MEMORIAS DO L.N.E.C.
ULTIMOS NUMEROS PUBLICADOS

499 — RODRIGUES, J. Delgado — About the quantilative determination of rock
weatherability. A case history. Lisboa, 1978. 18 p. 176 x 250.

500 — MATEUS, Tomis J. E. — O emprego da madeira de pinho bravo em esiru-
turas. Lisboa, 1978. 30 p. 210 x 297.

501 — GOMES, Ruy José — Necessidades humanasg e exigéncias da habitagdo. Lisboa,
1978. 32 p. 210 x 297.

502 — LEMOS, Fernando Oliveira; FERREIRA, Joio P, C. Lobo— Estruturas
compactas para dissipagdo de emergia por ressalto. Lisboa, 1978, 16 p.
175 x 250.

503 — MORAIS, C. Campos; ABECASIS, Fernando — Storm surge effects at Leixdes.
Lisboa, 1978. 24 p. 175 x 250.

504 — SEABRA, Antera V. de— O controle de qualidade nos tratamentog térmicos.
Lisboa, 1978. 16 p. 210 x 297.

505 — SANTOS, Pompeu — As ligagies em estruturas prefabricadas de betdo. Lisboa,
1978. 18 p. 210 x 297.

506 — TRIGO, J. Teixeira — Industrializagdo e qualidade da construgdo, Lisboa, 1978.
12 p. 210 x 297.

6507 — TRIGO, J. Teixeira — Tecnologias da construgdo de habita¢do. Lisboa, 1978.
24 p. 210 x 297.

508 — SILVA, P. Martins — Ruido urbano — Modelos de previsdo. Lisboa, 1978, 320 p.
175 x 250.

509 — LEMOS, Fernando de Oliveira — Critérios para o dimensionamento hidrdulico
de barragens descarregadoras com paramento de montante inclinado a 1:8.
Lisboa, 1978. 16 p. 175 x 250,

510 — CUNHA, Jodo Duarte; CUNHA, Luis Arriaga da — Implementation of reliable
software in asseml;ly language using SIMULA-67. Lisboa, 1978, 24 p.
175 x 250.

511 — OLIVEIRA, Ricardo — Teaching and training of engineering geology in Portu-
gal, Lisboa, 1978. 8 p. 210 x 297.

512 — OLIVEIRA, Ricardo; RODRIGUES, J. Delgado; COELHO, A. Gomes — Engi-
neering geological studies for the Sines harbour (Portugal).Lisboa,1978.16p.
175 x 260.
513 — AZEVEDO, M. Cruz; FERREIRA, M. J. Esteves — Two-dimensional coordi-
meter with electrical strain ganges. Lisboa, 1979. 24 p. 175 x 250.
514 — GONCALVES, Fernando — Plano Director do Municipio; sew lugar entre os
planos de urbanizagdo e os planos de ordenamento do territério. Lisboa,
1979. 26 p. 175 x 250,

515 — MARECOS, José — The measurement of vertical displacements through water
levelling method. Lisboa, 1979. 26 p. 175 x 250.

6516 — CASTRO, Elda de— Les methodes de succion dans l'étude de Ualtération des
pierres. Lisboa, 1979. 30 p. 175 x 250.

517 — RODRIGUES, J. Delgado — Some problems raised by the study of the what-
hering of igneous rocks. Lisboa, 1979. 16 p. 175 x 250°

518 — LEMOS, Fernando Oliveira - Criteria for the hydraulic design of overflow
dams with 2:8 upstream face slope. Lisboa, 1979. 16 p. 1756 x 250.

519 — RODRIGUES, J. Delgado -— L’echantillonage en monuments. Lisboa, 1979.
10 p. 175 x 250.

520 —~ MAGALHAES, A. Pinto de — Bacias de dissipacdo de energia divergentes em
pla'nta,zde secgdo rectangular e com fundo horizontal. Lisboa, 1979, 28 p.
175 x 250.

521 — MARECOS, José; FERNANDES, Jodio Almeida — Medium term observation
of shiprepair and shipbuilding docks. Lisboa, 1979. 36 p. 175 x 250.

522 — SEABRA, Antera Valeriana — Correlagio das propriedades mecdnicas dos
ac¢os com a microestrutura. Lisboa, 1979. 74 p. 175 x 250.

523 — QUINTELA, Antonio C.; ABECASIS, Fernando M. — Hysteresis in the tran-
sition from supercritical to suberitical flow. Lisboa, 1979. 32 p. 175 x 250.

524 — AZEVEDO, M. Cruz; FERREIRA, M. J. Esteves; COSTA, C. A. Pereira da
Eslnflagggce of the spillways on the safety of arch dams. Lisboa, 1979. 20 p.

X .

MINISTERIO DA HABITAGCAO E OBRAS PUBLICAS
LABORATORIO NACIONAL DE ENGENHARIA CIVIL

MEMORIA N.* 525

GEOM: A PROLOG GEOMETRY
THEOREM PROVER

HELDER COELHO

LUIS MONIZ PEREIRA

LISBOA
1979

MINISTERIO DA HABITACAO E OBRAS PUBLICAS
LABORATORIO NACIONAL DE ENGENHARIA CIVIL

C. D. U. 519.6825

MEMORIA N.° 525

GEOM: A PROLOG GEOMETRY
THEOREM PROVER

HELDER COELHO

Engenheiro Electrotécnico, Estagidrio para Especialista da Divisio de Informética

LUIS MONIZ PEREIRA

Professor Auxiliar, Universidade Nova de Lisboa

LISBOA
1979

Work reported herein was conducted during 1975 at the Department of Artificial Intelligence,
University of Edinburgh, aad suported under grant ro. 37/74 by INVOTAN (Lisbon) (H. C.)
and Department of A. I. (L. M. P.}.

Memoéria n.® 525
Tema — Al
1200 exemplares

GEOM: A PROLOG GEOMETRY THEOREM PROVER

SYNOPSIS

This report describes progress made in the development of GEOM, a PROLOG
geometry theorem-prover, with the objective of achieving a better understanding of
the capabilities of PROLOG and of geometry theorem-proving.

The report is divided into 8 sections which cover three main aspects: the

definition of the problem domain, the points of friction found in the development
of GEOM and the directions suggested by our research.

GEOM: UM DEMONSTRADOR DE TEOREMAS DE GEOMETRIA
. EM PROLOG

RESUMO

Esta memoria 'descreve os resvltados obtidos com o desenvolvimento de GEOM,
um demonstrador de teoremas de geometria em PROLOG, no intuito de obter uma
melhor compreensio das capacidades do PROLOG e da demonstracdo de teoremas
de geometria.

A memoria estd dividida em 8 secgdes as quais cobrem trés aspectos principais

_ a definicio do dominio dos problemas, os pontos de fric¢do revelados pelo desenvol-

vimento de GEOM e as direc¢bes sugeridas pela nova investigacio.

GEOM: A PROLOG GEOMETRY THEOREM PROVER

1 — INTRODUCTION
1.0 — SUMMARY

This report describes progress made in the development of GEOM,
a PROLOG geometry theorem-prover, with the objective of achieving a
better understanding of the capabilities of PROLOG and of geometry
theorem proving.

1.1 — OVERVIEW OF THE REPORT

The report is divided into 8 sections which cover three main
aspects: the definition of the problem domain, the points of friction
found in the development of GEOM and the directions suggested by our
research.

The report begins with the motivation inherent to our work. For
each section, an introduction covers briefly the topics discussed. Section
3 presents the problem collection and the representation chosen for the
basic geometric primitives. Section 4 details the program’s knowledge.
Section 5 discusses difficulties encountered and how they were coped
with. Section 6 introduces the advantages of the separation between
logic and control and how this distinction was partly implemented in
GEOM. Section 7 concludes with directions of research suggested for
further work, such as the improvement of the language used itself.

1.2 — DESCRIPTION OF GEOM

GEOM is a PROLOG program for elementary plane geometry theo-
rem proving. It is divided into sections which cover geometric and

5

arithmetic knowledge, the printing and assertion facilities and the uti-
lities (*). _

This organization allows easy reading, understanding and fast
updating of the program.

A user presents problems to GEOM by declaring the hypotheses,
the optional diagram and the goal (see appendix 1).

GEOM starts from the goal, top-down and with a depth-first stra-
tegy, outputing its deductions and reasons for each step of the proof
(see appendix 2).

1.3 — LANGUAGE USED

PROLOG is a programming language based on predicate logic
(PL) [11]. The easiness of writing and understanding for the human
problem solver support this choice.

1.4 — CONTRIBUTIONS

This report extends previous work done by Gelernter [3,4,5], Ro-
chester [3], Gilmore [6], Reiter [10], Goldstein[7], Nevins[8] and
Welham {13,14]. Basically, the following research questions ‘'were exa-
mined :

1) the mixture of chaining backward (top-down) and forward
(bottom-up) ;

2) the separation between logic and control;

3) the introduction of new points; :

4) the introduction of line segments (constructions);

5) the uses of a diagram;

6) the use of geometrical symmetry;

7) the implicit use of transitivity;

8) the 'way of handling congruence relations (equivalence classes) ;

9) the use of a language based on predicate calculus in a large
and complex domain; ,

10) non-proved goals in the context constructions made.

(!) A listing of the program GEOM and a PROLOG user’s guide will be sent
upon request.

6

2 — MOTIVATION

2.1 — This research was oriented to achieve a better understanding
of the capabilities of PROLOG, a programming language based on first
order logic or predicate calculus. To understand this language we chose
a specific domain, elementary plane geometry, and we analysed how
PROLOG could cope with the construction of a geometry theorem-prover.
Some deficiencies and limitations were found, suggesting improvements
of PROLOG.

Elementary plane geometry theorem-provers have been attempted at
times, during the last 16 years, as an exploration field of Artificial
Intelligence.

The difficulties which prevent the development and more general
use of a geometry theorem-prover are stressed in a report on previous
work, by Coelho [1].

2.2 — At the start of our work, some general questions were put for-
ward such as:

(1) to pay attention to the limitations and possible developments
of PROLOG while using it for writing a geometry theorem-
prover;

(2) how to have in a program 2a useable map of geometric know-
ledge; :

(8) what geometric knowledge was needed for a collection of pro-
blems selected from previous work on geometry theorem-
- provers.

Later on, other questions were added:
(4) how to formulate the problem: the choice of representation
and canonical naming;

(5) how to identify construction strategies from known geometric
constructions used in text books.

Besides these starting questions, other ones were introduced during
the work, defining subgoals which are described in sections 5 and 6.

