space,
as well as its orientation, relative to two orthogonal axis, the orientation an:
the centre coordinates of all other spaces are found, thus permitting to dra:
the whole layout scheme in the unique way specified by. the adjacencies bet-

Ween spaces,

The process obtained for carrying out these two stages is said to so!

ve Problem 3, and each of its two stages is‘ said to solve Subproblem 3.1

and Subproblem 3.2, respectively.

2. RECTANGULAR CONTOUR MODULAR L.AYOUT

First of all, we will trcat the case where the contour is rcectangular,
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i.e. a special case of the general indented céntour form.

The hypotheses of contour rectangularity and realization noh-separabi~
lity bring as a c‘onsequence that there can only be three types of exterior
(rectangular) spaces, as we previously noted. Those three types are illus-
trated in the next figure, where each coloured line belongs to a group ha-
ving the indicated colour and at least one edge. Furthermore, the type of

an exterior node is the type of its corresponding space.

m T

v

|

I b4

14

Thus, spaces of type [ correspond to exteriors nodes with just one
group of edges; type II spacesi to exterior nodes with just two groups of
edges and having their two boundary edges of a different colour; type III .
spaces to exterior nodes with exactly two groﬁps of edges, and having
their two boundary edges belonging to the same group. N1, N2, and NO,
are the number of spaces of type I, II, and lIl, respectively. Intuit‘ivevly,

a node contributes to Nlﬁ if it gives rise to/a space Qccupying exactly two
convex corners of the contour of the layout; to N2 if just one convex cor-

ner is occupied; to NO if no corner is occupied.
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From the ahove figureit is easily seen that, if a permissibly coloured

rcalization originates a rectangular layout scheme, the following facts hold:
(1) there will not exist in it more than two nodes of type I;
(2) there will not exist in it more than four nodes of type II;

(3) only two nodes of type II may coexist with one node of type I, therc

not being any other possible combination of these two types of nodc

These facts lead to the only three possible combinations of type I and

Il of spaces, coexisting with any number of type III spaces:

I | Jig

I 1 n u

Consider next any rectangular contour:

lfu

Dy,

-

[t is apparent that however the horizontal dimension may be distribu-
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ted within the layout, the total horizontal dimension (D.H.) "entering" the
layout, must be equal to the total horizontal dimension which " exits" from

it, as is also shown in the previous figure for the vertical dimension (D.V.).

Next, let there be the following permissibly coloured realization:

Let us now identify the exterior nodes according to the three types

defined:
I - there are none '
I -1,3,5 and 7

[l - the remaining ones
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Consequently the layout scheme to be derived from the given realj-

zation will respect the form:

Where each line denotes 3 group of edges with the colour shown,

This way, the nodes in between nodes 1 and 3, as well as these no-

des, delimit the total horizontal dimension of the layout. The same may

be said of nodes in between nodes 5 and 7, these nodes included,

Similarly, the total vertical dimension is delimited by nodes 3, 4,

and 5, or, equivalently, by nodes 7, 8, 9, aln‘d 1.

Let us now draw the following subgraph, obtained from the previous

graph by taking only those edges that are coloured with V. Recall that to a

V coloured edge there corresponds in the layout a horizontal partition seg-

ment,

We shall call this

subgraph the horizontal subgraph  of the realiza-

tion,

The vertical subgraph of the realization is similarly obtained. The

S -
ense of the arrows

is justified as follows.

i
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(1) For interior nodes. Since to each space and so to each node, there

corresponds a horizontal (vertical) dimension "entering” equal to the horizon-
tal (vertical) dimension "exiting", the edges of each of the two pairs of oppo
site groups of an interior node must have their arrows oriented differently
with respect to the node. Recall that by condition B3, there are always two
pairs of opposite groups of edges of the same colour in any interior node of
a permissibly coloured realization.

(2) For exterior nodes . From the point of view of ‘edge orientation,

I
the two edges belonging to the boundary in a type III node are considered

to belong to two different edge groups, although they are consecutive and

have the same colour; furthermore, the two groups are considered to be

150 LNEC - Proc.86/14/4030



opposite groups. Bearing this in mind, the orientation of the two opposite
groups of edges with the same colour of a type III node, is performed as
for interior nodes; i.e. the edges of one group have an arrow sense diffe-
rent from the edges of the other group (relative to the node).

As for the orientation of the isolated colour groups in th.e three types
of exterior nodes, the only condition is that in each group all the edges
must be given the same ar%ow sense relative to the node; which arrow sen-

se it is depends upon the orientation of adjacent nodes.

N.B. Note that is non-rectangular contours there is another type of exterpr
node, defined by NG (x) = 4. The orientation of its edges follows the ru-

le used for interior nodes. We shall call them type IV nodes.

Remark. As can easily be seen,  the foregoing rules are quite suffi
cient for orienting all the edges of a permissibly coloured realization, as
long as any arbitrary orientation is first given to any two edges of diffe-
rent colour.

The choice of those two edges and of their orientation defines, thus.
the orientation of the whole layout scheme, relative to an external arthogon:
referential ‘on the plane.

Note, moreover, that although orientation is dependent upon the colou-

o

ring, the converse is not true.

Obtaining the modular dimensions. Consider again the previous figurc
showing the horizontal subgraph of a permissibly coloured realization.
In that subgraph the total horizontal dimension "enters” through nodecs

1,2 and 3, and distributes itself by all other nodes in the way indicated by
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the arrows.

Thus the subgraph clearly shows that:
(1) space 9 will be immediately "belvw- space 1:

(2) space 8 will be immediately "below* ssace 9, and so, indirectly

"below" space 1, and so on; space 14, for “/z:zple, will be directly "below’

both space 12 and space 13.

(3) note that directly "below" space 8, . example, will be spaces 7

and 12, which thus become spaces indirectly “ajow” spaces 9 and 1.

The information contained in these facts 72y be expressed as follows,

(1) is expressed by the column:

.
9
(2) is expressed by the column:

1

3) is expressed by the two columns:

1
9
8
7 12

Now, the information contained in the' whe,|, subgraph is expressed by

the following table of columns:
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9 10 10
8 11 11 S .
7 12 13 13

14 14 S

6 6

To obtain the table of rows relative to the vertical subgraph corres-

- ponding to the same realization, we proceed in the same fashion, conside-
ring in that case that the total vertical dimension "enters" through nodes

1, 9, 8 and 7.

Next, we present the above mentioned subgraph and the table of rows

that can be derived from it.
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1 10 3
9 10 3
8 11 4
7 12 13 7 4
7 14 S
7 6 S

nce we obrzn both tables, the dimensions of any space become spe-
cifies - counting :¢ number of occurences of the space number in
each “f the two ta:les; i.e. the two numbers obtained for each space are

the v, multiples z1at define its dimension in terms of the dimensional

IﬂOdu?:chosen, ?

“his way, frrm the previously given coloured representation we may
obtain, given the imensional module, the following layout scheme, in

Which 511 stipulate: adjacencies are satisfied:
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¢
1
{
3
10
9
4
8 iz
L
12 17
7 a4 ~
¢ :
i

Another example. We now present

&orher example, where we have

passed directly from the coloured oriem=- realization to the two dimensio

nal tables; while the first is of columns 2zt corresponds to the horizontal °

{ . .
~Eimension, the second is of rows and Corrzsponds to the vertical dimen -

100,
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Coloured Oriented Realization:

1 1 2
10 11 12
9 14 13
8 14

8

Vertical Dimension Table (rows) :

12
13

15,

10 11 12
10 11 12
10 11 13

14 15

1.6
16

12
13
14

12

13
15

3 3
4
16 16
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Layout Scheme Obtained:

12
10 11

, 16
14 15

(9}
~J

S

In the modular dimension process for rectangular contours, the abso-
lute coordinates of the spaces are easily bbtained since we know which spa-
ces occupy the four corners. In fzzt, one may start by drawing the spaces
through which one same total dirension "enters”, and proceed by juxta-
posing to them all those spaces t- which they are adjacent in the subgraph
corresponding to the horizontal or vertical dimension chosen. Since all "en-
tering” nodes for that dimension LEzre a common absolute coordinate, name!
the one corresponding to the directinp of space juxtaposition indicated by :t‘he
Subgraph, any space having more tan one "ancestof" exterior space, recci
Ves from them, by way of the Of'i»’:‘:teci subgraph, exactly the same absolute
Coordinate.

However, in an indented coatiir,  for example, the "entering" nodes

0 . ' .
fa chosen subgraph do not all f=zssarily have a common coordinate value
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‘slati\}e to the dimensional flow of the subgraph. The problem arising from

‘1is situation will be dealt with in the next section.

Drawing Modular Indented Layouts. The method we use for computing the

tbsolute coordinates of the spaces of an indented contour layout will be ex--

~cunded in this section.

We do notj,need another method, other then the previous one used, for
computing the dimensional values of the spaces in a rectangular contour
;avout, In fact, the only new type of node is the exterior node with NG(x)
=}, and the way to orient its edges 1is exactly the same as for interior
2odes, as  noted in thé previous" section.

So, given that we already have the modular dimensions of every spa
ce, all that remainsto be done is to calculate the absolute coordinates of

-3

“heir centres, granted that their orientation is made clear by the coloured

1ijacencies.

Now, the problem is solved if we are able to compute the coordinates
T all exterior spaces, thus obtaining an " external skeleton" for the layout,
.zcause once these coordinates are computed, we may then use the same
'rocess as before for obtaining the coordinates of the interior spaces since,
.en  though an interior node may have more than one "entering" node as
‘1 "ancestor”, the coordinates of its "ancestogs" will already have been com

“atibilized in the calculation of the "external skeleton" of the layout.
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Thus, our only concern in this section is to provide a’ way for cal
culating the "skeleton” or "outer shell” of the layout. This is _aCCGmpliS‘
hed by means of a finite state machine (i.e. a finite automaton) that "ok
around” the contour of the coloured oriented realization, with the purposc .
recognizing the type of nodes encountered (its input), making the appropri.-
tc changes in "direction" (one of its internal states) and computing the tw.
absolute coordinates of the; space to be derived from the current node(its v .
other internal srates).

In reality, the sequence of node types around the confour is a strin:
of numbers which has already been computed, and output to memory, by .
previous automaton, responsible for ensuring an indented contour form fo:
each colour solution of the realization.

Furthermore, thc new automaton may be decomposed into two:

o,

(1) onc that computes the changes in.direction at each node;

(2) another that computes a pair of absolute coordinates for each

node encountered.
Let us now describe these two automata, and show how they work.

Let V1, V2, H1, and H2 be the senses and directions shown belcgw.

