
Inductive Tight Semantics for Logic Programs

Luís Moniz Pereira and Alexandre Miguel Pinto
{lmp|amp}@di.fct.unl.pt

Centro de Inteligência Artificial (CENTRIA)
Universidade Nova de Lisboa, 2829-516 Caparica, Portugal

Abstract. The Gelfond-Lifschitz operator fixed-point requirement by
Stable Models induces asymmetry in dealing with Even Loops and Odd
Loops Over Negation. We introduce a 2-valued semantics for Normal
Logic Programs — the Inductive Tight semantics (ITS) — that gener-
alizes SM semantics by dealing uniformly with Even and Odd loops.ITS
conservatively extends the SM semantics (all SMs are Tight models),
enjoys relevance and cumulativity, guarantees model existence, and re-
spects the Well-Founded Model.
The IT semantics relies on Layering, a generalization of Stratification,
and is inductively defined on such layering: each model for a given layer
must comply with some model for the whole set of layers below.
Enjoying Relevance, the IT semantics is suitable top-down querying (à
la Prolog) when complete models are unnecessary.
The applications afforded by ITS are all those of Stable Models, which
it generalizes, plus those employing OLONs for productively obtaining
problem solutions, not just filtering them (like Integrity Constraints).
Keywords: Normal Logic Programs, Relevance, Cumulativity, Stable
Models, Well-Founded Semantics, Program Remainder

1 Introduction and Motivation

The semantics of Stable Models (SM) [5] is a cornerstone for some of the most
important results in logic programming of the past three decades, providing in-
creased logic programming declarativity and a new paradigm for program evalu-
ation. When needing to know the 2-valued truth-value of all literals in a normal
logic program (NLP) for the problem being solved, the solution is to produce
complete models. In such cases, tools like SModels [10] or DLV [7] may be ade-
quate enough, as they can indeed compute finite complete models according to
the SM semantics and its extensions to Answer Sets [8] and Disjunction. How-
ever, lack of some important properties of the base SM semantics, like relevance,
cumulativity and guarantee of model existence—enjoyed by, say, Well-Founded
Semantics [4] (WFS)—somewhat reduces its applicability and practical ease of
use when complete models are unnecessary, and top-down querying (à la Prolog)
would be sufficient. In addition, abduction by need top-down querying is not an
option with SM, creating encumbrance in required pre- and post-processing, be-
cause needless full abductive models are generated. The user should not pay the
price of computing whole models, nor that of generating all possible abductions

and then filtering irrelevant ones, when not needed. Finally, one would like to
have available a semantics for that provides a model for every NLP.

WFS in turn does not produce 2-valued models though these are often de-
sired, nor does it guarantee 2-valued model existence.

To overcome these limitations, we present the Inductive Tight Semantics
(ITS), a new 2-valued semantics for NLPs which guarantees model existence;
preserves the models of SM; enjoys relevance and cumulativity; and complies
with the WFM. ITS proffers an alternative to SM-based Answer-Set Program-
ming.

ITS supersedes our previous RSM semantics [9], which we have recently found
wanting in capturing our intuitively desired models in some examples, and be-
cause ITS relies on a clearer, simpler way of tackling the difficult problem of
assigning a semantics to every NLP while affording the aforementioned prop-
erties, via adapting better known formal LP methods than RSM’s reductio ad
absurdum stance.

An IT Model (ITM) of an NLP P is any minimal model (MM) M of P that
further satisfies P̂—the program remainder of P—in that each loop in P̂ has a
MM contained in M, whilst respecting the constraints imposed by the MMs of
the other loops so-constrained too.

A couple of examples bring out the need for a semantics supplying all NLPs
with models, and permitting models otherwise eliminated by Odd Loops Over
default Negation (OLONs):

Example 1. Jurisprudential reasoning. A murder suspect not preventively
detained is likely to destroy evidence, and in that case the suspect shall be
preventively detained:

likely_destroy_evidence(suspect)← not preventive_detain(suspect)
preventive_detain(suspect) ← likely_destroy_evidence(suspect)

There is no SM, and a single ITM = {preventive_detain(suspect)}. This
jurisprudential reasoning is carried out without need for a suspect to exist now.
Should we wish, ITS’s cumulativity allows adding the model literal as a fact.

