
Intention Recognition with Evolution
Prospection and Causal Bayes Networks

Lúıs Moniz Pereira and Han The Anh
lmp@di.fct.unl.pt, h.anh@fct.unl.pt

Centro de Inteligência Artificial (CENTRIA)
Departamento de Informática, Faculdade de Ciências e Tecnologia,

Universidade Nova de Lisboa, 2829-516 Caparica, Portugal

Abstract. We describe a novel approach to tackle intention recognition,
by combining dynamically configurable and situation-sensitive Causal
Bayes Networks plus plan generation techniques.

Given some situation, such networks enable the recognizing agent to
come up with the most likely intentions of the intending agent, i.e. solve
one main issue of intention recognition. And, in case of having to make
a quick decision, focus on the most important ones.
Furthermore, the combination with plan generation provides a signif-
icant method to guide the recognition process with respect to hidden
actions and unobservable effects, in order to confirm or disconfirm likely
intentions. The absence of this articulation is a main drawback of the ap-
proaches using Bayes Networks solely, due to the combinatorial problem
they encounter.

We explore and exemplify its application, in the Elder Care context, of
the ability to perform Intention Recognition and of wielding Evolution
Prospection methods to help the Elder achieve its intentions. This is
achieved by means of an articulate use of a Causal Bayes Network to
heuristically gauge probable general intention – combined with specific
generation of plans involving preferences – for checking which such in-
tentions are plausibly being carried out in the specific situation at hand,
and suggesting actions to the Elder. The overall approach is formulated
within one coherent and general logic programming framework and im-
plemented system. The paper recaps required background and illustrates
the approach via an extended application example.

Keywords: Intention recognition, Elder Care, Causal Bayes Networks,
Plan generation, Evolution Prospection, Preferences, Logic Program-
ming.

1 Introduction

In many multi-agent systems, the problem of intention recognition appears to be
crucial when the agents cooperate or compete to achieve a certain task, especially
when the possibility of communication is limited. For example, in heterogeneous
agent systems it is likely that agents speak different languages, have different

designs or different levels of intelligence; hence, intention recognition may be
the only way the agents understand each other so as to secure a successful
cooperation. Moreover, when competing, the agents even often attempt to hide
their real intentions and make others believe in some pretense ones. Intention
recognition in this setting becomes undoubtedly crucial for agents, in order to
prepare themselves from potential hostile behaviors from others.

Needless to say, the recognized intentions provide the recognizing agent with
valuable information in dealing with other agents, whether they cooperate or
compete with each other. But how this information can be valuable for the
recognizing agent? In this work, besides the problem of intention recognition,
we attempt to address that issue using our implemented Evolution Prospection
Agent system [2,3].

Recently, there have been many works addressing the problem of intention
recognition as well as its applications in a variety of fields. As in Heinze’s doctoral
thesis [13], intention recognition is defined, in general terms, as the process of
becoming aware of the intention of another agent and, more technically, as the
problem of inferring an agent’s intention through its actions and their effects on
the environment.

According to this definition, one approach to tackle intention recognition is
by reducing it to plan recognition, i.e. the problem of generating plans achieving
the intentions and choosing the ones that match the observed actions and their
effects in the environment of the intending agent. This has been the main stream
so far [13,16].

One of the core issues of that approach is that of finding an initial set of
possible intentions (of the intending agent) that the plan generator is going to
tackle, and which must be imagined by the recognizing agent. Undoubtedly, this
set should depend on the situation at hand, since generating plans for all inten-
tions one agent could have, for whatever situation he might be in, is unrealistic
if not impossible.

In this paper, we use an approach to solve this problem employing so-called
situation-sensitive Causal Bayes Networks (CBN) - That is, CBNs [23] that
change according to the situation under consideration, itself subject to ongoing
change as a result of actions. Therefore, in some given situation, a CBN can
be configured dynamically, to compute the likelihood of intentions and filter
out the much less likely intentions. The plan generator (or plan library) thus
only needs, at the start, to deal with the remaining more relevant because more
probable or credible intentions, rather than all conceivable intentions. One of the
important advantages of our approach is that, on the basis of the information
provided by the CBN the recognizing agent can see which intentions are more
likely and worth addressing, so, in case of having to make a quick decision, it
can focus on the most relevant ones first. CBNs, in our work, are represented
in P-log [5,8,6], a declarative language that combines logical and probabilistic
reasoning, and uses Answer Set Programming (ASP) as its logical and CBNs
as its probabilistic foundations. Given a CBN, its situation-sensitive version
is constructed by attaching to it a logical component to dynamically compute

situation specific probabilistic information, which is forthwith inserted into the
P-log program representing that CBN. The computation is dynamic in the sense
that there is a process of inter-feedback between the logical component and the
CBN, i.e. the result from the updated CBN is also given back to the logical
component, and that might give rise to further updating, etc.

In addition, one more advantage of our approach, in comparison with the
stream of those using solely BNs [14,15] is that these just use the available infor-
mation for constructing CBNs. For complicated tasks, e.g. in recognizing hidden
intentions, not all information is observable. Whereas CBNs are appropriate for
coding general average information, they quickly bog down in detail when as-
piring to code multitudes of specific situations and their conditional probability
distributions. The approach of combining CBNs with plan generation provides
a way to guide the recognition process: which actions (or their effects) should
be checked whether they were (hiddenly) executed by the intending agent. So,
plan recognition ties the average statistical information with the situation par-
ticulars, and obtains specific situational information that can be fed into the
CBN. In practice, one can make use of any plan generators or plan libraries
available. For integration’s sake, we can use the ASP based conditional planner
called ASCP [18] from XSB Prolog using the XASP package [9,30] for interfacing
with Smodels [28] – an answer set solver – or, alternatively, rely on plan libraries
so obtained.

The next step, that of taking advantage of the recognized intention gleaned
from the previous stage, is implemented using our Evolution Prospection Agent
(EPA) system [2,3]. The latter allows an agent to be able to look ahead, prospec-
tively, into its hypothetical futures, in order to determine the best courses of evo-
lution that satisfy its goals, and thence to prefer amongst those futures. These
courses of evolution can be provided to the intending agent as suggestions to
achieve its intention (in cooperating settings) or else as a guide to prevent that
agent from achieving it (in hostile settings).

In EPA system, a priori and a posteriori preferences, embedded in the knowl-
edge representation theory, are used for preferring amongst hypothetical futures.
The a priori ones are employed to produce the most interesting or relevant con-
jectures about possible future states, while the a posteriori ones allow the agent
to actually make a choice based on the imagined consequences in each scenario. In
addition, different kinds of evolution-level preferences enable agents to attempt
long-term goals, based on the historical information as well as quantitative and
qualitative a posteriori evaluation of the possible evolutions

In the sequel we describe the intention recognition and evolution prospection
systems, showing an extended example for illustration. Then, Elder Care – a real
world application domain, is addressed by the combination of the two systems.
The paper finishes with Conclusions and Future directions ...

2 Intention Recognition

2.1 Causal Bayes Networks

We briefly recall Causal Bayes Networks (CBN) here for convenience in order to
help understand their use for intention recognition and their realization in P-log.
Firstly, let us recall some preliminary definitions.

Definition 1 (Directed Acyclic Graph). A directed acyclic graph, also called
a dag, is a directed graph with no directed cycles; that is, for any node v, there
is no nonempty directed path that starts and ends on v.

Definition 2. Let G be a dag that represents causal relations between its nodes.
For two nodes A and B of G, if there is an edge from A to B (i.e. A is a
direct cause of B), A is called a parent of B, and B is a child of A. The set of
parent nodes of a node A is denoted by parents(A). Ancestor nodes of A are
parents of A or parents of some ancestor nodes of A. If node A has no parents
(parents(A) = ∅), it is called a top node. If A has no child, it is called a bottom
node. The nodes which are neither top nor bottom are said intermediate. If
the value of a node is observed, the node is said to be an evidence node.

Definition 3 (Causally Sufficient Set [21]). Let V be a set of variables with
causal relations represented by a dag. V is said to be causally sufficient if and
only if for any Y,Z ∈ V with Y 6= Z and X is a common cause of Y and Z, then
X ∈ V . That is to say, V is causally sufficient if for any two distinct variables
in V , all their common causes also belong to V .

Definition 4 (Causal Markov Assumption - CMA [21]). Let X be any
variable in a causally sufficient set S of variables or features whose causal rela-
tions are represented by a dag G, and let P be the set of all variables in S that
are direct causes of X (i.e. parents of X in G). Let Y be any subset of S such
that no variable in Y is a direct or indirect effect of X (i.e., there is no directed
path in G from X to any member of Y). Then X is independent (in probability)
of Y conditional on P.

The CMA implies that the joint probability of any set of values of a causally
sufficient set can be factored into a product of conditional probabilities of the
value of each variable on its parents. More details and a number of examples can
be found in [21].