L mmamn 12 i1l
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The "mgutﬂ to ény of.the WO ._automata consits in oﬁe of the different
rvpes of nodes, I, II, III, or IV; these types of ﬁodes are encountered
clockwise, around the boundary of given coloured solution of a fealiza-
tion, | ] o |

The state of automaton 1 is the direction and sense it had before a

new input is encountered; it can be any of four senses of direction (HI, H2,

V1l or V2).

The state of automaton 2 is an ordered triple, consisting of: the

state S of automaton 1 , the absolute horizontal coordinate attributed to

rhe node visited last, and the absolute vertical coardinate for that node.
The outputs of any of the automata aré their states.

Their initial state is defined- by:

(1) the arbitrary coordinates, relative to two orthogonal axis , given
0 any one exterior node, and interpreted as those of the centre of its

corresponding rectangular space;

(2) the initial direction and sense given by any one of the boundary
edges of the node chosen in (l),as follows: if its colour is E then the ini-

rial direction and sense is V1, otherwise it is Hl.

Note that the choice made in (2) does not guarantee the various solu-
tions of a realization tb become positioned in a simil'ar way. For that pur-
nose other rules are used in the program besides these, but they are not
relevant to this exposition. |

Now let CH and CV be the absolute coordinateé, respectively horizontal

wnd vertical, of the last node visited by the two automata. Let DH and DV
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be the dimensions, respectively horizontal and vertical, of that node: and
" let NDH and NDV be the dimensions, réSpectively horizontal and v'e}{i'cal,
of the input node type. -

Define A H TVH AV and V7V, as follows:

AH = ( DH + NDH) /2
.. . . ¥H
AV
\VAAY

I

( DH - NDH) /2

(DV + NDV) /2

(DV - NDV)/2

These are the possible absolute increments of the coordinates presem

in the state of automaton 2 .

Now, the next state of automatonis 1 given by the combination of its

input and its present state, according to the following double entry table:

T
‘ 1 11 111 v
! V2 H1 VI | H2
V2 V1 H2 V2 H1
H1 H2 V2 H vl
H2 H1 V1 H2 V2

The next state of automaton 2 is given by the combination of its im;

and its present state, according to the following double entry table:

t
{
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T
N I I I11 IV
—
V1 S S S S
CH CH+A H CH+AH CH+AH CH+A H
CV CV+Vv V CV+V V CV+V¥ Vv Cv-VVv
V2 S S S T
CH CH-AH CH-AH CH-AH CH-AH
CV CV-TV CV-VV CV-vV CV-VV
H1 S S , S S
CH CH+V H CH+TH CH+V H CH-VH
o\ CV-AV CV-AV CV-AV CV-AV
H2 S S S S
CH CH-VH CH-VH CH-VH CH+gH
CV CV+AV CV+AV CV+AV CV+AV
This table may be redugécpi%to:
I, 1, or III v
V1 S S
CH CH+4H CH+AV
oY CV+v VvV CV -V V
V2 S S
CH CH -AH CH -A H
v CV -VV CV+¢V
H1 S S
CH CH +WV H CH -V H
cv - CV - AV cv -AV
H2 S S
CH . CH -V H CH +V H
Ccv CV+AV CV+AV

162
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Note that minimizing and coding techniques could be applied next to
“transform this tableau into a simpler one with a simpler acess. ~“Although

that has been carried out for the program developed, it need not concern

us here.

We remark though, that the workings of the two automata can easily
be followed with paper and pencil alone.

Of course, the two automata just defined work as well with dimensions

not necessarily modular, as long as they are appropriately computed for

providing a layout scheme respecting the given adjacencies and colours.

EFxample of the workings of the automata.

Consider the following permissibly coloured and oriented realization:

gy it
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Types

of exterior nodes:

II

[1I

v

Interior nodes:

7

=

2, 10,

13, 14

4, 6, 8 9, 12, 15

3, 5,

11

16, 17, 18.

Horizontal ‘Dimension Table (columns}):

15

13

15

14

15

14

15 15 15 16

13 137 14 13

Vertical Dimension Table (rows):

15

15

14

16
16
13

17

18

12

11

S 9
S 9
10

18
11

12
13

10

10

10
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Dimensions taken from the tables:

Node Horizontal Vertical
| ‘ 2 3
2 2 1
3 2 2
4 4 1
S 1 2
6 1 2
7 3 1
8 1 1
9 2 3

10 | 3 1

11 ' 1 | 1

12 1 1

13 S 1

14 3 1

15 6 2

16 1 2

17 1 1

18 4 1
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Choose node 1 for getting the initial state; assign to-it coordinates
(0, 0); obtain VI as first sense of direction (corresponding to edge (1, 2)).

Next, apply automata 1 and 2  and obtain the following layout

scheme:

7
17 8
6
2
1 4 g
3 5.
18
11 10
15 i 16
12
14 13

module:
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CHAPTER 7

HOW TO FIND PERMISSIBLE DESIRED DIMENSIONS FOR
| A LAYOUT

1. INTRODUCTION

When the dimensions of the spaces of a layout, and the extent of
contact between adjacent spaces, are not restricted to given v‘alues, it
is apparent that it is possible to draw the layout corresponding to a gl
ven permissibly coloured and oriented realization such that all its spa-
ces have a -rnﬁndd‘ular dimension., We have in fact shown a proceéé whereby
the spaces’ dimensions can be obtained as multiples of any given module,
for the case of layouts With an indented contour form. This restriction
on the form of the contour arises because the process, as described,does
note take into account the circunstance where the spaces may have suchdi
mensions as.to overlap, as fof example in the case of a spiral contour,
or, in general, as long as there are three consecutive concave corners.
This circunstance may of course be detected, and, in the case of_modular
layouts, appropriate corrections of dimension may be made. We have not
however dealt with the case of a general contour form, and so the dimea
sion assigning process to be described in this chapter, since it makes i
of the automata used for computing the absolute coordinates of the exterics
spaces, remains restricted to indented contour forms, in the sense that
if overlaping situations occur they will not be detected; i.e. layouts nol
belonging to the indented class may eventually be drawn by the program .

with overlapping non-adjacent spaces.
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Note that in this chapter we will be taking Hypotheses 4 and 5 into
account. Furthermore, the process devised for assigning permissible de-
sired dimensions may also be used for modifying a solution already achie-
ved by the process into another viable one, thus also providing the means
goran interaction facility between the program and the user. Moreover, par-
tial solutions may be obtained when complete solutions are impossible within
the dimensional and excess limits imposed through the above mentioned hypo

theses.,

2. ASSIGNING DESIRED DIMENSIONS PERMISSIBLY

To explain the process utilized, we shall first describe it by means
of an example.

For that purpose, consider that the jollpwing permissibly coloured rea
lization is given, together with the table of the dimensional tolerance interval.
spcecified for the spaces. We further suppose that no special tolerance inter -
¥zls are imposed in this example on the adjacencies between spaces, as fo-

rescen by lypothesis 5.

£
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Tolerance Intervals;

Node Horizontal : Vertical
1 2-3 1-2
2 2-3 2-5
3 3-5 1-2
4 1-3 2-4
5] 2-4 1-2
6 1-3 4-6
7 1-2 2-6
8 1-2 1-2
9 2-5 1-3

10 3-4 ) 2-3

The horizontal subgraph and the vertical subgraph of the given rea-

lization can be easily extracted-from it; they are shown below.

Horizontal subgraph
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Vertical subgraph,

The exterior nodes of each type are:

[ - none
Il - I, 3, 9, 10
I11 - 2, 4, 7

' [V - none

The interior nodes are: 5, 6, 8.

It follows that the contour is rectangular, with the total horizontal di-

t

. !
fwasmn (D.1L) "entering" through nodes 1, 2, and 3, and "exiting"through

M° 9 and 10; the toral vertical dimension (D.V.) "enters" through 1, 4,
a%m: 9, and "exirs" through 3, 7, and 10.

The next figure shows these facts.



®
®
'

®

©» 2 > ®

The method used consists, essencially, in obtaining successive node

ay

and edge dimension distributions, for each subgraph, such that, in the end,
the total dimension"entering”each node through its set of in-going edges, is

equal to the total dimension that"exits"through its set of out-going edges; if
vne of these sets is empty, this condition is not imposed on the node. Fur-
thermore, the dimension of each node and‘the dimension conveyed.by each

edge must be within the tolerance intervals specified.

Consider any of the subgraphs above.
To start with, the process devised begins by assigning to each node an
integer value from its tolerance interval; next, the dimensions so obtained

for each of the "entering” nodes are distributed by their out-going edges, if

possible proportionally to the assigned dimensions of the receiving nodes cor-
responding to those edges. Afterwards, a modification of dimension is carried

ut for those nodes for which the assigned dimension does not coincide with

172



e total dimension "entering” them and or with the total dimension“exiting”,
C o, Inocasc amy one of these dimensions has already been defined. This is
done by usc of certain non-ambigously prescribed rules, to be shown further
on. If the assigned dimension of any node cannot be conveniently altered,i.e.
in such a way as to maintain it within the furnished limits, a well defined
procedure is iniciated to modify the dimension values conveyed by its edges,
making all the indispensable. subsequent adjustments of other nodes'and/or
edges’ dimension values, such that all agreement possibilities are systema-
tically explored if it becomes necessary, and also in such a way that the
~whole process converges to an equilibrium.
Only then a furtuer distribution of dimensions is effected, now from
those nodes whose total "entering" dimension is know from its afferent ed-
-- ges, which is already compatible with their tolerance interval for the dimen
sion under consideration; their dimension is distributed by its efferent edges.
by mecans of ‘intéger numbers as close as possible to the proportion of dimen

sion values of the nodes receiving them, all the while respecting the edges’

~ dimension constraints.

Once these operations are gone through for each dimensional subgraph,
- 2l nodes having been inspected, either a solution for the distribution of di- .

- @ension will have been found, or the inexistence of such a solution proven.

