Elder Care via Intention Recognition and Evolution
Prospection

Luis Moniz Pereira and Han The Anh
Imp @di.fct.unl.pt, h.anh@fct.unl.pt

Centro de Inteligéncia Artificial (CENTRIA)
Universidade Nova de Lisboa, 2829-516 Caparica, Portugal

Abstract. We explore and exemplify the application in the Elder Care context of
the ability to perform Intention Recognition and of wielding Evolution Prospec-
tion methods. This is achieved by means of an articulate use of Causal Bayes
Nets (for heuristically gauging probable general intentions), combined with spe-
cific generation of plans involving preferences (for checking which such inten-
tions are plausibly being carried out in the specific situation at hand). The over-
all approach is formulated within one coherent and general logic programming
framework and implemented system. The paper recaps required background and
illustrates the approach via an extended application example.

Keywords: Intention Recognition, Elder Care, Causal Bayes Nets, P-Log, Evo-
lution Prospection, Preferences.

1 Introduction

In the last twenty years there has been a significant increase of the average age of
the population in most western countries and the number of elderly people has been
and will be constantly growing. For this reason there has been a strong development
of supportive technology for elderly people living independently in their own homes,
for example, RoboCare Project [8] — an ongoing project developing robots for assisted
elderly people’s living, SINDI — a logic-based home monitoring system [9].

For the Elder Care application domain, in order to provide contextually appropriate
help for elders, it is required that the assisting system have the ability to observe the
actions of the elders, recognize their intentions, and then provide suggestions on how to
achieve the recognized intentions on the basis of the conceived plans. In this paper we
focus on the latter two steps in order to design and implement an elder care logic pro-
gramming based assisting system. The first step of perceiving elders’ actions is taken for
granted. For elders’ intention recognition based on their observable actions, we employ
our work on Intention Recognition system using Causal Bayes Networks and plan gen-
eration techniques, described in [1]. The intention recognition component is indispens-
able for living-alone elders, in order to provide them with timely suggestions. The next
step, that of providing action suggestions for realizing the recognized intention gleaned
from the previous stage, is implemented using our Evolution Prospection Agent (EPA)
system [2,3]. The latter can prospectively look ahead into the future to choose the best
course of evolution whose actions achieve the recognized intention, while being aware

of the external environment and of an elder’s preferences and already scheduled future
events. Expectation rules and a priori preferences take into account the physical state
(health reports) information of the elder to guarantee that only contextually safe healthy
choices are generated; then, information such as the elder’s pleasure, interests, etc. are
taken into account by a posteriori preferences and the like. The advance and easiness of
expressing preferences in EPA [3] enable to closely take into account the elders’ pref-
erences, which we believe, would increase the degree of acceptance of the elders w.r.t.
the technological help - an important issue of the domain [10].

Recently, there have been many works addressing the problem of intention recogni-
tion as well as its applications in a variety of fields. As in Heinze’s doctoral thesis [11],
intention recognition is defined, in general terms, as the process of becoming aware
of the intention of another agent and, more technically, as the problem of inferring an
agent’s intention through its actions and their effects on the environment. According
to this definition, one approach to tackle intention recognition is by reducing it to plan
recognition, i.e. the problem of generating plans achieving the intentions and choosing
the ones that match the observed actions and their effects in the environment of the
intending agent. This has been the main stream so far [11,14].

One of the main issues of that approach is that of finding an initial set of possible
intentions (of the intending agent) that the plan generator is going to tackle, and which
must be imagined by the recognizing agent. Undoubtedly, this set should depend on
the situation at hand, since generating plans for all intentions one agent could have, for
whatever situation he might be in, is unrealistic if not impossible.

In this paper, we use an approach to solve this problem employing so-called
situation-sensitive Causal Bayes Networks (CBN) - That is, CBNs [18] that change
according to the situation under consideration, itself subject to ongoing change as
a result of actions. Therefore, in some given situation, a CBN can be configured
dynamically, to compute the likelihood of intentions and filter out the much less likely
intentions. The plan generator (or plan library) thus only needs, at the start, to deal
with the remaining more relevant because more probable or credible intentions, rather
than all conceivable intentions. One of the important advantages of our approach is
that, on the basis of the information provided by the CBN the recognizing agent can
see which intentions are more likely and worth addressing, so, in case of having to
make a quick decision, it can focus on the most relevant ones first. CBNs, in our
work, are represented in P-log [4,6,5], a declarative language that combines logical and
probabilistic reasoning, and uses Answer Set Programming (ASP) as its logical and
CBNs as its probabilistic foundations. Given a CBN, its situation-sensitive version is
constructed by attaching to it a logical component to dynamically compute situation
specific probabilistic information, which is forthwith inserted into the P-log program
representing that CBN. The computation is dynamic in the sense that there is a process
of inter-feedback between the logical component and the CBN, i.e. the result from the
updated CBN is also given back to the logical component, and that might give rise to
further updating, etc.