3 — PROBLEM FORMULATION
3.1 — INTRODUCTION

The type of problems suitable for GEOM, our geometry theorem-
prover, are here presented, by means of the description of the state-
ment of a problem and by an example. Details are given of the repre-
sentation chosen for the basic geometric primitives and the choice of
canonical naming method. '

The representation and canonical naming have a particular influence
on computation time. Moreover, further developments of GEOM will
also depend importantly on how basic geometric primitives are manipu-
lated if each time a new fact (or lemma) is derived it is desired that
it be stored in the data base. Also, during the proof it is often necessary
to retrieve an already proved fact from the data base. Storing and
retrieving involve combinatorial problems which must be harnessed.

3.2 — THE STATING OF PROBLEMS IN GEOMETRY

The statement of a problem in geometry is done by its (optional)
diagram, the hypotheses and the goal.

The geometric diagram is a set of points, defined by their cartesian
coordinates. Its declaration is optional for the user of GEOM with minor
changes to the program; when it is present it aids in the proof of the
goal. The diagram, however, is only a particular case of a whole class
of geometric figures for which the problem (theorem) in question must
be true. The diagram works mostly as a source of counter-examples
for pruning unprovable goals, and so proofs need not depend on it: a proof
of a theorem can be carried out without the use of a diagram. However,
the diagram may also be used in a positive guiding way as described in
section: 4.4.

There are nine predicates with which to express the hypotheses
of a geometry problem:

(1) the basic ones are

LINES

PR(parallel segments)
ES(equal segments)
EA(equal angles) ;

(2) the convenient high-order ones, definable in terms of the
music, are

RA(right angles)
RECTANGLE
SQUARE

PARALLELOGRAM
MIDPOINT

There are seven predicates to indicate the possible goals:

(1) the basic ones are
PR, EA, ES

(2) the convenient high-order ones, definable in terms of the
basic are

RA, CONGRUENT, PARALLELOGRAM, MIDPOINT

3.3 — EXAMPLE OF A PROBLEM SPECIFICATION

Af geometric problem becomes defined by the optional diagram
(cartesian coordinates), the hypotheses and the goal.
Let us take an example from Gelernter [5], used as input to GEOM :
DIAGRAM:
A(0,4) B(2,0) C(8,8) D{2,4) E(8,4) M(5,4)
HYPOTHESES:
LINES(AB,BMC,CA,ADME,BD,CE)
MIDPOINT(M,BC)
RA(ADB) RA(AEQ)
GOAL:

ES (BD = EC)

3.4 — THE PROBLEM COLLECTION

The problem collection was built with problems from previous

works:

10

Proplem 1: Gelernter[5] problem

»>

»

»

»

»

»

»

»

»

»

»

»

15

»

>

»

. »

: Goldstein{[7]
. »

»

»

»

>

: Nevins[8]

»

»

: Welham[13]

»

Fig. 1 —The diagram of Problem 3

»

»

»

»

»

»

»

»

»

»

»

»

»

»

1
2
3
4
5
1
2
3
4
5
6
1
2
4
1
2

The selection of these problems was based upon the «degree of
difficulty» of their proofs, and in order to permit comparison between
program characteristics. In appendix 1 a sample of this collection is
presented.

NOTE: for each problem only one proof is provided.

3.5 — CHOICE -OF A REPRESENTATION FOR THE BASIC GEOMETRIC PRIMITIVES

A general and flexible representation for the three basic geometric
primitives used — segments, directions and angles — is needed to enco-
de them, since these primitives form the basis of any geometric know-
ledge to be added to the data base. The flexibility and generality are
achieved by the concept of equivalence class, which allows, for example,
that one direction be represented by any other element of its equiva-
lence class.

An angle can be defined by three points or by two directions, as
figure 2 illustrates.

A
D1
1)ABC
A——>——B B] aNGLE 2)AB.BC
AE 3)p1.02
D2
c D_1=A'.B
Di=BA

FI1G. 2 — The representation of an angle

Each angle segment becomes defined by two points and its di-
rection:

(A:B) means the direction from A to B in segment AB.

One direction can be defined by any pair of points belonging to
the same equivalence class.

In figure 2, we can see the four cases for an angle, less than 180
degrees, defined by two directions: a and h.

b a 3
D N A=

B=ba

3 c A b C=ab
B D=ba

F16. 3 — The four cases arising in the
representation of an angle

11

If we impose a reading direction, e.g. the clockwise direction, we
may consider only two cases: angles A and C. In our problem collection
we have only angles less than 180 degrees and no other angles are
considered.

3.6 — THE CANONICAL NAMING

The canonical naming routines are a set of rewrite rules, applied
to an expression, to set it into some standard format. They reduce the
ambiguity resulting from the syntactic variations of the thing named.
In fact, canonical naming is a technique for overcoming combinatorial
problems and to make the data base inquiry easy and fast. This elimi-
nation of redundant searching is also achieved by the data base orga-
nization, as it is explained further on in section 5.8.

In geometry, combinatorial problems are very common, partly
because of transitivity, 'when equality and congruence relations are
involved. For example, if triangle ABC is congruent to triangle DEF
one can store this fact in 72 variations. When during the proof it beco-
mes necessary to retrieve that triangle EFD is congruent to triangle
BCA, the fact can be as just one of the possibilities of that set of varia-
tions. This is done with the use of canonical names in the geometric
primitives for segments, directions and angles, i.e. a standard variation
representing the thing named.

For segments, the endpoints are ordered alphabetically. In the
following example, segment CA would be represented as AC. For seg-
ment AC, the representation would be AC itself.

The case of an angle, DEH for example, is dealt with in the
following way:
as D<H the canonical name of angle DEH(D:E.E:H) is D:E.E:H

For angle HED, as H>D, the canonical name is not H:E.E:D,
but it is D:E.E:H (there is an inversion of pairs and an inversion of
each pair). In fact angles DEH and HED are the same and, thus, they
have de same canonical name.

The case of an angle defined by two directions, D1.D2 (e.g.
A:B.C:D) expressed by different points is dealt in another way: as
A is the least of four points A, B, C, D, i.e. A<B, A<C and A<D,
the canonical name of angle A:B.C:D is A:B.C:D.

Now, consider an angle segment defined by three points (A,B,C)
or by two directions. Let us calculate for these two representations

12

the number of points of an angle segment after which canonical naming
becomes more efficient:

no. of points RP RD

3 2 4
4 4 4
5 8 4

RP — representation with points

RD - representation with directions

The representation with directions is thus recommanded for angles
defined by more than for 4 points.

Canonical naming permits also to assert equal supplement angles
when equal angles are proved. This is a consequence of the chosen repre-
sentation (directions instead of points). The representation by points does
not allow this.

4 — PROBLEM SPECIFICATION
4.1 — INTRODUCTION

A brief description of GEOM’s knowledge domain is presented: the
geometric (axioms and theorems for elementary plane geometry) and
arithmetic (needed for using the diagram of points with coordinates)
knowledges, the utilities (the procedures available for special purposes,
e.g. procedures to find points or directions) and the uses of a geometric
diagram. This knowledge is sufficient to deal with the geometry problem
domain covered in the previous section.

In GEOM there is a clear distinction between two components of
an algorithm specification, the logic component (what it is required to be
solved) and the control component (how the problem is to be solved). This
separation is facilitated in PROLOG, a more descriptive or high level
language than the conventional procedure oriented ones [2]. PROLOG
allows the programmer to explain what is the case, knowing at the same
time that he is implicitly specifying to PROLOG how the case is to be
searched for.

4.2 — GEOMETRIC KNOWLEDGE

The geometric knowledge of GEOM, i.e. some of the axioms and
theorems of elementary plane geometry, is embodied in nine procedures.
They are: equal angles (EAI) (), right angles (RAI), equal magnitude
(EM, EM1), equal segments (ESI), midpoints (MP), parallel segments
(PRI), parallelogram (PG), congruence (DIRCON) and diagram routines.
The equal magnitude procedures explain what is required for converting
angles to their internal representation before testing for an immediate
equality or a data base equality. The midpoint procedures are of two sorts:
the first is dedicated to storing a useful theorem, relating midpoints and
parallels in a triangle; the second is able to generate new points.

Each procedure is organized to allow for a first look into the data
base before any attempt to prove is made. Thus, for each one, the first
clause provides access to the data base. To facilitate the access to a spe-
cific clause (e.g. the case for congruence routines), each of the clauses
of equal angles and equal segments procedures are given a name, specified
as one of the arguments of that clause.

Because each procedure may call itself through others, the search
space can grow quite large, in particular when the clause for difference
of segments is used. To avoid this combinatorial problem, Goldstein [7]
and Welham [13, 14] have not adopted the method of difference of seg-
ments.

Again, when constructions are introduced through congruence pro-
cedures, extra clauses are added to the data base and the explosive situa-
tion is aggravated. This is particularly visible for problems 13 and 14 on
account of their large space of derivations. However, a combinatorial
explosion occurs for PR14, even when the difference of segments method
is not considered. The use of the congruence procedure is then compulsive
and a depth-first exploration is done for each possible construction.

4.3 — THE UTILITIES

The utilities are special purpose and data management procedures.
As examples ‘we mention:

(1) a counter of the number of points in the diagram;

(*) In parenthesis we give the name of the corresponding predicate.

14

(2) the procedure for trying congruences using bottom-up inference
making on the data base;
(3) procedures for finding points and directions using diagram
knowledge;
(4) a clause to get three points for defining an angle given two
directions;
(5) procedure to operate on lists;
(6) clauses to verify identities (points, angles) ;
(7) clauses to identify opposite, same and distinct directions;
(8) procedures to verify point collinearity;
(9) clause for verifying a triangle equilateral;
(10) procedures to pick up a third side, a third equal side or a third
equal angle, given the other two;
(11) procedure for the management of unit clauses in the data base;
(12) procedures for generating permutations.

4.4 — THE USES OF GEOMETRIC DIAGRAM
Two uses of a geometric diagram as a model are made:

(1) the diagram as a filter (it acts as a counter-example) ;
(2) thediagram as a guide (it acts as an example suggesting eventual
conclusions).

As a filter the diagram permits to test the nonprovability of a
candidate subgoal, by doing calculations with the coordinates given by
the diagram. This way of rejecting goals was proposed by Gelernter [5].

The use of the diagram as a guide for helping the search is briefly
explained in the following example (see figure 4).

Fi1G. 4 — Proof of two equal segments,
UV = XY, by congruent triangles

15

We want to prove two equal segments UV = XY, by congruent
triangles. Suppose triangle XYZ exists, and our purpose is to find a trian-
gle UVW on UV to compare to triangle XYZ. We need to search for exis-
ting or generated triangles on UV. The first thing is to find a convenient
third point W, which must be different from U and V. The possible
coordinates of the sought point W are computed from the coordinates ot
X,Y,Z,Uand V, and a check is made in the diagram to see if a point with
such coordinates exists. The diagram is used in a positive way for com-
puting the possible coordinates for W.