B

What is more, once a solution is attained, the equilibrium thereby
~ #caiceved may be perturbed, either locally or globally, by imposing fixed
dimensions to some of the edges and/or nodes other than the ones which

. . . . . . . . .
“ad been found. This puts the dimension adjusting mechanisms in search of «
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new equilibrium, and a malleable user/machine interaction becomes this
way facilitated.
Let us now return to our example, and consider in the first place ;x,:

horizontal subgraph. We start by attributing to its nodes any integer valwé
belonging to their respective tolerance intervals. Further on, it shall he ifs
gued that an integer value closest to the mean interval value constitutes 3

best initial choice, but, for illustrating purposes, we make the initial choh:;?

of values shown in the figure below, where a permissible selection was e

We shall obser\;e the convention that whenever the maximum value of
an interval is assigned it will be affected b}’( a plus sign, and that whene-
ver a minimum value is attributed a minus ‘sign will be used; if the assign-
ed value is simultaneously a minimum and a maximum, both signs will be

utilized.
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Furthermore, intecger values will always be used since, if it need be.
all dimension values mav Lo o altiplied by a positive integer, so aswto
enlarge the prccision by as much as desired. Thus, whenever the need ari-
s¢s O augment or to diminish the dimension of a node or edge, that can be
carried out by a succession of positive or negative unit increments. That
way, the various unit increments may be achieved through different paths on
the subgraph, and the maxiﬁu111 dimensional flexibility available, a; the par-
ncular scale being used, is profited from. Moreover, the process may star:

by using a gross scale, so as to converge more rapidly to a solution region

~and change to a finer scale if the need ever arises.

e Observing the previous figure, note that the distribution of the dimen-

i‘i;:‘m of the "entry" nodes 1, 2, and 3, by its efferent edges has already

S 4

!an made. In the case of node 3, the distribution was carried out propor

an

temally to the dimensions assigned to nodes 6 and 7, since these are the

~

fecall that in this example the minimum is one unit and the maximum.
Haited, for every edge.
Since a dimension has already been consigned to cach of the edees affe

o

- 0 nodes 4, 6, and 7, we are now in a position to compare, for those

By

L

the sum of all dimension values "entering” them, with their previous-

—rimed dimension:
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1) Thus, the total dimension entering node 4, which is 2, coincides Wirg -
the value 2 of its assigned dimension, making it unnecessary to efect any
adjus-tment. On the other hand, the distribution of its dimension is made (-
tally to node 9; this fact is indicated by inscribing the value 2 next to the

edge from ¢4 to 9, in the subgraph below.

2) The total dimension entering node 6 coincides with its assigned
dimension, and only its distribution by nodes S and 8 remains to been done.
Now, when the dimension of a node is equal to the number of its efferent
edges, there can be no question of proportionate distribution: it becomes ne-
cessary to give each edge a unit of dimension. Such is the case with node
6, as shown in the above subgraph. |

[f it happens that the number of efferent edges of a node is greater
than the available dimension at the node, it becomes necessary to augment

"

its dimension by using a procedure expounded further on, where the situa-
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tion arises of having tc modify a node dimension.

3) Node 7 rccceives a total dimension of 2, equal to its assigned one,

which is given out entirely through its only efferent edge.

The candidate nodes for dimensional conservation analysis are, at this
stage, nodes 5 and 8, .since all their afferent edges have had the dimension

they convey specified:

1) The total dimension entering node S, being 3, is less than its pre-

scntly assigned dimension of 4. This makes us consider if it may virtually

tr reduced to 3. The answer is affirmative, upon looking up the tolerance
{?"hervals table. The value 3 is then assigned to node 5 and inscribed next

%0 it, as shown in the subgraph that follows. On the other hand, the dimen-

.sion 3 of node 5 is distributed, after ponde;atig)n, by nodes 9 and 10; to node

5 IWo units are given out, to node 10 the remaining ones.
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2) In relation to node 8, its assigned dimension can be diminished {3
1, since that is permitted by thé tolerance table; furthermore, it is whgg;;,”‘:
distributed to its only out-going edge. If it had happened that the dimensi;—;,.‘,_
of node 8 could not be reduced, a dimension increment to be conveyed by t;
only afferent edge would have to be obtained, using the convenient proced:mz
for that purpose to be explained further on. .

The fact, however, that its dimension is affscted by a plus sign, is.

guarantee that it can diminish at least one unit.

The above figure was obtaincd after nodes 5 and 8 were processed.Ne

des 9 and 10 have now become apt for consideration:

1) Node 9 may have its dimension permissibly altered to .3, thus equs-
lizing the total sum conveyed" b}; its afferent edges. No distribution is made

sirice it is an "exit" node.

2) Now, node 10 may only permissibly augment one unit, to the maxi-
mum value of 4, as expressed in the tolerance table. Thus, what has to
be attempted is to. reduce to 4 the sum of the edges afferent to node
10, which at this stage is 5, by reducing by one unit the value of one of

those edges.

To make systematic the search for that unit, which has to be subtract
ed from a node having an c¢fcrzot ede to node ') ,we stipulate that the search
for the appropriate edge will always be carried out clockwise around the

node, either when "going up", i.e. in opposite sense of an edges' orienta -
g :

tion, or "going down", i.e. following the arrows. Furthermore, those edge’
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will not be considered which lead to a node affected by (+) or (+), wﬁen
"going up" looking for an extra dimensional unit, or "going down" trying

to distribute an extra unit, in the first search mode; this mode is charac-

terized by maintaing - the sense of the search, relative to the edge
orientation. Similarly, in the first mode, those edges are not considered
which lead to a node affected by (-) or (+), when "going up" trying to-get
rid of an extra unit, or when "going down" trying to retrieve a unit given
out.

Wnen an appropriéte'edge camot be found using the first search mode, the di-
mengon findng process switches to the second search mode, and vice-versa. Thi-
mode is characterized by changing the sense of the search at each node;
of course, every time the search sense is changed, the sign of the incre-
ment we were looking for also changes. For example, if we were trying
to find an extra unit "going up" to a node, we will be looking, after having
changed the search sense at :Awthat node, for a way to retrieve an extra
unit given out from that node so that the original extra unit we were sear-

.ching for can be found at the node.

Wnereas we call this second search mode the reflexive mode, we

czl] the first search mode the traversing mode, since in the former the

nodes are used to reverse the sense search, and in the latter the nodes

“are traversed so as to maintain the search sense.

Let us next exemplify the traversing search mode by continuing the
;;..;_‘.‘“l}'sis of the subgraph we have been considering.

Since we have a unit too many entering node 10, we start by inspcc-
i‘“{‘*‘f; the first edge in the clockwise sense, of the set of its afferent edge«

1““ A g ' . . .
%2 wdl as the node it links to. It is clear that that edge, as well as node 5
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its extremity, may support the loss of one unit. We now have (g
examine if any of the afferent edges of node 5 may diminish the same
one unit, as well as the node it links to. We are thus faced with an ite.
rative process that will only come to a halt either if no complacent edgg;
or node is found, or when an entering node is reached, since in this Ca;:
we are "going up” and using only the traversing mode. -

After inspection of the afferent edges of node 5, we verify that nodg
2 cannot have its dimension reduced, and that the edge linking to node 6
is at its minimum value of 1. It follows that we must give up the posd
bility of getting rid of the extra unit of node 10, through node 3, by
means of the traversing search mode. X

According to the clockwise sense around node 10, we are now redu-:
ced to exploring the edge tc; n(;de 7 since the edge leading to node 8 is
at its minimum. Upon inspection, we conclude that node 7 may diminish .
as well as entry node 3, from which emerges the only afferent edge to
node 7. Furthermore, the two edges (10,7) and (7, 3) are agreeable with 4
diminishing both one unit.

This way, we have reached the end of our search for adequate hori
zontalk dimensiouns: for all nodes . and edges of the realization submitted ini~
tially, since there are no more nodes to inépect, subsequent to the proces-
sing of node 10.

The final dimensional equilibrium reached is shown by the horizontal
dimension subgraph be'low.‘ This equilibrium represents one possible solu-
tion for the lorizontal dimensions of all the nodes of the realization, which

takes into account the dimension constraints expressed by all the relevant

adjacencies, as well as by the given list of tolerance intervals.
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In the previous example, instead of tryljng‘ to traverse node 5, we
eould have experimented the reflexive search mode, by considering if
fin_v of its efferent— edges other than edge (5,10) could have its dimen-
;'jslon augmented, such that the cdge (5, 10) could be diminished the desi-
Tf-’d unit increment, all the while keeping constant the dimension of node
hﬁ) Edge (5,9) may in facf éupport an extra unit as \QGIIA as node 9, with-
”@! violating any of the limits imposed. That way, we would have obtained

"

E: r 3 . 3 ’
rﬁh other permissible solution , shown below, where both search mode s

=®rre used.
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Before we comment .fugther on both of the search modes, let us con*

>

sider the vertical subgraph relative to the given realization, and the three
stages, shown below, needed to achieved a permissible equilibrium for the

vertical dimensions.

3

Stage one

182



Stage threce



The initial values are exhibited in the first diagram, where entry
nodes 1, 4, a‘nd 9, h have. already been pfocessed. In _the second diagra,—n;,:
nodes 2, 5, and 10, have been dealt with, | .a.n—d nodes 3, 6, ‘arAld 8, are’f{
being considered. Notice that the reflxexive search mode had next to be utj-
lized to deal with node 6, thus subtracting a unit increment to exit node:
3, as shown in the last of three diagram§. H?d it not been used,‘“»the. dis-
tribution of verti céi dime.nsﬂion_.throughci)ut the subgraph would have been im
possible to- actieve. |

We refrain from drawing the dimensional 1ayout schéfne correspon-
ding to the dimensional solutions of the two complementary subgraphs,
since the process of carrying it out has already been explained and exem-

- oy,

plified in the last chapter.

We will next consider the following subgraph, relative to one of the

dimensions of a given realization, and where a permissible overall distri-

bution of dimension is already shown.
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Our aim will I to incrcase as much as possible the dimension of
node 4, without, nevertheless, trespassing dny of the' dimensional bounds
expressed by the tolerance table presented below, with no constraint on
the edges except that a minimum of a unit of dimension is required for
each of them. By carrying this out, we will show ho;v the two search mo-
des interact, and also how the processrcﬁn be used for-ﬁser/rnachine
interaction. Note tiat the pi‘bccss that will be used to alter the given so-

lution makes use of the same search modes as the process for finding

one, being actually a part of it.

Node N Tolerance
1 15-45
2 22-29
3 “ 179
4 ?undcﬁned
S . - 10-13
6 11-14
7 9-12
8 15-18
9 9-14
10 33-36

We will next Legin to augment the dimension of node 4 one unit each
time. Notice that to augment node 4 one must augment both the sum of
fts afferent and of its efferent edges.

No'w,' usmg' the Li‘avoré;ing modd, and since node 1 as well as node 8
Hayowo up at least one unit because  neither of them carries a plus sign,
node 4 can step up 1o 9, waile nodes 1 oand 3, as well as tneir edges lea

i : R : o .-
fing 1o node 4, alt STCP Up De unit.



