
Modelling Probabilistic Causation in Decision
Making

Luı́s Moniz Pereira, Carroline Kencana Ramli

Abstract Humans know how to reason based on cause and effect, but cause and ef-
fect is not enough to draw conclusions due to the problem of imperfect information
and uncertainty. To resolve these problems, humans reason combining causal mod-
els with probabilistic information. The theory that attempts to model both causality
and probability is called probabilistic causation, better known as Causal Bayes Nets.

In this work we henceforth adopt a logic programming framework and method-
ology to model our functional description of Causal Bayes Nets, building on its
many strengths and advantages to derive a consistent definition of its semantics.
ACORDA is a declarative prospective logic programming which simulates human
reasoning in multiple steps into the future. ACORDA itself is not equipped to deal
with probabilistic theory. On the other hand, P-log is a declarative logic program-
ming language that can be used to reason with probabilistic models. Integrated with
P-log, ACORDA becomes ready to deal with uncertain problems that we face on
a daily basis. We show how the integration between ACORDA and P-log has been
accomplished, and we present cases of daily life examples that ACORDA can help
people to reason about.

1 Introduction

Humans reason basically based on cause and effect. David Hume described causes
as objects regularly followed by their effects [1]. Hume attempted to analyse causa-
tion in terms of invariable patterns of succession that are referred to as “regularity

Luı́s Moniz Pereira
CENTRIA, Departamento de Informática, Faculdade de Ciências e Tecnologia, Universidade Nova
de Lisboa, 2829-516 Caparica, Portugal. e-mail: lmp@di.fct.unl.pt

Carroline Kencana Ramli
CENTRIA, Departamento de Informática, Faculdade de Ciências e Tecnologia, Universidade Nova
de Lisboa, 2829-516 Caparica, Portugal. e-mail: carroline.kencana@googlemail.com

1

2 Luı́s Moniz Pereira, Carroline Kencana Ramli

theories” of causation. The difficulty with regularity theories is that most causes are
not invariably followed by their effects. For example, it is widely acceptable that
smoking is a cause of lung cancer, but not all smokers have lung cancer. By con-
trast, the central idea behind probabilistic theories of causation is that causes raise
the probability of their effects; an effect may still occur in the absence of a cause or
fail to occur in its presence. The probabilistic theorem of causation helps in defining
a pattern in problems with imperfect regularities [2]. This approach is called Causal
Bayes Nets.

Translation of human reasoning using causal models and Bayes Nets into a com-
putational framework is possible using logic programming. The main argument is
that humans reason using logic. There is an obvious human capacity for under-
standing logic reasoning, one that might even be said to have developed throughout
our evolution. Logic itself can be implemented on top of a symbol processing sys-
tem like a computer. Thus, in this work we henceforth adopt a declarative logic
programming framework and methodology to model our functional description of
causal models and Bayes Nets, building on its many strengths and advantages to
derive both a consistent definition of its semantics and a working implementation
with which to conduct relevant experiments.

The paper is organized as follows: the next Section provides the background
of prospective logic programming and probabilistic logic programming. Section 3
provides the explanation of our implementation and the paper continues with an
example of how our implementation can be used in Sect. 4. The paper finishes with
conclusions and directions for future work in Sect. 5.

2 Prospective and Probabilistic Logic Programming

2.1 Prospective Logic Programming

Prospective logic programming is an instance of an architecture for causal models,
which implies a notion of simulation of causes and effects in order to solve the
choice problem for alternative futures. This entails that the program is capable of
conjuring up hypothetical what-if scenaria and formulating abductive explanations
for both external and internal observations. Since we have multiple possible sce-
naria to choose from, we need some form of preference specification, which can be
either a priori or a posteriori. A priori preferences are embedded in the program’s
own knowledge representation theory and can be used to produce the most relevant
hypothetical abductions for a given state and observations, in order to conjecture
possible future states. A posteriori preferences represent choice mechanisms, which
enable the program to commit to one of the hypothetical scenaria engendered by the
relevant abductive theories. These mechanisms may trigger additional simulations,
by means of the functional connectivity, in order to posit which new information to

Modelling Probabilistic Causation in Decision Making 3

acquire, so more informed choices can be enacted, in particular by restricting and
committing to some of the abductive explanations along the way.