5 — POINTS OF FRICTION
5.1 — INTRODUCTION

During the development of GEOM several points, called «of frictions,
recurred as problematic and motivating discussion. These points were
largely suggested by an analysis of the geometry problems collection.

In this section we state these points and we consider the methods used to
solve them.

5.2 — THE GENERATION OF TRIANGLES

The proof of two equal angles or two equal sides can be done by
congruent triangles. Before the use of the congruence procedures it is
necessary to have (either by generating them or by checking for their
existance) triangles containing the angles or the segments.

The equal angles and equal segments procedures of GEOM have
two clauses, under the heading «indirect strategies», which make use
of the congruence procedures. These two clauses synthetize 4 search

cases for pairs of triangles:
1) existing-existing
2) existing-generated
3) generated-existing
4) generated-generated

The above order is motivated by the need to use first what is already
known and stored in the data base — what we call existing triangles. For

16

example, if it is required to prove AB = EF by congruent triangles,
GEOM checks its data base for points C and D, and directions C:A, C:B,
D:E and D:F. If these directions exist, we have triangles CAB on AB and
DEF on EF. If not, it is necessary to add such directions to the data base
as a means to construct segments A.C, B.C, E.D and F.D (see figure 5).

A

N
—_—
N

t

1

t

A

/ \
1
1
1

\
’ \ / \
\ 4 N
A

B E/l __ __ _ _iF

F16. 5 — Generation of congruent triangles for
the proof of two equal segments AB = EF by
construent triangles

Only the first case corresponds to the situation where the triangles
already exist on the given segment or contain the given angle. The other

cases refer to the generation of triangles and the possibility of making
constructions as they are needed.

5.3 — THE INTRODUCTION OF NEW POINTS

The introduction of new points can be envisaged as a means to make
explicit more information in the model (diagram), which is not contra-
dictory with the hypotheses. This introduction does mot reduce the search
space but for certain cases it may create short cuts or new paths, which
diminish the steps of a proof.

The introduction of new points was motivated by the analysis of
problem 10 (see figure 6).

F is the point to be introduced. As point F is the intersection of the
diagonals of a rectangle, its existance is known for any model. So, during
the input of rectangle ACDE, F is introduced and its consequences, new
equal angles and sides (e.g. diagonals equality), are asserted in the data
base.

The existance of point F allows the construction of segment BF,
and thus the congruence of triangles BAF and BCF to be proved.
As a consequence, a new fact is asserted, the equality of angles BAF

17

F'ig. 6 — The diagram of Problem 10

and BCF, and another congruence of triangles, between BCE and BAD,
becomes possible. '

This proof is general, as it utilizes a theorem (congruence of trian-
gles) independent of point B’s position. On the other hand, Goldstein's
proof [7], without the introduction of F is too particular a proof because
it depends on the position of B:

(1) for B out of the rectangle it uses sum of angles theorem;
(2) for B inside the rectangle it uses the difference of angles theo-
rem.

Both theorems particularize the model, i.e. they are falsely used for
some interpretation. But in first order logic theorems must be valid for
all interpretations. However, 2 non general model can be considered as a
general one, if what it particularizes is not used in the proof. Goldstein’s
error consists of using in his proof facts not in the hypotheses (or not
concluded), i.e. he uses the diagram unwarrentedly as a positive example.
However, the diagram’s role in this case is to act as a counter-example.

18

But a diagram for this problem is not unique (B can be anywhere
on the perpendicular bissector of AC). For GEOM, there is no difficulty
at all if the new element F is coincident with B, since the congruence cf
two degenerate triangles is still a congruence. Thus, no use is made of
what particularizes the diagram.

For this example, it is clear the simplification obtained when a
new point is introduced. Some combinatorial explosion would occur if F
was not created, because a case analysis, involving a sum of angles clause
would be required. On the other hand, for problems with a large search
space, the introduction of a new point would be relatively catrastrophic:
4 combinatorial explosion would occur. For the problem collection a heu-
ristic was devised in order to balance the advantages and disadvantages
of constructing: «only for diagrams with less than 8 points is the intro-
duction of a new point for quadrilaterals permitted».

This facility, of introducing a new point, is available for quadrila-
terals only. The new point is the intersection of the two diagonals, and
the midpoint of each one. The coordinates of the midpoint are calculated
using the diagram, and its name is chosen from an alphabetical list, from
which the characters of the existing points are taken out. The generation
of midpoints is preceeded by the test of its existance, and followed by the
assertion of equal segments, equal halves and directions for the new con-
structed segments.

5.4 — BREADTH-FIRST VERSUS DEPTH-FIRST SEARCH OF THE CONGRUENCL
PROCEDURE

The congruence procedure allows two kinds of search:

1) a shallow breadth-first search in the data base;
2) a general depth-first search.

The first kind is done beforehand for each of the five methods
of triangle congruence (Side-Side-Side, Side-Angle-Side, Angle-Side-Angle,
Side-Angle-Angle, Rightangle-Side), when looking for known facts.

The second kind is only attempted if the first fails to find a triangle
congruence. This was also done in Nevins’s program [8]: it tries to
narrow down the selection of new subgoals on the basis of information
already present in the data base.

19

The motivation for this sequence of attempts was suggested by the
analysis of problem 1 (PR1) and by the behaviour of PROLOG. A quick
look at PRI revealed that the facts necessary for the proof were already
available in the data base. No depth-first search (imposed by PROLOG
strategy) 'was required. However, if a shallow breadth-first is not exis-
tant, there is a progressive search in depth, the generation of more sub-
goals and a combinatorial explosion.

5.5 — DOING, NOT DOING AND UNDOING CONSTRUCTIONS

When a human being does a proof he sometimes introduces new
relations, by making constructions which fill a gap in the chain of
reasoning.

In automatic theorem-proving it is also advisable to explore this
mechanism of doing constructions. To discuss its implementation in GEOM,
let us consider three questions:

(1) what are the objectives of this mechanism? When should it be
used?

(2) what are the required kinds of construction?

(3) should constructions remain in the data base after they have
been used?

The motivation for discussing these questions was raised by problem
8 (PR8) where two constructions, lines SU and TR, made the proof
possible. Let us see the construction process for this example. In order
to prove the equality of angles STU and RUT, by congruence, we need
to construct the missing parts of triangles STU and RUT: lines SU and
TR. These lines are also mecessary for proving the equality of sides US
and TR by congruence, which are in fact the missing parts of triangles
SRU and RST. This last equality is motivated by the first congruence.
Another motivation came from PR13, where a construction, line NC,
explores a new pathway to the goal, as it is depicted in figures 19 and 20.

One objective was to implement a construction facility for missing
segments when proving that two segments are equal.

This kind of construction only requires additional line segments,
constructed between points already present in the diagram. Each segment
is defined by a direction, i.e. a unit clause. In the search tree, each con-
struction is a new terminal node, and a new link is made when 2 unit clause
corresponding to a construction is used.

20

The third question concerns the management in the data base of
the additional clause, defining a construction. In fact two additional
clauses are asserted, because the opposite direction is also stored (just as
supplements are also stored for angles). Consider the example of part of
the structured data base for a proof, as illustrated in figure 7.

For this example two subgoals were tried without success. These
failures are stored as nonprovable goals (NP).

construction

+D(2) } activation // \\

to be erase K N

+NP (FLAG). segment / O +D(2)

+NP(3), constructio-O +p(1) ‘

+D (1),

+NP (FLAG), ,
!

in the context +NP(2). O
of previous +NP(1).

constructions

>

’
] to be erase / \
i

F16. 7 — Data base of non-provable goals in the context of constructions made

After the two nonprovable subgoals, a construction is done moti-
vated by a goal in the congruence clauses for equal segments or equal
angles. A flag and the new unit clause are asserted in the data base. The
flag hides the previous nonprovable goals, which may now become pro-
vable when the construcution is done. For this construction a new fact
is derived and asserted as a lemma. No other lemmas are generated and
the goal is not proved. If before a new construction is done the first one
is undone (i.e. the flag, the direction unit clauses, but not the nonprovable
subgoals are elliminated). The two clauses defining the construction are
erased whether the goal be proved or not.

The undoing of a construction is motivated by the need of avoiding
a combinatorial explosion, more likely if the unit clause was kept forever
in the data base. The nonprovable subgoals and lemmas generated after
a construction process, stay available a fortiori for the contmuatlon of the
proof, even after that construction is undone.

21

5.6 — THE NEED FOR THE USE OF CONTEXT

Paths enabled by constructions may not enable the proof of the
goal clause. In spite of this failure, some facts may be proved and asserted
in the data base. However, no context distinction is done between these
facts and the facts proved during a successful path. For example, to
prove equal sides by congruence, additional line segments are required
for building triangles. During the exploration of each construction some
proved lemmas are asserted and may be used later on, as shown in figure
19 for BA = NC.

One use of context was implemented in GEOM, concerning the
recording of failure goals (nonprovable goals). Consider figure 7 where
a construction occurs after two nonprovable goals. A flag makes invisible
these nonprovable goals to the exploration subsequent to that construction.
Thus, these nonprovable goals remain only in the context of previous
constructions.

The objective is the recognition of a goal which failed before but
only if no new construction has been made. The mechanism to implement
this objective is composed by two clauses, the nonprovable filter and the
record failure ones, respectively at the top and at the bottom of the equal
angles and equal sides procedures. The first clause recognizes failed goals
in the context of constructions made and the second one stores them.

A further discussion of this point is done in section 6.4,

5.7 — TWO TYPES OF CALL OF A CLAUSE

PROLOG has only one kind of variable — the logical variable —
which may be either an input or output variable. This distinction depends
on the mode of use of the clause containing the variable. We distinguish
two modes or types of call of a clause:

(1) all variables are instantiated — to verify;
(2) at least one variable is not instantiated —to find.

The first type, to verify, is used for example for verifying the exis-
tance in the data base of a certain fact. It corresponds to checking, the
first of four tasks in automatic theorem-proving discussed in van Emden

[2].

(2524
o

Consider a theorem to be proved of the following form: R(a,b).

This form determines the task of checking, with two possible
answers: yes or no. An example from geometry illustrates this task:

Question: is segment AB equal to segment CD?

The translation of this question into PROLOG is the procedure cail:
— ESI (A.B =C.D!*X11*X2)

which activates the equal segment procedure of GEOM:
+ESI (*S1.*82 = *S8.*S4 'WHY IDBAS)

where *S2 and *S4 act as input variables.

The second tyee, to find, is used to find a desirable possibly existing
fact in the data base. It corresponds to simulation, another task of auto-
matic theorem-proving.