In addition, one more advantage of our approach, in comparison with those us-
ing solely BNs [12,13] is that these just use the available information for constructing
CBNs. For complicated tasks, e.g. in recognizing hidden intentions, not all information

is observable. The approach of combining with plan generation provides a way to guide
the recognition process: which actions (or their effects) should be checked whether they
were (hiddenly) executed by the intending agent. In practice, one can make use of any
plan generators or plan libraries available. For integration’s sake, we can use the ASP
based conditional planner called ASCP [16] from XSB Prolog using the XASP package
[7,24] for interfacing with Smodels [22] — an answer set solver — or, alternatively, rely
on plan libraries so obtained.

In the sequel we briefly describe the intention recognition and evolution prospection
systems, but not the planner. Then we show in detail how to combine them to provide
contextual help for elderly people, illustrating with an extended example.

2 Intention Recognition

2.1 Causal Bayes Networks

A Bayes Network (BN), recapitulated here for convenience in order to help see their
realization in P-log, is a pair consisting of a directed acyclic graph (dag) whose nodes
represent variables and missing edges encode conditional independencies between the
variables, and an associated probability distribution satisfying the assumption of con-
ditional independence (Causal Markov Assumption - CMA), saying that variables are
independent of their non-effects conditional on their direct causes [18].

If there is an edge from node A to another node B, A is called a parent of B, and B
is a child of A. The set of parent nodes of a node A is denoted by parents(A). Ancestor
nodes of A are parents of A or parents of some ancestor nodes of A. If A has no parents
(parents(A) = 0), it is called a top node. If A has no child, it is called a bottom node.
The nodes which are neither top nor bottom are said intermediate. If the value of a node
is observed, the node is said to be an evidence node. In a BN, associated with each
intermediate node of its dag is a specification of the distribution of its variable, say A,
conditioned on its parents in the graph, i.e. P(A|parents(A)) is specified. For a top
node, one without parents, the unconditional distribution of the variable is specified.
These distributions are called Conditional Probability Distribution (CPD) of the BN.

Suppose the nodes of the dag form a causally sufficient set [17], i.e. no common
causes of any two nodes are omitted, then implied by CMA [17], the joint distribution
of all node values of the set can be determined as the product of conditional probabilities
of the value of each node on its parents

N
P(X1,... Xn) = | [P(Xilparents(X;))

i=1

where V = {X;|1 < i < N} is the set of nodes of the dag.

Suppose there is a set of evidence nodes in the dag, say O = {Oq,...,0,,} C V.
We can determine the conditional probability of a variable X given the observed value
of evidence nodes by using the conditional probability formula

P(X,0) P(X,04,...,0,)

PXIO) = =56y = "Pioy, .om))

where the numerator and denominator are computed by summing the joint probabilities
over all absent variables with respect to V', as follows

P(X =2,0=0)= Z P(X =2,0=0,AV; = av)
aveASG(AVY)
PO=0)= > PO=o0AV;=aw)

av€EASG(AVa)

where o = {01, ..., 0 } With 01, ..., 0, being the observed values of Oy, ..., O, re-
spectively; ASG(V't) denotes the set of all assignments of vector Vt (with components
are variables in V'); AV;, AV, are vectors components of which are corresponding ab-
sent variables, i.e. variables in V'\ {O U {X}} and V' \ O, respectively.

In short, to define a BN specify the structure of the network, its Conditional Proba-
bility Distribution (CPD) and the prior probability distribution of the top nodes.

2.2 Intention recognition with Causal Bayesian Networks

The first phase of the intention recognition system is to find out how likely each possible
intention is, based on current observations such as observed actions of the intending
agent or the effects its actions (either actually observed, or missed direct observation)
have in the environment. It is carried out by using a CBN with nodes standing for binary
random variables that represent causes, intentions, actions and effects.

