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Abstract

In order to decide on the course of action to take, one may need to check for
side-effects of the possible available preferred actions. In the context of abduction
in Logic Programs, abducible literals may represent actions and assumptions in the
declarative rules used to represent our knowledge about the world. Besides finding
out which alternative sets of actions achieve the desired goals, it may be of interest to
identify which of those abductive solutions would also render true side-effect literals
relevant for the decision making process at hand, and which would render those side-
effects false. After collecting all the alternative abductive solutions for achieving
the goals it is possible to identify which particular actions influence inspected side-
effect literals’ truth-value.

To achieve this, we present the concept of Inspection Point in Abductive Logic
Programs, and show how, by means of examples, one can employ it to investigate
side-effects of interest (the inspection points) in order to help evaluate and decide
among abductive solutions. We show how this type of reasoning requires a new
mechanism, not provided by others already available. We furthermore show how to
implement this new mechanism it on top of an already existing abduction solving
system — ABDUAL — in a way that can be adopted by other systems too.
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1 Introduction

In this paper we present a new decision-making-aid reasoning mechanism for ab-
ductive logic programs — the inspection points (IPs). The IPs permit the declarative
specification and implementation of more efficient abductive logic programming
based decision-making agents. The efficiency comes from that using IPs allows the
agent to selectively specify the relevant side-effect consequences of abductions in-
stead of computing all possible abductions and all their consequences, only to subse-
quently having to filter out irrelevant abductions and to ignore irrelevant side-effects.

Typically, in a logic programming setting, consequences of abductions are com-
puted by some forward-chaining mechanism. The problem with such an approach is
the waste in time and computing resources that comes from computing all the con-
sequences of the adopted abductions, and not just the consequences relevant for the
task at hand. A kind of “selective forward chaining” is what would be desired. The
IPs we present and implement efficiently exactly enact such forward chaining. This
is accomplished by first selecting, in a top-down fashion, the rules necessary for
forward propagation, from choices made, to the side-effects whose inspection is de-
sired. Posterior preferences among alternative solutions can then take the observed
side-effects into account.

We begin by presenting the motivation, and some background notation and defi-
nitions follow. The general problem of reasoning with logic programs is addressed
in section 2; in particular, we take a look at the nature of backward and forward
chaining and their relationship to query answering in an abductive framework. In
section 3 we very briefly describe our implementation of the IPs.

Further elaboration on possibilities of use of IPs is sketched, and conclusions and
future work close the paper.

1.1 Motivation

When faced with some situation where several alternative courses of actions are
available a rational agent must decide and choose which action to take. A priori pref-
erences can be applied before choosing in order to reduce the number of consider-
able possible actions curtailing the explosion of irrelevant combinations of choices,
but still several (possibly exclusive) may remain available. To make the best possi-
ble informed decision, and commit to a course of action, the agent must be enabled
to foresee the consequences of its actions and then prefer on the basis of those
consequences (with a posteriori preferences). Choosing which set of consequences
is most preferred corresponds to an implicit choice on restricting which course of
action to take. But only the consequences relevant to the a posteriori preferences
should be calculated: there are virtually infinitely many consequences of a given
action, most of which are completely irrelevant to the preference-based decision
making. Other consequences may be just predictions about the present state of the
world, and observing whether they are verified can eliminate hypothetical scenarios
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where certain decisions would appear to make sense. Not all consequences are ex-
perimentally observable though, hence IPs may serve to focus on the ones that are,
and thus guide the experimentation required to decide among competing hypothesis,
as in medical diagnosis say. That is, IPs can be put to the service of sifting through
competing explanations, prior to any acting but albeit in preparing and configuring
the context for it. In science, such decisive consequences are often know as "crucial"
side-effects, because hopefully they can guarantee excluding untoward possibilities.

Computationally too, there are many advantages as well to preferring a poste-
riori, i.e. to enact preferences on the computed models, after the consequences of
opting for one or another abducible are known, by means of inspection points that
examine specific side-effects of abduction. The advantages of so proceeding stem
largely from avoiding combinatory explosions of abductive solutions, by filtering
both irrelevant as well as less preferred abducibles.