Consider a theorem to be proved of the form: 1X.R(a,X). This form
determines the task of simulation, with two possible answers: yes X = b,
or no. An example from geometry illustrates this task:

Question: is there any segment with extremity A

equal to any segment with extremity C?
The translation of this question into PROLOG is the procedure call:

— ESI(A*X = C.*Y 1*X1!*X2)

which activates the equal segments procedure (ESI) of GEOM. *S2 and
*S4 act as output variables: X = B and Y =D.
The first type of call of a clause, to verify, is the most common

in GEOM. The second type, to find, is used for instance when the proce-
dure for bottom-up is activated.

5.8 — THE DATA BASE AND ITS ACCESS

The ultimate objective of a data base is updating and retrieving
facts. The addition of new facts and its retrieval depend on the structuring
and the searching of the data base.

Two concepts, equivalence classes and canonical naming, help to
structure and access the data. The equivalence classe concept it parti-
cularly important in geometry since we are dealing with equivalence (or
rather congruence) relations, such as side and angle equality or parallelism.

The data base we have used stores each relation between two ele-
ments in the equivalence class of all other elements known to be in the
same class. Each equivalence class is represented by an oriented tree in
which the arcs stand for individual relations between elements (the nodes)
and in which the root is taken as the representative element (or witness)
of the class. With this representation transitivity is obtained for free since
any two elements with the same witness are implicitly in relation (although
no explicit arc may exist between them).

These trees grow by merging as explained in the example illustrated
in figure 8a, 8b and 8c.

0 (o) 0 0 o)
A B C D E

Fi6. 82 — The growing of an equivalence
class tree

Five facts (A,B,C,D and E) and three (equivalence) relations (R(A,
B), R(B,C) and R(D,E)) are given. When these relations are stored, the
resulting trees are sketched as follows in figure 8b.

E
e
ﬁ E B .~
X! &C / A/\c D

F16. 8b — The growing of an
equivalence classe tree

F1G. 8¢ — The growing
of an equivalence class
tree

The trees pictured above are composed of two disjoint equivalent
classes. Elements B and E are chosen arbitrarily to be the witness in each
class. The arrows on the ares show the direction of grouwth of the tree.

24

In the data base three relation elements are stored: R(A,B), R(C,B) and
R(D,E). One relation element, R(A,C), is implicit. Consider a new rela-
tion element, R(C,D), is added. Both classes are merged and one of the
witness, E, is chosen to be the witness of the enlarged class. The tree at
this stage is illustrated in figure 8c.

This kind of organization was firstly suggested and implemented
fol all three sets of assertions (equal angles, equal sides and same direc-
tion). An example of a tree of parallel directions is presented in figure 9.

C:D
AB s parallc! to CD
and

EF is paralic) to CD
AlE E:F

Fic. 9 — A tree of parallel directions

The direction of CD (C:D) is the witness of these three directions.
This tree represents an equivalence class, and it is easy to conclude that
AB is parallel to EF, i.e. we get transitivity for free. We say (C:D) is the
witness of (A:B) if there is another direction (E:F) related to (A:B), i.e.
with the same direction. Another example, for equal sides, is depicted
in figure 10.

S15=516 S23=Sz4
$9=S1o‘\ /
\ /
S$1=82 S5=S6 S1n=S1n S17=518 S21=822
= 4 A A
$3254 525=52 S7=Ss $13=S14 S192520
Fia

F15. 10 — The tree organization of equal sides

This characteristic of the data, the existance of relations with the
three properties symmetry, reflexivity and transitivity, suggests an appro-
priate data structure, the tree, for the equivalence classes, which aids

25

in deductions based on the set of properties. Transitivity implications
from sets of facts are automatically available in the structure, with no
additional memory, and with an appropriate access scheme. Symmetry
is dealt with by canonical naming.

This data structure, the tree, copes well with one sort of query.
The following question is an example: «is AB parallel to CD?». However,
when a bottom-up procedure was introduced, to generate more facts from
the existing and given facts, some difficulties occured, on account of the
type of questions posed. The following question is an example: «is there
any segment with extremity A equal to any segment with extremity C,
AX = CY, where the variables X and Y are not instantiated ?»

Let us see, by means of an example, the kind of difficulties that
occur if 'we use the tree structure.

The bottom-up procedure consists in trying to find and to prove
congruent two triangles, given the facts in the data base. The new facts
infered and asserted may be useful in the top-down search. In order to
find two congruent triangles, two equal segments are picked up from one
tree, starting at the top witness. For each segment, one point is picked
up, Y and W, such that XY = UW and YZ = WV,

Fi16. 11 — The construction of construent trian-
gles on equal sides

To retrieve such pairs of equal sides, from each tree, takes too
much time, on account of the necessity of scanning the whole tree, although
it is fast to find a witness. Instead, if a list structure is chosen, picking
up a pair is easier and faster, as we shall show next. An advantage is that
one needs only one access clause for both types of access.

The list structure is obtained by a different way of linking the
equivalence class witnesses: the witness of an equivalence class points to
the tail of the related equivalence class.

26

Consider the previous example, employed to explain the growing
tree structure. For the list structure, figure 12 below sketches the stage
of adding three new relations to five old facts.

A B c €)
Oe«—O=-—-0 O——0

F1G. 12 — List structures representing equiva-
lence classes

The lists represent two disjoint equivalent classes. Elements A and
E, respectively, are chosen to be the 'witness of each class.

The arrows on the arcs show the building direction of the lists and
point towards the head or witness of the lists. If a new relation, R(C,D),
is added, both lists are linked as shown in figure 13.

Fic. 13 — The construction of a list structure
representing the fusion of two equivalence classes

The witness or head of one equivalence class is connected to the tail
of the other related class. If a question occurs about the equality of AB
and GH, the answer is quickly retrieved. A practical example for equal
angles is depicted in figure 14.

The final adopted solution contains both data structures discussed,
in order to balance the requirements imposed by the two sorts of questions.

C!R.N!Q N!B.S!R
N:B!B:S C:!R.Q:N
B!N.N!Q s:sIc:n
B.S.R:C B:N.Q!N

Fi1c. 14 — The list organization for
equal angles

[
~3

Both data base structures are devoted to relate the elements of each one
of the sets of relations of assertions:

(1) a tree for directions.
(2) lists for equal segments and equal angles.

There are two data base axioms, one for equal segments and another
for equal angles. These axioms allow two sorts of retrieving, which cor-
respond to the two questions pointed above: to verify or to find a relation
in the data base. The axioms are founded on the concepts of witness and
equivalence class, and use canonical naming.

Let us for the first type— to verify — present an example:

to prove BA is equal to CD
try first to verify if the fact «BA = CD» is in the data base.

As this pair of sides is not an identity, each element is put in the
canonical format (AB and OD) ; and if both sides have the same witness,
they are found to be equal.

In the second type, to find, the access axioms are able to discover
if the relation required is in the data base. Consider the following example
to explain how this discovery is carried out:

to generate more facts based on the given fact AB = CD, try to
prove triangle ABX congruent to triangle CDY; to achieve this
goal, find AX is equal to CY (X and Y are variables).

The objective is to find in the data base a pair of equal sides with
only two known points A and C. The equal segment procedure is activated
by a procedure call with two variables not instantiated and acting as
output variables. The data base access axioms are also activated with
the two variables not instantiated. For this case, the identity and cano-
nical naming clauses stay inactive and it is only found whether there is
any pair of equal sides on A and on C.

5.9 — TOP-DOWN VERSUS BOTTOM-UP SEARCHES
The controversy between the adoption of top-down or bottom-up
directions of execution is also present in making a geometry theorem-

prover. While Gelernter [5] and Goldstein [7] defended the first

28

approach. Nevins [8] argued in favour of the second. However, it is
quite clear that the set of problems chosen by each researcher was pri-
marily linked to their point of view, and each problem was selected to
adjust to it: Gelernter’s and Goldstein’s problems were suitable for ton-
down analysis, an Nevin's problems for bottom-up analysis. Indeed,
the efficiency of each geometry prover was doped by the direction of
analysis of the problem sample, and no one clarifies this. A general pro-
ver should be able to mix both directions of execution.

This controversy would be more relevant if we had a precise answer
to the question: «<how do we define a typical bottom-up or top-down pro-
blem in geometry?s.

We propose the following definitions:

Typical top-down problems are those for which there is only very
few consequences when the congruence relation is applied on the given
facts.

Typical bottom-up problems are those for which there is a lot of
consequences when the congruence relation is applied on the given facts.

Nevins’s problems, typicaly bottom-up, are in a way very concocted
because they hide given facts behind congruence relations. Welham [13,
14] showed that when the problem is adequate for a bottom-up analysis
a typical top-down prover does a lot of search to find the halt clause.
Similarly all of Nevins’s examples, chosen to fare well with his bottom-up
methods, are difficult for our top-down prover.

Analysing the proof tree for one of these problems (PR13), we mav
observe the following:

(1) the clauses’ ordering for a predicate defines the search se-
quence. An ordering adequate for bottom-up problems is not
suitable for top-down problems. The position of the transitivitv
clause is especially critical. In our program, during top-down,
transitivity transforms one given problem into two similar
problems.. However, used bottom-up, it transforms two known
facts into three known facts. That is 'why we structured our
data base to get the third fact for free, by using the equiva-
lence class plus witness structure. We are in fact doing an
implicit (shallow) bottom-up when we assert facts into the
data base.

(2) generally, in bottom-up problems we find a gap when we go
top-down. This gap may be easier to fill if we generate some
more facts at the bottom.

29

The bottom-up direction of execution is independent of the goal
clause. Top-down direction of execution is independent of the hypotheses.
A mixture of both is desirable to control «dispersions.

b—a———-—._—./
vy]
é top down ‘—__—_____%__l hottom up

% execution 4 execution
e, L ' T \

F16. 15 — Top-down versus bottom-up searches

mixture of
both

directions of

execution

Deciding upon one, it is advisable to compensate by doing a bit
of the other. We note in passing that Nevins also does top-down search,
when proving equal angles or equal segments by triangle congruence.
With this view in mind, and for bottom-up problems (e.g. PR13), we
introduced a shallow bottom-up search right at the start. The bottom
procedure generates more facts upon the given hypotheses, trying to find
implicit triangle congruences in the problem data. For each pair of equal
sides it looks for existing triangles, with at least three already known
facts, and asserts its deductions in the data base.

5.1 — THE HEURISTIC USE OF TRANSITIVITY

Transitivity relations may play an important role in proofs, because
they guide the search for the proof, improving the efficiency of GEOM.
This role is particularly relevant for typical bottom-up problems, on
account of the top-down character of GEOM. For this kind of problems
we usually find a gap, when we do top-down. One way to fill this gap is
the generation of more facts at the bottom, through the bottom procedure
discussed in the previous section. An alternative way is the use of transi-
tivity at the top, to reduce one given problem to two dependent sub-pro-
blems.