Intentions are represented by intermediate nodes whose ancestor nodes stand for
causes that give rise to intentions. Intuitively, we extend Heinze’s tri-level model [11]
with a so-called pre-intentional level that describes the causes of intentions, used to
estimate prior probabilities of the intentions. This additional level guarantees the causal
sufficiency condition of the set of nodes of the dag. However, if these prior probabilities
can be specified without considering the causes, intentions are represented by top nodes.
These reflect the problem context or the intending agent’s mental state.

Observed actions are represented as children of the intentions that causally affect
them. Observable effects are represented as bottom nodes. They can be children of
observed action nodes, of intention nodes, or of some unobserved actions that might
cause the observable effects that are added as children of the intention nodes.

The causal relations among nodes of the BNs (e.g. which causes give rise to an in-
tention, which intentions trigger an action, which actions have an effect), as well as their
CPD and the distribution of the top nodes, are specified by domain experts. However,
they might be learnt mechanically. By using formula 1 the conditional probabilities of
each intention on current observations can be determined, X being an intention and O
being the set of current observations.

Example 1 (Elder Care). An elder stays alone in his apartment. The intention recogni-
tion system observes that he is looking for something in the living room. In order to as-
sist him, the system needs to figure out what he intends to find. The possible things are:
something to read (book); something to drink (drink); the TV remote control (Rem);
and the light switch (Switch). The CBN representing this scenario is that of Figure 1.
Its CPD and the distribution of top nodes will be given directly in P-log code.

Fig. 1: Elder’s intentions CBN

2.3 P-log

The computation in CBNs is automated using P-log, a declarative language that com-
bines logical and probabilistic reasoning, and ASP as its logical and CBNs as its prob-
abilistic foundations. We recap it here for self-containment, to the extent we use it.

The original P-log [4,6] uses ASP as a tool for computing all stable models of the
logical part of P-log. Although ASP has been proved to be a useful paradigm for solv-
ing a variety of combinatorial problems, its non-relevance property [7] makes the P-log
system sometimes computationally redundant. Newer developments of P-log [5] use the
XASP package of XSB Prolog [24] for interfacing with Smodels [22] — an answer set
solver. The power of ASP allows the representation of both classical and default nega-
tion in P-log easily. Moreover, the new P-log uses XSB as the underlying processing
platform, allowing arbitrary Prolog code for recursive definitions. Consequently, it al-
lows more expressive queries not supported in the original version, such as meta queries
(probabilistic built-in predicates can be used as usual XSB predicates, thus allowing full
power of probabilistic reasoning in XSB) and queries in the form of any XSB predicate
expression [5]. Moreover, the tabling mechanism of XSB [23] significantly improves
the performance of the system.

In general, a P-log program II consists of the 5 components detailed below: a sorted
signature, declarations, a regular part, a set of random selection rules, a probabilistic
information part, and a set of observations and actions.

(i) Sorted signature and Declaration The sorted signature Y’ of I7 contains a set of
constant symbols and term-building function symbols, which are used to form terms
in the usual way. Additionally, the signature contains a collection of special reserved
function symbols called attributes. Attribute terms are expressions of the form a(?),
where a is an attribute and £ is a vector of terms of the sorts required by a. A literal is
an atomic statement, p, or its explicit negation, neg_p.

The declaration part of a P-log program can be defined as a collection of sorts and
sort declarations of attributes. A sort ¢ can be defined by listing all the elements ¢ =
{z1, ...,z }, specifying the range of values ¢ = {L..U} where L and U are the integer
lower bound and upper bound of the sort c. Attribute a with domain ¢; X ... X ¢, and
range cy is represented as follows:

a:c1 X ..Xe,——>

If attribute @ has no domain parameter, we simply write a : ¢g. The range of attribute a
is denoted by range(a).

(ii) Regular part This part of a P-log program consists of a collection of rules, facts,
and integrity constraints (IC) in the form of denials, formed using literals of 3/. An IC
is encoded as a rule with the false literal in the head.