Definition 1 (Language). Let L be a first order language. A domain literal in L is
a domain atom A or its default negation not A, the latter expressing that the atom is
false by default. A domain rule in L is a rule of the form:

A← L1, . . . , Lt (t ≥ 0)

where A is a domain atom and L1, . . . , Lt are domain literals.

Definition 2 (Integrity Constraint). An integrity constraint in L has a form:

⊥ ← L1, . . . , Lt (t > 0)

where ⊥ is a domain atom denoting falsity, and L1, . . . , Lt are domain literals.

A (logic) program P over L is a set of domain rules and integrity constraints,
standing for all their ground instances.

Each program P is associated with a set of abducibles AP ⊆ L. Abducibles can
be seen as hypotheses that provide hypothetical solutions or possible explanations
of given queries. An abducible a can be assumed in the program only if it is a
considered one, i.e. if it is expected in the given situation, and moreover there is no
expectation to the contrary [3]. The atom consider(a) will be true if and only if the
abducible a is considered. We can define it by the logic programming rule:

consider(A)← expect(A), not expect not(A)

where A stands for a logic programming variable. The rules about expectations are
domain-specific knowledge contained in the theory of the program, and effectively
constrain available the hypotheses .

To express preference criteria amongst abducibles, we introduce the language
L∗. Let L∗ be a language consisting of logic program and relevance rules.

Definition 3 (Relevance Rule). Let a and b are abducibles. A relevance atom a / b
means abducible a is more relevant or preferred than abducible b, i.e. one cannot
have b without also having a. A relevance rule is one of the form:

a / b← L1, . . . , Lt (t ≥ 0)

where a / b is a relevance atom and every Li(1 ≤ i ≤ t) is a domain literal or a
relevance literal.

Example 1 (Tea 1). Consider a situation where an agent Claire drinks either tea or
coffee (but not both). She does not expect to have coffee if she has high blood
pressure. Also suppose that agent Claire prefers coffee over tea when she is sleepy.
This situation can be represented by a program Q with the set of abducibles AQ =
{tea, coffee}:

4 Luı́s Moniz Pereira, Carroline Kencana Ramli

1 falsum ← not d r i n k .
2 d r i n k ← c o n s i d e r (t e a) .
3 d r i n k ← c o n s i d e r (c o f f e e) .
4 c o n s t r a i n (1 , [t e a , c o f f e e] , 1) .
5 e xp ec t (t e a) . e xp ec t (c o f f e e) .
6 e x p e c t n o t (c o f f e e) ← b l o o d p r e s s u r e h i g h .
7 c o f f e e / t e a ← s l e e p y .

The query is triggered by an integrity constraint coded with falsum/0.
ACORDA has to fulfill the integrity constraint by trying to find all the explanations
to the atom drink . We codified the preference using the </2 built–in ACORDA
predicate. The exclusivity of the two abducibles is coded with constrain/3 on
line 4. So there are two abductive solusions: A1 = {coffee}, A2 = {tea}. We
should choose our solution from those two explanations based on our preferences.
If we assert sleepy is true, the only explanation left is A1 because of the preference
rule – in order to have the abducible tea we should have the abducible coffee.
On the other hand, if we assert blood pressure high is true, the only remaining
solution is A2 because the abducible coffee becomes not expected.

Having the notion of expectation allows one to express the preconditions for
an expectation or otherwise about an abducible a, and expresses which possible
expectations are confirmed (or assumed) in a given situation. If the preconditions
do not hold, then abducible a cannot be considered, and therefore a will never be
assumed. By means of expect not/1 one can express situations where one does
not expect something. In this case, when blood pressure is high, coffee will not
be considered or assumed because of the contrary expectation arising as well (and
therefore tea will be assumed).