Since the same routine can be repeated two more times, we are now

feft with the following dimensional subgraph:

Now, because nodes 8 énd 9 cannot go up anymore, we must resort
‘o the reflexive mode for searching down from node 4. Taking edge (4, 8)
rirst, instead of following the clockwise sense (since we are going to
-xplore all possibilities it aoes not really matter), we reflect at node 8
ind reach node 3. On account of the reflexion, the unit increment we are
woking for changes its sign, and we are up to trying to diminish node 3
oy one unit, along with entry node l. It so hap[\)ens that pode 3 can step
lown a anit, albng iwith __éntry node 1. We have this way complete‘d‘ the path
“hat started dbwn from node 4 . Let us now look for :;1 path étarting up
irom that node that permits us to augment the‘ sum of its afférenf edges,

) as  to equal the sum of its efferent edges. It is clear that entry node I

©an o augment one unit, thus returning to the value it had after having gone

H

‘own one unit when the previous path was considered.
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The two paths, 4-8-3-1 and 4-1, are an example of the formation of
a circular path which means that a local compromise of dimensions was
reached; notice ghér a}though node 1 is an entry node, it has not changed
the in-coming dilne'ns‘ion it conv'eys,._in_ the new equilibrium found by virtuc
of the circu‘{ar» path 4-8-3-1-4. Now ‘tlllé same circulaf pz-a{h canhot be used
again since node 3 has reached its minimum. The stage arrived at.v-:is“ illus

trated in the following diagram:

The next positive unitary increment of node 4 will be obtained, in
?Similar way, by reflection on node 9 followed by the traversing of node
?. and a reflection at node 1 back td node 4. The c¢ircular path, 4-9-5-1-

4, thus formed, is composed of path 4-9-5-1, which starts down from

&’d’: 4, and of path 4-1, which starts up from node 4. Since the circular

PBh can stil] be used twice, at which occasion both node 5 and edge (5, 1)
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reach their minimum possible value, we obtain the diagram below.

It is easily ‘verified in the above dagram that the dlmenson of node 4 cannc;'i
possibly be further augmented although node 1 has not reached its maximum,
all paths starting ‘downwards. from node 4 are cut off from the possibility of
reaching an entry or exit node, and from forming a circular path. Indeed, no-
des 8 and 9 are at their maximum thus .preve‘:nting the tréversing mode, and
nodes 3 and 5 are at their minimum thus preventing the reflexive mode sin-
ce the only possible reflections are from nodes 8 and 9 to nqdes 3 and 5,

respectively.

Informal comments on the distribution of dimensions.

1) Since the impc;ssibility' of increment of a node always corresponds
to the "saturation” of a node énd/or edge for every conceivable path star-
ting in one same or in both senses from that node (before the path reaches
an entry or exiﬁ rrlbade“of circulates to the stérﬁng node), it can easily be

seen that the impossibility of further increment for a given node is always de-
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ermined by the same set of "saturated” nodes and/or edges; to do so, it
suffices to deny this hypothesis, thus reaching the absurd conclusion that
here is at least one conceivable path that can become "saturated" at diffe-

rent nodes and/or edges then the ones found.

2) Similarly, the maximum dimension that can be reached pérmissibly
»by a node is always tﬁe same, indepeﬁdently of the sequence of paths used
for carrying out unit increments. Note, however, that different final dimen-
sion distributions may be obtained, except for the values of the node in

question and the "saturation" nodes and/or edges.

3) The various final distributions will be the end result of diverse
sequences of paths chosen for unitary incrementation. On the other hand,
- one same set of paths will always have the same final distribution as an
' ’*9-‘,1_ y
cutcome, whatever the particular sequence of paths belenging to that set is
chosen, provided each of the paths is really used the same number of time:

and that there does exist one sequence made up from the paths in the set

which gives a permissible sclution for the distributicn of dimension.

4) It is not difficult to recognize that the two search modes are com-
plementary, and that together they exhaust all possible positive or negative

tnit increments that may be cbtained.

2

S) In general, when a unit increment is sought forbra node, two paths
have to be found: one which starts with an afferent edge, and one which
starts with an efferent edge of that node, in case both types of edges exist
otherwise, one or both of them will be the trivial path consisting only of

that node,

(o]
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_ _ 4
Now, each of the two paths must reach an entry or an exit node, whics’

can either be incremented or which the other path also reaches, unless ;;-,t..ff

WO paths rﬁéet ‘before. In any circunstance, if the two paths meet, the v,g

bility of obtaining a unit increment by means of the circular path formed

i

t&im L :ia;.k 4]

will only depend upon the pOSSlblhty of the node where they meet to be m

L :&u!iuia

cremented, if the two paths arrive at the node with different senses; Other

wise, it does not depend upon that node, since its dimension will remain:}g’"

same.

6) If a circular path is found for obtaining a unit increment, we wiii;
speak of local compromise of dimensions, since the overall dimension of
the layout is not altered by such a path; what ﬁappens in that case is that "
some of the partitidn segments_are bein_g moved parallel to themselves,thug‘_'
changing their meeting points with other partition segments.

On the other hand, if no circular path is obtained, we will speak of a
global adjustment of dimensions, since the overall dimension of the layout
will be changed by the paths found. In that case some partition segments
may also be moved, namely those which correspond to a reflexion at a nods,

and only those. This rule concerning the partition segments that are moved

applies also to the case of a circular path.

7) Admitting tkg_at for each node and each dimension, a tolerance intel
val is specified by tﬁe user, a criterium for a good éolution may be the one
of obtaining the least humber of nodes with an extreme dimension, either !
minimum or a maximum.

Another criterium might be the one of minimizing the sum of the squi

res of the difference betweeen the dimensions of each node and the mean
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,alue of their correspondmg tolerance intervals.

Since, according to Hypothesis 4, an excess integer may be spec;lﬁed
,-bf the node dimensions, there may be found distributions of dimension which
go not respect the tolerance intervals, -in the case no solution respecting them

- exists. Criteria similar to the above ones may then be applied to compare.

“guch "compromise solutions” as to their relative desirability.

8) Initially, one may start by assigning to the nodes' dimensions the

“mean (integer) values of their tolerance intervals, with the hope that the fi-

nal distribution of dimensions does not deviate much from those values;that

~4¢ why the distribution of dimensions is made proportionately to the dimen-

sions assigned, at any given stage.

In the absence of other criteria, such assignment of initial values is

H‘
e
=

B a . .
* also made with the hope that that way a small number of searches for in-

=¢remental units will need to be made.

In the case some nodes present extreme values, it may be tried to alter
“Anem by the methods ‘expounded, such that they may lead to a better so

:‘lution according to the above criteria. Of course, such modifications may
_be carried out automatically by the program and/or left to be comnunded

from outside, tiivrough the interaction of user and program. Through such

_lmeraction, moreover, the user may explore all sorts of heuristic rules

.-for carrying out and modifying the distribution of dimensions.

- 9) Another way the program could act, if .appIOpriately modified, wou:
.'b‘ the followmg Smce all solutions depend closely upon the initial values gi-

ven, it would compute a SOlU[lOI’l startmg with all the minimum values of the

krance table, and another one starting with the maximum values “Now, it

 Prme CRENV LS LOAD



can be readily recognized that the mean of the values of any two 301"[1(

3

“-f@;

is yet another solution, ' with values in between the values of the two oﬁ

VE ei ’; _m.i;f #8

giria‘l ones. Thus, the "mean value solution” of the two solutions obtamed

by stérting with the minimum and the maximum values might hopefully bew

Fia st

a better solution than any of the two, according to the criteria mentioned. :

X

above.

© 10) As it is, the program starts with initial values proportional to thes

values obtained by first computing a modular dimensional solution. This is

vet another heuristic rule for possibly - obtaining a good solution fast. ~:

11) The introduction of additional restrictions such as minimum and ra
ximum values for the areas, glves rise to problems of interaction between ;3.'

the two dlmensmnal subgraphs Wthh we have not dealt with. Perhaps a fm*

W

step in that dlrectlon would be to impose a linear relation between the two -

dimensions of a node, having both a minimum and a maximum value.

12) In its present form, the program developed makes a first check ca-
the tolerance intervals given, with‘ respect to the adjacencies to be obeyed,
to ascertain that the minimum value permissible for each. node is not grea-
ter than the sum of the maximum values permited for the nodes adjacentto
it, in any of the two subgraphs. Similarly, it alsc checks .if the maximum
value permited for - éach node is. not smaller than the sum. of the minimum
values of the nodes adjacent to it, in any of the two subgraphs. These two
checks are madé for'eve:ry node becaﬁse if e;ny of them were to fail a solu-
tionvwould:icle‘arlylbe impossible. Of course, if an excess integer is also
given, as foreseen by Hypothesis 4, it is taken into account when these
checks are made.
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We next make an abstract formulation of the problems we have been

;&a'ling with in-this-chapter, and of the methods used for -their resolution.

3. FORMAL PRESENTATION OF Tilk PROBLEM OF DIMENSION

DISTRIBUTION AND OF METHODS FOR ITS RESOLUTION

Let us start by restating the problem in question.

Restatement of the problem

Given a finite oriented graph with no loops, and given also for each
 node and each and interval of permissible values, a distribution of dimen-
- sions to the set of edges is procured, such that, for every node, the sum

of dimensions of the edges entering the node is equal to the sum of dimen-
sions of its outgoing edges, while the total dimension at each node and edge
remains whithin thé limits individually prescribed.

To solve the problem thus formulated, a class of heuristic algorithms

was defined, all of which can find the required compatible
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distribution, 1f it exists. The algorithms of that class éllow, further-
nore, to modify, consistently, a given solution, so as to obtain one othsr
compatible distribution with chosen characteristics, whenever such a dig

tribution exists as a solution.

The choice of a particular algorithm from the class defined can mo-
reover be effected in compliance with the specific characteristics of each
sroblem formulation, so as to increass the efficiency of solution search.
Turthermore, partial proﬁiem s;lutiéaébﬁé&'bg offered in the case of non-
-existance of global solutions, indication Being given on the reasons for
the 1mpossibility of a complete solution, 'and provision being made for user

~1chine interaction to the effect of partial reformulation of problem sti-

~ulations.

ibgtract Problem Formulation

Let there be:

1) a nonempty finite set of nodes X.

'} a non—reflexive relation GSX x X, such that (x,y) €G implies that there
S . s S . = = ‘ s . 11
L3 no sequence X_ , » X, where x_ = y, x, = x and (xi__ l,xl)é G for a

it =1, «vo y n (in pc~ticular (y,x)‘¢ G), i.e. G is an oriented graph with
1o loops.

V) a set L of>intervals on the non-negatiQe intééefs, indexed by X, where
. EL is given by |
I}x =|:minJc ’ maxx].
~erark ¢ The set of integer intervals E, relative to the edges, is conside-
. [1,°°]

-nat is, there is no upper limit on the restrictions on the edges. This res-

sed in this first formulation to have only elements of the form Ex
2

»vlction is not priesent in the computer programme developed.
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Define 1t

1) a generating function on X , relative to G, r'G 3 X-—)Zx » expressed in-

tensionally as 3
G = A x {yl(x,y) € G}- (+)

2) a dual generating function on X, relative to G, r‘G* : X-—)Zx y expres-

aed.intensionally as
Mg =Ax {y | (v,x)€ c},

1) a set S, of starting nodes !