Definition 5 (Bayes Networks). A Bayes Network is a pair consisting of a
dag whose nodes represent variables and missing edges encode conditional in-
dependencies between the variables, and an associated probability distribution
satisfying the Causal Markov Assumption.

If the dag of a BN is intended to represent causal relations and its associated
probability distribution is intended to represent those that result from the rep-
resented mechanism, then the BN is said to be causal. To do so, besides CMA,
the associated probability distribution needs to satisfy an additional condition,
as more formally shown in the following definition

Definition 6 (Causal Bayes Network). A Bayes Network is causal if its
associated probability distribution satisfies the condition specifying that if a node
X of its dag is actively caused to be in a given state x (an operation written
as do(x), e.g. in P-log syntax), then the probability density function changes to
the one of the network obtained by cutting the links from X’s parents to X, and
setting X to the caused value x [23].

With this condition being satisfied, one can predict the impact of external
interventions from data obtained prior to intervention.

In a BN, associated with each intermediate node of its dag is a specification of
the distribution of its variable, say A, conditioned on its parents in the graph, i.e.
P (A|parents(A)) is specified. For a top node, the unconditional distribution of
the variable is specified. These distributions are called Conditional Probability
Distribution (CPD) of the BN.

Suppose nodes of the dag form a causally sufficient set, i.e. no common causes
of any two nodes are omitted, then implied by CMA [21], the joint distribution
of all node values of a causally sufficient can be determined as the product of
conditional probabilities of the value of each node on its parents

P (X1, ..., XN) =
N∏

i=1

P (Xi|parents(Xi))

where V = {Xi|1 ≤ i ≤ N} is the set of nodes of the dag.
Suppose there is a set of evidence nodes in the dag, say O = {O1, ..., Om} ⊂

V . We can determine the conditional probability of a variable X given the ob-
served value of evidence nodes by using the conditional probability formula

P (X|O) =
P (X,O)
P (O)

=
P (X,O1, ..., Om)
P (O1, ..., Om)

(1)

where the numerator and denominator are computed by summing the joint prob-
abilities over all absent variables w.r.t. V as follows

P (X = x,O = o) =
∑

av∈ASG(AV1)

P (X = x,O = o,AV1 = av)

P (O = o) =
∑

av∈ASG(AV2)

P (O = o,AV2 = av)

where o = {o1, ..., om} with o1, ..., om being the observed values of O1, ..., Om,
respectively; ASG(V t) denotes the set of all assignments of vector Vt (with
components are variables in V); AV1, AV2 are vectors components of which
are corresponding absent variables, i.e. variables in V \ {O ∪ {X }} and V \ O,
respectively.

In short, to define a BN, one needs to specify the structure of the network, its
CPD and the prior probability distribution of the top nodes. We will see some
examples later, in Figures 3 and 9.

2.2 Intention recognition with Causal Bayesian Networks

The first phase of the intention recognition system is to find out how likely each
possible intention is, based on current observations such as observed actions
of the intending agent or the effects its actions (either actually observed, or
missed direct observation) have in the environment. It is carried out by using
a CBN with nodes standing for binary random variables that represent causes,
intentions, actions and effects. The structure of the CBN and its components such
as CPD and probability distribution of top nodes are specified in the sequel.

To begin with, for better understand the structure of CBNs for intention
recognition we will present, let us recall the high-level model of intentional be-
havior described in [13]. In this work, Heinze [13] proposed a tri-level decomposi-
tional model of intentional behavior of the intending agent. Intention recognition
is the reversal of this process. These levels are:

– The intentional level describes the intentions of agent in terms of desires,
beliefs, goals, plans and other high-level intentional states. These intentions
give rise, in a directly causal way, to activities.

– The activity level describes the activities and actions undertaken by the
agent. The actions are a direct result of the intentional state of the agent.
The activities can be to select plans, adopt tactics, etc.

– The state level describes the agent in terms of externally accessible char-
acteristics and effects its actions have in the environment.

According to this description, six basic paths (approaches) can be followed in
intention recognition as shown in Figure 1. For example, scheme 1 corresponds
to the basic ’sense and infer ’ approach, scheme 3 matches the trivial case of
communicating intentions, while scheme 6 resembles direct action recognition
from state and inferring the recognized action in intention.

We may also think of these six basic paths as all possible cases that can
happen when recognizing intentions of an agent, depending on the information
available. For example, when not able to observe actions of the intending agent,
the recognizing agent must attempt to analyze the accessible states of the envi-
ronment to figure out which actions might cause those states to the environment.
Depending on to which level of intentional behavior the observable information
belongs to, an intention recognition system should be able to flexibly employ the
right scheme.

Based on this tri-level model with a small modification, we next describe a
structure of CBNs that allows computing the likelihood of intentions, given the
observable information. A fourth level that describes the causes which might give
rise to the considered intentions is added. That level is called pre-intentional.

The structure is as follows. Intentions are represented by intermediate nodes
whose ancestor nodes represent causes that give rise to those intentions. The
causes, as mentioned above, belong to the pre-intentional level of a model whose
intentional level contains the intentions. Intuitively, the additional level is intro-
duced, first of all, to help with estimating prior probabilities of the intentions.
Secondly, it guarantees the causal sufficiency condition of the set of variables

Fig. 1: Six Possible Paths in Intention Recognition [13]

represented by the nodes of the dag. However, if these prior probabilities can
be specified without considering the causes, intentions are represented by top
nodes. Top nodes reflect the problem context or the intending agent’s mental
state. Note that there might be top nodes which are evidence ones, i.e. being
observable. In our CBN for intention recognition, evidence nodes need not to be
only the observed actions which result from having some intentions. Later we
will see an example (Elder Care, Figure 9) having observed top nodes. Observed

Fig. 2: Fox and Crow

actions are represented as children of the intentions that causally affect them.
Observable effects are represented as bottom nodes. They can be children of
observed action nodes, of intention nodes, or of some unobserved actions that
might cause the observable effects that are added as children of the intention
nodes.

The above causal relations (e.g. which causes give rise to an intention, which
intentions trigger an action, which actions have an effect) among nodes of the
BNs, as well as its CPD and the distribution of the top nodes, are specified by
domain experts. However, they are also possible to learn automatically. Finally,
by using formula (1) the conditional probabilities of each intention on current
observations can be determined, X being an intention and O being the set of
current observations.

Example 1 (Fox-Crow). Consider Fox-Crow story - adapted from Aesop’s fable
(Figure 2). There is a crow, holding a cheese. A fox, being hungry, approaches
the crow and praises her, hoping that the crow will sing and the cheese will fall
down near him. Unfortunately for the fox, the crow is very intelligent, having
the ability of intention recognition.

The Fox’s intentions CBN is depicted in the Figure 3. The initial possible
intentions of Fox that Crow comes up with are: Food - i(F), Please - i(P)
and Territory - i(T). The facts that might give rise to those intentions are how
friendly the Fox is (Friendly fox) and how hungry he is (Hungry fox). Currently,
there is only one observation which is: Fox praised Crow (Praised).

Fig. 3: Fox’s Intentions CBN

2.3 P-log

The computation in CBNs is automated using P-log, a declarative language that
combines logical and probabilistic reasoning, and ASP as its logical and CBNs
as its probabilistic foundations. We recap it here for self-containment, to the
extent we use it.

The original P-log [5,8] uses ASP as a tool for computing all stable models of
the logical part of P-log. Although ASP has been proved to be a useful paradigm

for solving a variety of combinatorial problems, its non-relevance property [9]
makes the P-log system sometimes computationally redundant. Newer develop-
ments of P-log [6] use the XASP package of XSB Prolog [30] for interfacing with
Smodels [28] – an answer set solver. The power of ASP allows the representa-
tion of both classical and default negation in P-log easily. Moreover, the new
P-log uses XSB as the underlying processing platform, allowing arbitrary Prolog
code for recursive definitions. Consequently, it allows more expressive queries
not supported in the original version, such as meta queries (probabilistic built-
in predicates can be used as usual XSB predicates, thus allowing full power of
probabilistic reasoning in XSB) and queries in the form of any XSB predicate ex-
pression [6]. Moreover, the tabling mechanism of XSB [29] significantly improves
the performance of the system.

In general, a P-log program Π consists of the 5 components detailed below:
a sorted signature, declarations, a regular part, a set of random selection rules,
a probabilistic information part, and a set of observations and actions.
(i) Sorted signature and Declaration The sorted signature Σ of Π contains
a set of constant symbols and term-building function symbols, which are used to
form terms in the usual way. Additionally, the signature contains a collection of
special reserved function symbols called attributes. Attribute terms are expres-
sions of the form a(t̄), where a is an attribute and t̄ is a vector of terms of the
sorts required by a. A literal is an atomic statement, p, or its explicit negation,
neg p.