2.2 Probabilistic Logic Programming

Probabilistic logic programming (P-log) was introduced for the first time by Chitta
Baral et.al [4]. P-log is a declarative language that combines logical and probabilistic
reasoning, and uses Answer Set Programming (ASP) as its logical foundation and
Causal Bayes Nets [5] as its probabilistic foundation. P-log can also represent a
mechanism for updating or reassessing probability [6].

The declaration part of a P-log program Π contains sorts and attributes. A sort c
is a set of terms. It can be defined by listing all its elements: c = {x1, x2, . . . , xn}.
Given 2 integers L ≤ U we can also use 2 shortcut notations: c = {L..U} for the
sort c = {L,L + 1, . . . , U} and c = {h(L..U)} for the sort c = {h(L), h(L +
1), . . . , h(U)}. We are also able to define a sort by arbitrarily mixing the previous
constructions, e.g. c = {x1, .., xn, L..U, h(M..N)}. In addition, it is allowed to
declare union as well as intersection of sorts. A union sort is represented by c =
union(c1,, cn) while an intersection sort by c = intersection(c1, ..., cn), where
ci, 1 ≤ i ≤ n are declared sorts.

Modelling Probabilistic Causation in Decision Making 5

Definition 4 (Sorted Signature). The sorted signature Σ of a program Π contains
a set of constant symbols and term-building function symbols, which are used to
form terms in the usual way. Additionally, the signature contains a collection of
special function symbols called attributes.

Definition 5 (Attribute). Let c0, c1, . . . , cn be sorts. An attribute awith the domain
c1 × ...× cn and the range c0 is represented as follows:

a : c1 × ...× cn → c0

If attribute a has no domain parameter, we simply write a : c0. The range of attribute
a is denoted by range(a). Attribute terms are expressions of the form a(t̄), where
a is an attribute and t̄ is a vector of terms of the sorts required by a.

The regular part of a P-log program Π consists of a collection of rules, facts and
integrity constraints formed using literals of Σ.

Definition 6 (Random Selection Rule). A random selection rule has a form:

random(RandomName, a(t̄), DynamicRange) :- Condition

This means that the attribute instance a(t̄) is random if the conditions in Condition
are satisfied. The DynamicRange allows to restrict the default range for ran-
dom attributes. The RandomName is a syntactic mechanism used to link ran-
dom attributes to the corresponding probabilities. The constant full is used in
DynamicRange to signal that the dynamic domain is equal to range(a).

Definition 7 (Probabilistic Information). Information about probabilities of ran-
dom attribute instances a(t̄) taking particular value y is given by probability atoms
(or simply pa-atoms) which have the following form:

pa(RandomName, a(t̄, y), d (A,B)):- Condition

It means if Condition were to be true, and the value of a(t̄) were selected by a rule
named RandomName, then a(t̄) = y with probability A

B .

Definition 8 (Observations and Actions). Observations and actions are, respec-
tively, statements of the forms obs(l) and do(l), where l is a literal. Observations are
used to record the outcomes of random events, i.e. random attributes and attributes
dependent on them.

Example 2 (Tea 2). (Continuation of Example 1) Suppose if we know that the avail-
ability of tea for agent Claire is around 60%.

8 beginPr .
9 b e v e r a g e = { t e a , c o f f e e } .

10 a v a i l a b l e : b e v e r a g e .
11 random (rd , a v a i l a b l e , f u l l) .
12 pa (rd , a v a i l a b l e (t e a) , d (6 0 , 1 0 0)) .
13 endPr .

6 Luı́s Moniz Pereira, Carroline Kencana Ramli

The probabilistic part is coded in between beginPr/0 and endPr/0.
There are two kinds of beverage: tea and coffee and both are randomly
available. We get the information the availability of tea is 60%, coded by
pa(rd, available(tea), d (60, 100)).

3 Implementation

ACORDA [7, 8]1 is a system that implements prospective logic programming.
ACORDA is the main component of our system with P-log used as probabilistic
support in the background. Computation in each component is done independently
but they can cooperate in providing the information needed. Both ACORDA and P-
log rely on the well-known Stable Model semantics to provide meaning to programs
(see their references for details).