Sg = {x“"’é (x) = ¢j.

4) a set TG- of terminal nodes

~ 3

;PG = {x] r('} (x) = ¢}. |

pefinition 1. A distribution D in G , is an assignment D s G —> N,

from G to the nomnegative integers N. The afferent value V¢ of x in

G, is then defined as 1

- ' \fé(x)=ED(y,x),forall xéX-—SG.

NG Q:(JC)

~i’"re afferent difference 5*(; of x in G, between V*G (x) and Lx takes

K

(‘) This notation means that Q (x) = {y ' (X,y)GG}; it is called the

lambda notation,
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~ha values ¢

zero,.?f V§\§X?€ Lx .
v (x) = max_, if \fé (x) > max_ .
W (x) - ming ,if VG (x) < ming

The efferent value VC of x in G, is then defined as:

Vs (x) = Z D (x,y), for ail x€X- T .

G

yell (x) o

The efferent difference 6k}of x 1in G, between Vé (x) and Lx’ is defi-

ned similarly to the afferent difference.

Dafinition 2 . The distribution problem for G consists in searching for a

digtribution D in G such that it meets the following conditionss

1) v’é(x)eLx, for all x€ X~ S; .
2) Vo (x)éLx, for all x€X - T,.

3) \fé’ (x) = Vg (x)‘ , 7f01i.' all» xe;(— ( s,Uty) -

A

Such a D is called a solution to the distribution problem in G , or So=

lution for G - When thé above conditions are satisfied, the final value 18" -

lative to solution D in G F, (x) of x becomes defined for all x € }y21

making @

Fo (x) = Y (x) if x€X- T, , and
Fq (X)=V’5(x) if x€X- S

G .
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Definition 3. A subsety =X gives rise to a relation G'e yyyeXx X,

defined by the restriction of G to YxY; i.e. 1t

(x,7) € 6" {&==> (x,y)€ G and x, yey.

)

: !
! C e
G' is then called a full subgraph of G. Such a G' has a generating functi-

. . * v
l'1(}' and a dual generatlng‘ funct;onﬂ ' 5 which are the restrictions to ¥

*
of I'-‘G and rIG , resp‘ectively s

pG' (x) =Y nr('} (x) y for all xg Y.
M3 (x) =Y N * (x) , for all xer .

SG' and TG' are defined for G' in the same manner as previously for G.

. -

-

Definition 4 G'S G is closed for G ~ ifand only ifit is a full sub
graph of G, and furthermore:
1) PG' satisfies

I, (x) =[] (x) for all xe€ Y- T., ; or, equivalently ,
G G : G : .
r(‘} (x)&Y  for all xc¢ Y - Toy -

2) PG:‘ satisfies 3

I

GT (x) = FG* (x) for all x¢ y- Sg1 5 or, equivalently,

P: (x)& Y for all xg Y - g1 -
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nafinition 5. The distribution problem for G'c G is a distribution sub-

~roblem for G if and only if G' 1is closed for G. G' is also said to

us a subproblem for G.

c:finition 6. A distribution D' in G'cG 1is a partial distributbion
in G if tl.e distribution problem for G' 1is a diétfibution subproblen

“or G.

Definition . A _partial solution D' to the distribution problem for G

is any solutionprof the distribution problem for G'< G whibh is a dis-

+ribution subproblem for G. D' 1is also said to be a partial solution for_

I
rye
—

Of course, a solution D for G 1is also a partial solution for

A

Dafinition 8. A  heuristic production rule in G  (HPR) is any rule for
changing a partial solution D' for G in G' , into a partial solution

D'' for G in G'' , if G'< G''& G.

Definition: 9 . A heuristic algorithmic resolution (HAR) for a distribu

tion problem in G 1is any finite sequence 28

of partial solutions for -G, such that:

1) D'n is a solution for G.

2) for i= l, see 3y N — 1 y
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b2

if D'i is a solution for G'.l and D'i +1 is a solution for G'

ivl ?

1 1
then G 5 < G i+l

3) fOI‘ i=l, .:.,‘n"l,
D'i+l is obtainable from D'i through a finite number of applications

of the rules making up the.set H of heuristic production rules in G .

> is called a resolution for the distribution problem in G , or sim

ply a resolution for G . Any non—empty subsequence S/ of ¥ is called

a partial resolution for the distribution problem in G , or simply a par-

tial resolution fdr G .

A Heuristic Algorithmic Resolution for the Distri’ution Problem .

Next we give (without further proo{rexcept that the programme deve-
loped Works) , one possible way of obtaining a HAR, if it exists, for a

distribution problem in G. A set H of APRs is indicated for such a HAR.
I - First, start with G'l = ¢ anad
Dl1=¢;—PN.'

IT - Apply HFR1€ H, given below, once.

IIT -~ Apply HPR2 € H, given below, a finite number of times, possibly none

IV - Repeat II and III in sequence ény (finite) number of times until at

~ least one solution for G is obtained, or until FAILURE is found.

%
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Purpogse of HPRY1 ang HPR2.

The purpose of HPRL is to transform a partial solution D'i into

a partial solution D'i+l such that, whenever possible, G’iC:G'

< condition C'f:.Gfi¥l » 1s always possible if the problem has a solution

i+l the

and if G'iC G.

The purpose of HPR2 is to transform a partial solution D' (which

ig eventually a solutlon) 1nto a preferred partial solutlon D'j such

that. Q'i = G'j y if D'j exists. If it does not exist, D'i ie maintained.
Note‘that HHPR2 is_ggj.indispensnble, and the reasonrwhj it is conside
red is to propiciate eventual interaction of the user with the heuristic
nlgorithm so that outside heuristicacan be mads effective by commanding

the programme to carry out virtual alterations on a partial solution or so-

lution already obtained.

Description of HPR1 .

. To apply HPRY proceed as followst
1) if applying HPR1 for the first time, i.e. at step II of HAR, then:

Form sets QPEN = SG and CLOSED = ¢ .
2) Coasider all X}.‘(O;PENUCLOSED) »and compute the set ADD given bys
ADD = {xm}"‘ (x) < (opEwU CLOSED)}
3) put members of CPEN in set APRAISE.

4) put members of ADD in OPEN.
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5) define
G' = {( oPENU aPrAISEUCLOSED ) x ( oPENU APRAISEU CLOSED i}f}c.

6) apply procedure CONCILIATE, defined below, to APRAISE. If SUCCESS is
obtained, merbers of APRAISE have been put in CLOSED ; proceed to 7). If

FAILURE is obtained, exit with NO SOLUTION EXISTS.

:

7) apply procedure DISTRIBUTE, defined below, to G' and D' obtained in 6).

Each time HPR1 is applied successfully, a subproblem G'' of G has been

solved, with .

G'' = (CLOSED x CLOSED)()G » Sgiy = S;» and

T = APRaAISE, and a partial solution D'' is added to a partial

G !

. ’
rescliuntien 2 for O.

Definition of procedure CONCILIATE.

a) if CLOSED = ¢ , choose for each x & APRAISE a value from Lx , and exit

to IPR1 with SUCCESS.
b) if APEAISE = ¢ , exit to HPRI with SUCCESS.
¢) if APRAISE # @ , pick any xEAPRAISE.,

¢) if 5)2y (x) = 0, tzke 5 from APFATSE ond put it in CLOSEL 3 go to b)e,

- €) if 6-XGK (x) # 0, make u = 1 if g;eater than zero, else make u = —1l.

f) search for a sequence of distingt elements

C.—.(x:c,cl,c,g,...,cn)
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such that 3
i) ¢, , ««+y¢, _ , € CLOSED.

ii) %]eSG,L}TG, .

iii)There correspond to it two sequences of length n. One, wheras

ﬁgﬁﬁaéﬁﬁ

element is any one of the two generating function symbols r;| and[\*c'y:

L@ SU SEPIRTRI, SN E

Another, whose elements take the values u or, - u

w = ( Uy oy Uy g 00y un) ’

such that these cequences obey the next conditions.

iv) ¢ € b’o(x) and b’o is[17,

v) Ci+1 € b/i (Ci ) for i=1, eee , n .

Vi)fOI‘ i=1,u-,n!

wymu 16,y =¥, wmad; =0

~aif g A, emaldy =&y g

=
]

o i 5’;7Qﬁ -1

=
It

vii) for i =1, ¢eo yn— 1,
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FG' (ci ) +ui€Lci s and -~

Fo, (cn) +unu,0n if ¢ € CLOSED .

¥ no such sequences can be found exit to HPR1 with FAILURE , if not, pro-

ceed to g) .
g) Add ui to FG' (Cl ) for i= 1, see g N — l .

* : .
Subtract u from g e (x), ang, if ¢, CLOSED, add u  to Pg, (cn). If

not, adg u to Vz, (cn).

h) for i = 0, +u.,y -1, 2dd u to D' (ci , ci+1) if X; ==81) > @dd - u if
¥ 45, .

i) return to a).

W,

- — —— e e e e o A

A} for esch X € CLOSED, ior every Y;z’ CLOSED such that YG—Q, (x), make

AATJ (x,y) equal to any inieger value belonging to Ly, on condition that

2' (x,2) = By, (x).

zeld, (x)

e

!
Q‘e Toseikle,. and rerhaps propicicUs, way of doing it, i.e«, chocsing inte-

wA&*T valuecs for the several D' (x,7) reletive to a given x, is io compute,
B,
_»-_T,_-,.Au." eac}; ore

Pur (y7), defired by:

-
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pgr (6y) = min + max (5o, (x) -Z D (x,w))

-

Z: (mlnz+maxz)

'here a 6@, (x) and z ﬁCLOSED, and where wel(?, (x) and w €CLOSED, 2nd to ma-

va each D' (x,y) squal to an integer value as near a3 posslble to Py (x,y)

out subject to the condition expressad in a) for x.

Pescription of HPR2.

The application of HPR? is always posierior to at least oae application
58 OPR1, and may follow immediately or only after one or more previous. ap-
>lications of HI'R2 itself. Since HPR1, if succéésfull‘, always leaves us with
some partial solution D! for a subpr.oblem G'<=G of the form

- ~»

G' = (CLOSED x CLOSED) N ¢,

-ad since HPR2 does not altec G' but possibly only D' , changing it to a dis-
iribution DY whic_h is also 8 solution for G' since G" = G! s on the ocasion
T applying HPR2 we are always confronted with a certain D" which i3 a solu-
lon for a subproblem G"C G. How can we alter D" and still have a solution

or G" ?