The declaration part of a P-log program can be defined as a collection of
sorts and sort declarations of attributes. A sort c can be defined by listing all
the elements c = {x1, ..., xn}, specifying the range of values c = {L..U} where L
and U are the integer lower bound and upper bound of the sort c. Attribute a
with domain c1 × ...× cn and range c0 is represented as follows:

a : c1 × ...× cn --> c0

If attribute a has no domain parameter, we simply write a : c0. The range of
attribute a is denoted by range(a).
(ii) Regular part This part of a P-log program consists of a collection of rules,
facts, and integrity constraints (IC) in the form of denials, formed using literals
of Σ. An IC is encoded as a rule with the false literal in the head.
(iii) Random Selection Rule This is a rule for attribute a having the form:

random(RandomName, a(t̄), DynamicRange) :- Body

This means that the attribute instance a(t̄) is random if the conditions in
Body are satisfied. The DynamicRange, not used in the particular examples
in the sequel, allows to restrict the default range for random attributes. The
RandomName is a syntactic mechanism used to link random attributes to the
corresponding probabilities. If there is no precondition, we simply put true in
the body. A constant full can be used in DynamicRange to signal that the
dynamic domain is equal to range(a).

(iv) Probabilistic Information Information about probabilities of random
attribute instances a(t̄) taking a particular value y is given by probability atoms
(or simply pa-atoms) which have the following form:

pa(RandomName, a(t̄, y), d (A,B)):- Body.

meaning that if the Body were true, and the value of a(t̄) were selected by a rule
named RandomName, then Body would cause a(t̄) = y with probability A

B .

(v) Observations and Actions These are, respectively, statements of the
forms obs(l) and do(l), where l is a literal. Observations are used to record the
outcomes of random events, i.e. of random attributes and attributes dependent
on them. The statement do(a(t, y)) indicates that a(t) = y is enforced true as
the result of a deliberate action, not an observation.

2.4 Recognizing Fox’s intentions - An Example

Example 2 (Fox-Crow – Example 1 cont’d). The Fox’s intentions CBN can be
coded with the P-log program in Figure 4.

Two sorts bool and fox intentions, in order to represent boolean values
and set of Fox’s intentions, are declared in part 1. Part 2 is the declaration of
four attributes hungry fox, friendly fox, praised and i which state the first
three attributes have no domain parameter and get boolean values, and the last
one maps each Fox’s intention to a boolean value. The random selection rules
in part 3 declare that these four attributes are randomly distributed in their
ranges. The distributions of the top nodes (hungry fox, friendly fox) and the
CPD corresponding to the CBN in Figure 3 are given in part 4 and parts 5-8,
respectively, using the probabilistic information pa-rules. For example, in part
4 the first rule says that fox is hungry with probability 1/2 and the second rule
says he is friendly with probability 1/100. The first rule in part 5 states that if
Fox is friendly and hungry, the probability of him having intention Food is 8/10.

Note that the probability of an atom a(t̄, y) will be directly assigned if the
corresponding pa/3 atom is in the head of some pa-rule with a true body. To
define probabilities of the remaining atoms we assume that by default, all values
of a given attribute which are not assigned a probability are equally likely. For
example, first rule in part 4 implies that fox is not hungry with probability
1/2. And, actually, we can remove that rule without changing the probabilistic
information since, in that case, the probability of fox being hungry and of not
being so are both defined by default, thus, equal to 1/2.

The probabilities of Fox having intention Food, Territory and Please given
the observation that Fox praised Crow can be found in P-log with following
queries, respectively,

?− pr(i(food, t) | obs(praised(t)),V1). The answer is: V1 = 0.9317.
?− pr(i(territory, t) | obs(praised(t)),V2). The answer is: V2 = 0.8836.
?− pr(i(please, t) | obs(praised(t)),V3). The answer is: V3 = 0.0900.

1. bool = {t,f}. fox_intentions = {food,please,territory}.

2. hungry_fox : bool. friendly_fox : bool.

i : fox_intentions --> bool. praised : bool.

3. random(rh, hungry_fox, full). random(rf, friendly_fox, full).

random(ri, i(I), full). random(rp, praised, full).

4. pa(rh,hungry_fox(t),d_(1,2)). pa(rf,friendly_fox(t),d_(1,100)).

5. pa(ri(food),i(food,t),d_(8,10)) :-friendly_fox(t),hungry_fox(t).

pa(ri(food),i(food,t),d_(9,10)) :-friendly_fox(f),hungry_fox(t).

pa(ri(food),i(food,t),d_(0.1,10)) :-friendly_fox(t),hungry_fox(f).

pa(ri(food),i(food,t),d_(2,10)) :-friendly_fox(f),hungry_fox(f).

6. pa(ri(please),i(please,t),d_(7,10)) :-friendly_fox(t),hungry_fox(t).

pa(ri(please),i(please,t),d_(1,100)) :-friendly_fox(f),hungry_fox(t).

pa(ri(please),i(please,t),d_(95,100)) :-friendly_fox(t),hungry_fox(f).

pa(ri(please),i(please,t),d_(5,100)) :-friendly_fox(f),hungry_fox(f).

7. pa(ri(territory),i(territory,t),d_(1,10)) :-friendly_fox(t).

pa(ri(territory),i(territory,t),d_(9,10)) :-friendly_fox(f).

8. pa(rp, praised(t),d_(95,100)) :-i(food,t),i(please,t).

pa(rp, praised(t),d_(6,10)) :-i(food,t),i(please,f).

pa(rp, praised(t),d_(8,10)) :-i(food,f),i(please,t).

pa(rp, praised(t),d_(1,100)) :-i(food,f),i(please,f),i(territory,t).

pa(rp, praised(t),d_(1,1000)) :-i(food,f),i(please,f),i(territory,f).

Fig. 4: Fox’s intentions CBN

From the result we can say that Fox is very unlikely to have the intention Please,
i.e. to make the Crow pleased since its likelihood is very much less than the oth-
ers. Thus, the next step of Crow’s intention recognition is to generate conceivable
plans that might corroborate the two remaining intentions. The one with greater
likelihood will be discovered first.

2.5 Situation-sensitive CBNs.

Undoubtedly, CBNs should be situation-sensitive since using a general CBN
for all specific situations (instances) of a problem domain is unrealistic and
most likely imprecise. For example, in the Fox-Crow scenario the probabilistic
information in Crow’s CBN about the Fox’s intention of getting Crow’s territory
very much depends on what kind of territories the Crow occupies. However,
consulting the domain expert to manually change the CBN w.r.t. each situation
is also very costly. We here provide a way to construct situation-sensitive CBNs,
i.e. ones that change according to the given situation. It uses Logic Programming
(LP) techniques to compute situation specific probabilistic information which is
then updated into a CBN general for the problem domain.

The LP techniques can be deduction with top-down procedure (Prolog)
(to deduce situation-specific probabilistic information) or abduction (to abduce
probabilistic information needed to explain observations representing the given
situation). However, we do not exclude various other types of reasoning, e.g. in-

cluding integrity constraint satisfaction, abduction, contradiction removal, pref-
erences, or inductive learning, whose results can be compiled (in part) into an
evolving CBN.

The issue of how to update a CBN with new probabilistic information can
take advantage of the advance in LP semantics for evolving programs with up-
dates [25,26,27]. However, in this work we employ a simpler way, demonstrated
in the following example.

Example 3 (Fox-Crow (cont’d)). Suppose the fixed general CBN is the one given
in Figure 4. The Prolog program contains the following two rules for updating
the probabilistic information in part 7 of the CBN:

pa_rule(pa(ri(territory),i(territory,t),d_(0,100)),[friendly_fox(t)])

:- territory(tree).

pa_rule(pa(ri(territory),i(territory,t),d_(1,100)),[friendly_fox(f)])

:- territory(tree).

Given a P-log probabilistic information pa-rule, then the corresponding so-
called situation-sensitive pa rule/2 predicate takes the head and body of the
pa-rule as its first and second arguments, respectively. A situation is given, in
this work, by asserted facts representing it. In order to find the probabilistic
information specific for the given situation, we simply use the XSB built-in
findall/3 predicate to find all true pa rule/3 literals.

In the story the Crow’s territory is a tree, thus the fact territory(tree) is
asserted. Hence, the following two pa rule/3 literals are true
pa_rule(pa(ri(territory),i(territory,t),d_(0,100)),[friendly_fox(t)])

pa_rule(pa(ri(territory),i(territory,t),d_(1,100)),[friendly_fox(f)])

The CBN is updated by replacing the two pa-rules in part 7 of the CBN with
the corresponding two rules

pa(ri(territory),i(territory,t),d_(0,100)) :- friendly_fox(t)

pa(ri(territory),i(territory,t),d_(1,100)) :- friendly_fox(f)

This change can be easily made at the preprocessing stage of the implementation
of P-log(XSB) (more details about the system implementation can be found in
[6]).