The system architecture follows this separation in a very explicit way. There
is indeed a necessary separation between producer and consumer of information.
ACORDA and P-log can both act as a producer or consumer of information. The
interfaces between the various components of the integration of ACORDA with P-
log are made explicit in Fig. 12. Each agent is equipped with a Knowledge Base and
a Bayes Net as its initial theory. The first time around, ACORDA sends Bayes Net
information to P-log and later P-log translates all the information sent by ACORDA
and keeps it for future computation. The problem of prospection is then that of
finding abductive extensions to this initial theory which are both relevant (under the
agent’s current goals) and preferred (w.r.t. the preference rules in its initial theory).
The first step is to select the goals that the agent will possibly attend to during
the prospective cycle. Integrity constraints are also considered to ensure the agent
always performs transitions into valid evolution states.

Once the set of active goals for the current state is known, the next step is to
find out which are the relevant abductive hypotheses. At this step, P-log uses the
abductive hypothesis for computing probabilistic information to help ACORDA do
a priori preferences. Forward reasoning can then be applied to abducibles in those
scenaria to obtain relevant side-effect consequences, which can then be used to en-
act a posteriori preferences. These preferences can be enforced by employing utility
theory that can be combined with probabilistic theory in P-log. In case additional
information is needed to enact preferences, the agent may consult external oracles.
This greatly benefits agents in giving them the ability to probe the outside envi-
ronment, thus providing better informed choices, including the making of experi-
ments. Each oracle mechanism may have certain conditions specifying whether it is
available for questioning. Whenever the agent acquires additional information, it is
possible that ensuing side-effects affect its original search, e.g. some already consid-

1 The integration of ACORDA with P-log can be accessed at
http://sites.google.com/site/acordaplog/Home
2 Please note the dashed lines represent communication between ACORDA and P-log.

Modelling Probabilistic Causation in Decision Making 7

ered abducibles may now be disconfirmed and some new abducibles are triggered.
To account for all possible side-effects, a second round of prospection takes place.

Fig. 1: Integration Architecture

If everything goes well and only a single model emerges from computation of the
abductive stable models, the ACORDA cycle terminates and the resulting abducibles
are added to the next state of the knowledge base. In most cases, however, we cannot
guarantee the emergence of a single model, since the active preferences may not be
sufficient to defeat enough abducibles. In these situations, the ACORDA system has
to resort on additional information for making further choices. If no model emerges,
relaxation of constraints and preferences may be in order.

Indeed, a given abducible can be defeated in any one of two cases: either by
satisfaction of an expect not/1 rule for that abducible, or by satisfaction of a
preference rule that prefers another abducible instead. However, the current knowl-
edge state may be insufficient to satisfy any of these cases for all abducibles except
one, or else a single model would have already been abduced. It is then necessary
that the system obtains the answers it needs from somewhere else, namely from
making experiments on the environment or from querying an outside entity.

ACORDA consequently activates its a posteriori choice mechanisms by attempt-
ing to satisfy additional selecting preferences. There are two steps: first ACORDA
computes the utility value for each abducible. ACORDA selects amongst them based
on the preference function defined. This step is coded below in the meta predicate
select/2.

1 s e l e c t (M, NewM) :− s e l e c t 1 (M, M1) , s e l e c t 2 (M1, NewM) .
2 s e l e c t 1 (M, M1) :− a d d U t i l i t y V a l u e (M, M1) .
3 s e l e c t 2 (M1, NewM) :−%use preference function to select the model.

8 Luı́s Moniz Pereira, Carroline Kencana Ramli

Example 3 (Tea 3). (Continuation of Example 2) Consider now we introduce the
utility rate for coffee and tea for agent Claire based on her preference. What do we
suggest for agent Claire’s beverage when the utility probability value is taken into
account?