Example 2. A joint vacation problem. Three friends are planning a joint
vacation. First friend says “I want to go to the mountains, but if that’s not
possible then I’d rather go to the beach”. The second friend says “I want to go
traveling, but if that’s not possible then I’d rather go to the mountains”. The
third friend says “I want to go to the beach, but if that’s not possible then I’d
rather go traveling”. However, traveling is only possible if the passports are OK.
They are OK if they are not expired, and they are expired if they are not OK.
We code this information as the NLP:

beach ← not mountain
mountain ← not travel
travel ← not beach, passport_ok
passport_ok ← not expired_passport
expired_passport← not passport_ok

The first three rules contain an odd loop over default negation through beach,
mountain, and travel; and the rules for passport_ok and expired_passport
form an even loop over default negation. Henceforth we will abbreviate the
atoms’ names. This program has a single SM: {e_p,m}. But looking at the
rules relevant for p_ok we find no irrefutable reason to assume e_p to be
true. ITS allows p_ok to be true, yielding three other models besides the SM:
ITM1 = {b,m, p_ok}, ITM2 = {b, t, p_ok}, and ITM3 = {t,m, p_ok}.

The even loop has two minimal models: {p_ok} and {e_p}. Assuming the
first MM, the odd loop has three MMs corresponding to ITM1, ITM2, and
ITM3 above. Assuming the second MM (where e_p is true), the OLON has
only one MM: the SM mentioned above {e_p,m}, also an ITM.

The applications afforded by ITS are all those of SM, plus those requiring
solving OLONs for model existence, and those where OLONs are employed for
the production of solutions, not just used as Integrity Constraints (ICs). Model
existence is essential in applications where knowledge sources are diverse (like in
the semantic web), and where the bringing together of such knowledge (automat-
ically or not) can give rise to OLONs that would otherwise prevent the resulting
program from having a semantics, thereby brusquely terminating the applica-
tion. A similar situation can be brought about by self-, mutual- and external
updating of programs, where unforeseen OLONs would stop short an ongoing
process. Coding of ICs via odd loops, commonly found in the literature, can
readily be transposed to IC coding in ITS, as explained in the sequel.

Paper structure. After background notation and definitions, we usher in
the desiderata for ITS, and only then formally define ITS, exhibit examples, and
prove its properties. Conclusions, and future work close the paper.

2 Background Notation and Definitions

Definition 1. Normal Logic Program. A Normal Logic Program (NLP) P
is a (possibly infinite) set of logic rules, each of the form

H ← B1, . . . , Bn, not C1, . . . , not Cm
where H, the Bi and the Cj are atoms, and each rule stands for all its ground
instances. H is the head of the rule, denoted by head(r), and body(r) denotes set
{B1, . . . , Bn, not C1, . . . , not Cm} of all the literals in the body of r. heads(P)
denotes {head(r) : r ∈ P}. Throughout, ‘not ’ signals default negation. Abusing
notation, we write not S to denote {not s : s ∈ S}. If the body of a rule is empty,
we say its head is a fact and may write the rule just as H.

When S is an arbitrary, non-empty, set of literals we use the following no-
tation: S+ to denote the subset of positive literals in S, S− to denote the sub-
set of negative literals in S, and |S| to denote the set of atoms in S — i.e.,
|S| = S+ ∪ not S−.

Definition 2. Rule dependencies. Given an NLP P build a dependency
graph G(P) such that the rules of P are the nodes of G(P), and there is an

arc, labeled “positive”, from a node r2 to a node r1 if head(r2) appears in the
body of r1; or labeled “negative” if not head(r2) appears in the body of r1.

We say a rule r1 directly depends on r2 (written as r1 ← r2) iff there is a
direct arc in G(P) from r2 to r1. By transitive closure we say r1 depends on r2
(r1 � r2) iff there is a path in G(P) from r2 to r1.

Definition 3. Rule Layering of a Normal Logic Program P . Let P be
an NLP, and G(P) its rule-dependency graph. A rule layering function Lf/1 is
any function defined over the rules of P , assigning each rule r ∈ P a positive
integer, such that the following holds:

∀r1,r2∈P
{
Lf(r1) = Lf(r2)⇐ (r1 � r2) ∧ (r2 � r1)
Lf(r1) > Lf(r2)⇐ (r1 ← r2) ∧ ¬ (r2 � r1)

The two cases above, which are patently mutually exclusive, leave out inde-
pendent rules, i.e., rules that have no dependencies amongst themselves. Accord-
ing to this definition there is no restriction on which integer to assign to each
independent rule in what the other rules’ assignations are concerned.