In this updated CBN the likelihood of the intentions i(food, t), i(territory, t),
i(please, t) are: V1 = 0.9407; V2 = 0.0099; V3 = 0.0908, respectively. Thus, much
likely, the only surviving intention is food.

2.6 Plan Generation

The second phase of the intention recognition system is to generate conceivable
plans that can achieve the most likely intentions surviving after the first phase.
Any appropriate planners, though those implemented in ASP and/or Prolog are
preferable for integration’s sake, might be used for this task, e.g. DLV K – a
declarative, logic-based planning system built on top of the DLV [17] and ASCP
– an ASP based conditional planner [18].

In our system, plan generation is carried out by a new implementation of
ASCP in XSB Prolog using XASP package [19]. It has the same syntax and
uses the same transformation to ASP as in the original version. It might have
better performance because of the relevance property and tabling mechanism
in XSB, but we will not discuss that here. Next we briefly recall the syntax of
ASCP necessary to represent the example being considered. Semantics and the
transformation to ASP can be found in [18].

2.7 Action language Ac
K

ASCP uses Ac
K - a representation action language that extends A [20] by in-

troducing new types of propositions called knowledge producing proposition and
executability condition, and static causal laws.

The alphabet of Ac
K consists of a set of actions A and a set of fluents F.

A fluent literal (or literal for short) is either a fluent f ∈ F or its negation
¬f . A fluent formula is a propositional formula ϕ constructed from the set of
literals using operators ∧,∨ and/or ¬. To describe an action theory, 5 kinds of
propositions used: (1) initially(l); (2) executable(a, ψ); (3) causes(a, l, φ); (4)
if(l, ϕ); and (5) determines(a, θ).

The initial situation is described by a set of propositions (1), called v-
propositions. (1) says that l holds in the initial situation. A proposition of form
(2) is called executability condition. It says that a is executable in any situation
in which ψ holds. A proposition (3), called a dynamic causal law, saying that
performing a in a situation in which φ holds causes l to hold in the successor
situation. A proposition (4), called a static causal law, states that l holds in any
situation in which ϕ holds. A knowledge proposition (5) states that the values
of literals in θ, sometimes referred to as sensed-literals, will be known after a is
executed.

A planning problem instance is a triple π = (D, I,G) where D is a set of
propositions of types from (2) to (5), called domain description; I is a set of
propositions of type (1), dubbed initial situation; and G is a conjunction of
fluent literals.

With the presence of sensing actions we need to extend the notion of plans
from a sequence of actions so as to allow conditional statements of the form
case-endcase (which subsumes the if-then statement). A conditional plan can
be empty, i.e. containing no action, denoted by []; or sequence [a; p] where
a is a non-sensing action and p is a conditional plan; or conditional sequence
[a; cases({gj → pj}nj=1] where a is a sensing action of a proposition (5) with
θ = {g1, ..., gn} and pj ’s are conditional plans; Nothing else is a conditional
plan.

To execute a conditional plan of the form [a; cases({gj → pj}nj=1], we first
execute a and then evaluate each gj w.r.t. our current knowledge. If one of the
gj ’s, say gk holds, we execute pk.

ASCP planner works by transforming a given planning problem instance
into an ASP program whose answer sets correspond to conditional plans of the
problem instance (see [18] for details).

2.7.1 Representation in the action language We now show how the Crow
represents Fox’s actions language and two problem instances corresponding to
the two Fox’s intentions, gathered from the CBN: Food (not to be hungry) and
Territory (occupy Crow’s tree) in Ac

K . The representation is inspired by the
work in [22].

Example 4 (Fox-Crow (cont’d)). The scenarios with intentions of getting food
and territory are represented in Figure 5 and 6, respectively. The first problem
instance has the conditional plan:

[praise(fox, crow), cases({
accepted(crow)→ [sing(crow), grab(fox, cheese), eat(fox, cheese)];

declined(crow)→ ⊥})]
where ⊥ means no plans appropriate

1.animal(fox). bird(crow). object(cheese). edible(cheese).

animal(X) :- bird(X).

2.executable(eat(A,E),[holds(A,E)]) :- animal(A),edible(E).

executable(sing(B),[accepted(B)]) :- bird(B).

executable(praise(fox,A), []) :- animal(A).

executable(grab(A,O),[holds(nobody,O)]) :- animal(A),object(O).

3.causes(sing(B),holds(nobody,O),[holds(B,O)]) :- bird(B),object(O).

causes(eat(A,E),neg(hungry(A)),[hungry(A)]) :- animal(A),edible(E).

causes(grab(A,O),holds(A,O),[]) :- animal(A),object(O).

4.determines(praise(fox,B),[accepted(B),declined(B)]) :- bird(B).

5.initially(holds(crow,cheese)). initially(hungry(fox)).

6.goal([neg(hungry(fox))]).

Fig. 5: Fox’s plans for food

i.e. first, Fox praises Crow. If Crow accepts to sing, Fox grabs the dropped cheese
and eats it. Otherwise, i.e. Crow declines to sing, nothing happens. The second
problem instance has the conditional plan:

[praise(fox, crow), cases({
accepted(crow)→ [sing(crow), approach(fox, crow), attack(fox, crow)];

declined(crow)→ ⊥})]
Thus, with the only current observation (Fox praised) Crow cannot decide which
is the real intention of Fox. Since the only way to identify is an acceptance to
sing, which in both cases leads to a bad consequence, losing the cheese and/or
the territory, Crow can simply decline to sing. However, being really smart and
extremely curious, she can first eat or hide the cheese in order to prevent it
from falling down when singing, then she starts singing, keeping an eye on Fox’s
behaviors. If Fox approaches her, she flies, knowing Fox’s real intention is to
get her territory (supposing Crow does not get injured by a Fox attack, she can

1.place(tree).

2.executable(attack(fox,A),[]) :- bird(A), near(fox,A).

executable(approach(fox,A), [happy(A)]) :- animal(A).

3.causes(attack(fox,A),occupied(fox,P),[occupied(A,P)]) :-

animal(A),place(P).

causes(approach(A,B),near(A,B), []) :- animal(A),animal(B).

causes(sing(A),happy(A),[]) :- bird(A).

4.occupied(crow, tree).

5.goal([occupied(fox,tree)]).

Fig. 6: Fox’s plan for territory

revenge on Fox to get back the territory). Otherwise, if Fox does nothing or
simply goes away, Crow knows that Fox’s real intention was to get the cheese.

3 Evolution Prospection

The next step, that of taking advantage of the recognized intentions gleaned from
the previous stage, is implemented using Evolution Prospection Agent (EPA)
system [2,3]. It enables an agent to look ahead, prospectively, into its hypothet-
ical futures, in order to determine the best courses of evolution that satisfy its
goals, and thence to prefer amongst those futures. The intentions are provided to
the EPA system as goals, and EPA can help with generating the courses of evo-
lution that achieve the goals. These courses of evolution can be provided to the
intending agent as suggestions to achieve its intention (in cooperating settings)
or else as a guide to prevent that agent from achieving it (in hostile settings).

We next briefly present the constructs of EPA that are necessary for the
examples in this article. The whole discussion can be found in [2,3,7].

3.1 Preliminary

We next describe constructs of the evolution prospection system that are neces-
sary for representation of the example. A full presentation can be found in [2].
The separate formalism for expressing actions can be found in [1] or [18].

3.1.1 Language Let L be a first order language. A domain literal in L is a
domain atom A or its default negation not A. The latter is used to express that
the atom is false by default (Closed World Assumption). A domain rule in L is
a rule of the form:

A← L1, . . . , Lt (t ≥ 0)

where A is a domain atom and L1, . . . , Lt are domain literals. An integrity
constraint in L is a rule with an empty head. A (logic) program P over L is
a set of domain rules and integrity constraints, standing for all their ground
instances.

3.1.2 Active Goals In each cycle of its evolution the agent has a set of active
goals or desires. We introduce the on observe/1 predicate, which we consider as
representing active goals or desires that, once triggered by the observations figur-
ing in its rule bodies, cause the agent to attempt their satisfaction by launching
all the queries standing for them, or using preferences to select them. The rule
for an active goal AG is of the form:

on observe(AG)← L1, ..., Lt (t ≥ 0)

where L1,...,Lt are domain literals. During evolution, an active goal may be
triggered by some events, previous commitments or some history-related infor-
mation. When starting a cycle, the agent collects its active goals by finding all
the on observe(AG) that hold under the initial theory without performing any
abduction, then finds abductive solutions for their conjunction.