One possible way is now given. It is shown how to alter one given node 1

7 an amount 87( 0, which is an integer obeying to:

FG" (x) + E e LX_'

~multaneously, we can consider that Lx has also been changed, or
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‘that it-has-remuincd the wume. This gives uy the Tilerty 4o alter the cons-

traints imposed txrough the sct of intervals L.

a) if £)0 make u=1l, ottervise make u= —1.

b) Search for two sequences, each of them made from elements which are gis
tinct from other elements in tle sequence. Moreover, the first elements of
each sequence are the same, ang possibly also the last, all other elements

of any of the sequences, teirg distinct.

Tbe two scauences,

s=(x-= o0 8) 0 Sy 5 eee s 8 )

ahd
't=()\'=8 =t ,t ,t ’co-,t )
are such that

o 1 3 e g Sl‘l" s 1.1 y t2 3 eee tme CLOSEDQ

ii) s, = tm or (inclusive or) sﬁ,'tmE;SG,,L}Tb,,-

iii) there correspond ic¢ ezch Seguence two other seguences with

length I equel to the length of the corresponding :sequence plus one }

i.es L=ns+lorl=nm+ 1 .

One c¢f the two secuences is made up of elements that are any of

Gl

the two generating functioen symbols, C ;-annfjc,, « There are two -of them:
o o

Z'—' (X ’5/1’ LR 75/ )

8} n

ang

O<=(O< p<1’ e ’(X ) . -_.,

[0} m
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The other sseguencs, takes the values u or —u for its elementa. Tha

ra are also two of them?

)

W = (ul y u2 g esey un+1

and

).

r 06
r=(1,r2, :I‘m+1

These twa seque.ces are such that they obey the conditions which follow.

iv) Sléb,oi‘(x)' and Xo isfgfl .
t, €0, (x) and & isrc,:" .

r) si+1€xl (si) for 1 = L g evey N
t;,1€ % (ti) for L = 1y ceey ms

Vi) for i= 1’ seey N

I
H
¥
I
e
H
oy
—
=
N
o<
o]
o]
jo N
o<
0
=<

D3

]
Q
e
=
\k.
Q(
t
e
[}

for 1 =1, ooy m,
r, = u ifO(i__l =&° -ando('i =O<i_1 ,
r; =~ u ifO{i -1 ;(Q/O and()(i =O¢i_l ’
ryow o 0 A

vii) for i =1y ese yn- 1,
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(oi) +u €l

o" and

" (sn) +u elh ir 8 -{ B .

fOI“iﬂl, eees 4y M@ — 1 y

FG" (ti) + rié Lt and

g" (tlﬂ) + r'IIGLL' il tm ¥ to.

n

If no such sequencea can be found exzit from HPR2 with FAILURE, if not, proceod

tog ) .

g) for i = 1, «uvy, n - 1 add u; to Fe, (si)-

for i ='1, esey m = 1 add Ty to FG" (ti) .

if 5, £ tm , adad u, to FG" (sn) R

&s )if u_ = r .

and T to EG".( tm )» otherwise add u to Fou n’ n m

h)fori::l,..-,n—l,

add u to D" (si,si+1) if 5% =3; )
add —u. if Ji ,12(0 .

‘5°ri=1’00',m_1'7

ad " bl Y -

Jldwto o (e L) oG oy

MA - u it 7o |

i i )

1) subtract u frong and, iff £ 0, return to a).

W) Aply procedure DLSTRIBUTE 1o 0" and .
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CHAPTER 8

HOW TO OBTAIN THE PLANAR REALIZATIONS OF A GRAPH

AND MODIFY THEM TO MEET CONDITIONS 'A*

L. INTRODUCTION

5
In thlS chapter we shall be concerned with obtammg all possible planat

realizations of a graph G given by the list understood in Hypothe31s 2, axﬁ“

with modifying each of them so as to make it comply to conditions 'A"’.

Thus, we will be searching for the solutions of:

(1) Subproblem 1. 6: Given G, find out whether or not it is connected
and non-separable; if not, how to alter it as to make it connected and non-

-separable.

(2) Subproblem 1.1: Given G, find out whether or not it is planar; in
particular, only connected and non-separable graphs will have to be examin-

ed.

~

(3) Subproblem 1.3: If G is not planar, how to alter it to make it pla

nar.

(4) Subproblem 1.2: If G is planar, find all its planar realizations; in

Y

particular, only connected and non-sepérable graphs will neéessarily have to
be considered. Furtherrhore, only those realizations obeying Property. 2 of

chapter four will necessarily have to be generated.

(5) Subproblem 1.7: Given the realizations of G found by solving the

previous subproblems, modify each such realization so as to make it comply
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with conditions Al and A2, and with the following additional hypothesis:

Hypothesis 9: It may be given a list of non-adjacencies, in the form

of pairs (a,b) of spaces, interpreted as meaning that spaces a and b may
not be adjacent; i.e. pair (a,b) of the list must not be present in the list
of Hypothesis 2, nor can it be added at any time to the list of adjacencies

of graph G when it suffers modifications.

Now, paragraphs (1), (2), and (3),aiin at reconciling G with condition
A0, whereas paragraph (5) aims at securing that conditions Al and A2 are
met. Paragraph (4) pertains directly to the solution of the Initial Problem:

it may be further divided into two subproblems:

(a) Subproblem 1.2.1: Given graph G, connected, non-separable, and

planar, find one of its planar realizations R.
G, -

<

(b) Subprvoblem 1.2.2; Given an R obtained by solving the previous

subproblem, find all the planér realizations of G; in particular, only tho-
se which obey Property 2 will necessarily have to be found, since the othe:

cannot give rise to any layout scheme.

2. FURTHER PROBLEM DECOMPOSITION

Consider the following definition:

A graph G is 3-connected if, for any two subgraphs H and K of G

such that
1) HUK = G; ,
2) V (HrK) is a set, -{ U’Vv:'- , of two nodes;

3) E(HhK) =0,
cither H or K are segments.

Now let V and'F be the number of nodes and edges, respectively o

graph G.

“LuEC - Teae~ Q6714740720



Theorem . If-G is 3-connected and planar, the number of differen; -

planér realizations of G is givén Aby E-V+2 (1).

Consider a planar realization R of G. The number of its faces, acce:
ding to _E‘uler's theorem, 1is E-V+1, since there is only one connected CanE
ponent. Taking into account the external face of G, then the total number of »
faces of G is E-V + 2. Now, the external face corresponds to the bound.u;
of: the g1ven reahzatlon R of G.

Consider any of the remaining faces of G in R. For each of them,
there exists a plariar ;ealization of G obtained by assigning to the interior
of that face all nodes and edges of G not belonging to the polygon which
corresponds to that face, in 'such a way that all faces remain the same; ex-"

LT Y
cept that the face considered now becomes the external face and the boun-

dary of G in R becomes a face of the new realization.

Intuitively, from a given realizétion of G all other realizations are
obtained by putting inside each face all other faces, thus transforming it
into the external face. The number of different realizations is then
F=E -V+2, where F is also the sum of the faces of G in R plus ‘its

external face.

It is easily recognized that the faces and external face of a given
4

realization R of G define a planar mesh of G. In fact, each edge belongs

exactly to two of those féces and, furthermore, any cycle of G can be

obtained by the sum of those of such faces which are "interior" to the cycle.

4

What is more,. the realizations of G are easily obtained by consider-

ing each of the faces of G in R as the contour in each of the remaining
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realizations of G.

If G is not 3-connected, however, the obtention of all its planar rea-
lizations is not as simple; thus we shall divide Subproblem 1.2.2 into two
others:

(i) Subproblem 1.2.2.1: Given an R obtained by solving Subproblem

1.2.1 for a 3-connected G, obtain all its planar realizations; in particular,
only those which obey Property 2 will necessarily have to be found, as ar-

~ gued before.

This subproblem is solved as indicated above, but without consider -
¢ ing those realizations having an external face with just three edges; i.e.
those resulting from the triangular faces of R.

-~ s

(ii) Subproblem 1.2.2.2: Given an R obtained by solving Subproblem

1.2.1 for a G which is not 3-connected, obtain all its planar realizations;

in particular only those obeying Property 2 will be of interest, as argued

before,
The solution of this subproblem will be considered further on.

&3 EXAMPLES

In this section we illustrate some of the above problems by means of

%: -
g}}u mples,
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I) Consider the following realization.

Now, taking the dashed edge into account, this realization could not
g “ . -
be planar since it is a realization of a non-planar graph; the graph is nat

planar because it has the following Kuratowski graph as a subgraph:

'
|

The given graph is obviously connected. With the dashed edge present
it is also non-separable (or 2-connected). Without the dashed edge it beco”
mes ‘planar, all the while remaining non-separable, as can be easily seen.

This example illustrates Subproblems 1.6, 1.1 and 1.3.
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1) Consider the two following planar realizations of the same graph.

The one on the right was obtained from the one on the left by putting

the whole graph inside face (3, 4, 6, 8) of the realization on the left, thus
rurn.ing it into the external face.

But from the rcalization on the left dne 'may also obtain the next rea-
lization shown, where cycle (3, ;5, 8,7, 4) of the realization on the left was
turned into the external face of-the new realization (for the moment do not
consider its dashed edges). Note that cycle (3,5, 8, 7, 4)was not a face of
thce realization on the left. This can happen because the given graph is
not 3-connected: by removing from i nodes 4 and 5 it becomes a disconnected

graph with two components, both with cycles.




Now, if the last realization obtained is to obey conditions Al andg Az
~¢  will have to add edges to nodes 1 and 2, and divide face (1,2, 5,6, 1)

tito triangles and/or quadrangles. The only way to do both things, hO\,vQ';Q;

*

‘urns out to be by creating the two dashed edges shown.

This example illustrates Subproblems 1.2.2 and 1.7. The list unders- ;

rood in Hyvpothesis 9 is considered to be the empty list.

[1[) Consider next the f‘it-'St two of follbwing d‘iagrams. They are two
olanar realizations of the same graph. But, whereas in the first it is not
cossible to meet requirement Al relatively to node 4 since only the dashed
+lge may added to it without violating the planarity of the realization or
making the graph non-simple, in the second realization a possible way of

complying with ALl and A2 is sﬁown by the dashed edges added.
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In the third figure edge (4, 6) has Abe'en_wdglet‘.ed, corresponding to a
redefinition, by the user, of the list of egiges of Hypothesis 2. This way,
the figure shows a viable completion of a planar realization of the new graph.
Such completion would not have been possible were edge (4, 6) to persist. Thic
third figﬁre exemplifies a problem we leave to the user's attention and in-

sight. ‘ o

€n

The other two figures illustrate again Subproblems 1.2.2 and 1.7.