14 beg inPro log .
15 s e l e c t (M, Mnew) :−
16 u t i l i t y R a t e (t e a , 0 . 8) , u t i l i t y R a t e (c o f f e e , 0 . 7) ,
17 s e l e c t 1 (M, M2) ,
18 s e l e c t 2 (M2, 0 , [] , Mnew) .
19 % Add utility value to each model
20 s e l e c t 1 ([] , []) .
21 s e l e c t 1 ([X |Xs] , [Y |Ys]) :−
22 a d d U t i l i t y V a l u e (X, Y) , s e l e c t 1 (Xs , Ys) .
23 % A posteriori preference models
24 s e l e c t 2 ([] , , M, M) .
25 s e l e c t 2 ([M|Ms] , Acc , OldM , NewM) :−
26 member (u t i l i t y M o d e l (U) , M) ,
27 U > Acc → s e l e c t 2 (Ms , U,M,NewM) ; s e l e c t 2 (Ms , Acc , OldM ,NewM) .
28 a d d U t i l i t y V a l u e ([X] , [u t i l i t y M o d e l (UModel) | [X]]) :−
29 h o l d s u t i l i t y R a t e (X, R) ,
30 pr (a v a i l a b l e (X) , P) , UModel i s R ∗ P .
31 a d d U t i l i t y V a l u e (, []) .
32 endProlog .

First, ACORDA launches oracles to acquire information about Claire’s condition
– whether she is sleepy and whether she has high blood pressure. If there is no
contrary expectation for any of the beverages, i.e. agent Claire is not sleepy and
also does not have high blood pressure, we will have two different abductive solu-
tions: M1 = {coffee}, M2 = {tea}. Next, ACORDA performs a posteriori selec-
tion. Our selecting preference amongst abducibles is codified on lines 14-32. First
we initialize the utility rate for both beverages. In the addUtilityValue/2
predicate, we define our utility function. In this example, we define the utility
value for each beverage as its probability of availability times its utility rate. Af-
ter the computation we get the result: M1 = {utilityModel(0.2800), coffee},
M2 = {utilityModel(0.4800), tea}. Predicate select2/2 will select the high-
est utility model and the final result is M2 = {utilityModel(0.4800), tea} which
means that based on the a posteriori preference using our utility function, agent
Claire is encouraged to have tea.

4 Example: Risk Analysis

The economics of risk[9] has been a fascinating area of inquiry for at least two rea-
sons. First, there is hardly any situation where economic decisions are made with
perfect certainty. The sources of uncertainty are multiple and pervasive. They in-
clude price risk, income risk, weather risk, health risk, etc. As a result, both private
and public decisions under risk are of considerable interest. This is true in positive

Modelling Probabilistic Causation in Decision Making 9

analysis (where we want to understand human behaviour), as well as in normative
analysis (where we want to make recommendations about particular management or
policy decisions). Second, over the last few decades, significant progress has been
made in understanding human behaviour under uncertainty. As a result, we have
now a somewhat refined framework to analyse decision-making under risk.

In a sense, the economics of risk is a difficult subject; it involves understanding
human decisions in the absence of perfect information. In addition, we do not un-
derstand well how the human brain processes information. As a result, proposing an
analytical framework to represent what we do not know seems to be an impossible
task. In spite of these difficulties, much progress has been made. First, probability
theory is the cornerstone of risk assessment. This allows us to measure risk in a fash-
ion that can be communicated amongst decision makers or researchers. Second, risk
preferences are better understood. This provides useful insights into the economic
rationality of decision-making under uncertainty. Third, over the last decades, good
insights have been developed about the value of information. This helps us to better
understand the role of information and risk in private as well as public decision-
making.

We define risk as representing any situation where some events are not known
with certainty. This means that one cannot influence the prospects for the risk. It can
also relate to events that are relatively rare. The list of risky events is thus extremely
long. First, this creates a significant challenge to measure risky events. Indeed, how
can we measure what we do not know for sure? Second, given that the number of
risky events is very large, is it realistic to think that risk can be measured? We will
present a simple example about decision–making in a restaurant where risk is taken
into account.