3.1.3 Preferring abducibles Every program P is associated with a set of
abducibles A ⊆ L. These, and their default negations, can be seen as hypotheses
that provide hypothetical solutions or possible explanations to given queries.
Abducibles can figure only in the body of program rules. An abducible A can be
assumed only if it is a considered one, i.e. if it is expected in the given situation,
and, moreover, there is no expectation to the contrary

consider(A)← expect(A), not expect not(A), A

The rules about expectations are domain-specific knowledge contained in the
theory of the program, and effectively constrain the hypotheses available in a
situation. To express preference criteria among abducibles, we envisage an ex-
tended language L?. A preference atom in L? is of the form a / b, where a and
b are abducibles. It means that if b can be assumed (i.e. considered), then a / b
forces a to be assumed too if it can. A preference rule in L? is of the form:

a / b← L1, ..., Lt (t ≥ 0)

where L1, ..., Lt are domain literals over L?. This preference rule can be coded
as follows:

expect not(b)← L1, ..., Ln, not expect not(a), expect(a), not a

In fact, if b is considered, the consider–rule for abducible b requires expect not(b)
to be false, i.e. every rule with the head expect not(b) cannot have a true body.
Thus, a / b, that is if its body in the preference rule holds, and if a is expected,
and not counter-expected, then a must be abduced so that this particular rule
for expect not(b) also fails, and the abduction of b may go through if all the
other rules for expect not(b) fail as well.

A priori preferences are used to produce the most interesting or relevant con-
jectures about possible future states. They are taken into account when generat-
ing possible scenarios (abductive solutions), which will subsequently be preferred
amongst each other a posteriori.

3.1.4 A posteriori Preferences Having computed possible scenarios, rep-
resented by abductive solutions, more favorable scenarios can be preferred a
posteriori. Typically, a posteriori preferences are performed by evaluating con-
sequences of abducibles in abductive solutions. An a posteriori preference has
the form:

Ai � Aj ← holds given(Li, Ai), holds given(Lj , Aj)

where Ai, Aj are abductive solutions and Li, Lj are domain literals. This means
that Ai is preferred to Aj a posteriori if Li and Lj are true as the side-effects of
abductive solutions Ai and Aj , respectively, without any further abduction when
testing for the side-effects. Optionally, in the body of the preference rule there
can be any Prolog predicate used to quantitatively compare the consequences of
the two abductive solutions.

3.1.5 Evolution result a posteriori preference While looking ahead a
number of steps into the future, the agent is confronted with the problem of
having several different possible courses of evolution. It needs to be able to pre-
fer amongst them to determine the best courses from its present state (and any
state in general). The a posteriori preferences are no longer appropriate, since
they can be used to evaluate only one-step-far consequences of a commitment.
The agent should be able to also declaratively specify preference amongst evo-
lutions through quantitatively or qualitatively evaluating the consequences or
side-effects of each evolution choice.

A posteriori preference is generalized to prefer between two evolutions. An
evolution result a posteriori preference is performed by evaluating consequences
of following some evolutions. The agent must use the imagination (look-ahead
capability) and present knowledge to evaluate the consequences of evolving ac-
cording to a particular course of evolution. An evolution result a posteriori pref-
erence rule has the form:

Ei ≪ Ej ← holds in evol(Li, Ei), holds in evol(Lj , Ej)

where Ei, Ej are possible evolutions and Li, Lj are domain literals. This prefer-
ence implies that Ei is preferred to Ej if Li and Lj are true as evolution history
side-effects when evolving according to Ei or Ej , respectively, without making
further abductions when just checking for the side-effects. Optionally, in the
body of the preference rule there can be recourse to any Prolog predicate, used
to quantitatively compare the consequences of the two evolutions for decision
making.

Example 5 (Fox-Crow, cont’d). Suppose in Fox-Crow Example 4, the final con-
firmed Fox’s intention is that of getting food. Having recognized Fox’s hidden
intention, what will Crow do to prevent Fox from achieving it? The following
EPA program in Figure 7 helps Crow with that.

There are two possible ways so as not to lose the Food to Fox, either simply
decline to sing (but thereby missing the pleasure of singing) or hide or eat the
cheese before singing.

Line 1 is the declaration of program abducibles (the last two abducibles are
for use in the second phase). All of them are always expected (line 2). The
counter-expectation rule in line 4 states that an animal is not expected to eat if
he is full. The integrity constraints in line 5 say that Crow cannot decline to sing
and sing, hide and eat the cheese, at the same time. The a priori preference in
line 6 states that eating the cheese is always preferred to hiding it (since it may
be stolen), of course, just in case eating is a possible solution (this is assured in
our semantics of a priori preference (sub-section 3.1.3)).

1. abds([decline/0,sing/0,hide/2,eat/2, has_food/0,find_new_food/0]).

2. expect(decline). expect(sing). expect(hide(_,_)). expect(eat(_,_)).

3. on_observe(not_losing_cheese) <- has_intention(fox, food).

not_losing_cheese <- decline.

not_losing_cheese <- hide(crow,cheese), sing.

not_losing_cheese <- eat(crow,cheese), sing.

4. expect_not(eat(A,cheese)) <- animal(A), full(A).

animal(crow).

5. <- decline, sing. <- hide(crow,cheese), eat(crow,cheese).

6. eat(crow,cheese) <| hide(crow,cheese).

7. no_pleasure <- decline. has_pleasure <- sing.

8. Ai << Aj <- holds_given(has_pleasure,Ai), holds_given(no_pleasure,Aj).

9. on_observe(feed_children) <- hungry(children).

feed_children <- has_food. feed_children <- find_new_food.

<- has_food, find_new_food.

10.expect(has_food) <- decline, not eat(crow,cheese).

expect(has_food) <- hide(crow,cheese), not stolen(cheese).

expect(find_new_food).

11.Ei <<< Ej <- hungry(children), holds_in_evol(had_food,Ei),

holds_in_evol(find_new_food,Ej).

12.Ei <<< Ej <- holds_in_evol(has_pleasure,Ei),

holds_in_evol(no_pleasure,Ej).

beginProlog.

:- assert(scheduled_events(1, [has_intention(fox,food)])),

assert(scheduled_events(2, [hungry(children)])).

endProlog.

Fig. 7: In Case Fox has intention Food

Suppose Crow is not full. Then, the counter expectation in line 4 does
not hold. Thus, there are two possible abductive solutions: [decline] and
[eat(crow,cheese), sing] (since the a priori preference prevents the choice
containing hiding).

Next, the a posterori preference in line 8 is taken into account and rules out
the abductive solution containing decline since it leads to having no pleasure

which is less preferred to has pleasure – the consequence of the second solution
that contains sing (line 7). In short, the final solution is that Crow eats the
cheese then sings, without losing the cheese to Fox and having the pleasure of
singing.

Now, let us consider a smarter Crow who is capable of looking further
ahead into the future in order to solve longer term goals. Suppose that Crow
knows that her children will be hungry later on, in the next stage of evo-
lution (line 9); eating the cheese right now would make her have to find
new food for the hungry children. Finding new food may take long, and
is always less favourable than having food ready to feed them right away
(evolution result a posteriori preference in line 11). Crow can see three possi-
ble evolutions: [[decline], [had food]]; [[hide(crow , cheese), sing], [had food]] and
[[eat(crow , cheese), sing], [find new food]]. Note that in looking ahead at least
two steps into the future, local preferences are not taken into account only after
all evolution one were applied (full discussion can be found in [2,7]).

Now the two evolution result a psoterirori preferences in lines 11-12 are taken
into account. The first one rules out the evolution including finding new food
since it is less preferred than the other two which includes had food. The second
one rules out the one including decline. In short, Crow will hide the food to keep
for her hungry children, and still take pleasure from singing.

Note future events, like hungry(children), can be asserted as Prolog code
using the reserved predicate scheduled events/2. For more details of its use see
[2,3].

4 Intention Recognition and Evolution Prospection for
Elder Care

In the last twenty years there has been a significant increase of the average age
of the population in most western countries and the number of elderly people
has been and will be constantly growing. For this reason there has been a strong
development of supportive technology for elderly people living independently
in their own homes, for example, RoboCare Project [10] – an ongoing project
developing robots for assisted elderly people’s living, SINDI – a logic-based home
monitoring system [11].

For the Elder Care application domain, in order to provide contextually ap-
propriate help for elders, it is required that the assisting system have the ability
to observe the actions of the elders, recognize their intentions, and then provide
suggestions on how to achieve the recognized intentions on the basis of the con-
ceived plans. The first step of perceiving elders’ actions is taken for granted. The
second and third steps are addressed by our described Intention Recognition and
Evolution Prospection systems, respectively. We include here an example from
our previous work [4,7] for self-containment.
1 The picture is taken from http://mythfolklore.net/aesopica/bewick/51.htm

Fig. 8: Fox and Crow Fable 1

Example 6 (Elder Care). An elder stays alone in his apartment. The intention
recognition system observes that he is looking for something in the living room.
In order to assist him, the system needs to figure out what he intends to find. The
possible things are: something to read (book); something to drink (drink); the
TV remote control (Rem); and the light switch (Switch). The CBN representing
this scenario is that of Figure 9.