We code the agent’s knowledge in the form of a Normal Logic Program (NLP),
and its possible actions or hypotheses as abducibles. When trying to find an ex-
istential answer to a query where some desired goal is achieved, the answers will
include the abductions produced at top-down query-answering time. Instead of com-
puting whole models to find out the side-effect consequences of the abductions, we
introduce — and use — the new mechanism of inspection point whereby we declar-
atively specify which side-effect consequences of the possible answers are of in-
terest. In the usual abductive reasoning setting, normal top-down query answering
resorts to performing abduction to construct hypothetical answers. However, when
using inspection points we just want to check if some literal is a consequence of the
abductions made when finding an answer to the query. Thus, further abduction is
disabled when inspection point checking.

We show how this type of reasoning requires a new mechanism, not provided by
others already available. We furthermore show how to implement this new mecha-
nism on top of an already existing abduction solving system — ABDUAL [3] — in
a way that can be adopted by other systems too.

Example 1. Relevant and irrelevant side-effects. Consider this logic program
where drink_water and drink_beer are abducibles.

← thirsty, not drink. % This is an Integrity Constraint
wet_glass← use_glass. use_glass← drink.
drink ← drink_water. drink ← drink_beer.
thirsty. drunk ← drink_beer.
unsafe_drive← inspect(drunk).

Suppose we want to satisfy the Integrity Constraint, and also to check if we get
drunk or not. However, we do not care about the glass becoming wet — that being
completely irrelevant to our current concern. In this case, full forward-chaining or
computation of whole models is a waste of time, because we are interested only
in a subset of the program’s literals. What we need is a selective ersatz forward
chaining mechanism, an inspection tool which permits to check the truth value of
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given literals as a consequence of the abductions made to satisfy a given query plus
any Integrity Constraints.

Moreover, in this example, if we may simply want to know the side-effects of the
possible actions in order to decide (to drive or not to drive) after we know which
side-effects are true. In such case, we do not want to the IC← not unsafe_drive
because that would always impose not drink_beer. We want to allow all possible
solutions for the single IC← thirsty, not drink and then check the side-effects of
each abductive solution.

1.2 Background Notation and Definitions

Definition 1. Logic Rule. A (Normal) Logic Rule has the general form
A← B1, . . . , Bn, not C1, . . . , not Cm

where A and the Bi and Cj are atoms.

A is the head of the rule, and B1, . . . , Bn, not C1, . . . , not Cm its body. ‘not ’
denotes default negation. When the body of a rule is empty, we say its head is a fact
and write the rule simply as A.

Definition 2. Logic Program. A (Normal) Logic Program (LP for short) P is a
(possibly infinite) set of Logic Rules, standing for all its ground instances.

Definition 3. Integrity Constraint. An Integrity Constraint (IC) is a logic rule,
expressing a denial, whose head is the reserved atom ‘false’.

A simpler way of writing an IC is by omitting the head of its rule. An example
is the first rule of the program in example 1, meaning that ‘thirsty’ cannot be true
whenever ‘drink’ is false, and vice-versa.

In the next sections, we focus on abductive logic programs, i.e., those with ab-
ducibles. Abducibles are literals that are not defined by any rules and correspond
to hypotheses that one can independently assume or not — apart from eventual In-
tegrity Constraints. Abducibles or their default negations can appear in bodies of
rules just like any other literal. They are specified along with the LP.

2 Reasoning with Logic Programs

Recall that when finding an abductive solution for a query, one may want to check
whether some other literals become true or false strictly within the abductive solu-
tion found (i.e., whether they are consequences, or side-effects, of such abductions),
but without performing additional abductions, and without having to produce a com-
plete model to do so. This type of reasoning requires a new mechanism. To achieve
it, we introduce the concept of inspection point, and show how one can employ it
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to investigate side-effects of interest. Procedurally, the checking of an inspection
point corresponds to performing a top-down query-proof for the inspected literal,
but with the specific proviso of disabling new abductions during that proof. The
proof for the inspected literal will succeed only if the abducibles needed for it were
already, or will be adopted, in the present ongoing solution search for the top query.
Consequently, this check is performed after a solution for the query has been found.
At inspection-point-top-down-proof-mode, whenever an abducible is encountered,
instead of adopting it, we simply adopt the intention to a posteriori check if the
abducible is part of the answer to the query (unless of course the negation of the
abducible has already been adopted by then, allowing for immediate failure at that
search node.) That is, one (meta-)abduces the checking of some abducible A, and
the check consists in confirming that A is part of the abductive solution by matching
it with the object of the check. In our method, the side-effects of interest are explic-
itly indicated by the user by wrapping the corresponding goals subject to inspection
mode within a reserved construct inspect/1.