A rule layering of program P is a partition P 0, P 1, . . . , Pω of P such that
P i contains all rules r having Lf(r) = i, where P 0 = ∅. Amongst the several
possible rule layerings of a program P we can always find the least one, i.e., the
rule layering with least number of layers and where the integers of the layers
are smallest, whilst respecting the rule layering constraints, easily seen to be
unique. In the remainder, when referring to the program’s “layering”, we mean
just such least rule layering. Whenever we want to refer to an atom layering we
will explicitly mention “atom” as in “atom layering”. We also write P≤i as an
abbreviation of

⋃
0≤j≤i P

j. It follows immediately that P = P≤ω.

Definition 4. Loop in P . Given an NLP P , a non-empty subset L of rules
of P is a loop iff it is maximal (w.r.t. set-inclusion) such that for every two
rules r, r′ ∈ L, r � r′ holds, and there are no two rules r 6= r′ ∈ L such that
head(r) = head(r′). We write LoopP (L) to denote that L is a loop of P .

Rules in a loop are, by definition, placed in the same layer.

Definition 5. Set of default negated literals of a loop. Let P be an NLP
and L a loop of P . We write nots(L) to denote the set of default negated literals
not a in the bodies of rules of L whose positive counterpart a is the head of some
rule of L. Formally, nots(L) = (not heads(L)) ∩ (

⋃
r∈L body(r)

−).

Definition 6. RelP (a) — Relevant part of NLP P for the atom a. The
Relevant part of a NLP P for some atom a, RelP (a) is defined as the transitive
closure of the rule-dependency relation of the rules with head a.

Intuitively, RelP (a) is just the set of rules with head a and the rules in the
call-graph for a.

Definition 7. Program Remainder [2]. The program remainder P̂ is guar-
anteed to exist for every NLP, and is computed by applying to P the positive
reduction (which deletes the not b from the bodies of rules where b has no rules),
the negative reduction (which deletes rules that depend on not a where a is a
fact), the success (which deletes facts from the bodies of rules), and the failure
(which deletes rules that depend on atoms without rules) transformations, and
then eliminating also the unfounded sets [4] via a loop detection transforma-
tion. The loop detection is computationally equivalent to finding the strongly
connected components [11] in the G(P) graph, as per definition 2, and is known
to be of polynomial time complexity.

Intuitively, unfounded sets consist of positive loops, i.e., loops where the all
literals in the bodies of the rules through which the loop is formed are positive.

3 Desiderata

Intuitively desired semantics. Usually, both the default negation not and
the ← in rules of Logic Programs reflect some asymmetry in the intended MMs,
e.g., in a program with just the rule a ← not b, although it has two MMs:
{a}, and {b}, the only intended one is {a}. This is afforded by the syntactic
asymmetry of the rule, reflected in the one-way direction of the←, coupled with
the intended semantics of default negation. Thus, a fair principle underlying the
rationale of a reasonable semantics would be to accept an atom in a model only
if there exist rules in a program, at least one, with it as head. This principle
rejects {b} as a model of program a← not b.

When rules form loops, the syntactic asymmetry disappears and, as far as
the loop only is concerned, MMs can reflect the intended semantics of the loop.
That is the case, e.g., when we have just the rules a← not b and b← not a; both
{a} and {b} are the intended models. However, loops may also depend on other
literals with which they form no loop. Those asymmetric dependencies should
have the same semantics as the single a← not b rule case described previously.

So, on the one side, asymmetric dependencies should have the semantics of
a single a ← not b rule; and the symmetric dependencies (of any loop) should
subscribe to the same MMs semantics as the a ← not b and b ← not a set
of rules. Intuitively, a good semantics should cater for both the symmetric and
asymmetric dependencies as described.

Desirable formal properties. By design, our ITS benefits from number of
desirable properties of LP semantics [3], namely: guarantee of model existence;
relevance; and cumulativity. We recapitulate them here for self-containment.
Guarantee of model existence ensures all programs have a semantics. Relevance
permits simple (object-level) top-down querying about truth of a query in some
model (like in Prolog) without requiring production of a whole model, just the
part of it supporting the call-graph rooted on the query. Formally:

Definition 8. Relevance. A semantics Sem for logic programs is said Rele-
vant iff for every program P , a ∈ Sem(P)⇔ a ∈ Sem(RelP (a)).