Example 4 (Mamamia). The owner of the Restaurant “Mamamia” wants to offer
a new menu. Before the launch of the new menu, he performed some research.
Based on it, 75% of teenagers prefer the new menu and 80% of adults prefer the
original menu. Around 40% of his costumers are teenagers. If he offers the new
menu, each new menu will return 5 Euros. The basic cost that he should spend
for 100 new menus is 200 Euros. What is your suggestion for the owner of the
Restaurant “Mamamia”? The owner’s utility function is approximately represented
by U(X) = 2 ∗X − 0.01X2, (X ≤ 100), X being his income.

1 e xp ec t (d e c i d e (launch new menu)) . e xp ec t (d e c i d e (n o t l a u n c h)) .
2 c o n s t r a i n (1 , [d e c i d e (launch new menu) , d e c i d e (n o t l a u n c h)] , 1) .
3 d e c i s i o n ← c o n s i d e r (d e c i d e (X)) .
4 d e c i d e (launch new menu) / d e c i d e (n o t l a u n c h) ← n o t t a k e r i s k ,
5 p r o l o g (p r (menu (new) , PN)) , p r o l o g (p r (menu (o r i g i n a l) , PO)) ,
6 p r o l o g (PN > PO) .
7 d e c i d e (n o t l a u n c h) / d e c i d e (launch new menu) ← n o t t a k e r i s k ,
8 p r o l o g (p r (menu (o r i g i n a l) , PO)) , p r o l o g (p r (menu (new) , PN)) ,
9 p r o l o g (PO > PN) .

10 n o t t a k e r i s k ← not t a k e r i s k .
11 falsum ← not d e c i s i o n .
12 beginPr .
13 age = { t e e n a g e r , a d u l t } . o f f e r = { o r i g i n a l , new } .

10 Luı́s Moniz Pereira, Carroline Kencana Ramli

14 c u s t o m e r : age .
15 random (rc , cus tomer , f u l l) .
16 pa (rc , c u s t o m e r (t e e n a g e r) , d (6 0 , 1 0 0)) .
17 menu : o f f e r .
18 random (ro , menu , f u l l) .
19 pa (ro , menu (new) , d (7 5 , 1 0 0)) :− c u s t o m e r (t e e n a g e r) .
20 pa (ro , menu (o r i g i n a l) , d (8 0 , 1 0 0)) :− c u s t o m e r (a d u l t) .
21 endPr .
22 beg inPro log .
23 :− import member / 2 , l e n g t h / 2 from b a s i c s .
24 s e l e c t (M, Mnew) :− s e l e c t 1 (M, Mnew) , s e l e c t 2 (, 0 , [] ,) .
25 s e l e c t 1 ([] , []) .
26 s e l e c t 1 ([X |Xs] , [Y |Ys]) :−
27 a d d U t i l i t y V a l u e (X,Y) , s e l e c t 1 (Xs , Ys) .
28 s e l e c t 2 ([] , ,M,M) .
29 s e l e c t 2 ([M|Ms] , Acc , OldM ,NewM):−
30 member (u t i l i t y M o d e l (U) , M) ,
31 U > Acc → s e l e c t 2 (Ms , U,M,NewM) ; s e l e c t 2 (Ms , Acc , OldM ,NewM) .
32 a d d U t i l i t y V a l u e ([d e c i d e (X)] ,
33 [u t i l i t y M o d e l (EU) , e x p e c t e d P r o f i t (P r o f i t) , d e c i d e (X)]) :−
34 e x p e c t e d P r o f i t (X, P r o f i t) , e x p e c t e d U t i l i t y (X, EU) .
35 e x p e c t e d P r o f i t (Act ion , P) :−
36 r e t u r n (Act ion , R) , c o s t (Act ion , C) , P i s R − C .
37 e x p e c t e d U t i l i t y (Act ion , EU) :−
38 pr (menu (new) , PrN) , e x p e c t e d P r o f i t (Act ion , Pf) ,
39 EU i s (2∗ Pf ∗PrN − 0 .01∗ Pf ∗Pf ∗PrN) .
40 r e t u r n (launch new menu , 5) . r e t u r n (n o t l a u n c h , 0) .
41 c o s t (launch new menu , 2) . c o s t (n o t l a u n c h , 0) .
42 endProlog .