2.1 Backward and Forward Chaining

Query-answering is intrinsically backward-chaining as it is a top-down dependency-
graph oriented proof-procedure. And all the more so of typically by need abductive
query-answering. Finding the side-effects of a set of assumptions is conceptually
envisaged as forward-chaining as it consists of progressively deriving conclusions
from the assumptions until the truth value of the chosen side-effect literals is deter-
mined. The problem with full-fledged forward-chaining is that too many (often ir-
relevant) conclusions are derived. Since efficiency is always a concern, wasting time
and resources on deriving conclusions only to be discarded afterwards, is a flagrant
setback. Even worse, in combinatorial problems, there may be many alternative so-
lutions whose differences repose just on irrelevant conclusions. So, the unnecessary
computation of irrelevant conclusions in full forward-chaining may be multiplied,
leading to immense waste. A more rational solution, when one is focused on some
specific conclusions of a set of premises, is afforded by selective top-down ersatz
forward-chaining. In such a setting, ideally, the user would be allowed to specify the
conclusions she is focused on, and only those would be computed in a backward-
chaining fashion, checking whether they are consequences of desired abductions,
but without abducing — hence their ersatz character. Combining backward-chaining
with forward-chaining (and in particular with (ersatz) selective forward-chaining)
allows for a greater precision in specifying what we wish to know, and altogether
improve efficient use of computational resources.

Significantly, if abduction is enabled, the computation of side-effects should take
place without further abduction, passively (though not destructively) just “consum-
ing” abducibles that are “produced” elsewhere by abduction for the top query.
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In the sequel, we shall show how such a selective forward chaining from a set
of hypotheses can actually be prepared by backward chaining from the focused on
conclusions — the inspection points — by virtue of a controlled form of abduction.

2.2 The use of Stable Models

When we need to know the 2-valued truth value of all the literals in the program for
the problem we are modeling and solving, the only solution is to produce complete
models. In such a case, tools like SModels [13] or DVL [5] are adequate because
they can indeed compute whole and all models for the (finitely grounded) program.
Typically, each abducible is then coded as a pair of rules, that form an even loop over
default negation between the abducible and a representation of its negation. One
may discuss other alternative semantics (2-valued and 3-valued) that can also be
used in this situation, and compare them with Stable Models (SM) semantics [10].
In an abductive reasoning situation, however, computing the whole model entails
pronouncement about each of the abducibles, whether or not they are relevant to the
problem at hand, and subsequently filtering the irrelevant ones. When we simply
want to find an answer to a query, we either compute a whole model and check if it
entails the query (the way SM semantics does), or, if the underlying semantics we
are using enjoys the relevancy property — which SM semantics do not — we can
simply use a top-down proof-procedure (à la Prolog). In this second case, the user
does not pay the price of computing a whole model, nor the price of abducing all
possible abducibles or their negations, since the only abducibles considered will be
those needed for answering the query.

2.3 Abduction

Abduction ([1, 2, 3, 6, 7, 8, 9, 11, 12]) can naturally be used in a top-down query-
oriented proof-procedure to find an (abductive) answer to a query, where abducibles
are leafs in the call-dependency graph. The Well-Founded Semantics (WFS), which
enjoys relevancy, allows for abductive query answering. We used it in the imple-
mentation briefly described in section 3. Though WFS is 3-valued, the abduction
mechanism it employs can be, and in our case is, 2-valued.

2.4 Inspection Points

From a practical perspective, under the abductive logic programming setting, a typ-
ical query with side-effect checking via IPs could look like
main_query, inspect(checked_side_effect). If there is an answer to such query
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then we know that the abductions made to satisfy the main_query are sufficient to
prove also the checked_side_effect.

2.4.1 Meta-Abduction

Intuitively, meta-abduction, in this setting, consists in abducing the intention of a
posteriori checking for the abduction of some abducible, i.e. the intention of verify-
ing that the abducible is indeed adopted. In practice, when we want to meta-abduce
some abducible ‘x’, we abduce a literal ‘abduced(x)’, which represents the inten-
tion that ‘x’ is eventually abduced along the process of finding an answer. The check
is performed after a complete abductive answer to the top query is found. Opera-
tionally, ‘x’ has been or will be abduced as part of the ongoing solution to the top
goal. Meta-abduction can be implemented by any abduction capable system.