V) Consider now the following planar realization of a graph with letter-

" "

and "west",

t

south ",

7"

¢d nodes, where N, S, E, and W stand for "north",’ east

respectively.
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The layout scheme shown below respects all the imposed adjacencies;,

in it, partition segments between the four cardinal points have been abOlish;

ed.
N
! 2 3
£y c
0 4 5 6 7 £
8 Q 10 Hi
S

Of course, some adjacencies are present in this layout which were
not imposed. These are correspond to the dashed edges shown in the next
figure, where the above layout and its dual realization are superimposed.

From it we may observe that a ‘realization different from the one used to

specify the graph was used. N
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Yet another realization is shown next, where a viable completion of
- edges so as to meet conditions Al and A2 is .expressed by the dashed edges

This example illustrates how the various above subproblems inter-

relate, and what types of interventions the user may be confronted with,

if the program is not to generate all possible solutions.

V) The following three figures are

the only planar realizations of °

the 3-connected graph given by the adjacencies shown, which comply to

PI'Op&‘rty 2. They correspond to consicjer as the external face, the con-

tour cycle shown in each figure. Note that, according to Property 2, the

bOundar_y of a realization may not have only three edges if it has interior

Noxdeg .
“LNEC -

Proc.86/14/4030 217



18

o

LNEC

- Proc.86/14/4030



This example illustrates Subprob]efn 1.2.2.1

4. RESOLUTION OF THE SUBPROBLEMS PRESENTED

In this section we indicate how the various subproblems arisen were
| dealt with, by using appropriate computer programs. As some of those pro-
- grams WCre_n.ot developed by the present author and since the algqrithms
.. they execute belong more properly to graph theory, we will in some cascs
: ,
- €Xcuse QU}‘SQ]VCS from derailing their theoretical justification and their actual

formulation.
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(1) Subproblem 1.6 is solved by two programs: one which tests graph
connec tedness, and another which tests its separability. The information
they output is conducive to the elimination both of unconnectedness and

separability.

(2) Subproblems 1.1 and 1.3 are treated by means of a graph plana--

rity program which finds out whether a graph is planar or not and, in the

P -

negative case, gives relevant information to change it into a planar graph.
In the affirmative case, a planar realization for the graph is given in terms

of a planar mesh.

(3) Thus, Subproblem 1.2,1 is also solved by the previous program.

(4) All the realizations of & planar graph are obtained by another pro
gram, which uses the planar realization given by the planarity program
to compute the remaining ones. An outline the workings of this program,
which really is part and parcel of the planarity program, will be delineat-
ed further on. Both the testing of _graph planarity and the obtention of planar

realizations will then be expounded.

(5) At presenf Subproblem 1.7 must be solved by the user himself.
Of course, one could_ contrive a program to add missing edges in all con-
ceivable ways so as ‘to meet conditions Al and A2, which would take into
account Properties 1 to -5 df chapter four, so as to minimize subsequent
pruing of alternatives. But to us, the issue here does not seem to be to
generate all viable sets of additional edges, but to consider only- those with

a semantical significance. And at the moment, that can only be done by
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the user himself, once he is confronted with the permissible planar reali-
- zations .given by the planarity program. . A fortiori,. the question_of edge
deletion should also be left to the user's attention and insight; of course,
the user will be helped in this task as in the previous one, by ‘his know-
ledge of conditions A and B and their consequences. |

We will return to this point in the chapter on fllJture developments

and lines of investigation. °
(6) Subproblem 1.2.2.1 is also solved by the planarity program.

(7) Subproblem 1.2.2.2 is either solved by the planarity program
treating the general case, or as indicated before, by relying on the theo-

rem stated to that effect.

-~ -

Remark about the main program. We remark that the program generating

the PHV-assignments for a given realization, may test that realization in

what regards conditions A, before engaging in the generation of assignmerns.

This means that when a realizat_ion is submitted to it, by means of
the list of adjacencies understood in Hypothesis 2 and by giving the
sequence of nodes around the contour,then, if that realization has not becn
previousl.y processed by t};e above mentioned algorithms, the main program

initially tests:

(a) graph connectedness;
(b) the planarity of the realization by identifying the faces of the gi-
ven realization; this is accomplishled by the program by "going around the

contour” and “peeling off" the faces found; these faces are deleted, therebyv
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_defining the realization; the "peeling process” then continues until: |) eithﬁﬁ
”}'
e of Properties 1 to 5 of chapter four is infringed, or no more faces can ”

F=E-V+1, is met, in which casg

> detected before Fuler's condition,

s2 realization is rejected and relevant information is output regarding the "

2ason(s) for failure, or, 2) the program accepts the given realization after

.aving found all its faces according to Euler's formula; only then does it

‘roceed with the assignment generation mechanisms.

3 THE PLANARITY AND PLANAR REALIZATIONS ALGORITHM:

N

AN OUTLINE

Let G be a non separable graph, P a peripheral polygon of G, C the

>lementary cycle defined by P. .. <

[t may be shown that if G is planar, there is a planar mesh of G

containing C.

Consider now the following splitting procedure, with respect to G and

Find a segment S of G, with end nodes 'u and v in P, determining in

.o segments R and T, such that
(1) S avoids P;
(2) one of the segments, say T, determined by u and v in P is a

branch graph.
4
[t is easy to prove that such a segment always exists.

Let Bl’ cees Bn be the bridges of the p‘olygon M = RUS, other than T

(which is a bridge by itself). If B, has feet x; “and y; such that x; -and

V. oare interior nodes of R and S, respectively, it is then clear that Bj and

LNEC -~ Proc.86/14/4030
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T overlap; call such a B; an outer bridge. So if two outer bridges B; and
) » amd alro vg
B, overlap, G is non planar, & there are three mutually overlapping bridges

"B BJ-, Bk ; in both cases stop.

If none of the above conditions apply, it is possible to find two disjoint

subsets of the set of bridges {Bi} 1 < i< 1 such that: -

(1) if B; and 'Bj belong to one of them, B; and BJ avoid one another;

(2) every outer bridge belongs to the same subset.

If there are no outer bridges, call inner part to one of these subsets

and outer part . to the other; else call outer part to the one which contains

the outer bridges and inner part to the other. Furthermore, let the inner
and outer parts be chosen in such a way that, if possible, the inner part is

empty. -

-~

Now, if the inner part is empty, the polygon N = TUS is clearly peri-
pheral, and if G is planar, there is a planar mesh which contains both N
and P.

Finnaly, call outer graph to the subgraph of G defined by M and and

the outer part, and inner graph to the subgraph defined by N and the inner
part; one can see that M is peripheral in the outer graph and N is periphera!

in the inner graph.
This. splitting procedure is the core at the planarity algorithm, which

works as follows:
Let G be a non separable graph.
(1) Choose an arbitrary polygon P of G.

(2) Determine the bridges By, ....,By ofP.

(3) If there are three mutually overlapping bridges, G is non planar,

So stop; else it is possible to find a partition of ¢+ Bj: | ; . p Into

~.
, 3

(R
o
w
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g
two subsets such that any two briges of the same subset avoid one anr«‘i'::ﬁ
]
i

chose those subsets, H, K, in such a way that, if possible, one of them 4 ‘
empty.
(4) Let Gl, G2 be the subgraphs defined by P and H, and P and K,:

poctively.

(5) Consider the following recursive procedure, with arguments a ,x_“g
X and a polygon Z peripheral in X: if X =7, Z defines a cycle of the p,.,-:ﬁ

mesh to be generated; else apply the splitting procedure to Z, X and r:smg_)

the procedure twice:

W

the first time, with X the inner graph, and Z = N,

the second, with X the outer graph, and Z =M.

4 T

(6) Apply the procedure in (5) to G, P, and to G,, P.

This ends the description of the planarity algorithm; note that the algo-
rithm terminates either with a planar mesh for G or else with a statement
of nonplanarity.

To obtain all the planar meshes for a given planar graph, it is suffi-
cient to backtrack over all possible choices of:M and N (ifb R and T are
branch graphs) in the splitting procedure, and over all possible partitions

of sets of bridges.
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ExamEle

Consider graph G, shown by the following realization R. We shall
exemplify now how the planarity algorithm obtains the planar mesh of G

which ‘consists of all the faces and external face of R.,

N
B

o



Since this graph is 3-connected, it has only one planar mesh; the nym

her of planar realizations of the graph is thus equal to the number of cycw

of its planclr mesh Wthh is E -V + 2,
Let the polygon P in step (1) of the algomthm be the one definad by ,ﬁ;;
nodes 1 2, 3, 4, 11, 8 and 9. We write E (1), 1(1) for the graphs G, GI 3

in step (4), and whenever in step (5) 2 subgraph I (iy,... i ;) (resp.

-;éii-. e

EGp - jn—l)) splits we c;a_li' “i‘(il', i in-l» 1) to the inner graph and 7-
E (i, - in-l’ l) to the outer graph (resp [ Gysv-oor Jp-p 2» E (_]1

L] jn-ly 2))
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Now, I(1) gives rise to the two following subgraphs and to the cycles

shown in them, which were chosen according to the pléﬁafity 'algo'ri_thm».{

1 (1) ~ | -

- TERMINAL NODE

E (1,1)

The algorithm continues as before, generating all the steps corres-

ponding to the figu}és that follow.
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I1(1,1,2)

E (1,1, 2)
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CCOIAPTER P

SOME FURTHER DEVELOPMENTS AND LINES

OF INVESTIGATION

|. INTRODUCTION

.....

. . -
[n this chapter we refer to further developments of the work presenteds
and to lines of investigation which, though "not immediate extensions of the %

theory are, novertheless, wortay of expleration,

2, FURTHER DEVELOPMENTS AND LINES OF INVESTIGATION

These are; -

(a) To consider other forms besides the féétz;thgle for the individual
spaces. The adjacencies between such spaces can be taken into account by
the use of non-simple graphs, as shown in the next two figures.We remark
{240 a dual of non-simple and/or separable planar realizations can be easily .

defined, as shown in the third figure.
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(b) To describe three-dimensional layouts, by graphs of adjacencies

with constraints on loads, access routes, piping, etc. . e T
(c) To take into account maximum and/or minimum distances between
spaces, total area, individual and global perimeters, total length of wall, and

other metric concepts.

(d) To envisage the arrangement of geometric forms within eachspa
ce, taking various constraints into account which can be translated into me-

tric terms.

(e) To consider that a graph may be used to express not only spatial
adjacencies but also the linkage among activities that may (or should) occur
in the same or in distinct places; for exampL% ‘;human activities like eating,
-meeting, . sleeping, and so on. The ~prloblem‘~is tl}en to translate the graph of
?éctivities into a graph of adjacent"rand non—adjaéent spaces by fusing some
“.;Of the nodes or edges into one, and/or by splitting nodes and edges into va-
rious others, such that the requirements laid down for the adjacency graphs

of spaces are satisfied,

(f) To increment the interaction facilities between user and programs.