Relevance ensures any partial model supporting the query’s truth can always
be extended to a complete model; relevance is of the essence to abduction by
need, in that only abducibles in the call-graph need be considered for abduction.

Cumulativity signifies atoms true in the semantics can be added as facts
without thereby changing it; thus, lemmas can be stored. Formally:

Definition 9. Cumulativity. A semantics Sem is Cumulative iff the seman-
tics of P remains unchanged when any atom true in the semantics is added to
P as a fact:
Cumulative(Sem)⇔ ∀P∀a,ba ∈ Sem(P)⇒ (b ∈ Sem(P)⇔ b ∈ Sem(P ∪{a}))

Neither of these three properties are enjoyed by SMs, the de facto standard
semantics for NLPs. The core reason SM semantics fails to guarantee model
existence for every NLP is that the stability condition it imposes on models is
impossible to be complied with by OLONs.

Example 3. Stable Models semantics misses Relevance and Cumulativ-
ity.

c← not c c← not a
a← not b b← not a

This program’s unique SM is {b, c}. However, P ∪ {c} has two SMs {a, c}, and
{b, c} rendering b no longer true in the SM semantics, which is the intersection
of its models. SM semantics lacks Cumulativity. Also, though b is true in P
according to SM semantics, b is not true in RelP (b) = {a← not b; b← not a},
shows SM semantics lacks Relevance.

In fact, the ASP community uses the SM semantics inability to assign a
model to OLONs as a means to impose ICs, such as a ← not a,X, where the
OLON over a prevents X from being true in any model.

ITS goes beyond the SM standard, not just because in complying with all the
above 3 properties, but also in being a model conservative extension of the SMs
semantics, in this sense: A semantics is a model conservative extension of another
when it provides at least the same models as the latter, for programs where the
latter’s are defined, and further provides semantics to programs for which the
latter’s are not defined. Another way of couching this is: new desired models
are provided which the semantics being extended was failing to produce, but all
the latter’s produced ones are nevertheless provided by the model-conservative
extension.

While encompassing the above properties, ITS still respects theWell-Founded
Model (WFM) like SM does: every ITS model complies with the true and the
false atoms in the WFM of a program. Formally:

Definition 10. Well-Founded Model of a Normal Logic Program P .
Following [2], the true atoms of the WFM of P (the irrefutably true atoms of P)
are the facts of P̂ , the remainder of P (their definition 5.17). Moreover, the true
or undefined literals of P are just the heads of rules of P̂ ; and the computation
of P̂ can be done in polynomial time. Thus, we shall write WFM+(P) to denote

the set of facts of P̂ , and WFM+u(P) to denote the set of heads of rules of P̂ .
Also, since the false atoms in the WFM of P are just the atoms of P with no
rules in P̂ , we write WFM−(P) to denote those false atoms.

Definition 11. Interpretation M of P respects the WFM of P . An
interpretation M respects the WFM of P iff M contains the set of all the true
atoms of the WFM of P , and it contains no false atoms of the WFM of P .
Formally: RespectWFMP (M)⇔WFM+(P) ⊆M ⊆WFM+u(P)

ITS’s WFM compliance, besides keeping with SM’s compliance (i.e. the WFM
approximates the SM), is important to ITS for a specific implementation reason
too. Since WFS enjoys relevance and polynomial complexity, one can use it
to obtain top-down—in present day tabled implementations—the residual or
remainder program that expresses the WFM, and then apply ITS to garner its
2-valued models, foregoing the need to generate complete models.

For program a ← not a, the only Inductive Tight Model (ITM) is {a}. In
the ITS, OLONs are not ICs. ICs are enforced employing rules for the special
atom falsum, of the form falsum ← X, where X is the body of the IC one
wishes to prevent being true. This does not preclude falsum from figuring in
some models. From a theoretical standpoint it means the ITS semantics does not
a priori include a built-in IC compliance mechanism. ICs can be dealt with in
two ways, either by (1) a syntactic post-processing step, as a model “test stage”
after their “generate stage”; or by (2) embedding IC compliance in the query-
driven computation, whereby the user conjoins query goals with not falsum. If
inconsistency examination is desired, like in case (1), models including falsum
can be discarded a posteriori. Thus, ITS clearly separates OLON semantics from
IC compliance, and frees OLONs for a wider knowledge representation usage.