In Example 4, the expected return value depends on the probability of the number
of new menu offers. Given probability information about the age of customers and
their behaviour in choosing a menu offer, we compute the expected probability of
new menu choices. In this case, the probabilty of new menu choices is 0.42 an
the probability of original menu choices is 0.58. The probability of original menu
choices is higher than the probability of new menu choices. Furthermore, if we
compute the expected return more comprehensively, we will get the result:
M1 = {utilityModel(3 .1323), expectedProfit(3), decide(launch new menu)},
M2 = {utilityModel(0 .0000), expectedProfit(0), decide(not launch)}
Based on the computation, it is better if he launches a new menu even though it is
risky.

5 Conclusion and Future Work

Humans reason using cause and effect models with the combination of probabilis-
tic models such as Bayes Nets. Unfortunately, the theory of Bayes Nets does not
provide tools for generating a scenario that is needed for generating several possible
worlds. Those are important in order to simulate human reasoning not only about the

Modelling Probabilistic Causation in Decision Making 11

present but also about the future. On the other hand, ACORDA is a prospective logic
programming language that is able to prospect possible future worlds based on ab-
duction, preference and expectation specifications. But ACORDA itself cannot han-
dle probabilistic information. To deal with this problem, we integrated ACORDA
with P-log, a declarative logic programming language based on probability theory
and Causal Bayes Nets. Now, using our new system, it is easy to create models
using both causal models and Bayes Nets. The resulting declarative system can ben-
efit from the capabilities of the original ACORDA for generating scenaria, and is
equipped with probabilistic theory as a medium to handle uncertain events. Using
probability theory and utility functions, the new ACORDA is now more powerful in
managing quantitative as well as qualitative a priori and a posteriori preferences.

Often we face situations when new information is available that can be added to
our model in order to perform our reasoning better. Our new ACORDA also makes
it possible to perform a simulation and afterwards add more information directly to
the agent. It can also perform several steps of prospection in order to predict the
future better. For illustrative understanding, we presented taking a risk example in
which the system can help people to reason and rationally decide.

Applying utility functions to decision-making under uncertainty requires having
good information about the measurement of the probability disribution and the risk
preferences of the decision-maker. It is possible to conduct risk analysis without pre-
cise information about risk preferences using stochastic dominance. The latter sees
the elimination of “inferior choices” without strong a priori information about risk
preferences. For future work, we can extend P-log to handle stochastic processes.

References

1. D. Hume. An Enquiry Concerning Human Understanding: A Critical Edition. Oxford Philo-
sophical Texts, 1748.

2. J. Mackie. The Cement of the Universe. Oxford: Clarendon Press, 1974.
3. P. Dell’Acqua and L. M. Pereira. Preferential theory revision (extended version). J. Applied

Logic, 2007.
4. C. Baral, M. Gelfond, and N. Rushton. Probabilistic reasoning with answer sets. In LPNMR7,

pages 21–33, 2004.
5. J. Pearl. Causality: Models, Reasoning, and Inference. Cambridge University Press, 2000.
6. M. Gelfond, N. Rushton, and W. Zhu. Combining logical and probabilistic reasoning. In AAAI

Spring Symposium, 2006.
7. L. M. Pereira and G. Lopes. Prospective logic agents. In AI Procs. 13th Portuguese Intl.Conf.

on Artificial Intelligence (EPIA’07), pages 73–86, 2007.
8. L. M. Pereira and G. Lopes. Prospective logic agents. In International Journal of Reasoning-

based Intelligent Systems (IJRIS), to appear in 2009.
9. Jean-Paul Chavas. Risk Analysis in Theory and Practice. Academic Press, 2004.

