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Abstract. We present a novel methodology for mapping a system such as a re-
search department to a related taxonomy in a thematically consistent way. The
components of the structure are supplied with fuzzy membership profiles over
the taxonomy. Our method generalizes the profiles in two steps: first, by fuzzy
clustering, and then by mapping the clusters to higher ranks of the taxonomy. To
be specific, we concentrate on the Computer Sciences area represented by the tax-
onomy of ACM Computing Classification System (ACM-CCS). We build fuzzy
clusters of the taxonomy leaves according to the similarity between individual
profiles by using a novel, additive spectral, fuzzy clustering method that, in con-
trast to other methods, involves a number of model-based stopping conditions.
The clusters are not necessarily consistent with the taxonomy. This is formalized
by a novel method for parsimoniously elevating them to higher ranks of the tax-
onomy using an original recursive algorithm for minimizing a penalty function
that involves “head subjects” on the higher ranks of the taxonomy along with
their “gaps” and “offshoots”. An example is given illustrating the method applied
to real-world data.

1 Introduction

The last decade has witnessed an unprecedented rise of the concept of ontology as
a computationally feasible tool for knowledge maintenance. For example, the usage
of Gene Ontology [6] for interpretation and annotation of various gene sets and gene
expression data is becoming a matter of routine in bioinformatics (see, for example,
[14] and references therein).

The goal of this paper is to develop a framework for representation of the activities
of an organization or any other system under consideration, in terms of a taxonomy.
We first build profiles for its constituent entities in terms of the taxonomy and then
thematically generalize them to higher ranks of the taxonomy.

To represent a functioning structure over a taxonomy is to indicate those topics in
the taxonomy that most fully express the structure’s working in its relation to the tax-
onomy. To make the representation thematically consistent and parsimonious, we have
developed a two-phase generalization approach. The first phase generalizes over the
structure by building clusters of taxonomy topics according to the functioning of the
system. The second phase takes the clusters as query sets in the taxonomy and parsimo-
niously maps them to higher ranks of the taxonomy. Both entity profiles and thematic



clusters derived at the first phase are fuzzy in order to better reflect the real world ob-
jects, so that the elevating method applies to fuzzy clusters. It should be pointed out that
both building fuzzy profiles and finding fuzzy clusters are research activities well docu-
mented in the literature; yet the issues involved in this project led us to develop original
schemes of our own including an efficient method for fuzzy clustering combining the
approaches of spectral and approximation clustering [12].

We apply these constructions in two areas: (i) to visualize activities of Computer
Science research organizations; and (ii) to discern the complexes of mathematical ideas
according to classes taught in regular teaching courses in a university department.
We take the popular ACM Computing Classification System (ACM-CCS), a concep-
tual four-level classification of the Computer Science subject area as a pre-specified
taxonomy for (i), and the three-layer Mathematics Subject Classification MSC2010
developed by the Mathematical Reviews and Zentralblatt Mathematics editors (see
http://www.ams.org/mathscinet/msc/msc2010.html), for (ii). In what follows the focus
is mainly on the application (i) to research organizations. The paper is organized ac-
cording to the structure of our approach: Section 2 describes an e-system we developed
for getting ACM-CCS leaves fuzzy membership profiles from Computer Science re-
searchers, Section 3 describes our method for deriving fuzzy clusters from the profiles,
and Section 4 presents our parsimonious elevation method to generalize to higher ranks
in a taxonomy tree.

2 Taxonomy-based profiles

2.1 Representing over the ACM-CCS taxonomy

In the case of investigation of activities of a university department or center, a research
team’s profile can be defined as a fuzzy membership function on the set of leaf-nodes
of the taxonomy under consideration so that the memberships reflect the extent of the
team’s effort put into corresponding research topics.