4.1 Elder Intention Recognition

To begin with, we need to declare two sorts:

bool = {t,f}. elder_intentions = {book,drink,rem,switch}.

where the second one is the sort of possible intentions of the elder. There are five
top nodes, named thirsty(thsty), like reading(lr), like watching(lw), tv on(tv),
light on(light), belonging to the pre-intention level to describe the causes that
might give rise to the considered intentions. The values of last two nodes are
observed (evidence nodes). The corresponding random attributes are declared
as

thsty:bool. lr:bool. lw:bool. tv:bool. light:bool.

random(rth,thsty,full). random(rlr,lr,full).

random(rlw,lw,full). random(rtv,tv,full). random(rl, light, full).

and their independent probability distributions are encoded with pa-rules as

pa(rth,thsty(t),d_(1,2)). pa(rlr,lr(t),d_(8,10)).

pa(rlw,lw(t),d_(7,10)). pa(rtv,tv(t),d_(1,2)). pa(rl,light(t),d_(1,2)).

The possible intentions reading is afforded by four nodes, representing the
four possible intentions of the elder, as mentioned above. The corresponding ran-
dom attributes are coded specifying an attribute with domain elder intentions
and receives boolean values

i:elder_intentions --> bool. random(ri, i(I), full).

Fig. 9: Elder’s intentions CBN

The probability distribution of each intention node conditional on the causes are
coded in P-log below. Firstly, for i(book):

pa(ri(book),i(book,t),d_(0,1)) :-light(f).

pa(ri(book),i(book,t),d_(0,1)) :-light(t),tv(t).

pa(ri(book),i(book,t),d_(6,10)) :-light(t),tv(f),lr(t),lw(t),thsty(t).

pa(ri(book),i(book,t),d_(65,100)) :-light(t),tv(f),lr(t),lw(t),thsty(f).

pa(ri(book),i(book,t),d_(7,10)) :-light(t),tv(f),lr(t),lw(f),thsty(t).

pa(ri(book),i(book,t),d_(8,10)) :-light(t),tv(f),lr(t),lw(f),thsty(f).

pa(ri(book),i(book,t),d_(1,10)) :-light(t),tv(f),lr(f),lw(t).

pa(ri(book),i(book,t),d_(4,10)) :-light(t),tv(f),lr(f),lw(f).

For i(drink):

pa(ri(drink),i(drink,t),d_(0,1)) :- light(f).

pa(ri(drink),i(drink,t),d_(9,10)) :- light(t), thsty(t).

pa(ri(drink),i(drink,t),d_(1,10)) :- light(t), thsty(f).

For i(rem):

pa(ri(rem),i(rem,t),d_(0,1)) :-light(f).

pa(ri(rem),i(rem,t),d_(8,10)) :-light(t),tv(t).

pa(ri(rem),i(rem,t),d_(4,10)) :-light(t),tv(f),lw(t),lr(t),thsty(t).

pa(ri(rem),i(rem,t),d_(5,10)) :-light(t),tv(f),lw(t),lr(t),thsty(f).

pa(ri(rem),i(rem,t),d_(6,10)) :-light(t),tv(f),lw(t),lr(f),thsty(t).

pa(ri(rem),i(rem,t),d_(9,10)) :-light(t),tv(f),lw(t),lr(f),thsty(f).

pa(ri(rem),i(rem,t),d_(1,10)) :-light(t),tv(f),lw(f),lr(t),thsty(t).

pa(ri(rem),i(rem,t),d_(2,10)) :-light(t),tv(f),lw(f),lr(t),thsty(f).

pa(ri(rem),i(rem,t),d_(0,1)) :-light(t),tv(f),lw(f),lr(f),thsty(t).

pa(ri(rem),i(rem,t),d_(3,10)) :-light(t),tv(f),lw(f),lr(f),thsty(f).

For i(switch):

pa(ri(switch),i(switch,t),d_(1,1)) :- light(f).

pa(ri(switch),i(switch,t),d_(1,100)) :- light(t).

There is only one observation, namely, that is the elder is looking for something
(look). The declaration of the corresponding random attribute and its probability
distribution conditional on the possible intentions are given as follows:

look : bool. random(rla, look, full).

pa(rla,look(t),d_(99,100)) :-i(book,t),i(drink,t),i(rem,t).

pa(rla,look(t),d_(7,10)) :-i(book,t) i(drink,t),i(rem,f).

pa(rla,look(t),d_(9,10)) :-i(book,t),i(drink,f),i(rem,t).

pa(rla,look(t),d_(6,10)) :-i(book,t),i(drink,f),i(rem,f).

pa(rla,look(t),d_(6,10)) :-i(book,f),i(drink,t),i(rem,t).

pa(rla,look(t),d_(3,10)) :-i(book,f),i(drink,t), i(rem,f).

pa(rla,look(t),d_(4,10)) :-i(book,f),i(drink,f),i(rem,t).

pa(rla,look(t),d_(1,10)) :-i(book,f),i(drink,f),i(rem,f),i(switch,t).

pa(rla,look(t),d_(1,100)) :-i(book,f),i(drink,f),i(rem,f),i(switch,f).

Recall that the two nodes tv on and light on are observed. The probabilities
that the elder has the intention of looking for book, drink, remote control and
light switch given the observations that he is looking around and of the states of
the light (on or off) and TV (on or off) can be found in P-log with the following
queries, respectively:

?− pr(i(book, t) | (obs(tv(S1)) & obs(light(S2)) & obs(look(t))),V1).
?− pr(i(drink, t) | (obs(tv(S1)) & obs(light(S2)) & obs(look(t))),V2).

?− pr(i(rem, t) | (obs(tv(S1)) & obs(light(S2)) & obs(look(t))),V3).
?− pr(i(switch, t) | (obs(tv(S1)) & obs(light(S2)) & obs(look(t))),V4).

where S1, S2 are boolean values (t or f) instantiated during execution, depending
on the states of the light and TV. Let us consider the possible cases

– If the light is off (S2 = f), then V1 = V2 = V3 = 0, V4 = 1.0, regardless of
the state of the TV.

– If the light is on and TV is off (S1 = t, S2 = f), then V1 = 0.7521, V2 =
0.5465, V3 = 0.5036, V4 = 0.0101.

– If both light and TV are on (S1 = t, S2 = t), then V1 = 0, V2 = 0.6263, V3 =
0.9279, V4 = 0.0102.

Thus, if one observes that the light is off, definitely the elder is looking for the
light switch, given that he is looking around. Otherwise, if one observes the light
is on, in both cases where the TV is either on or off, the first three intentions
book, drink, remote control still need to be put under consideration in the next
phase, generating possible plans for each of them. The intention of looking for
the light switch is very unlikely to be the case comparing with other three, thus
being ruled out. When there is light one goes directly to the light switch if the
intention is to turn it off, without having to look for it.

Situation-sensitive CBNs. In this scenario, the CBN may vary depending
on some observed factors, for example, the time of day, the current temperature,
etc. We design a logical component for the CBN to deal with those factors:

pa_rule(pa(rlk,lr(t),d_(0,1)),[]) :-time(T), T>0, T<5, !.

pa_rule(pa(rlk,lr(t),d_(1,10)),[]) :-time(T), T>=5, T<8, !.

pa_rule(pa(rlw,lw(t),d_(9,10)),[]) :-time(T),schedule(T,football),!.

pa_rule(pa(rlw,lw(t),d_(1,10)),[]) :-time(T), (T>23; T<5), !.

pa_rule(pa(rth,thsty(t),d_(7,10)),[]) :-temp(T), T>30, !.

pa_rule(pa(rlk,lr(t),d_(1,10)),[]) :-temp(TM), TM >30, !.

pa_rule(pa(rlw,lw(t),d_(3,10)),[]) :-temp(TM), TM>30, !.

When the time and temperature are defined (the assisting system should be
aware of such information), they are asserted using predicates time/1 and
temp/1. Note that in this modelling, to guarantee the consistency of the P-log
program (there must not be two pa-rules for the same attribute instance with
non-exclusive bodies) we consider time with a higher priority than temperature,
enacted by using XSB Prolog cut operator, as can be seen in the rlk and rlw
cases.

4.2 Evolution Prospection for Providing Suggestions

Having recognized the intention of another agent, EPA system can be used to
provide the best courses of evolution for that agent to achieve its own intention.
These courses of evolution might be provided to the other agent as suggestions.

In Elder Care domain, assisting systems should be able to provide contextu-
ally appropriate suggestions for the elders based on their recognized intentions.

The assisting system is supposed to be better aware of the environment, the
elders’ physical states, mental states as well as their scheduled events, so that
it can provide good and safe suggestions, or simply warnings. We continue with
the Elder Care example from a previous section for illustration.

Example 7 (Elder Care, cont’d). Suppose in Example 6, the final confirmed in-
tention is that of looking for a drink. The possibilities are natural pure water, tea,
coffee and juice. EPA now is used to help the elder in choosing an appropriate
one. The scenario is coded with the program in Figure 10 below.