When using a system that allows only for the top-down dependency-graph-
oriented abductive query-solving we must simulate this selective bottom-up forward
chaining by means of a top-down query where making actual (non-meta) abductions
is disallowed. In this setting, inspection points are the literals whose truth value we
are interested in.

Example 2. Inspection Points. Consider this NLP, where ‘tear_gas’, ‘fire’, and
‘water_cannon’ are the only abducibles.

← police, riot, not contain. % this is an Integrity Constraint
contain← tear_gas. contain← water_cannon.
smoke← fire. smoke← inspect(tear_gas).
police. riot.

Notice the two rules for ‘smoke’. The first states that one explanation for smoke
is fire, when assuming the hypothesis ‘fire’. The second states ‘tear_gas’ is also
a possible explanation for smoke. However, the presence of tear gas is a much more
unlikely situation than the presence of fire; after all, tear gas is only used by police to
contain riots and that is truly an exceptional situation. Fires are much more common
and spontaneous than riots. For this reason, ‘fire’ is a much more plausible expla-
nation for ‘smoke’ and, therefore, in order to let the explanation for ‘smoke’ be
‘tear_gas’, there must be a plausible reason — imposed by some other likely phe-
nomenon. This is represented by inspect(tear_gas) instead of simply ‘tear_gas’.
The ‘inspect’ construct disallows regular abduction — only meta-abduction — to
be performed whilst trying to solve ‘tear_gas’. I.e., if we take tear gas as an abduc-
tive solution for smoke, this rule imposes that the step where we abduce ‘tear_gas’
is performed elsewhere, not under the derivation tree for ‘smoke’. Thus, ‘tear_gas’
is an inspection point.

The Integrity Constraint, because there is ‘police’ and a ‘riot’, forces ‘contain’
to be true, and hence, ‘tear_gas’ or ‘water_cannon’ or both, must be abduced.
‘smoke’ is only explained if, at the end of the day, ‘tear_gas’ is abduced to enact
containment.
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Abductive solutions should be plausible. ‘smoke’ is plausibly explained by
‘tear_gas’ if there is a reason, a best explanation, that makes the presence of tear
gas plausible; in this case the riot and the police. Plausibility is an important concept
in science which lends credibility to hypotheses. Assigning plausibility measures to
situations is an issue orthogonal to the problem.

Example 3. Nuclear Power Plant Decision Problem. This example was extracted
from [16] and adapted to our current issues. In this example the abducibles do
not represent actions. In a nuclear power plant there is decision problem: clean-
ing staff can clean the power plant on cleaning days, but only if there is no sound
alarm. The alarm sounds when the temperature in the main reactor rises above a
certain threshold, or if the alarm itself is faulty. When the alarm sounds everybody
must evacuate the power plant immediately! Abducible literals are cleaning_day,
temperature_rise and faulty_alarm.

dust ← cleaning_day, inspect(not sound_alarm)
sound_alarm ← temperature_rise
sound_alarm ← faulty_alarm
evacuate ← sound_alarm

← not cleaning_day

Satisfying the unique IC imposes cleaning_day true and gives us three minimal
abductive solutions: S1 = {dust, cleaning_day},
S2 = {cleaning_day, sound_alarm, temperature_rise, evacuate}, and S3 =
{cleaning_day, sound_alarm, faulty_alarm, evacuate}. If we pose the query
? − not dust we want to know what could justify to the cleaners dusting not to
occur given that it is a cleaning day (this last is enforced by the IC). However, we
do not want to abduce the rise in temperature of the reactor nor to abduce the alarm
to be faulty in order to prove not dust. Any of these justifying two abductions must
result as a side-effect of the need to explain something else, for instance the ob-
servation of the sounding of the alarm, expressed by the IC← not sound_alarm,
which would then abduce one or both of those two abducibles as plausible expla-
nations. The inspect/1 in the body of the rule for dust prevents any abduction
below sound_alarm to be made just to make not dust true. One other possi-
bility would be for the observations coded by ICs ← not temperature_rise or
← not faulty_alarm to be present in order for not dust to be true as a side-effect.
A similar argument can be made about evacuating: one thing is to explain why evac-
uation takes place, another altogether is to justify it as necessary side-effect of root
explanations for the alarm to go off. These two pragmatic uses correspond to differ-
ent queries: ?− evacuate and ?− inspect(evacuate), respectively.

A declarative semantics of Inspection Points is presented and detailed in
http://centria.fct.unl.pt/~lmp/publications/online-papers/IP08.pdf

but, due to lack of space, we omit it here.