In this case, the ACM Computing Classification System (ACM-CCS) [1] is used as
the taxonomy. ACM-CCS comprises eleven major partitions (first-level subjects) such
as B. Hardware, D. Software, E. Data, G. Mathematics of Computing, H. Information
Systems, etc. These are subdivided into 81 second-level subjects. For example, item I.
Computing Methodologies consists of eight subjects including I.1 SYMBOLIC AND
ALGEBRAIC MANIPULATION, I.2 ARTIFICIAL INTELLIGENCE, I.5 PATTERN
RECOGNITION, etc. They are are further subdivided into third-layer topics as, for
instance, I.5 PATTERN RECOGNITION which is represented by seven topics including
I.5.3 Clustering, I.5.4 Applications, etc.

Taxonomy structures such as the ACM-CCS are used, mainly, as devices for anno-
tation and search for documents or publications in collections such as that on the ACM
portal [1]. The ACM-CCS tree has been applied also as: a gold standard for ontolo-
gies derived by web mining systems such as the CORDER engine [17]; a device for
determining the semantic similarity in information retrieval [9] and e-learning appli-
cations [18, 5]; and a device for matching software practitioners’ needs and software
researchers’ activities [4].



Here we concentrate on a different application of ACM-CCS – a generalized repre-
sentation of a Computer Science research organization that can be used for overviewing
scientific subjects that are being developed in the organization, assessing the scientific
issues in which the character of activities in organizations does not fit well onto the
classification – these can potentially be the growth points, and help with planning the
restructuring of research and investment.

2.2 E-Screen survey tool

Fuzzy profiles are derived from either automatic analysis of documents posted on the
web by the teams or by explicitly surveying the members of the department. The latter
option is especially convenient in situations in which the web contents do not properly
reflect the developments, for example, in non-English speaking countries with relatively
underdeveloped internet infrastructures for the maintenance of research results. We de-
veloped an interactive survey tool that provides two types of functionality: i) collection
of data about ACM-CCS based research profiles of individual members; ii) statistical
analysis and visualization of the data and results of the survey on the level of a de-
partment. The respondent is asked to select up to six topics among the leaf nodes of
the ACM-CCS tree and assign each with a percentage expressing the proportion of the
topic in the total of the respondent’s research activity for, say, the past four years. Fig-
ure 1 shows a screenshot of the baseline interface for a respondent who has chosen six
ACM-CCS topics during her survey session.

Fig. 1: Screenshot of the interface survey tool for selection of ACM-CCS topics.

The set of profiles supplied by respondents forms an N×M matrix F where N is the
number of ACM-CCS topics involved in the profiles and M the number of respondents.
Each column of F is a fuzzy membership function, rather sharply delineated because
only six topics may have positive memberships in each of the columns.



3 Representing research organization by fuzzy clusters of
ACM-CCS topics

3.1 Deriving similarity between ACM-CCS research topics

We represent a research organization by clusters of ACM-CCS topics to reflect the-
matic communalities between activities of members or teams working on these topics.
The clusters are found by analyzing similarities between topics according to their ap-
pearances in the profiles. The more profiles contain a pair of topics i and j and the
greater the memberships of these topics, the greater is the similarity score for the pair.

Consider a set of V individuals (v = 1, 2, · · · , V ), engaged in research over some
topics t ∈ T where T is a pre-specified set of scientific subjects. The level of research
effort by individual v in developing topic t is evaluated by the membership f tv in profile
fv (v = 1, 2, · · · , V ).

Then the similarity wtt′ between topics t and t′ is defined as

wtt′ =
V∑

v=1

nv

nmax
ftvft′v, (1)

where the ratios are introduced to balance the scores of individuals bearing different
numbers of topics.

To make the cluster structure in the similarity matrix sharper, we apply the spectral
clustering approach to pre-process the similarity matrix W using the so-called Lapla-
cian transformation [8]. First, an N × N diagonal matrix D is defined, with (t, t) entry
equal to dt =

∑
t′∈T wtt′ , the sum of t’s row of W. Then unnormalized Laplacian and

normalized Laplacian are defined by equations L = D−W and Ln = D−1/2LD−1/2,
respectively. Both matrices are semipositive definite and have zero as the minimum
eigenvalue. The minimum non-zero eigenvalues and corresponding eigenvectors of the
Laplacian matrices are utilized then as relaxations of combinatorial partition problems
[16, 8]. Of comparative properties of these two normalizations, the normalized Lapla-
cian, in general, is considered superior [8]. Since the additive clustering approach de-
scribed in the next section relies on maximum rather than minimum eigenvalues, we
use the Laplacian pseudoinverse transformation, Lapin for short, defined by