(iii) Random Selection Rule This is a rule for attribute a having the form:
random(RandomName, a(t), DynamicRange) : - Body

This means that the attribute instance a(#) is random if the conditions in Body are sat-
isfied. The DynamicRange, not used in the particular examples in the sequel, allows
to restrict the default range for random attributes. The RandomName is a syntactic
mechanism used to link random attributes to the corresponding probabilities. If there
is no precondition, we simply put frue in the body. A constant full can be used in
DynamicRange to signal that the dynamic domain is equal to range(a).

(iv) Probabilistic Information Information about probabilities of random attribute in-
stances a(t) taking a particular value y is given by probability atoms (or simply pa-
atoms) which have the following form:

pa(RandomName, a(t,y),d-(A, B)):—- Body.

meaning that if the Body were true, and the value of a(t) were selected by a rule named
RandomN ame, then Body would cause a(t) = y with probability %.

(v) Observations and Actions These are, respectively, statements of the forms obs(l)
and do(l), where [is a literal. Observations are used to record the outcomes of ran-
dom events, i.e. of random attributes and attributes dependent on them. The statement
do(a(t,y)) indicates that a(t) = y is enforced true as the result of a deliberate action,
not an observation.

2.4 An example: recognizing elders’ intentions
To begin with, we need to declare two sorts:

bool = {t,f}.
elder_intentions = {book,drink, rem,switch}.

where the second one is the sort of possible intentions of the elder. There are five
top nodes, named thirsty(thsty), like_reading(lr), like_watching(lw), tv_on(tv),
light_on(light), belonging to the pre-intention level to describe the causes that might
give rise to the considered intentions. The values of last two nodes are observed
(evidence nodes). The corresponding random attributes are declared as

thsty:bool. lr:bool. lw:bool. tv:bool. light:bool.
random (rth, thsty, full). random(rlr,lr, full).
random (rlw, 1w, full) . random (rtv, tv, full) .
random(rl, light, full).

and their independent probability distributions are encoded with pa-rules as

pa(rth,thsty(t),d_(1,2)). p (
pa(rlw,lw(t),d_(7,10)). pa(rtv,tv(t),d_(
pa(rl,light(t),d_(1,2)).

The possible intentions reading is afforded by four nodes, representing the four possi-
ble intentions of the elder, as mentioned above. The corresponding random attributes
are coded specifying an attribute with domain elder_intentions and receives boolean
values

i:elder_intentions --> bool. random(ri, i(I), full).

The probability distribution of each intention node conditional on the causes are coded
in P-log below. Firstly, for i(book):

pa(ri (book), i (book,t),d_(0,1)):-1light (f).

pa(ri (book),i(book,t),d_(0,1)):=1light(t),tv(t)

pa (ri (book), i (book,t),d_ (6 10)) :=1light (t),tv(f),lr(t),1lw(t),thsty(t).
pa (ri (book),i(book,t),d_(65,100)):-1ight (t),tv(f),lr(t),lw(t),thsty(£f).
pa(ri (book),i(book,t),d_(7,10)):-1light(t),tv(f),lr(t),lw(f),thsty(t).
pa (ri (book), i(book,t),d _(8,10)):-1light(t),tv(f),lr(t),1lw(f),thsty(f).
pa(ri (book),i(book,t),d_(1,10)):-light(t),tv(f),lr(f),lw(t).

pa(ri (book),i(book,t),d_(4,10)) :-light(t),tv(f),lr(£f),lw(f).

For i(drink):

pa(ri(drink),i(drink,t),d_(0,1)) :— light(f).
pa(ri(drink),i(drink,t),d_(9,10)) :— light(t), thsty(t).
pa(ri(drink),i(drink,t),d_(1,10)) :— light(t), thsty(f).

For i(rem):
pa(ri(rem),i(rem,t),d_(0,1)):-1light (f).
pa(ri(rem),i(rem,t),d_(8,10)):-1light (t),tv(t).
pa(ri(rem),i(rem,t),d_(4,10)):-1light(t),tv(f),1lw(t),lr(t),thsty(t).
pa(ri(rem),i(rem,t),d_(5,10)):=1light(t),tv(f),lw(t),lr(t),thsty(f).
pa(ri(rem),i(rem,t),d_(6,10)):-1light(t),tv(f),1lw(t),lr(f),thsty(t).
pa(ri(rem),i(rem,t),d_(9,10)):-1light(t),tv(f),1lw(t),1lr(f),thsty(£f).
pa(ri(rem),i(rem,t),d_(1,10)):-1light(t),tv(f),1lw(f),lr(t),thsty(t).
pa(ri(rem),i(rem,t),d_(2,10)):-1light (t), tv(f) 1w (f),1lr(t),thsty(f).
pa(ri(rem),i(rem,t),d_(0,1)):-light(t),tv(f),1lw(f),lr(f),thsty(t).
pa(ri(rem),i(rem,t),d_(3,10)) :-1light(t),tv(f),lw(f),lr(f),thsty(f).
For i(switch):
pa(ri(switch),i(switch,t),d_(1,1)) :- light(f).

pa(ri(switch),i(switch,t),d_(1,100)) :— light(t).