4 Inductive Tight Semantics

The fundamental principle which guided the crafting of the Tightness concept
is the default character of negative literals in Normal Logic Programs. In a
non-definite NLP, whenever there are loops through default negation, negative
literals as considered free choices or assumptions. In fact, even from an abductive
perspective, [6] depicts how default negated literals (DNLs) can be viewed as
abducibles, i.e., assumable hypotheses.

Merging this default character of the not with the syntactic symmetries
of loops and asymmetries of non mutually dependent rules is what Tightening
achieves. For that, Tightness is a two-fold concept which encompasses Symmetric
Tightness and Asymmetric Tightness.

4.1 Symmetric Tightness

Symmetric Tightness (ST) implements the semantic symmetry principle which
stems from the syntactic symmetry of loops, therefore, ST applies only to rules
forming a loop.

Taking the stance of facing each default negated literal (DNL) as an assum-
able hypothesis, or free choice, the ST reflects the syntactic symmetry of a loop
by assigning equal ground to every DNL — no DNL is preferable over any other
in the loop in what assuming its truth-value as true is concerned. However, once
one particular literal a — where not a ∈ nots(L) for the loop L at hand —
is assumed true, the consequences of that choice must be propagated through
L. The Tightness (both the Symmetric and the Asymmetric as we shall see in
subsection 4.2) resorts to the Program Remainder operator (P̂ , as per def. 7)
as a means to compute and propagate such consequences. This restricts which
DNLs are still assumable as true (and which must necessarily be assumed false)
after a given DNL has been assumed true.

Definition 12. Atom Tightened Loop. Let P be an NLP, and L a loop of
P , and a an atom of L such that not a ∈ nots(L). The atom tightening of L
with a — denoted as L } a — is obtained by adding a as a fact to L and then
calculating the Program Remainder, i.e. L} a = L̂ ∪ {a}.

Notice that after choosing one particular a, the corresponding L} a can be
deterministically calculated by a polynomial-time process (which is the know
complexity of the Program Remainder operator).

Definition 13. Fully Tightened Loop. Let P be an NLP, L a loop of P , and
a an atom of L such that not a ∈ nots(Li), where L0 = L, and Li+1 = Li}a. A
full tightening of L — denoted as L◦ — is an end point of the atom tightening
sequence. I.e., L◦ is some Lj where Lj = Lj+1.

Each atom tightening step adds a fact to L and reduces L via the Program
Remainder operator. After one atom tightening step with, say, atom a, nots(L}
a) may still be non-empty, and in that case achieving L◦ will require more atom
tightening steps. When, after j atom tightening steps, nots(Lj) = ∅, the original
L is reduced to Lj , necessarily a set of facts. This occurs due to the simplifications
(rule deletions and rules bodies’ reductions) the Program Remainder operator
performs after the addition of a fact. Hence, L◦ is just a set of facts. Since, in
principle, any sequence of atoms a of nots(L) can be used for calculating a L◦,
there may be, at most 2#nots(L) different L◦.

Given an arbitrary loop L with #nots(L) = m, any fully tightened version
L◦ of L can be obtained by performing, at most, m atom tightening operations,
since m is necessarily finite. Hence, at most, L◦ = Lm = L}m.

Definition 14. Loop Tight Model. Let P be an NLP, and L a loop of P ,
and L◦ some full tightening of L. The set M of facts of L◦ is a Loop Tight (LT)
model of L — denoted as LTL(M). If nots(L) = ∅ then L has one unique LT
model: M = ∅.

Example 4. Loop Tight Model. Let P be some NLP, with the loops

L1 = L2 =
a← d w ← not x
d← not b x← not y
b← not c y ← not z
c← not a z ← not w

L1 has three LT models: ML11
= {a, b}, ML12

= {b, c}, ML13
= {c, a, d}.

For ML11
we start by assuming a true. We add a as a fact to L1, thus

obtaining L1 ∪ {a}, and compute L1 } a = ̂L1 ∪ {a} = {a, b}.
The computation of the Program Remainder of L1 ∪ {a} goes as follows:

since a is now a fact, the rule c← not a is deleted; since this was the only rule
for c, this deletion renders c false, hence the body of the rule b ← not c can be
simplified by deleting the not c. b now becomes a fact too. By the same token,
since b is now a fact, the rule d ← not b is deleted and, this being the unique
rule for d, the rule a← d is also deleted.

L1 } a is thus the set of facts {a, b}, so ML11
= {a, b}. ML12

and ML13
can

be computed by the same process.
One could suspect L2 having four LT models:ML21

= {w, y},ML22
= {z, x},

ML23
= {y, w}, ML24

= {x, z}, but it is clear that ML21
= ML23

and that
ML22

= ML24
.