L−
n (W ) = Z̃Λ̃−1Z̃ ′

where Λ̃ and Z̃ are defined by the spectral decomposition Ln = ZΛZ ′ of matrix Ln =
D−1/2(D − W )D−1/2. To specify these matrices, first, set T ′ of indices of elements
corresponding to non-zero elements of Λ is determined, after which the matrices are
taken as Λ̃ = Λ(T ′, T ′) and Z̃ = Z(:, T ′). The choice of the Lapin transformation can
be explained by the fact that it leaves the eigenvectors of Ln unchanged while inverting
the non-zero eigenvalues λ �= 0 to those 1/λ of L−

n . Then the maximum eigenvalue of
L−

n is the inverse of the minimum non-zero eigenvalue λ1 of Ln, corresponding to the
same eigenvector.



3.2 Additive-spectral fuzzy clustering

In spite of the fact that many fuzzy clustering algorithms have been developed already
[2], [7], most of them are ad hoc and, moreover, they all involve manually specified
parameters such as the number of clusters or threshold of similarity without providing
any guidance for choosing the. We apply a model-based approach of additive cluster-
ing, combined with the spectral clustering approach, to develop a novel fuzzy cluster-
ing method that is both practical and supplied with model-based parameters helping to
choose the right number of clusters.

Thematic similarities att′ between topics are but manifested expressions of some
hidden patterns within the organization which can be represented by fuzzy clusters in
exactly the same manner as the manifested scores in the definition of the similarity w tt′

(1). We propose to formalize a thematic fuzzy cluster as represented by two items: (i)
a membership vector u = (ut), t ∈ T , such that 0 ≤ ut ≤ 1 for all t ∈ T , and (ii) an
intensity μ > 0 that expresses the extent of significance of the pattern corresponding
to the cluster, within the organization under consideration. With the introduction of the
intensity, applied as a scaling factor to u, it is the product μu that is a solution rather
than its individual co-factors. Given a value of the product μu t, it is impossible to tell
which part of it is μ and which ut. To resolve this, we follow a conventional scheme:
let us constrain the scale of the membership vector u on a constant level, for example,
by a condition such as

∑
t ut = 1 or

∑
t u2

t = 1, then the remaining factor will define
the value of μ. The latter normalization better suits the criterion implied by our fuzzy
clustering method and, thus, is accepted further on.

Our additive fuzzy clustering model follows that of [15, 10, 13] and involves K
fuzzy clusters that reproduce the pseudo-inverted Laplacian similarities a tt′ up to addi-
tive errors according to the following equations:

att′ =
K∑

k=1

μ2
kuktukt′ + ett′ , (2)

where uk = (ukt) is the membership vector of cluster k, and μk its intensity.
The item μ2

kuktukt′ expresses the contribution of cluster k to the similarity a tt′ be-
tween topics t and t′, which depends on both the cluster’s intensity and the membership
values. The value μ2 summarizes the contribution of intensity and will be referred to as
the cluster’s weight.

To fit the model in (2), we apply the least-squares approach, thus minimizing the
sum of all e2

tt′ . Since A is definite semi-positive, its first K eigenvalues and corre-
sponding eigenvectors form a solution to this if no constraints on vectors u k are im-
posed. Additionally, we apply the one-by-one principal component analysis strategy
for finding one cluster at a time this makes the computation feasible and is crucial for
determining the number of clusters. Specifically, at each step, we consider the problem
of minimization of a reduced to one fuzzy cluster least-squares criterion

E =
∑

t,t′∈T

(btt′ − ξutut′)2 (3)



with respect to unknown positive ξ weight (so that the intensity μ is the square root of
ξ) and fuzzy membership vector u = (u t), given similarity matrix B = (btt′).