Side-Effect Inspection for Decision Making 9

3 Implementation

We based our practical work on a formally defined, implemented, tried and true
abduction system: Abdual [3]. Meta-abduction is implemented adroitly by means
of a new reserved abducible predicate which engages the abduction mechanism to
try and discharge any meta-abductions by means of the corresponding abducible.
The approach taken can easily be adopted by other abductive systems, as we had the
occasion to check [4].

Abdual is composed of two modules: the preprocessor which transforms the orig-
inal program by adding its dual rules, plus specific abduction-enabling rules; and a
meta-interpreter allowing for top-down abductive query solving. When solving a
query, abducibles are dealt with by means of extra rules the preprocessor added to
that effect. These rules just add the name of the abducible to an ongoing list of cur-
rent abductions, unless the negation of the abducible was added before to the list of
false abducibles in order to ensure abduction consistency.

3.1 Abdual with Inspection Points

Inspection Points in Abdual function mainly by means of controlling the general
abduction step, which involves very few changes, both in the pre-processor and the
meta-interpreter. Whenever an ‘inspect(X)’ literal is found in the body of a rule,
where ‘X’ is a goal, a meta-abduction-specific counter — the ‘inspect_counter’
— is increased by one, in order to keep track of the allowed character, active or
passive, of performed abductions. The top-down evaluation of the query for ‘X’
then proceeds normally. Actual abductions are only allowed if the counter is set to
zero, otherwise only meta-abductions are allowed. After finding an abductive solu-
tion for the query ‘X’ the counter is decreased by one. Backtracking over counter
assignations is duly accounted for.

Of course, this way of implementing the Inspection Points (with just one
inspect_counter) presupposes the abductive query answering process is carried
out “depth-first”, guaranteeing the order of the literals in the bodies of rules actually
corresponds to the order they are processed.

The present implementation of Abdual with Inspection Points is available on
request and is detailed in http://centria.fct.unl.pt/~lmp/publications/

online-papers/IP08.pdf

In case the “depth-first” discipline is not followed, either because goal delaying is
taking place, or multi-threading, or co-routining, or any other form of parallelism is
being exploited, then each queried literal will need to carry its own list of ancestors
with their individual inspect_counters. This is necessary so as to have a means, in
each literal, to know which and how many inspects there are between the root node
and the literal currently being processed, and which inspect_counter to update;
otherwise there would be no way to determine if abductions or else meta-abductions
should be performed.
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An alternative implementation would rely instead not on ABDUAL but on XSB-
prolog’s XASP, to let Smodels produce partial models where abducibles and meta-
abducibles are coded as even loops over default negation, as in ACORDA [14].

3.2 Comparing to other systems

We briefly compared our abduction system with inspection points to HyProlog
[4].The HyProlog system supports abduction and additionally a system of assump-
tions, which differs from abducibles in that they are explicitly produced and explic-
itly applied. Creating an assumption in parallel with mentioning an abducible makes
it possible, as Veronica Dahl showed us, to check the state of abducibles and thus
provide a HyProlog implementation of inspection points.

In general, there is not such a big difference between the operational semantics
of HyProlog and the Inspection Points implementation we present; however, there
is a major functionality difference: in HyProlog we can only require consumption
directly on abducibles, and with Inspection Points we can inspect any literal, not just
abducibles. Moreover, the part of HyProlog concerned with abduction has a standard
first order semantics, whereas assumptions+expectations rely on a resource-oriented
semantics à la linear logic.

4 Conclusions and Future Work

In the context of abductive logic programs, we have presented a new mechanism of
inspecting literals, which corresponds to a selective forward chaining, that can be
used to check for side-effects. The implementation of side-effects inspection, relying
on the meta-abduction principle, which is at the heart of this contribution, permits
consequence assessment which can be used to identify basic causality relationships
usable for decision making. We have implemented the inspection mechanism within
the Abdual [3] meta-interpreter and checked that it can easily be ported to other sys-
tems [4]. The semantics underlying Abdual (and, therefore, the current implementa-
tion of inspection points) is WFS with abduction. However, in case we need a total
2-valued semantics we need recourse to Layered Models [15] if we want to retain
advantage of relevancy for top-down querying. Hence, our future work directions in-
clude extending the LM semantics with abduction, and, of course, meta-abduction.
An efficient implementation of this semantics is also under way.
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