There is only one observation, namely, that is the elder is looking for something (look).
The declaration of the corresponding random attribute and its probability distribution
conditional on the possible intentions are given as follows:

look : bool. random(rla, look, full).

pa(rla,look(t),d_(99,100)) :-1i(book,t),i(drink,t),i(rem,t).
pa(rla,look(t),d_(7,10)) :-1(book,t) '(drink,t),l(rem f).
pa(rla,look(t),d_(9,10)) :—-1i(book,t),i(drink,f),i(rem,t).
pa(rla,look(t),d_(6,10)) :—-1i(book,t),i(drink,f),i(rem, f).
pa(rla,look(t),d_(6,10)) :-1i(book,f),i(drink,t),i(rem,t).
pa(rla,look(t),d_(3,10)) :-1i(book,f),i(drink,t), i(rem,f).
pa(rla,look(t),d_(4,10)) :—-1i(book,f),i(drink,f),i(rem,t).
pa(rla,look(t),d_(1,10)):-1i(book,f),i(drink,f),i(rem,f),1i(switch,t).
pa(rla,look(t),d_(1,100)) :-1(book,f),i(drink,f),i(rem, f),i(switch,f).

Recall that the two nodes tv_on and light_on are observed. The probabilities that the
elder has the intention of looking for book, drink, remote control and light switch given
the observations that he is looking around and of the states of the light (on or off) and
TV (on or off) can be found in P-log with the following queries, respectively:

? — pr(i(book, t)’|" (obs(tv(S1)) & light(S2) & obs(look(t))), Vi).
? — pr(i(drink,t)’)" (obs(tv(S1)) & light(Sz) & o0bs(look(t))), Va).
?— pr(i(rem,t)’|" (obs(tv(S;)) & light(Ss2) & obs(look(t))), Vs).
? — pr(i(switch,t)'|" (obs(tv(Sy)) & light(Sz) & obs(look(t))), V).

where S7, Sy are boolean values (¢ or f) instantiated during execution, depending on
the states of the light and TV. Let us consider the possible cases

— If the light is off (So = f), then V73 = Vo, = V3 = 0, V; = 1.0, regardless of the
state of the TV.

— If the light is on and TV is off (S; =
0.5465, V3 = 0.5036, V; = 0.0101.

— If both light and TV are on (57 = t,5, = t), then V; = 0,V = 0.6263, V5 =
0.9279,V, = 0.0102.

t,Sy = f), then V; = 0.7521,V, =

Thus, if one observes that the light is off, definitely the elder is looking for the light
switch, given that he is looking around. Otherwise, if one observes the light is on, in
both cases where the TV is either on or off, the first three intentions book, drink, remote
control still need to be put under consideration in the next phase, generating possible
plans for each of them. The intention of looking for the light switch is very unlikely to
be the case comparing with other three, thus being ruled out. When there is light one
goes directly to the light switch if the intention is to turn it off, without having to look
for it.

2.4.1 Situation-sensitive CBNs Undoubtedly, CBNs should be situation-sensitive
since using a general CBN for all specific situations (instances) of a problem domain is
unrealistic and most likely imprecise. However, consulting the domain expert to man-
ually change the CBN w.r.t. each situation is also very costly. We here provide a way

to construct situation-sensitive CBNs, i.e. ones that change according to the given situ-
ation. It uses Logic Programming (LP) techniques to compute situation specific proba-
bilistic information which is then introduced into a CBN which is general for the prob-
lem domain.

The LP techniques can be deduction with top-down procedure (Prolog) (to deduce
situation-specific probabilistic information) or abduction (to abduce probabilistic infor-
mation needed to explain observations representing the given situation). However, we
do not exclude various other types of reasoning, e.g. including integrity constraint sat-
isfaction, contradiction removal, preferences, or inductive learning, whose results can
be compiled (in part) into an evolving CBN.