Definition 15. Layer Tight model. Let P be an NLP, andM a set of literals
such that, for each loop L in P there is a LTL(ML), where ML ⊆ M . M is a
Layer Tight model of P — denoted as LyTP (M) — iff M+ is a minimal model
of P and M− = nots(P) \ (not M+).

Theorem 1. Existence of Layer Tight Model. Every NLP P has, at least,
one Layer Tight Model.

Proof. For each loop L in P it always possible to find all of its Loop Tight models.
Each LT model is, by definition, a model of its respective loop. Each combination
of LT models (one LT model per loop) united with the heads of rules of P outside
loops, is a model of P . Each such minimal combination, plus the heads of the
non-loop rules, isM+, necessarily a minimal model of P . The set nots(P) always
exists and is unique. It is always possible to compute deterministicallyM− from
nots(P) and M+. Hence, there is always at least one Layer Tight model for P .

4.2 Asymmetric Tightness

Asymmetric Tightness (AT) implements the semantic asymmetry principle which
stems from the syntactic asymmetry of different layers, therefore, AT applies only
between layers. Truth-values for literals determined in a given layer must be re-
spected by rules in layers above. The asymmetric tightening guarantees that
respect by deleting rules whose bodies are inconsistent with the model deter-
mined for the layers below.

Definition 16. Layer-wise inconsistency. Let P be an NLP, and S a set
of literals. A rule r ∈ P is layer-wise inconsistent with S iff

not body(r) ∩ (S \ (heads(P) ∪ not heads(P))) 6= ∅

Definition 17. Asymmetric Tightening. Let P be an NLP, and S a con-
sistent set of literals of P . The Asymmetric Tightening of P by S — P : S —
is P : S = P̂S, where
PS = {head(r)← body(r) \ S : r ∈ P ∧ r is layer-wise consistent with S}

The layer-wise consistency proviso allows for rules with bodies inconsistent
with S to be in P : S as along as the source of inconsistency is limited to the
literals of the body for which there are also rules in P . This proviso thus does
not prevent Loop Tight models for the loops in P to corroborate the truth-value
for the literals already determined true in S.

Definition 18. Inductive Tight Model. Let P be an NLP. M0 = ∅ is the
unique Inductive Tight model for P 0 = P≤0 = ∅. Assume there is an Inductive
Tight model M<α for P<α, with α > 0. M≤α is an Inductive Tight model of
P≤α — denoted as ITMP≤α(M≤α) — iff ∃LyTPα:M<α (Mα)M≤α = Mα ∪M<α.

The Inductive Tight Semantics of P — ITS(P) — is the intersection of all
its Inductive Tight Models.

The rationale for IT models is actually quite simple. IT models are defined in
an inductive manner along the layers of the program. Layer 0 has the unique
IT model ∅. Each subsequent layer is Asymmetrically Tightened with some
immediately-lower layer IT model, before a Layer Tight model of the (already
Asymmetrically Tightened) layer can be calculated.

Example 5. Difference between ITS and RSM semantics. Let P be

a← not b, c
b← not c, not a
c← not a, b

ITS accepts both M1 = {a} and M2 = {b, c} as ITMs, whereas the RSM seman-
tics [9] only accepts M1. Neither are SMs.

Example 6. Mixed loops 2. Let P be

a← not b
b← not c, e
c← not a
e← not e, a

In this case, ITS, like the RSM semantics, accepts all minimal models: M1 =
{a, b, e}, M2 = {a, c, e}, and M3 = {b, c}.

Example 7. Quasi-Stratified Program. Let P be

d← not c
c← not b
b← not a
a← not a

The unique ITS is {a, c}, and there are no SMs. In this case it is quite easy to see
how the Tightness works: M0 = M≤0 = M<1 = ∅. Asymmetrically tightening
P 1 with M<1 = ∅ leaves P 1 unchanged. M1 = {a} is necessarily the unique
LyT model of P 1 = a ← not a. M<2 = M≤1 = M1 ∪ M<1 = M1 = {a}.
Asymmetrically tightening P 2 with M<2 produces P 2 : {a} = ∅. The unique
Layer Tight model of P 2 : {a} is M2 = ∅. So, M<3 = M≤2 = M2 ∪M<2 =
∅∪{a} = {a}. Asymmetrically tightening P 3 withM<3 produces P 3 : {a} = the
fact c. Now, the unique Layer Tight model of P 3 : {a} is M3 = {c}. So, M<4 =
M≤3 = M3 ∪ M<3 = {a} ∪ {c} = {a, c}. Finally, Asymmetrically tightening
P 4 with M<4 produces P 4 : {a, c} = ∅. The unique Layer Tight model of
P 4 : {a, c} is M4 = ∅, and the unique Inductive Tight model of P = P≤4 is
M≤4 = M4 ∪M<4 = ∅ ∪ {a, c} = {a, c}.