¢

Thls should be a primary goal in all further developments.. ’

(g) To develop a programming language especially apt for describing

;**¢ manipulation of objects and concepts pertaining to spatial organization.

e
b

ii
Res

~ (h) To further formalize the theory developed and its extensions, so

o
(8]
~J
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l\.4

as to free it from any partlcular semant1cal mterpretanon and thys

it susceptible of semantical interpretations other than the particular

tary axioms, hypotheses or defmmons may be added and to which s

semantic interpretations may be aSS1gned)

(i) To further explore appropriate grammars for talkmg abou:

properties of the layouts, such as the types of architectural conflgura

L¥

, 2
that may be imposed (e.g:. linear, cluster, focal, radial, grid, Circulsg

etc).

(i) To pursue the following line of investigation which is import
enough to be specified in greater detail.

-

First note that: ™

(1) Conditions, A, B, and C have been identified for regulatingﬁ

permissibility of a coloured realization, not only in respec:tv of its "micr

-structure” but also its "macro-structure”. g

(2) Algorithms for regulating the distribution of dimensions havealﬁ

been given,

(3) The processes, implicitiin (1) and (2) which are used for reg¥

lating a given realization, posess a certain degree of "separateness”, 3s %
marked before.
We now remark that:

|
(4) Each- individual space can be thought of as being partially or__g

totally surrounded by other spaces: i.e. as having a sequence of "contour

spaces to which "contour rules” may be applied.

I‘O

LNEC - Proc.86/14/4030



(5) A space and its contour spaces determine a subrealization to

‘which conditions A, B and C will apply, as well as the dimension disfribu-

tion algorithms.

(6) The "subrealization” corresponding to each node can be individuall+
considered for the purpose of adding edges so as to meet conditions A 1 and
A 2. Significantly, the addition_ of the extra edges can be made in terms of
a redefinition of the "contour" of the space corresponding to the node in ques
tion, by developing certain "contour specification rules for a node! Futher -
more, as each node is considered in sequence, it >either gives rise to cons-
traints in the following nodes and their subrealizations, or in case incompa-

tibilities develop demands reconsideration of the previous nodes.

(7) Since we are already aware of the individual processes stipulated
for carrying out conditions A, B and C, as well as the dimension algorithms
D, we suggest that these processes may be duly modified for being "simul-

taneously" carried out for each "subrealization",

(8) The particular succession of nodes and corresponding "subreali
zations" would be controlled by the user, conflicts being resolved "on the
spot” eventually through a redefinition of requirements. The user's insight

or his 1nexp11c:1t (heuristic) rules would also be exterlon/t,d in thlS manner,

- by means of suitable interaction facﬂmes including a graphic display and a:,

light-pen system.

3. COMMENTS

Of the paragraphs presented in the previous section, the ones more

S RO
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-xtending the scope of the work are, in order of important, (e), (i),' (c) ang
(2). The ones permitting further facilities for dealing with the problems tr&ﬁi

=d and leading to major developments are (j), (f), (g) and (h).
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CHAPTLR 10

THI PROGRAM OUTPUT

i1

1. INTRODUCTION

In this chapter some of the layout-schemes pertaining to the planar
realization given at the end of chapter six .are exhibited. Not only modular
solutions are shown but also dimcnsioned ones. Furthermore, interaction
with the cbmputer programs developed is carried out, so as to alter the

initially specified dimensions for some of the layouts.
2. PROGRAM AND COMPUTER PARTICUI:’AR_LS

~ Two computer programs were written by the author, where the theorv

developed was embodied. The first tests conditions A and B for any'given

realization and gcneraltes all PHV-assignments cdmplying to any specified

pernﬂiés“ible tbype of conEéur form. The s‘econd one takes these P‘HV-.assign
ments, computes” modular and/or dimensioned layout-schemes and outputs

| them. It also provides the interaction for refofmﬁiation o‘f dimensional re-
: quirements.

The various planar realizations of any given planar graph are compuic:
by the planarity algorithm mentioned in chapter eight. It was developed by
Monteiro and F. Pereira (se¢ reference in that chapter),

Now, the programs werc implemented on an ICL-4130 computer with

@ 6 microsecond store cycle and the code of the first program occupies
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roughly 11K 24 bit words, while that of the second occupics 8K. They were
both written in ALGOL 60.

In the example to be given below a PHV-assignment was found every 6

seconds. It was then given dimensions and printed, on a 1,250 lmee per n-;;.::

(8]

nute lineprinter, by the second program, i § sceonds,

Program Options.

In the generation of the PHV- asmgnments two main Op[lOl’lS are avalla-”}"i
. ble. The f1rst is the specxflcatlon of the type of contour form de51red and -'
the minimum and maxim}urh number of convex corners it musf respeet.ﬂxe E
second, controls whether the backtracking;v process should be done only on
the interior edges, finding then.the flI’St permissible assignment for the ex- -
terior edges, or if, for each assxgnment on the interior edges, the backtra-
cking mechanism should find all possible assignments on the remaining (ex-
terier) edges “In the first case, succeseive solutions will in general differ
more between themselves than in the second one. This option makes it pos-
sible to-‘obtain only- those layouts diffe_rihg at least in the assignment given
to an im:erior edge.

In the output' ef the layouts two grvou[‘)s of maih options may be
combined. | | |

First group:

to choose excess integer and scale

!

- to have interaction
- to accept new dimensions for nodes or edges
- to specify which spaces are not to be drawn (e.g. auxilliary spaces

such as "north” or "patio" may be skipped).
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- to change option

- terminate after next layout is drawn

Second group:

- to draw only modular layouts -

- to draw only the dimensional layouts which do not exceed the excess

integer.
- same as last, substituting the ones which do exceed by the corres-
ponding modular

- all dimensional layouts, whether exceeding or not the excess integer

- get a particular layout given by its number.

Other interaction facilities permit:

&,

- to alter the dimension requirements for any set of spaces of a layou

and the extent of theif contact.

- to keep the alterations made or to ignore them, for subsequent

layouts

3. AN EXAMPLE

The planar realization shown at the end of chapter six was specified,

by giving the program the Vlistv of. itsv edgeé, according to Hypothesis 2.
Spacés corresvponc'ling to nodes 1 to 15 wefe spécified as exterior sp:
ces, according to Hypotesis 7. Sincé the given graph is 3-connected, oncc
its contour is spek:ified, the planar realization to be considered becomes
uniquely defined. Thus the program "knows" what particular plaﬁar realiza-

tion has been given.

LNEC - Proc.86/14/4030 . s



The class ofufor“mbs speeified for the contour ot’rrnAc layouts was fhe
indented class of forms. This class was given to rhic program by means of
a procedure determining an automaton whicih recognizes just those forms,

In compliance with Hypothesis 4, two lists of tolerance intervals were
also given for the dimensions of the spaces. Furthermore, an excess inte-
ger was supplied.

In compliance with Hypothesis 5 a list of tolerance intervals was spe-

cified for the edges.

The program generated 29 PHV-assignments using the option of back-
tracking on the interior edges once a complete assignment was found;after
the 29th assignment was obtained, it was stopped.

It was also run using the option of backtracking on the interior as well
as exterior edges, thereby generating 8 variations of exterior edges for
the first layout found; after the 8th layout was produced it was stopped.

The groub of 29 layout.s was then drawn by the program, according
to given dimensional tolerances and excess integer. These are ‘not shown
since the tolerance intervals and excess integer were modified on the evi-
dence of the layouts produced, but the group of 29 layouts was then output

according to the new specifications. These layouts are shown on the next

1
t

pages, after the modular ones. Only the ones obeying the excess integer
came out.

The final tolerance intervals used for the spaces are given now:

244 t LNEC « Proc.86/14/4030



TOLERANCE INTERVALS

NODE HORIZONTAL VERTICAL
1 13 - 18 9-12
2 7 - 10 116 - 23
3 6 - 10 14 - 23
4 .10 -34 . 6-9
5 18 - 25 7-10
6 6-8 _ 10 - 13
7 15 - 20 ‘ " 7-9
8 5-7 5-7
9 10 - 13 6 - 8
10 5-10 5 -8
11 6 -8 6 -8
12 6 - 10 6 - 8
13 6 - 10 6 -8
14 6 - 10 6 -8
15 11 - 18 6-9
16 6-11 6 - 10
17 5-7 5 -7
18

11 - 23 7 -10

A uniform tolerance interval of 1-50 was given to the edges, and the

€XCEeSS integei 10 was supplied.

First the modular solutions are shown; then 8 exterior variants of the

first layout; then the dimensioned layouts. The layouts resulting from inter-

action are shown further on.
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After the precedent layouts were output interaction was initiated.

ayouts numbered 11, 17, 18, 21, 25, and 26 were considered for altera-

sns. For economy we only show the final layouts obtained,in the next se-

‘2s of layouts.

E&H alterations’ were made only local to each layout.

Layout 11, The alterations were made in two stages. On the whole,

2y consisted in eXchanging the two tolerance intervals of each of spaces 2,

and 5; of making then the two maximum dimensions of space 2 equal to

7. and of modifyirig the maximum horizontal and vertical dimensions of spa-

w

4 to 43 and 13, respectively.

~- e &

Layéut l7 Fach of ther,twg tolerance intervals of spaces 1, 15, and

)

were interchanged initially. Afterwards they were interchanged for space

. also. The maximum dimensions, ‘horizontal and Vertical, of space 12 were

wgmented to 20 and 17, respectively. The final result is shown further on.
Layout 18. The tolerance intervals of spaces 1, 11, 15, and 18 were

aterchanged. The maximum dimensions, horizontal an vertical, of space 12

‘are made equal to 20 and 17, respectively. The final result is shown further

A
Layout 21. The tolerances of spaces 3, 4, and S5 were interchanged.
|
“e maximum horizontal dimension for spaces 13 and 14 was reduced to 8.

“he tolerances of spaces 4 and 5 were interchanged back to-their initial assi-

ament, and the tolerances of each of spaces 7 and 9 were interchanged. The

~
oo
,‘_\
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i

final resulting layout is shown further on.

Layout 25. The tolerances of space 3 were interchanged. The maxi
mum horizontal dimension of spaces 13 and 14 was reduced to 8. The final
result is shown fufther on.

Layout 26. The tolerance intervals of spaces 3, 4, 5, and 9 were
interchanged. The maximum horizontal dimension of spaces 13 and 14 was

reduced to 8. The final result is also shown below.

| LHEC - Proc.86/14/4030
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