The general issue of how to update a CBN with new probabilistic information can
take advantage of the advances in LP semantics for evolving programs by means of rule
updates [19,20,21]. In this paper, however, we don’t need such general updates, and
make do with a simpler way, shown in the sequel.

Example 2 (Elder Care, cont’d). In this scenario, the CBN may vary depending on
some observed factors, for example, the time of day, the current temperature, etc. We
design a logical component for the CBN to deal with those factors:

pa_rule(pa(rlk,lr(t),d_(0,1)),[]):-time(T), T>0, T<5, !.
pa_rule(pa(rlk,lr(t),d_(1,10)),[]):-time(T), T>=5, T<8, !.
pa_rule (pa(rlw,lw(t),d_(9,10)),[]):-time(T), schedule (T, football),
pa_rule(pa(rlw,lw(t),d_(1,10)),[]) :-time(T), (T>23; T<5), !.
pa_rule(pa(rth,thsty(t),d_(7,10)),[]) :-temp(T), T>30, !.

pa_rule (pa(rlk,lr(t), _(1,10)),I[]):-temp(TM), TM >30, !.
pa_rule(pa(rlw, lw(t) _(3,10)),I[]):—-temp(TM), TM>30, !.

’

Given P-log probabilistic information by pa/3 rules, then the corresponding so-
called situation-sensitive pa_rule/2 predicate takes the head and body of some pa/3
rule as its first and second arguments, respectively, and includes conditions for its acti-
vation in its own body. Now, a situation is given by asserted facts representing it and,
in order to find the probabilistic information specific to the given situation, we simply
use the XSB Prolog built-in findall /3 predicate to find all true pa/3 literals expressed
by the pa_rule/2 rules with true bodies in the situation. For example, when the time
and temperature are defined (the assisting system should be aware of such information),
they are asserted using predicates time/1 and temp/1. Note that in this modelling, to
guarantee the consistency of the P-log program (there must not be two pa-rules for the
same attribute instance with non-exclusive bodies) we consider time with a higher pri-
ority than temperature, enacted by using XSB Prolog cut operator, as can be seen in the
rik and rlw cases.

2.5 Plan Generation

The second phase of the intention recognition system is to generate conceivable plans
that can achieve the most likely intentions surviving after the first phase. The plan gener-
ation phase can be carried out by ASCP — an ASP logic programming based conditional
planner [16], as in our work [1], which details the method and the language for express-
ing actions. For lack of space, we will simply assume here that the system has been

furnished a plan library that provides recipes for achieving the recognized intentions in
the situation. This alternative method has also been employed in several works of plan
recognition, e.g. [11,14].

3 Elder Assisting with Evolution Prospection

3.1 Preliminary

We next describe constructs of the evolution prospection system that are necessary for
representation of the example. A full presentation can be found in [2]. The separate
formalism for expressing actions can be found in [1] or [16].

3.1.1 Language Let £ be a first order language. A domain literal in £ is a domain
atom A or its default negation not A. The latter is used to express that the atom is false
by default (Closed World Assumption). A domain rule in £ is a rule of the form:

AHLl,..th (tZO)

where A is a domain atom and L, ..., L; are domain literals. An integrity constraint
in £ is a rule with an empty head. A (logic) program P over L is a set of domain rules
and integrity constraints, standing for all their ground instances.

3.1.2 Active Goals In each cycle of its evolution the agent has a set of active goals or
desires. We introduce the on_observe/1 predicate, which we consider as representing
active goals or desires that, once triggered by the observations figuring in its rule bodies,
cause the agent to attempt their satisfaction by launching all the queries standing for
them, or using preferences to select them. The rule for an active goal AG is of the form:

on_observe(AG) « Ly, ...,L; (t > 0)

where L,...,L; are domain literals. During evolution, an active goal may be triggered by
some events, previous commitments or some history-related information. When start-
ing a cycle, the agent collects its active goals by finding all the on_observe(AG) that
hold under the initial theory without performing any abduction, then finds abductive
solutions for their conjunction.