As an example consider problem 14, sketched briefly in figure 16
(see its proof in figure 22).

The goal is to prove two equal angles EAD and CAD. A simple use
of transitivity consists in replacing the goal by two sub-goals, through

30

F16. 16 — A part of the dia-
gram of Problem 14

the introduction of a third element. One way to find this element is to
recognize a third equal angle by parallel sides. Thus, the first sub-goal
shown below is proved, and a proof is tried for the second sub-goal.

GOAL: <EAD = <CAD third equal angle: <NDA
1st. SUB-GOAL: <<CAD = <NDA by parallel or antiparallel sides
2st. SUG-GOAL: to prove the equality of EAD and NDA.

The motivation for the use of transitivity was spurred by the
anlysis of PR13 and PR14. In both cases there was an immediate need
for the use of transitivity to link proof steps. This need was uncovered
by the top-down character of GEOM. In Nevins's work this need was
taken care of by the use of bottom-up search.

A pertinent question is the selection of the best place in the program
for the transitivity clauses for equal angles, equal segments and parallel
lines procedures. In GEOM the transitivity clauses were inserted at the
bottom of each group of clauses, as the last thing to try. However, would

this property be explored at its maximum, if it was embedded in each
clause?

6 — COMPUTATIONAL CONTROL
6.1 — INTRODUCTION

Efforts were done to separate logic from control and to make expli-
cit pieces of control, because it becomes easier to understand and modify

21

a program, and it makes possible the use of the same logical clauses with
different controls. In fact we experimented and concluded that we could
separate them in GEOM.

6.2 — THE SEPARATION BETWEEN LOGIC AND CONTROL

A separation between logic and control is possible and desirable in
PROLOG programs, as GEOM.

The distinction between the two components of the specification of
an algorithm A:

A=L+C

the ’logic’ component L, which expresses what is to be done, and the
‘control’ component C, which expresses how it is to be done, makes it easier
to write and to understand a program (see van Emden [2]).

PROLOG, a programming language based on predicate calculus, is
not a purely descriptive language as predicate logic. It requires one to
express additional information on how to do it.

This separation was implemented in three procedures: equal angles,
equal sides and congruence routines. It was motivated by the need for
more confrol because of the use of a bottom-up procedure concurrently
with the top-down ones. This implies two types of call of a clause and
data base handling operations with variables not instantiated, alreadv
discussed. Moreover, the use of a shallow bottom-up requires a discussion
on the modification of the congruence routines.

6.2.1 — In equal segments and in equal angles

The first point, similar in both the equal segments and equal angles
procedures, is related to the two types of call of the clause giving access
to the data base, clause DBAS.

For the first type, to verify, all variables are instantiated (or
ground) and the clause is required to be used only once.

For the second type, to find, at least one variable is not ground and
it is necessary to access the data base several times, in order to retrieve
ration is done by the procedure CON3. For the first clause, the congruence
procedure. This control is accomplished by the clause CHECKS (and by
CHECKA for the equal angles procedure).

32

Let us see an example concerning the use of a congruence clause,
CONS3 (a congruence theorem), when it is called by BOTTOM, with two
variables not instantiated.

This is the case which arises in the derivation of the possible con-
sequences from the following fact: AB = CD. The objective is the explo-
ration of all existing triangles on AB and on CD. This exploration
is done by the procedure CONS. For the first clause, the congruence
theorem regarding equality of sides (S-S-S), is required to find one or
more pairs of sides, on points B and D. This is done by the first call

— ESI (B.*Z = D*W *W1 'DBAS)
of the clause
+ CON3 (A.B.*Z = C.D.*W,DBAS.DBAS,GIVEN)

A pair is picked up, for instance BE = DF, and it is checked if
AE = CF (see figure 17).

E\G FH

A B C D

F16. 17— The search for a congruence
relation

As this fact is not true, another pair is picked up, for instance
BG = DH, and it is checked if AG = CH. The search goes on, controled
by clause CS till all possible pairs are searched for.

The second point, for equal angles, is related to the use of canonical
naming routines, when at least one variable is not ground. This point is
not yet solved, and a by-pass solution was adopted: the angles are gene-
rated and filtered by the diagram (EAFILTER) ; afterwards, they are
checked either as immediate equalities or as existing already in the data
base.

The second point, similar to the one for equal segments, is easily
solved and direct retrieval is possible either with all variables instan-
tiated or not.

o
Co

6.2.2 — In the congruence procedure

The introduction of a shallow bottom-up search leads to two types
of call of a clause, and to a slight modification of the control for the
congruence routines.

A separation between the logic and the control was done by elimi-
nating extra control evaluable predicates in the clauses of the congruence
procedure, and constructing clauses to describe the behaviour of the
inference process (how to do it).

Let us remark in passing that in general, and so for the whole of
GEOM, one can isolate the control in control clauses ‘which access the
appropriate logic clauses as long as they are identified by an extra
argument giving them a name.

One of the calls of each congruence clauses (CON3) is a filter
(CONFILTER), able to control the search. It is only activated for the
bottom-up search, simultaneously with the clause EAFILTER, responsible
for the generation of angles.

During bottom-up search, each congruence clause (congruence me-
thod) is used at least once, to retrieve all possible sides from the data
base which are necessary for constructing triangles on the pair of sides
chosen by the bottom procedure.

The CONFILTER, composed by a diagram filter and a switch, is
able to reject pairs of triangles for the following cases: collinear points,
same triangle and already proved congruent triangles. The re-use of
each congruence clause for finding another pair of congruent triangles
is effected by a simple switch clause.

6.3 — MAIN CONTROL DEVICES

Control devices are special clauses able to guide the search and
avoid unproductive search (e.g. impossible goals, loops).
In GEOM, there are two types of control devices:

1) model as a filter;
2) filters.

In the first type, a model (i.e. a particular interpretation of a general
logical statement) is used as a filter. It prevents irrelevant goals from

being pursued. As an example, we have the geometric diagram filter,

34

discussed in section 4.5 and proposed by Gelernter [5]. It uses analytical
geometry to reject false goals through simple numerical computations.

In the second type the filter is not a model. As examples we have
the uniqueness filter, the nonprovable filter and the DC filter.

The uniqueness filter prevents looping by allowing each subgoal
to be attempted only once in a branch. It is inserted in the following
procedures: equal angles, equal segments, parallel lines and congruence
routines, and only in these since all other procedures necessarily use them.

The nonprovable filter, discussed in section 5.5, recognizes nonpro-
vable goals, previously stored by clauses which record failures. It is
inserted in the equal angles and equal segments procedures.

The DC (direct congruence) filter rejects undesirable pairs of con-
gruent triangles, not caught by the diagram filter: isoscelles triangles,
already proved congruent triangles, and identities. It is therefore inserted
in the direct congruence routines after the diagram filter. The DC filter
is a part of a more sophisticated one, the CONFILTER, used when the
bottom procedure is activated. The CONFILTER is also able to avoid
the generation of collinear points for a triangle.

6.4 — SUBGOAL CONTROL

GEOM has two facilities for subgoal control, which are summarized
by two situations:

(1) remembering proved subgoals
(2) remembering subgoals which failed.

An example illustrates these facilities and its deficiencies, and the
need for a better interpreter [9]. In this example, the subgoal is to esta-
blish two congruent triangles, and three methods are available (Side-Side-
-Side, Side-Angle-Side, Side-Angle-Angle) (see figure 18).

The first situation arises when goal S1.=S’1 is finally proved,
in the context of the SSS strategy. One would like the established fact
S1:= S’1 to be stored so that it may be used in the context of the two other
extant strategies (SAS and SAA) for proving triangle congruence. Briefly,
we 'would like information to be passed from one branch of the search
tree to another. The mechanism for doing this has to be made explicit
by the user in his program, as it is done in GEOM.

<
Uy

AR

S 5'3

Gool: prove congruence of

triangles T1 ond T2
)
SAS Loop to be
= ovoided
4
Goal: prove
S1 =351 FA:]
Remember
@) Failure
4
Generate triangles
T1 ond T2 ond —
prove them congruent
(@)
Some other pair] [:e"'e'"b"
L uccess
of triangles 7 veeeed | Sl = s

Fi1G. 18 — Cases of sub-goal control

The second situation arises when the attempt to prove a subgoal
fails, as with the subgoal S3 = S’3. One would like to have this infor-
mation available in the other two branches (SAS and SAA) of the search
tree, so that no further attempt to prove it need be made. It is up to the
PROLOG user, however, to provide the mechanism for storing and retrie-
ving such information. This mechanism is implemented by two devices:
the nonprovable filter and the record failure clauses, placed at the top
and at the bottom of equal angles and equal segments procedure, res-
pectively.

36

6.5 — GOAL CONTROL

Each time a lemma is asserted in the data base, the program may
ask whether it is identical to the goal it is trying to prove.

If the answer is yes, the program stops with a successful proof.

This goal may be the top goal or any other subgoal, and it may
be possible to infer it by transitivity performed on the data base.

Two situations, though not considered in GEOM, regarding the
control of goal statement generation are discussed:

1) the goal statement is generated by any procedure;
2) the goal can be infered by transitivity from the data base.

The discussion is motivated by two deficiencies of GEOM.

The first situation concerns the possibility of a program recognizing
that a derivation has proved its goal statement and stoping execution.
Each time a new fact is proved, by say the congruence procedure, it would
only be asserted and added to the data base if it is not the goal statement
(Nevins [8]; Welham [13, 147).

The second situation concerns data base management and relational
inference. Consider the example:

GIVEN FACT: AB=CD
GOAL: CD = EF.

When the fact AB = EF is proved and asserted in the data base,
the structure of related equal segments (RESO) contains the information
that the goal statement is proved by transitivity:

AB = CD = EF
and no further search is necessary. However, the GEOM data base has

no capability to relate the fact CD = EF, to the goal CD = EF, and the
search goes on.

7—SUGGESTED CLUES FOR FURTHER WORK

7.1 — INTRODUCTION

Some aspects are discussed, suggesting further research directions
for the development of a geometry theorem prover.

The main aspect is the improvement of PROLOG itself.

Other aspects focussed are alternative proofs of a theorem, storing
and using proved theorems, the uses of symmetry and the automatic
generation of diagrams. These accessory aims are intended as a sophisti-
cation of the program for geometry theorem-proving, and not as an
enlargement of its geometry domain. Enlargement of this domain would
be done for instance by the addition of knowledge about proportions.

7.2 — ALTERNATIVE PROOF OF A THEOREM

Two points arise when discussing the generation of alternative
proofs of a theorem:

" (1) the organization of geometric knowledge and
(2) the difficulty in using diverse overall strategies.