The elder’s physical states are employed in a priori preferences and expecta-
tion rules to guarantee that only choices that are contextually safe for the elder
are generated. Only after that other aspects, for example the elder’s pleasure
w.r.t. to each kind of drink, are taken into account, in a posteriori preferences.

The information regarding the environment (current time, current temperature)
and the physical states of the elder is coded in the Prolog part of the program
(lines 9-11). The assisting system is supposed to be aware of this information in
order to provide good suggestions.

Line 1 is the declaration of program abducibles: water, coffee, tea, and juice.
All of them are always expected (line 2). Line 3 picks up a recognized intention
verified by the planner. The counter-expectation rules in line 4 state that coffee
is not expected if the elder has high blood pressure, experiences difficulty to
sleep or it is late; and juice is not expected if it is late. Note that the reserved
predicate prolog/1 is used to allow embedding prolog code in an EPA program.
More details can be found in [2,3]. The integrity constraints in line 5 say that
is is not allowed to have at the same time the following pairs of drink: tea and
coffee, tea and juice, coffee and juice, and tea and water. However, it is the case
that the elder can have coffee or juice together with water at the same time.

The a priori preferences in line 6 say in the morning coffee is preferred to tea,
water and juice. And if it is hot, juice is preferred to all other kinds of drink and
water is preferred to tea and coffee (line 7). In addition, the a priori preferences
in line 8 state if the weather is cold, tea is the most favorable, i.e. preferred to
all other kinds of drink.

Now let us look at the suggestions provided by the Elder Care assisting
system modelled by this EPA program, considering some cases:

1. time(24) (late); temperature(16) (not hot, not cold); no high blood pressure;
no sleep difficulty: there are two a priori abductive solutions: [tea], [water].
Final solutions: [tea] (since it has greater level of pleasure than water, which
is ruled out by the a posteriori preference in line 12).

2. time(8) (morning time); temperature(16) (not hot, not cold); no high blood
pressure; no sleep difficulty: there are two abductive solutions: [coffee],
[coffee, water]. Final: [coffee], [coffee, water].

3. time(18) (not late, not morning time); temperature(16) (not cold, not hot);
no high blood pressure; no sleep difficulty: there are six abductive solutions:
[coffee], [coffee,water], [juice], [juice,water], [tea], and [water]. Final: [coffee],
[coffee,water].

1. abds([water/0, coffee/0, tea/0, juice/0]).

2. expect(coffee). expect(tea). expect(water). expect(juice).

3. on_observe(drink) <- has_intention(elder,drink).

drink <- tea. drink <- coffee. drink <- water. drink <- juice.

4. expect_not(coffee) <- prolog(blood_high_pressure).

expect_not(coffee) <- prolog(sleep_difficulty).

expect_not(coffee) <- prolog(late).

expect_not(juice) <- prolog(late).

5. <- tea, coffee. <- coffee, juice.

<- tea, juice. <- tea, water.

6. coffee <| tea <- prolog(morning_time).

coffee <| water <- prolog(morning_time).

coffee <| juice <- prolog(morning_time).

7. juice <| coffee <- prolog(hot). juice <| tea <- prolog(hot).

juice <| water <- prolog(hot). water <| coffee <- prolog(hot).

water <| tea <- prolog(hot).

8. tea <| coffee <- prolog(cold). tea <| juice <- prolog(cold).

tea <| water <- prolog(cold).

9. pleasure_level(3) <- coffee. pleasure_level(2) <- tea.

pleasure_level(1) <- juice. pleasure_level(0) <- water.

10.sugar_level(1) <- coffee. sugar_level(1) <- tea.

sugar_level(5) <- juice. sugar_level(0) <- water.

11.caffein_level(5) <- coffee. caffein_level(0) <- tea.

caffein_level(0) <- juice. caffein_level(0) <- water.

12.Ai << Aj <- holds_given(pleasure_level(V1), Ai),

holds_given(pleasure_level(V2), Aj), V1 > V2.

13.on_observe(health_check) <- time_for_health_check.

health_check <- precise_result.

health_check <- imprecise_result.

14.expect(precise_result) <- no_hight_sugar, no_high_caffein.

expect(imprecise_result).

no_high_sugar <- sugar_level(L), prolog(L < 2).

no_high_caffein <- caffein_level(L), prolog(L < 2).

15.Ei <<< Ej <- holds_in_evol(precise_result, Ei),

holds_in_evol(imprecise_result, Ej).

beginProlog.

:- assert(scheduled_events(1, [has_intention(elder,drink)])),

assert(scheduled_events(2, [time_for_health_check])).

late :- time(T), (T > 23; T < 5).

morning_time :- time(T), T > 7, T < 10.

hot :- temperature(TM), TM > 32.

cold :- temperature(TM), TM < 10.

blood_high_pressure :- physical_state(blood_high_pressure).

sleep_difficulty :- physical_state(sleep_difficulty).

endProlog.

Fig. 10: Elder Care: Suggestion for a Drink

4. time(18) (not late, not morning time); temperature(16) (not cold, not hot);
high blood pressure; no sleep difficulty: there are four abductive solutions:
[juice], [juice,water], [tea], and [water]. Final: [tea].

5. time(18) (not late, not morning time); temperature(16) (not cold, not hot);
no high blood pressure; sleep difficulty: there are four abductive solutions:
[juice], [juice,water], [tea], and [water]. Final: [tea].

6. time(18) (not late, not morning time); temperature(8) (cold); no high blood
pressure; no sleep difficulty: there is only one abductive solution: [tea].

7. time(18) (not late, not morning time); temperature(35) (hot); no high
blood pressure; no sleep difficulty: there are two abductive solutions: [juice],
[juice,water]. Final: [juice], [juice,water].

If the evolution result a posteriori preference in line 15 is taken into account and
the elder is scheduled to go to the hospital for health check in the second day:
the first and the second cases do not change. In the third case: the suggestions
are [tea] and [water] since the ones that have coffee or juice would cause high
caffein and sugar levels, respectively, which can make the checking result (health)
imprecise (lines 13-15). Similarly for all the other cases . . .

Note future events can be asserted as Prolog code using the reserved predicate
schedule events/2. For more details of its use see [2,3].

As one can gather, the suggestions provided by this assisting system are
quite contextually appropriate. We might elaborate current factors (time, tem-
perature, physical states) and even consider more factors to provide more ap-
propriate suggestions if the situation gets more complicated.

5 Conclusions and Future Work

We have shown a coherent LP-based system addressing the overall process from
recognizing intentions of an agent to taking advantage of those intentions in
dealing with the agent, either in a cooperating or hostile settings. The intention
recognition part is achieved by means of an articulate combination of situation-
sensitive CBNs and a plan generator. Based on the situation at hand and a
starting CBN default for the problem domain, its situation-sensitive version is
dynamically reconfigured, using LP techniques, in order to compute the like-
lihood of intentions w.r.t. the situation given, then filter out those much less
likely than others. The computed likelihoods enable the recognizing agent to
focus on the more likely ones, which is especially important for when having
to make a quick decision. Henceforth, the plan generator just needs to work on
the remaining relevant intentions. In addition, we have shown how generated
plans can guide the recognition process: which actions (or their effects) should
be checked for whether they were (hiddenly) executed by the intending agent.
We have illustrated all these features with the Fox and Crow example.

We have also shown a LP-based system for assisting elderly people based on
the described intention recognizer and Evolution Prospection system. The rec-
ognizer is to figure out intentions of the elders based on their observed actions
or the effects their actions have in the environment. The implemented Evolution

Prospection system, being aware of the external environment, elders’ preferences
and their note future events, is then employed to provide contextually appro-
priate suggestions that achieve the recognized intention. The system built-in
expectation rules and a priori preferences take into account the physical state
(health reports) information of the elder to guarantee that only contextually
safe healthy choices are generated; then, information such as the elders plea-
sure, interests, scheduled events, etc. are taken into account by a posteriori and
evolution result a posteriori preferences.

We believe to have exhibited the usefulness and advantage of our approach of
combining several needed features to tackle the Elder Care application domain,
by virtue of an integrated logic programming approach. One future direction is to
implement meta-explanation about evolution prospection [24]. It would be quite
useful in the considered setting, as the elder care assisting system should be able
to explain to elders the whys and wherefores of suggestions made. Moreover, it
should be able to produce the abductive solutions found for possible evolutions,
keeping them labeled by the preferences used (in a partial order) instead of
exhibiting only the most favorable ones. This would allow for final preference
change on the part of the elder.

There are currently several other possible future directions to explore. First
of all, we can employ an interplay between CBNs and the planner. Besides being
a consumer of CBNs as shown, the planner can also be a producer for the CBN
in the following ways. Firstly, its feedback about the plausible final intention
of the intending agent may increase the corresponding probabilistic relations
of the confirmed intention in the CBN; secondly, when new actions (or their
effects) of the intending agent, not observed before, become confirmed, the CBN
is updated again, which might rule out more intentions, not yet explored nor able
to be confirmed or denied. Moreover, the planner might do real experiments, or
even thought experiments, where values of nodes may be enforced true. The
thought experiments may involve hypothetical or even counterfactual reasoning
(possibly prospecting the future [2]).