5 Properties of the Inductive Tight Semantics

Forthwith, we prove some properties of ITS, namely: guarantee of model exis-
tence, relevance, cumulativity, model-conservative extension of SMs, and respect
for the Well-Founded Model. The definitions involved are to be found in section
3.

Theorem 2. Existence. Every well-founded Normal Logic Program has an IT
model.

Proof. Let P be an NLP. It is always possible to calculate P ’s least layering.
The inductive definition itself provides the method to prove that all well-founded
NLPs have Inductive Tight Models. P 0 has a unique IT model: the empty set.
Assuming M<α is an IT model for all layers β < α, it is always possible to
asymmetrically tighten layer α withM<α. Theorem 1 guarantees there is always
at least one LyTPα:M<α

(Mα). And, of course, it is possible to compose M≤α =
M<α ∪Mα.

Theorem 3. Relevance of IT Semantics. The IT Semantics is relevant.

Proof. According to definition 8 a semantics Sem is relevant iff a ∈ Sem(P)⇔
a ∈ Sem(RelP (a)) for all atoms a. Since the ITS of a program P — ITS(P)
— is the intersection of all its ITMs, relevance becomes a ∈ ITS(P) ⇔ a ∈
ITS(RelP (a)) for ITS.

By definition, a is true in some IT model M iff either a is a fact or there is
some rule r such that head(r) = a and r ∈ L for some L ∈ P , in whichever layer.
In either case a is true in M because there is some rule with head a. Necessarily,
such rule belongs to RelP (a).

Theorem 4. Cumulativity of IT Semantics. The IT Semantics is cumu-
lative.

Proof. By definition 18, the semantics of a program P is the intersection of its
ITMs. So, a ∈ ITS(P)⇔ ∀ITMP (M)a ∈M . For the ITS semantics cumulativity
becomes expressed by
Cumulative(Sem)⇔ ∀a,ba ∈ ITS(P)⇒ (b ∈ ITS(P)⇔ b ∈ ITS(P ∪ {a}))

Let us assume a ∈ ITS(P) ∧ b ∈ ITS(P). Adding an atom as a fact to P
consists in putting it in the lowest layer. Since the ITS is relevant, if b did not
depend on a, adding a to P will not affect b’s truth-value. The only way for
the addition of a as a fact to P to prevent b from being in ITS(P) would be
by a preventing any LT model from containing b. But this cannot be the case
precisely because the Asymmetric Tightening does not allow for the deletion of
rules with bodies inconsistent with literals determined in lower layers as long as
the rule with the conflicting body is in a loop with another rule whose head is
one of the conflicting literals.

Let us assume a ∈ ITS(P) ∧ b ∈ ITS(P ∪ {a}). Again, if b does not depend
on a, since the semantics is relevant, b’s truth-value remains unchanged. By the
same reason, invoked in the previous paragraph concerning of the Asymmetric
Tightening, b will necessarily remain in ITS(P).

Theorem 5. Stable Models Extension. Any Stable Model is an ITM of P .

Proof. Assume M is a SM of P . Then M = least(P/M) where the division
P/M deletes all rules with not a in the body where a ∈M , and then deletes all
remaining not b from the bodies of rules. The program division P/M performs
an even more demanding program division than that of Asymmetric Tightening.
Moreover, the division P/M acts on all layers at once. Clearly,M = least(P/M)
only if it also passes the less demanding test of Inductive Tightness.

Theorem 6. Inductive Tight Semantics respects the Well-Founded Model.
Every IT Model of P respects the Well-Founded Model of P .

Proof. Take any ITM M of P . At each layer i, Mi is a minimal model of layer
i already asymmetrically tightened by a lower layer set model. The asymmetric
tightening performs a Program Remainder computation, which guarantees re-
spect for the WFM. In fact, we resort to the Program Remainder operator in
several definitions precisely to guarantee respect for the WFM.