The first point is concerned with the organization of the geometric
knowledge (axioms and theorems) in the program: the ordering of the
clauses for each procedure. The ordering for equal segments is parti-
cularly critical and determines not only different searches but combina-
torial explosions, mainly because GEOM has a construction facility.
Figures 19, 20, 22 and 23 picture the close dependence between the proofs
of PR13 and PR14 and GEOM organization (GEOM1 is a version of
GEOM with no difference of segments clause in the equal segment pro-
cedure). Figure 21 shows another proof for PR13 done by program
G 13, 14].

For PR13, we only need three clauses for equal segments procedure
(S4, S8, S10), but GEOM has no possibility to detect it. Instead, it uses
every clause in a depth-first way.

" Figures 19 and 20 illustrate one disadvantage of the depth-first
search, as the methodic pleasure of a buurocrat, proving a unnecessary
fact: AP = CP.

The second point is concerned with the lack of different overall
strategies, either in GEOM or in PROLOG, inbuilt but selectable.

This point may be solved by two approaches:

1) the addition of more theorems to GEOM ;
2) the implementation of a new inference system, Earley deduction,
" in order to explore differently the body of geometric knowledge
of GEOM.

38

OF

TRANSITMTY
EQUALITY

OPPOSITE
PB =PN |SIDES -1S0S.

SUPLEM

TRANSL.| .. B ONGRUE
oF B | PON=£ PNQ X PBN=XPNB TRinGLES
TRANSL] PNQ= 2 ADN] x PON=X ADN| SoNGRU. TR
EQUALZ PARALL . OR ANTI-
PARALL SIDES
[NC = BA 7o, N
CONGRU. TRI
SS
. 9
BY CONGR @ Nt BY CONG
g @ Y] BAZNC| Ac=cX] rooneRuY
1A BAPEANCP
{2 BAPSANCP z) J@
ATk TRUSAS|AASB SACRN |
ey)
e = (L @
TRI = — f
OPPOSITE AS=CR| \J ASB=JCRN SB=RN
OPPO! ANSI. GIVEN
siDES 1s0s|A P /
)
i PAC =4.PCA |
®
TRI. SAS .8 ARNEACSS | -
12 h - Q:)
mmm%’ s
T _ t - ~ A
RlAR=CS! B?‘:‘S:'§ CSB | |RN=SB |aiven
\
CONGRU- TRI. C AU, TRL | CONGRU. TRL
ACBA=ZAADC | A ASA AABS= ACDR
‘)
@ Gl PSS

020 3

TGIVEN GIVEN DENTITY

SUPLEM. GIVEN
ANGLE

ANGLES

Ol

N / LES L
[cBs=XaDR; [cB=AD] [{sce=tRad [1ass-YcoR [aB=CD) b sa8=Xren)

"SUPLEMENTARY GIVEN

SUPLEM.
ANGLES

F1G. 19 — The proof tree of Problem 13 used by GEOM

TRANSITIVITY OF EQUAUITY

OPPOSITE
PB =PN_[sipes 1s0s.
e

TRANSITIVITY
PB=PQ |oF EQUALITY

S.
X PON=XADN | |xPNO=x ADN[OS 1ﬁm zs,cADT [prB=scan |IEASL

Jé”NQ-ZCADﬂ]esPON_z;ADN] coNGRU. TR
TRANSIT. PARAL. OR ANTI- @
= NGRU. TRI.
f— _—— _— —_——
BY CONGRU ' L—A—B—A_P=EEEP_4',
[} / .
Sori2 433 SESTAP=CP | 7 XAPB=XCPN|
TRI. @I) '
{
J——SB=-——]RD pESBA=XRDC | | BA= ’r CONGRU
PARAL.OR ANTI— ' GIVEN ' PAC.—.4 PCA |7ar
PARAL. SIDES ‘v
c £ ARN - 4@

=ACSS

CONGRU. I
ADARZ A BCS|SoNGAU- TR

PARAL. OR ANTI- ~ GIVEN PARAL. OR ANTI-
PARAL. SIDES PARAL . SIDES

Fi6. 20 — The proof tree of Problem 13 used by GEOM 1

@7 \\@ . OA%W O s ® o

EPQN—XCQD ZADN=XCQD A_CAN CAN! APNB—ACAN ACAD—z;;:ANj
VERT. OPPO. ' ALTERNATE
ALTERNATE.

1 lapenzxacs]| [ycan-aace V00 v
- 189 J

ICONGRU. TRI.
SSS

%ANSL
F_EQUAL -

AN=CB |

/% oPP.

gpoesiAN AD' LCB Aﬂsmes

\‘[N —ICONGRU.

AND=X ADN [TrI.

NR=BS l
= 4

> A ANRE AADR .gg;“”‘” TR
lDENﬂU n
Z'SAE‘S'U‘Z‘(',TT‘&! NR=DR]_RA:RA % NRa=21DRA
~
CONGR!
TRI. v DR‘BS R BS PARAL

CONGRLENT TRIANGLES

ADRAZ ABSC

CONGRU. ~x (0} OPP. SIDES

_DR=BS _LFIA sc| {AD=CB
1

ASABEARCD b°“°’“’ TRi-

ALTERNAT! (\ ope @
SAB= ARCD‘ =CD BSA:z

F16. 21 — The proof tree of Problem 13 used by G

L

XA EAD= Z4_.CAD | TRANSITIVITY - OF - EQUALITY

PARALLEL-OR-

X CAD=4 .NDA EAD=/4 NDA | BASE-ANGLES-150S.

DIFFERENCE OF SEGMENTS

CONGRUENT .CONGRUENT
TRIAN TRIANGLES

V
AMANS AEDN {saa

CONGRUENT
TRIANGLES

@ -

TRANSITWITY e
|macep | [xanm=soNe]|

Fi16. 22 — The proof tree of Problem 14 used by GEOM

For the first approach it would be more interesting to have specific
knowledge on how to use the existing theorems than to add new geometry
theorems, i.e. more control clauses. One approach is the identification
of patterns which call for special constructions.

42

A EAD= X CAD | TRANSITIVITY OF EQUALITY

PARALLEL OR
ANTIPARALLEL
SIDES

/{ CAD= 4 NDA

AEA[):zg_NDA BASE ANGLES 1S0S.

SUPLEMENTARY

BY CONGRUENT
ANGLES J{,oen-zuﬂ LDE-Aﬂ NDE Z NAM! TRIANGLES
19
CONGRUENT

TRIANGLES $SS | AEAD=AMDA

/
Q IDENT)TY
BY CONGRUENT :r
TRIANGLES EA=MA AD=DA

TRANSITIVITY

jr) (W
TRIANGLES SAS] AABEZADBM
(9 .G

IDENTITY BY HALVES OF

€Q-SEG.
ABE= X DBM] BE:@

THEOREM 1
MID POINT

MIO POINT

F16. 28 — The proof tree of Problem 14 used by GEOM 1

4

154

Constructions have been discussed as a facility for proving equal
segments or equal angles by congruent triangles (see section 5.5). Those

constructions, line segments, ‘were done for achieving a certain subgoal,

and erased afterwards.
Let us consider an example to illustrate what we mean by a con-
struction pattern.

GIVEN: triangles ACB and ADB are equal and on opposite sides
of AB;

TO PROVE: M is the midpoint of CD.

CONSTRUCTIONS: draw AE parallel to BD: BE parallel to AD;
join EC, ED, CD.

PATTERN: parallelogram AEBD

For this example, the pattern is a parallelogram, created in the
diagram, by means of constructions. The new elements make explicit more
information (relations) in the diagram (model), which are not contra-
dictory with the hypotheses. The new relations induce short cuts in the
search space of the problem and in some cases help to fill in gaps in the
proof. The pattern may be viewed as a tactic to help a strategy.

F16. 24 — A construc-
tion pattern: the paral-
lelogram

The second approach, the implementation of a new inference system
from scratch proposed by Warren (Pereira and Meltzer [9]) is discussed
in section 7.6, concerning the overall improvements of PROLOG.

b

7.3 — STORING AND USING PROVED THEOREMS

Storing and using proved theorems is a matter of interest for further
developments of a geometry theorem-prover. This interest suggests one
of the reasons for having a more complete separation between logic and
control, because we would like to add the new theorem without having
to specify within it any control.

We may consider this problem as more complex than the mechanism
for remembering proved subgoals (lemmas), already implemented in
GEOM, and discuussed in section 6.4. Now, we are interested in storing
clauses instead of unit clauses. The complexity arises when clauses des-
cribing theorems contain the information on how to use them, i.e. logic
and control are mixed. On the contrary, the problem becomes simpler
when a complete separation is made. Thus, the logic or the theorem may
be the only component to be stored. New theorems would be used by the
already existing control. In section 6.2 the separation between logic and
control was discussed, and examples were given on how this problem
was tackled in GEOM.

7.4 — THE USES OF SYMMETRY

The uses of symmetry in geometry theorem-proving are based upon
two fundamental types of symmetry

1) syntactic

2) geometrical

Syntactic symmetry is general and it may be applied to any formal
system. Consider the formal system of plane geometry and the set of
hypotheses of problem 6:

ES (AB = AD)
ES (BC = DC)

If we exchange B with D in each unit clause, we get the same set
of clauses:

ES (AD = AB) ES (DC = BC)

45

and we may say that problem 6 has a syntactic symmetry, which makes
the set of hypotheses invariant under the syntactic transformation:
B <-->D.

The predicates of geometry exhibit a high degree of symmetry and
by discovering syntactic transformations one can manage to reduce the
computing effort of a geometry theorem-prover.

Gelernter [3, 4] was the first researcher to recognize the power
of syntactic symmetry and he proposes two uses:

1) a negative one — for pruning subgoals which are syntactic
variants of subgoals already tried without success;

2) a positive one — by establishing subgoals which are syntactic
variants of other already proved subgoals, since their proof
would simply be a syntactic variant of an already existing proof
(mathematician’s do it by saying ’‘similarl’).

Gelernter’s symmetry is not calculated by his program. On the
contrary, it is declared by the user by observing the geometric diagram.
A combinatorial problem was thus avoided for geometric problems with
a large number of points (e.g. 10). A fortiori, a dynamic use of this
symmetry is not explored in his program.

In GEOM a single use of syntactic symmetry is implemented,
through canonical naming. It handles the permutation on the names of
the syntactic variables in unit clauses, as discussed in section 3.6.

Geometrical symmetry is the arrangement of the points of a figure
into pairs of points (where a point may pair with itself). It is also a
syntactic symmetry.

A study of this symmetry was developed by Pereira, on making a
PROLOG program, called SYMM (*), which is capable of finding partial
and complete line symmetries of a geometry problem.

SYMM may calculate this symmetry for problems defined either
with a diagram or without it. SYMM may be inserted in GEOM and be
a good guider of the search.