At the first step, B is taken to be equal to A. Each found cluster changes B by
subtracting the contribution of the found cluster (which is additive according to model
(2)), so that the residual similarity matrix for obtaining the next cluster will be B −
μ2uuT where μ and u are the intensity and membership vector of the found cluster. In
this way, A indeed is additively decomposed according to formula (2) and the number
of clusters K can be determined in the process.

Let us specify an arbitrary membership vector u and find the value of ξ minimizing
criterion (3) at this u by using the first-order condition of optimality:

ξ =

∑
t,t′∈T btt′utut′∑

t∈T u2
t

∑
t′∈T u2

t′
,

so that the optimal ξ is

ξ =
u′Bu

(u′u)2
(4)

which is obviously non-negative if B is semi-positive definite.
By putting this ξ in equation (3), we arrive at

E =
∑

t,t′∈T

b2
tt′ − ξ2

∑
t∈T

u2
t

∑
t′∈T

u2
t′ = S(B) − ξ2 (u′u)2 ,

where S(B) =
∑

t,t′∈T b2
tt′ is the similarity data scatter.

Let us denote the last item by

G(u) = ξ2 (u′u)2 =
(

u′Bu
u′u

)2

, (5)

so that the similarity data scatter is the sum:

S(B) = G(u) + E (6)

of two parts, G(u), which is explained by cluster (μ, u), and E, which remains unex-
plained.

An optimal cluster, according to (6), is to maximize the explained part G(u) in (5)
or its square root

g(u) = ξu′u =
u′Bu
u′u

, (7)

which is the celebrated Rayleigh-Ritz quotient, whose maximum value is the maxi-
mum eigenvalue of matrix B, which is reached at its corresponding eigenvector, in the
unconstrained problem.

This shows that the spectral clustering approach is appropriate for our problem. Ac-
cording to this approach, one should find the maximum eigenvalue λ and corresponding
normed eigenvector z for B, [λ, z] = Λ(B), and take its projection to the set of admis-
sible fuzzy membership vectors.



Our clustering approach involves a number of model-based criteria for halting the
process of sequential extraction of fuzzy clusters:

1. The optimal value of ξ (4) for the spectral fuzzy cluster becomes negative.
2. The contribution of a single extracted cluster becomes too low, less than a pre-

specified τ > 0 value.
3. The residual scatter E becomes smaller than a pre-specified ε value, say less than

5% of the original similarity data scatter.

The described one-by-one fuzzy additive-spectral thematic cluster extraction algo-
rithm is referred to as the FADDI-S. It combines three different approaches: additive
clustering [15, 10, 13], spectral clustering [16, 8, 20], and relational fuzzy clustering [2,
3] and adds an edge to each. In the context of additive clustering, fuzzy approaches were
considered only by [13], yet in a very restricted setting: (a) the clusters intensities are
assumed constant there, (b) the number of clusters is pre-specified, and (c) the fitting
method is very local and computationally intensive - these all restrictions are overcome
in FADDI-S. The spectral clustering approach is overtly heuristic, whereas FADDI-S is
model-based. The criteria used in relational fuzzy clustering are ad hoc whereas that of
FADDI-S is model-based, and, moreover, its combined belongingness function values
μu are not constrained by the unity as is the case in relational clustering, but rather
follow the scales of the relation under investigation, which is in line with the original
approach by L. Zadeh [19]. We also carried out experiments to compare the effective-
ness of FADDI-S with other popular methods. For example, in recent experiments, [3]
compared several most popular relational fuzzy clustering approaches and showed that
combining the popular fuzzy c-means approach with an initialization routine was supe-
rior to the others; yet FADDI-S outperformed that on the data generated according to
the recipe from [3] (details and more experiments are described in [12]).