In addition, the advance in LP semantics for evolving program with updates
[25] should be used to give more flexibility in updating CBNs with new informa-
tion. This is essential when more dynamic reasoning processes, e.g. in the above
CBNs-Planner interplay, are employed. To this end, we also plan to parame-
terize P-log, i.e. enable P-log to have variables in different constructs, such as
sort declarations, probabilistic information pa-rules, etc., and those variables be
provided by the program calling it, depending on the context. CBNs updating
would very much benefit from this ability.

Clearly, an agent recognizes the intention of another for a purpose, i.e. In-
tention Recognition should be purposive. The depth of understanding of an in-
tention that is required by an agent depends on why knowledge of the intention
is required. It might be that an agent needs only the broadest understanding
of the intention. In that case, simply knowing the general class of intention is
adequate and details are unimportant. But it also might be that details are im-
portant for a given purpose. For example, in the Elder Care example (Example

6), confirming that the elder has an intention of looking for something is not
enough; the details about what he/she is looking for are necessary for the pur-
pose of providing appropriate support or suggestions. To this end, we plan to
use an ontology of intentions, and the more general intentions are discovered
earlier. Confirmation of a general intention may trigger the discovery of more
specific ones, if more details of understanding of the intention are required and
available. Actually, richer details of understanding an intention might come up
during the recognition process of a general intention as more observations can
be gathered. An example of this arises in the Fox-Crow example (Example 1).
Initially, the system is trying to recognize a general intention: if Fox intends to
get some food; and during the recognition process, the detail that Fox’s intention
is to get a concrete kind of food, Crow’s cheese, is found out. However, this is not
always the case. For instance, in the Elder Care example, confirming that the
elder is looking for something simply triggers a new Intention Recognition pro-
cess, including the design of a new CBN for computing the likelihood of specific
intentions (a drink, a book, TV remote control or light switch) and generating
plans for the likely ones, so as to figure out more details about the intention.
We plan to attempt to categorize the possible cases and conduct appropriate
techniques for each of them.

References

1. L. M. Pereira, H. T. Anh. Intention Recognition via Causal Bayes Networks plus
Plan Generation, in: Seabra Lopes, L.; Lau, N.; Mariano, P.; Rocha, L.M. (eds.),
Progress in Artificial Intelligence, Procs. 14th Portuguese Intl.Conf. on Artificial
Intelligence (EPIA’09), pp. 138-149, Springer LNAI 5816, October 2009.

2. L. M. Pereira, H. T. Anh. Evolution Prospection, in: K. Nakamatsu (ed.), Procs.
Intl. Symposium on Intelligent Decision Technologies (KES-IDT’09), pages 51-63,
Springer Studies in Computational Intelligence 199, 2009.

3. L. M. Pereira, H. T. Anh. Evolution Prospection in Decision Making, in: Intelligent
Decision Technologies (IDT), 3(3):157–171, 2009.

4. L. M. Pereira, H. T. Anh. Elder Care via Intention Recognition and Evolution
Prospection. in: S. Abreu, D. Seipel (eds.), Procs. 18th Intl. Conf. on Applications
of Declarative Programming and Knowledge Management (INAP’09), Évora, Por-
tugal, November 2009.

5. C. Baral, M. Gelfond, and N. Rushton. Probabilistic reasoning with answer sets. In
Procs. Logic Programming and Nonmonotonic Reasoning (LPNMR 7), pages 21–33,
Springer LNAI 2923, 2004.

6. H. T. Anh, C. K. Ramli, C. V. Damásio. An implementation of extended P-log
using XASP, in: M. Garcia de la Banda, E. Pontelli (eds.), In Procs. Intl. Conf.
Logic Programming, pp. 739–743, Springer LNCS 5366, 2008.

7. H. T. Anh. Evolution Prospection with Intention Recognition via Computational
Logic. Master Thesis, Technical University of Dresden – Universidade Nova de Lis-
boa, June 2009.

8. C. Baral, M. Gelfond, N. Rushton. Probabilistic reasoning with answer sets. Theory
and Practice of Logic Programming, 9(1): 57-144, January 2009.

9. L. Castro, T. Swift, and D. S. Warren. XASP: Answer set programming with xsb
and smodels. Accessed at http://xsb.sourceforge.net/packages/xasp.pdf

10. A. Cesta, F. Pecora. The Robocare Project: Intelligent Systems for Elder Care.
AAAI Fall Symposium on Caring Machines: AI in Elder Care, USA 2005.

11. A. Mileo, D. Merico, R. Bisiani. A Logic Programming Approach to Home Monitor-
ing for Risk Prevention in Assisted Living , in: M. Garcia de la Banda, E. Pontelli
(eds.), Procs. Intl. Conf. Logic Programming, pp. 145–159, Springer LNCS 5366,
2008.

12. M. V. Giuliani, M. Scopelliti, F. Fornara. Elderly people at home: technological
help in everyday activities. IEEE International Workshop on In Robot and Human
Interactive Communication, pp. 365-370, 2005.

13. C. Heinze. Modeling Intention Recognition for Intelligent Agent Systems, Doc-
toral Thesis, the University of Melbourne, Australia, 2003. Online available: http :
//www.dsto.defence.gov.au/publications/scientific record.php?record = 3367

14. K. A. Tahboub. Intelligent Human-Machine Interaction Based on Dynamic
Bayesian Networks Probabilistic Intention Recognition. J. Intelligent Robotics Sys-
tems, vol. 45, no. 1, pages 31-52, 2006.

15. O. C. Schrempf, D. Albrecht, U. D. Hanebeck. Tractable Probabilistic Models for
Intention Recognition Based on Expert Knowledge, In Procs. 2007 IEEE/RSJ Intl.
Conf. on Intelligent Robots and Systems (IROS 2007), pages 1429–1434, 2007.

16. H. A. Kautz and J. F. Allen. Generalized plan recognition. In Procs. 1986 Conf. of
the American Association for Artificial Intelligence, AAAI 1986: 32-37, 1986.

17. T. Eiter, W. Faber, N. Leone, G. Pfeifer, A. Polleres. A Logic Programming Ap-
proach to Knowledge State Planning, II: The DLV K System. Artificial Intelligence
144(1-2): 157-211, 2003.

18. P. H. Tu, T. C. Son, C. Baral. Reasoning and Planning with Sensing Actions,
Incomplete Information, and Static Causal Laws using Answer Set Programming.
Theory and Practice of Logic Programming, 7(4): 377-450, July 2007.

19. An implementation of ASCP using XASP available at:
http://centria.di.fct.unl.pt/ lmp/software/cataplan-online.zip

20. M. Gelfond, V. Lifschitz, Representing actions and change by logic programs.
Journal of Logic Programming 17, 2,3,4, 301–323, 1993.

21. C. Glymour. The Mind’s Arrows: Bayes Nets and Graphical Causal Models in
Psychology. MIT Press, 2001.

22. B. Kowalski. How to be Artificially Intelligent, online book. Downloadable at:
http://www.doc.ic.ac.uk/ rak/

23. J. Pearl. Causality: Models, Reasoning, and Inference. Cambridge U.P., 2000.
24. L. M. Pereira, A. M. Pinto. Inspection Points and Meta-Abduction in Logic Pro-

grams, in: S. Abreu, D. Seipel (eds.), Procs. 18th Intl. Conf. on Applications of
Declarative Programming and Knowledge Management (INAP’09), pp. 171–184, U.
Évora, Portugal, November 2009.

25. J. J. Alferes, A. Brogi, J. A. Leite, L.M. Pereira. Evolving logic programs. Procs.
8th European Conf. on Logics in AI (JELIA’02), pages 50−61, Springer LNAI 2424,
2002.

26. J. J. Alferes, F. Banti, A. Brogi, J. A. Leite. The Refined Extension Principle for
Semantics of Dynamic Logic Programming , Studia Logica 79(1): 7-32, 2005.

27. J. J. Alferes, J. A. Leite, L. M. Pereira, H. Przymusinska, T. C. Przymusinski.
Dynamic updates of non-monotonic knowledge bases. J. Logic Programming, 45(1-
3):4370, 2000.

28. I. Niemelä, P. Simons. Smodels: An implementation of the stable model and well-
founded semantics for normal logic programs. 4th Intl. Conf. on Logic Programming
and Nonmonotonic Reasoning, Springer LNAI 1265, pages 420–429, 1997.

29. T. Swift. Tabling for non-monotonic programming. Annals of Mathematics and
Artificial Intelligence, 25(3–4):201-240, 1999.

30. The XSB System Version 3.0 Vol. 2: Libraries, Interfaces and Packages. July 2006.