SYMM has 8 rules of line symmetry, implemented in procedure
LSYMM. We only consider the following ones, as examples:

(3) A listing of program SYMM will be sent upon request.

RULE 1T:

point U is symmetric relatively to pair XY (X different from Y) if
there is a pair X1Y1 symmetric to pair XY, and point X1 is different
from point Y1, pair UX1 equals pair UY1 (see figure 25).

U

X1 Y1

o

x
®--

F16. 25 — Symmetry rule 1T

RULE 8T:

point U is symmetric to pair XY if there is a pair X1Y1 symmetric
to pair XY, there is a point Z symmetric to XY, point Z is different
from point X1 or Y1, angles <« UZX1 and <« UZY1 are equal.

RULE 3T:

pair UV is symmetric to pair XY if point U is different from
point V, there is a pair X1Y1 symmetric to XY, point X1 is different
from point Y1, direction from X1 to Y1 is different from directions
U to Vand V to U, angles <UX1Y1 and «<VY1X1 are equal, and
direction X1 to Y1 is parallel to direction U to V (see figure 26).

___ox
--@=<

; BE
X1 Y1
GA AL
F1c. 26 — Symmetry rule 3T

47

RULE 4TC:
pair UV is symmetric to pair XY if point P is different from point
V, there are two pairs ZW and X1Y1 symmetric to pair XY, point X1
is different from point Z, directions X1 to W and W to V are the
same, directions Y1 to Z and Z to U are the same, and pair
UZ equals pair VW or pair UY1 equals pair VX1 (see figure 27).

Fig. 27 — Symmetry rule 4TC

Now let us reconsider problem 6 to show how SYMM works. SYMM
gives a partial symmetry through the application of rule 1T, to points
A and C:

AC is a line of symmetry
D is symmetric to B

Futher on, it finds a complete symmetry through the application
of rule 8T to point E:

ACE is a line of symmetry

This symmetry could only have been proven after the previous one.
Similarly, any symmetry proof depends on the availability of needed facts.
Thus, a certain symmetry may not be possible to prove at a given stage
but may be possible to prove later on.

This points to a dynamic use of symmetry.

48

Following the proof of problem 6, we envisage the use of geometrical
symmetry for guiding the search by providing the appropriate congruent
triangles even when there is no diagram for helping with the coordinates.

When we look at a diagram, the recognition of geometrical symme-
tries helps us to sketch a plan and to direct our proof of a theorem: to
structure the proof and to re-arrange its pieces of reasoning. In a way,
geometrical symmetry is viewed as a higher level concept giving global
information, which allows the increase of directionality and the decrease
of search.

But how can this be used in GEOM? For PR6 the existance of line
symmetries gives us a straightforward way for concluding more facts
about the equality of angles and sides: the goal ES (BE = DE) may be
immediately asserted by symmetry. However, this is a unfair proof!

Of course, one could use SYMM as a device for pruning, but we
would like to use it in a more positive way. We envisage SYMM as a
hunch giver and not as the basis for a proof. Thus, what is desired is to
find its function as a control device, a kind of «strategists.

7.5 — THE GENERATION OF A DIAGRAM

With the given hypotheses how is it possible to generate a diagram?

A diagram (model) is one particular interpretation of the given
hypotheses (the hypotheses define a family of diagrams), which can be
used as a counter-example during the proof.

One may consider the automatization of the task of generating
a diagram, instead of having to give a set of points and its coordinates.
This generation may be viewed either as static, done before the proof,
or as dynamic, done during the proof as needed.

Let us consider only the static generation of a diagram, analysing,
as an example, the protocol of a subject for problem 6:

1) pick up the first element of LINES, BE;

2) check if BE (or EB) is present in any given relation;

3) generate a value for B;

4) generate a value for E;

5) pick up a second element of LINES, DE;

6) check if DE (or ED) is present in any given relation:

7) generate a value for D;

8) do not generate a value for E, because it exists already ;

9) pick up the third element of LINES, ACE;

10) <check if AC (or CA) is present in any given relation;

11) check if CE (or EC)...;

12) check if EA (or AE)...;

13) generate a value for A...;

14) generate a value for C, noting that A, C and E must be on the
same straight line;

15) pick up the fourth element of LINES, AB;

16) check if AB (or BA)..;

17) as AB.= AD, A must be located on a straight line crossing the
midpoint of BD;

18) re-check the values generated for A, B and D in order to be
adjusted to 17);

19) generate a new value for A;

20) generate a new value for C, noting 14);

21) pick up the fifth element of LINES, AD;

22) check if AD (or DA) is present in any given relation, and if
AD (or DA) was already used jump to the following pick up;

23) pick up the sixth element of LINES, CB;

24) check if CB (or BC)...;)

25) as BC = DC, C must be located on a straight line crossing
the midpoint of BD;

26) re-check the values generated for B, C and D in order to adjust
to 25);

27) pick up the seventh element of LINES, CD;

28) check if CD (or DC) ... and if CD{or DC) was already used
jump to the following pick up, if it exists;

29) no more elements in LINES: STOP.

With this sequence of tasks one may derive an experimental algo-
rithm, and refine it with more protocols. For the programming of this
algorithm 'we may consider two points: the construction of lists of points
(during the process abstract values are generated for the coordinates)
and the use of symmetry to guide the generation of the diagram.

7.6 — THE IMPROVEMENT OF PROLOG

Our experience with problematic situations, detailed in sections 6.3
and 6.4, motivated the need for a more sophisticated predicate logic inter-
preter. This sophistication will be achieved mainly through the impro-

50

vement of PROLOG’s operational semantics (proof procedure), which
will provide more powerful facilities. These facilities will free PROLOG
users from having to provide special «mechanisms». Better and clearer
programs will be written.

A proposal for a new inference system was done by Warren (Pe-
reira and Meltzer [9]), on the implementation of an efficient predicate
logic interpreter based on Earley deduction (ED). The ED is a top-down
proof procedure, analogous to Earley’s algorithm for parsing context-free
languages, and it uses simple instantiation as a rule of inference in addi-
tion to resolution. This improvement will provide complete satisfaction
for the three problematic situations already discussed: automatically
avoiding loops, storing proved facts, and remembering goals which failed.

Let us examine how ED deals with the three problems, discussed
in sections 6.3 and 6.4. The example shown in figure 18 is now revisited
with the help of figure 28.

In this figure, we have the same top goal as before (to prove T1
and T2 congruent). However, when the SSS method is tried out, subgoal
T1 = T2 is rejected since it is subsumed by the top goal, subgoal S2 = S’2
is stored as a lemma after being proved, and subgoal S3 = $’3 (which

] $1 52 S'TAS2
GOAL: Ti =T2
$3 $'3

52 = §'2
Angle
Angle

AP

$SS

oo e—

8Qe

s'1
2 SAS
$'3

A Remenbered
Lemma

Is rejected as
candidate goal

. A g
St =51 /
Suvbgoal becomes an

53 =53
FAIL already activated subgoai

[52= $'2] E{ Success]

Lemma
§2 =52
is stored

_ Rejected by subsumption
TH=T2 4 b the initiol goal

Fic. 28 — The sub-goal control examples reviseted

could not be proved) becomes an already activated subgoal. Thus, when
trying the other two methods (SAS and SAA), enough information is
available for rejecting S3 = 5’3 as a subgoal to be pursued, and for sol-
ving 82 = 8’2 straightaway since it has been previously stored as a lemma.

Other improvements over PROLOG are envisaged, such as assocla-
tive memory, space saving and compilation instead of interpretation.
Earley deduction will require large data bases and further studies on
their management will be carried out.

This line of research will no doubt enlarge the increasing number
of PROLOG applications.

8 — CONCLUSIONS

In this section we shall briefly reiterate some of the relevant issues
that have been explored:

1) the representation of geometric primitives

Flexibility and generality are achieved by the concepts of equi-
valence class and canonical naming. Representation of angles
by directions is prefered.

2) the uses of a geometric diagram as a model

Two uses of a diagram are made: as a filter (it acts as a coun-
terexample) ; as a guide (it acts as an example).

3) the introduction of new points

The introduction of new points to make explicit more informa-
tion in the diagram and to create, for certain cases, shortcuts
or new paths, which diminish the steps of a proof.

4) shallow top-down breadth search versus depth-first searech for
the congruence procedures

To suspend the selection of new subgoals until more informa-
tion, perhaps already present in the data base, is searched for,
by means of a shallow breadth search for each of the congruence
procedures.

6)

7)

8)

9)

10)

11)

the introduction of constructions

A construction facility (doing, not doing and undoing) for
missing segments, when proving that two segments are equal,
as corresponding parts of congruent triangles.

the data base and its access

Structuring and accessing the data is achieved through two
concepts: the equivalence class and canonical naming,

top-down versus bottom-up

The mixture of top-down with a shallow bottom-up which only
explores consequences of the given data, in what concerns the
triangle congruence relation.

the uses of transitivity

Two uses of transitivity are implemented:; the implicit one —
where transitivity is obtained for free, on account of the use
made of equivalence classes — and the usual explicit one.

the separation between logic and control

Separation between logic and control is possible and desirable
in PROLOG programs, as in GEOM. Two immediate advanta-
ges:

1) the storing of proved theorems independently of how they
will be used;

2) the use of logic clauses in different ways, according to
the control clause.

the use of geometrical symmetry

Geometrical symmetry can give global information about the
problem or its symmetric parts. It can be used for pruning
and directing the search, especially if no diagram is provided.
Other uses of symmetry have yet to be explored.

the need for a more sophisticated predicate logic interpreter

The work on geometry theorem-proving motivated improve-
ments of the used language, PROLOG. The main improvement

53

of the PROLOG operational semantics will be the implemen-
tation of an efficient predicate logic interpreter, based on
Earley deduction. This improvement will provide complete
satisfaction for three general problematic situations: avoiding
loops, storing proved facts, and remembering goals which failed.

12) the enlargement of PROLOG applications

Earley deduction and other improvements over PROLOG, such
as data base management, will support the use of a language
based on PL in a large and complex domain.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the helpful suggestions of Pavel

Brazdil, Bob Welham, for his ideas and comments on how to implement
a geometry theorem-prover in PROLOG, Bob Kowalski, who introduced
us to predicate logic programming, and Dave Warren, who taught us
the power of PROLOG.

[1]

(21

[31

[4]

[51

{61

[7]

(8]

54

REFERENCES
COELHO, H. — An inquiry on the geometry machine and its extenstons with
a review of previous work. Working report, no. 1 for INVOTAN, 1974.

van EMDEN, M. — Programming with resolution logtic. Research report
(0S-75-30, University of Waterloo, 1975.

GELERNTER, H. anid ROCHESTER, N.— Intelligent behaviour in problem-
solving machines. «<IBM Journal», October, 1958.