4 Parsimonious elevating Method

To generalize the contents of a thematic cluster, we propose a method for elevating it
to higher ranks of the taxonomy so that if all or almost all children of a node in an
upper layer belong to the cluster, then the node itself is taken to represent the cluster
at this higher level of the ACM-CCS taxonomy (see Fig. 2). Depending on the extent
of inconsistency between the cluster and the taxonomy, such elevation can be done
differently, leading to different portrayals of the cluster on ACM-CCS tree depending
on the relative weights of the events taken into account. A major event is the so-called
“head subject”, a taxonomy node covering (some of) leaves belonging to the cluster, so
that the cluster is represented by a set of head subjects. The penalty of the representation
to be minimized is proportional to the number of head subjects so that the smaller that
number the better. Yet the head subjects cannot be elevated too high in the tree because
of the penalties for associated events, the cluster“gaps” and “offshoots” the number of
them depends on the extent of inconsistency of the cluster versus the taxonomy.

The gaps are head subject’s children topics that are not included in the cluster. An
offshoot is a taxonomy leaf node that is a head subject (not elevated). It is not difficult
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Fig. 2: Two clusters of second-layer topics, presented with checked and diagonal-lined boxes,
respectively. The checked box cluster fits within one first-level category (with one gap only),
whereas the diagonal line box cluster is dispersed among two categories on the right. The former
fits the classification well; the latter does not.

Topic in subject cluster

Gap

Head subject

Offshoot

Fig. 3: Three types of features in mapping of a subject cluster to the taxonomy.

to see that the gaps and offshoots are determined by the head subjects specified in an
elevation (see Fig. 3).

The total count of head subjects, gaps and offshoots, each weighted by both the
penalties and leaf memberships, is used for scoring the extent of the cluster misfit
needed for elevating a grouping of research topics over the classification tree. The
smaller the score, the more parsimonious the elevation and the better the fit.. Depend-
ing on the relative weighting of gaps, offshoots and multiple head subjects, different
elevations can minimize the total misfit, as illustrated on Fig. 5 later.

Altogether, the set of topic clusters together with their optimal head subjects, off-
shoots and gaps constitute a parsimonious representation of the organization. Such a
representation can be easily accessed and expressed. It can be further elaborated by
highlighting those subjects in which members of the organization have been especially
successful (i.e., publication in best journals or awards) or distinguished by a special
feature (i.e., industrial use or inclusion in a teaching program). Multiple head subjects
and offshoots, when they persist at subject clusters in different organizations, may show
some tendencies in the development of the science, that the classification has not taken
into account yet.

We have proved that a parsimonious lift of a subject cluster can be achieved by
recursively building a parsimonious representation for each node of the ACM-CCS tree
based on parsimonious representations for its children. In this, we assume that any head
subject is automatically present at each of the nodes it covers, unless they are gaps (as
presented on Fig. 3). Our algorithm is set as a recursive procedure over the tree starting
at leaf nodes.



The procedure determines, at each node of the tree, sets of head gain and gap events
to iteratively raise them to those of the parents, under each of two different assumptions
that specify the situation at the parental node. One assumption is that the head subject
has been inherited at the parental node from its own parent, and the second assumption
is that it has not been inherited but gained in the node only. In the latter case the parental
node is labeled as a head subject. Consider the parent-children system as shown in Fig.
4, with each node assigned with sets of gap and head gain events under the above two
inheritance of head subject assumptions.

Let us denote the total penalty, to be minimized, under the inheritance and non-
inheritance assumptions by pi and pn, respectively. An elevation result at a given node is
defined by a pair of sets (H, G), representing the tree nodes at which events of head gains
and gaps, respectively, have occurred in the subtree rooted at the node. We use (H i, Gi)
and (Hn, Gn) to denote elevation results under the inheritance and non-inheritance
assumptions, respectively. The algorithm computes parsimonious representations for
parental nodes according to the topology of the tree, proceeding from the leaves to the
root in the manner which is similar to that described in [11] for a mathematical problem
in bioinformatics.

Fig. 4: Events in a parent-children system according to a parsimonious lift scenario.

For the sake of simplicity, we present only a version of the algorithm for crisp
clusters obtained by a defuzzification step. Given a crisp topic cluster S, and penalties
h, o and g for being a head subject, offshoot and gap, respectively, the algorithm is
initialized as follows.