Due to lack of space, the complexity analysis of this semantics is left out of
this paper. Nonetheless, a brief note is due. Inductive Tight Model existence
is guaranteed for every NLP, whereas finding if there are any SMs for an NLP
is NP-complete. Since ITS enjoys relevance, the computational scope of Brave
Reasoning can be restricted to RelP (a) only, instead of the whole P . Nonethe-
less, we conjecture that Brave reasoning — finding if there is any model of the
program where some atom a is true — is a Σ2

P -hard task. This is so because each
relevant branch in the call-graph can be a loop. Traversing the entire call-graph

is in itself an NP-complete task. For each loop, the ITS requires the computa-
tion of a minimal model — another NP-complete task. Hence the conjectured
Σ2
P -hardness. Still, from a practical standpoint, having to traverse only the rel-

evant call-graph for brave reasoning, instead of considering the whole program,
can have a significant impact in the performance of concrete applications. By
the same token, cautious reasoning (finding out if some atom a is in all mod-
els) in the ITS should have the complementary complexity of brave reasoning:
Π2
P -complete.
One common objection to this kind of semantics concerns the notion of SM

support. IT models are not supported, considering that classical notion of sup-
port. However, we abide by a more general notion of support: an atom is loop
supported iff there is at least one rule with it as head and all the literals in
the body of the rule which do not depend on the head are also true. This loop
support is a generalization of the classical support: every SM model also a ITS
model is classically and loop supported. This ensures the truth assignment to
atoms in, say, a loop L2 which depends asymmetrically on loop L1, is consistent
with the truth assignments in loop L1 and that these take precedence over L2

in their truth labeling. As a consequence of the loop support requirement, IT
models comply with the WFM of the loops they asymmetrically depend on.

6 Conclusions, Future and Ongoing Topics, and Similar
Work

Having defined a more general 2-valued semantics for LPs much remains in store,
and to be explored and reported, in the way of properties, complexity, compar-
isons, implementation, and applications. We hope the concepts and techniques
newly introduced here might be adopted by other logic programming semantics
approaches and systems.

We defined ITS, a semantics for all NLPs complying with the express require-
ments of: 2-valued semantics, preserving the models of SM, guarantee of model
existence (even in face of odd loops over negation), relevance, cumulativity, and
WFM respect.

Relevancy condones top-down querying and avoids the need to compute
whole models. It also permits abduction by need, avoiding much useless con-
sideration of irrelevant abducibles.

That ITS includes the SM semantics and that it always exists and admits
top-down querying is a novelty making us look anew at 2-valued semantics use
in KRR, contrasting its use to other semantics employed heretofore for KRR,
even though SM has already been compared often enough [1].

References

1. C. Baral. Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press, 2003.

2. S. Brass, J. Dix, B. Freitag, and U. Zukowski. Transformation-based bottom-up
computation of the well-founded model. TPLP, 1(5):497–538, 2001.

3. J. Dix. A Classification-Theory of Semantics of Normal Logic Programs: I, II.
Fundamenta Informaticae, XXII(3):227–255, 257–288, 1995.

4. A. Van Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics for
general logic programs. J. of ACM, 38(3):620–650, 1991.

5. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming.
In ICLP/SLP, pages 1070–1080. MIT Press, 1988.

6. Antonis C. Kakas, Robert A. Kowalski, and Francesca Toni. Abductive logic pro-
gramming. J. Log. Comput., 2(6):719–770, 1992.

7. Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gottlob, Si-
mona Perri, and Francesco Scarcello. The dlv system for knowledge representation
and reasoning. ACM Transactions on Computational Logic, 7:499–562, 2002.

8. Vladimir Lifschitz and Thomas Y. C. Woo. Answer sets in general nonmonotonic
reasoning (preliminary report). In KR, pages 603–614, 1992.

9. L. M. Pereira and A. M. Pinto. Revised stable models - a semantics for logic
programs. In G. Dias et al., editor, Progress in AI, volume 3808 of LNCS, pages
29–42. Springer, 2005.

10. Tommi Syrjänen and Ilkka Niemelä. The smodels system. In T. Eiter et al., editor,
LPNMR 2001, volume 2173 of LNAI. Springer-Verlag, 2001.

11. R. Tarjan. Depth-first search and linear graph algorithms. SIAM J. Computing,
1(2):146–160, 1972.