GELERNTER, H.— A note on syntactic symmetry and the manipulation of
formal systems by machine. «Information and Control» n.° 2, 1959.

GELERNTER, H.— Realization of a geometry theorem proving machine.
«Proc. Int. Conf. on Information Processing», 1959.

GILMORE, P. C.— An examination of the geometry theorem machine. «Arti-
ficial Intelligences, 1, 171-187, 1970.

GOLDSTEIN, I.— Elementary geometry theorem proving. MIT, AIL memo,
n.° 280, April 1973.

NEVINS, A.— Plane geometry theorem proving using forward chaining.
«Artificial Intelligence», vol. 6 n.° 1, Spring 1975.

(91

[10]

(11]

f12]

[13]
[14]

PEREIRA, L. M. and MELTZER, B. — Implementation of an efficient predicate
logic interpreter based on FEarley deduction. Scientific proposal report for
SRC, April 1975.

REITER, R.— The use of models in automatic theorem-proving. Univ. of
British Columbia, Techn. report 72-04. September 1972.

ROUSSEL, P. — PROLOG — Manuel de reference et d'utilization. G.I.A.,
U.E.R. de Luminy, Univ. d’Aix-Marseille, 1975.

WARREN, D.— Epilog: an user’ guide to DEC-10 PROLOG. DAI, report
stored in 400,400 area of DEC-10 of the Univ. of Edinburgh, August, 1975.

WELHAM, R.— G, a geometry theorem prover. (unpublished), March 1975.

WELHAM, R.-— Geometry problem solving. D.A.I. Research report n.® 14,
January 1976.

55

APPENDIX 1

A SAMPLE OF THE PROBLEM COLLECTION

-SORCHA (" FROELEM S GELERNTERsS") .
+DIAGRAM.

-A(050).
~E(1250).
-C{4,2).
-0(2,2).
-E@).
-F(7).
-K{10s0).
M.

+FIN.

+LINES (AKE.EC.CD.I'MA.AEC . DF K. MEF .CFK) .
+PR(AR.IC) .

+MIOFOINT (E>AC) .

MINFOINT (FsRI) .

+GOAL.
~MIDFPOINT (MsADD .

D C

7 » 2

~SORCHA (*FROBLEM 13 NEVINS:27). -SORCHA (" FROEBLEM 14 NEVINS,47) .

+DTAGRAM. +ITAGRAM.
-N(0s2). -C(0,0).
-Q(2,2). -A(30:0).
RG22 . ~E(24,12).
~I(&6:2). -M(2746) .
-A(3,8). -N(22,6).
-B(0s4). -D{1246) .
-C(3,0). -E(18,9).
~F(1,4).
-5(3:6). +FIN.
+FIN. +_INES(BEDC.CA.AMB.ANE . DNM.AL) .
+LINES (AR.EN.AFN.NQRII.BFQC.CRSA.SE.A.CD) . +MIDFOINT (B RO .
+MINFOINT (ESRD) .
+RECTANGLE (NESR) . +ES (BDB=RA) .
+PaRALLELOGRAM (ARCID . +PR(IM.CA) .
+GOAL . +G0AL.
-ES (PR=FQ) . -EACEAD=CAL) .
D
o9

C

N D

Vg

APPENDIX 2

SOLUTIONS GIVEN BY GEOM
FOR THE SAMPLE PROBLEM COLLECTION

FROBLEM &

GIVEN LINES?
GIVEN AR
GIVEN E
GIVEN F
READY

MIDFOINT OF
MIDFOINT QF

MoOIS MIDFOINT OF

FROUF
TOF-DOWN SEARCH?
A0S s JBFK
DF=RE
SCIFE = RKRF

THEREF R

TRIANGILE

MLOFOINT
MIDFOINT

oF
0F

THEREFORE S AR

THEREFUORE
MENNDC

MIZNADC
E IS MIIFOINT OF
THEREFORE:
I
THEREFORE
AM=MI-

.

GELERNTER S

AC
o

Al

LF

CK

Ch

FARALLEL

Ak

CONGRUENT

TQ

ARE»ECs CIy IMA Yy AEC y DF By MEF y CFK
FARALLEL TO DC

TG ~ ERE -~ PROVED

IDENTITY

RY - MID - POINT

FARALLEL - OR - ANTIFARALLEL

TO TRIANGLE

BY -~ CONGRUENT -

EQ - SIDES

DATABASE

EF BY TWO MIDFOINTS

DIATARASE

FROVEI

BY

FROVED
DATARASE

BY -
Q.E. D,

MID - FOINT

BFK

— SIDES

ASA

TRIANGLES

IN TRIANGLE AKC

- TRANSITIVITY -~ OF - FPARALLELISM

M OIS THE MIDFOINT OF all BY BISECTION OF THIRU SIDE
TRIANGLE ALC

FROBLEM 13 ANEVING2

GIVEN LINEST AEsEN»APNyNQRIsBFQRCsCRSA,SEsDALCD
GIVEN RECTANGLE: NESR

GIVEN FARALLELOGRAM! AECD

READY

ER=FQ TO - RE - PROVED

FROOF ¢

ROTTOM-UF SEARCH FOR EBC-AD
CE=AD SIDES - OF - GIVEN — FARALLELOGRAM
Ea=0C SINES ~ OF — GIVEN ~ PARALLELDGRAM

CE0=CA TOENTITY

Ui
ig)
o

THEREFORE ! TRIANGLE CEA CONGRUENT TO TRIANGLE ALC
S0BE = AR SUFFLEMENTARY — ANGLESD

CE=al S5ILES - OF - GIVEN ~ FARALLELQGRAM

“3CE = <RAD CONGRUENT ~ TRIANGLES

THEREFORE: TRIANGLE CEE CONGRUEMNT TO TRIANGLE AR ASA

ROTTOM-UF SEARCH FOR AR-CI
<ARS = CDR SUFFLEMENTARY -~ ANGLES

AR=Cl SINES -~ OF — GIVEN -~ FARALLELUGRAM

CEAE w TRCD BUFFLEMENTARY - &HGLES

THEREFORE ! TRIANGLE ARS CONGRUENT TO TRIANGLE CDR ASA
EGTTOM-UF BEARCH FOR BS-NR
BOTIOM-UF SEARCH FUOR EBHN-RS
TOP-DOWN SEARCH:
AR=CE COMGRUENT ~ TRIAMGLES

sARN = 08K TRAMSITIVITY
FiN=3R QIPES ~ OF -~ GIVEN - RECTANGLE

THEREFORE D TRIAHMGLE aRN CONGRUENT TO TRIANGLE CEER Sa%

THEREFORE ¢
“FAC = <FCA

“FAC = <FPCA

THEREF ORE $
AF=CF

AS=CR
“ASE = <CRN

SRE=RN

THEREFORE? TRIANGLE ASE CONGRUENT TO TRIANGLE CRN

THEREFORE :
RA=NC

Rey=NC

AC=0A

CE=AN

EY — CONGRUENT ~ TRIAMGLES

FROVED

OFFOS - SIDES - IS0S
CONGRUENT -~ TRIANGLES
TRANSITIVITY

SIIES — OF - GIVEN -~ RECTANGLE

BY — CONGRUENT -~ TRIANGLES
FROVED
IDENTITY

CONGRUENT - TRIANGLES

THEREFORE?D TRIANGLE BAT CONGRUENT TO TRIANGLE NCA 588

CE=AR

Bi=NE

HC=R&

THEREFORE D TRIAMNGLE TRH CONGRUENT TO TRIANGLE ANE 5

THEREFUF
SFEBN = CFNE

CEEN = PR E

THEREF 0FE 3

SENG = AN

<FAN = AN

BY -~ CONGRUENT -~ TRIANGLES

FROVETD

TOENTITY

CONGRUENT — TRIANGLES

i
i

BY ~ CONGRUENT -~ TRIANGLES

FROVED

GFFOS ~ SIDES -~ I8GS

TRANSTITIVITY

Frfedi e, -~ O FrE UL RS RSLLET.

SA5

THEREF
SFON

TREARGTTIWITY ~ OF - FQUALITTY

SR = SIPNQ PR T

THE

UFFO:a - SEUES ~ 18508

Fr= N FROVET
F R FROVET
THEREFORE ¢

FR=FQ TRANSITIVITY ~ OF - EQUALITY
QELD,

68

PROBLEM 14 NEVINS» 3

GIVEN LINES! ERENCsCAsAMEyANE « DNMy Al

GIVEN It MIDFOINT OF RC
GIVEN E MIDFOINT OF EI

ETi=Rd

GIVEN IIM PaRaALLLEL TO CaA
READY

“<EAD = <ICAD

FRODF !

TOF-DOWN SEARCH?

MONNAL
I IS MIDFOINT OF EC

THEREFORE M IS THE MIDFOINT
IN TRIANGLE FAC
THEREFORE :
BH=HMa

RA=EL
M IS MINDFOINT OF EaA
E IS MIODPOINT OF ED

THEREFUORE
ME=EE

ME=ER

AR=TE

THEREFURE
Ha=ED

BA=RD

TO -~ BE - FROVED

UATABASE
DATABRASE

UF BA BY BISECTION GF THIRD SIDE

EY - MiD - FDINT

GIVER
FROUE L
IATABASE

HALYES ~ OF = EQ - &

FROVED

GIVEN

LIFFERENCE -~ OF - SEGMENTS

BIVEN

69

THEREFORE
“MAN = <EDA

MA=EL
“MAD = CEDA

Al=0A

EASE ~ ANGLES - 1508
FROVED
FROVED

IDENTITY

THEREFQRE: TRIANGLE MAD CONGRUENT TO TRIANGLE EDA

THEREFORE?
IM=aE

MA=El
<ANM = <IINE

<NMA = <NEI

THEREFORE: TRIANGLE MAN CONGRUENT TO TRIANGLE EDN

THEREFORE ¢
NM=NE

NM=NE
DiM=Ak

THEREFORE ¢
NO=NA

NI=iNA

THEREFORE
“NDA = CEAD

AT = <INDA
SEAD = <NDé

THEREFORE ¢
SEAD = <CAD

BY - CONGRUENT - TRIANGLES

TRANSITIVITY

VERTICAL - OFFOSITE - ANGLES

CONGRUENT - TRIANGLES

BY - CONGRUENT ~ TRIANGLES

FROVED

FROVED

ODIFFERENCE ~ F - SEGMENTS
FROVET

BASE ~ ANGLES - I80%

FARALLEL -~ OR -~ ANTIPARALLEL

FROVED

TRANSITIVITY ~ OF ~ EQUALITY
RERY NS UN

S5AA

- HIDES

Composto e impresso por Ramos, Afonso & Moita, Lda. — Lisboa