At each leaf l of the tree, either Hn = {l}, if l ∈ S, or Gi = {l}, otherwise. The
other three sets are empty. The penalties associated are p i = 0, pn = o if Hn is not
empty, that is, if l ∈ S, and pi = g, pn = 0, otherwise. This is obviously a parsimonious
arrangement at the leaf level.

The recursive step applies to any node t whose children v ∈ V have been assigned
with the two couples of H and G sets already (see Figure 4 at which V consists of
three children): (Hi(v), Li(v); Hn(v), Ln(v)) along with associated penalties pi(v)
and pn(v).

(I) Deriving the pair Hi(t) and Gi(t), under the inheritance assumption, the one of
the following two cases is to be chosen depending on the cost:

(a) The head subject has been lost at t, so that Hi(t) = ∪v∈V Hn(v) and Gi(t) =
∪v∈V Gn(v)∪{t}. (Note different indexes, i and n in the latter expression.) The penalty
in this case is pi = Σv∈V pn(v) + g;



or
(b) The head subject has not been lost at t, so that H i(t) = ∅ (under the assumption

that no gain can happen after a loss) and G i = ∪v∈V Gi(v) with pi = Σv∈V pi(v).
The case that corresponds to the minimum of the two p i values is returned then.
(II) Deriving the pair Hn(t) and Gn(t), under the non-inheritance assumption, the

one of the following two cases is to be chosen that minimizes the penalty pn:
(a) The head subject has been gained at t, so that Hn(t) = ∪v∈V Hi(v) ∪ {t} and

Gn(t) = ∪v∈V Gi(s) with pn = Σv∈V pi(v) + h;
or (b) The head subject has not been gained at t, so that Hn(t) = ∪v∈V Hn(v) and

Gn = ∪v∈V Gn(v) with pn = Σv∈V pn(v).
After all tree nodes t have been assigned with the two pairs of sets, accept the Hn,

Ln and pn at the root. This gives a full account of the events in the tree.
This algorithm leads indeed to an optimal representation; its extension to a fuzzy

cluster is achieved through using the cluster memberships in computing the penalty
values at tree nodes.

5 An application to a real world case

Let us illustrate the approach by using the data from a survey conducted at the Centre
of Artificial Intelligence, Faculty of Science & Technology, New University of Lisboa
(CENTRIA-UNL). The survey involved 16 members of the academic staff of the Centre
who covered 46 topics of the third layer of the ACM-CCS.

With the algorithm FADDI-S applied to the 46 × 46 similarity matrix, two clusters
have been sequentially extracted, after which the residual matrix has become definite
negative (stopping condition (a)). Cluster 1 is of pattern recognition and its applications
to physical sciences and engineering including images and languages, with offshoots to
general aspects of information systems. In cluster 2, all major aspects of computational
mathematics are covered, with an emphasis on reliability and testing, and with applica-
tions in the areas of life sciences. Overall these results are consistent with the informal
assessment of the research conducted in the research organization. Moreover, the sets
of research topics chosen by individual members at the ESSA survey follow the cluster
structure rather closely, falling mostly within one of the two.

Figure 5 shows the representation of CENTRIA’s cluster 2 in the ACM-CCS taxon-
omy with penalties of h = 1, o = 0.8, and g = 0.1.

6 Conclusion

We have proposed a novel method for knowledge generalization that employs a taxon-
omy tree. The method constructs fuzzy membership profiles of the entities constituting
the structure under consideration in terms of the taxonomys leaves, and then it general-
izes them in two steps. These steps are:

(i) fuzzy clustering research topics according to their thematic similarities, ignoring
the topology of the taxonomy, and

(ii) elevating clusters mapped to the taxonomy to higher ranked categories in the
tree.
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Fig. 5: Mapping of CENTRIA cluster 2 onto the ACM-CCS tree with penalties h = 1, o = 0.8
and g = 0.1: two head subjects along with 10 and 16 gaps, respectively.

These generalization steps thus cover both sides of the representation process: the
empirical – related to the structure under consideration – and the conceptual – related
to the taxonomy hierarchy.

Potentially, this approach could lead to a useful instrument for comprehensive visual
representation of developments in any field of organized human activities.
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