3.1.3 Preferring abducibles Every program P is associated with a set of abducibles
A C L. These, and their default negations, can be seen as hypotheses that provide hypo-
thetical solutions or possible explanations to given queries. Abducibles can figure only
in the body of program rules. An abducible A can be assumed only if it is a considered
one, i.e. if it is expected in the given situation, and, moreover, there is no expectation to
the contrary

consider(A) «— expect(A), not expect_not(A), A

The rules about expectations are domain-specific knowledge contained in the theory
of the program, and effectively constrain the hypotheses available in a situation. To

express preference criteria among abducibles, we envisage an extended language £*. A
preference atom in £* is of the form a < b, where a and b are abducibles. It means that
if b can be assumed (i.e. considered), then a <1 b forces a to be assumed too if it can. A
preference rule in £* is of the form:

aQbHLl,...,Lt (tEO)

where Ly, ..., L; are domain literals over £*. This preference rule can be coded as
follows:

expect_not(b) « Ly, ..., Ly, not expect_not(a), expect(a),not a

In fact, if b is considered, the consider—rule for abducible b requires expect_not(b) to be
false, i.e. every rule with the head expect_not(b) cannot have a true body. Thus, a < b,
that is if its body in the preference rule holds, and if a is expected, and not counter-
expected, then a must be abduced so that this particular rule for expect_not(b) also
fails, and the abduction of b may go through if all the other rules for expect_not(b) fail
as well.

A priori preferences are used to produce the most interesting or relevant conjectures
about possible future states. They are taken into account when generating possible sce-
narios (abductive solutions), which will subsequently be preferred amongst each other
a posteriori.

3.1.4 A posteriori Preferences Having computed possible scenarios, represented by
abductive solutions, more favorable scenarios can be preferred a posteriori. Typically,
a posteriori preferences are performed by evaluating consequences of abducibles in
abductive solutions. An a posteriori preference has the form:

A; < A;j — holds_given(L;, A;), holds_given(L;, A;)

where A;, A; are abductive solutions and L;, L; are domain literals. This means that
Aj; is preferred to A; a posteriori if L; and L; are true as the side-effects of abductive
solutions A; and Aj;, respectively, without any further abduction when testing for the
side-effects. Optionally, in the body of the preference rule there can be any Prolog pred-
icate used to quantitatively compare the consequences of the two abductive solutions.

3.1.5 Evolution result a posteriori preference While looking ahead a number of
steps into the future, the agent is confronted with the problem of having several different
possible courses of evolution. It needs to be able to prefer amongst them to determine
the best courses from its present state (and any state in general). The a posteriori pref-
erences are no longer appropriate, since they can be used to evaluate only one-step-far
consequences of a commitment. The agent should be able to also declaratively spec-
ify preference amongst evolutions through quantitatively or qualitatively evaluating the
consequences or side-effects of each evolution choice.

A posteriori preference is generalized to prefer between two evolutions. An evolu-
tion result a posteriori preference is performed by evaluating consequences of follow-
ing some evolutions. The agent must use the imagination (look-ahead capability) and

present knowledge to evaluate the consequences of evolving according to a particular
course of evolution. An evolution result a posteriori preference rule has the form:

E, < E; < holds_in_evol(L;, E;), holds_in_evol(L;, E;)

where E;, E; are possible evolutions and L;, L; are domain literals. This preference
implies that F; is preferred to E; if L; and L; are true as evolution history side-effects
when evolving according to E; or Ej, respectively, without making further abductions
when just checking for the side-effects. Optionally, in the body of the preference rule
there can be recourse to any Prolog predicate, used to quantitatively compare the con-
sequences of the two evolutions for decision making.

3.2 Evolution Prospection as An Intention Consumer

Having recognized the intention of another agent, EPA system can be used to provide
the best courses of evolution for that agent to achieve its own intention. These courses
of evolution might be provided to the other agent as suggestions.

In Elder Care domain, assisting systems should be able to provide contextually ap-
propriate suggestions for the elders based on their recognized intentions. The assisting
system is supposed to be better aware of the environment, the elders’ physical states,
mental states as well as their scheduled events, so that it can provide good and safe sug-
gestions, or simply warnings. We continue with the Elder Care example from a previous
section for illustration.

Example 3 (Elder Care, cont’d). Suppose in Example 1, the final confirmed intention
is that of looking for a drink. The possibilities are natural pure water, tea, coffee and
juice. EPA now is used to help the elder in choosing an appropriate one. The scenario
is coded with the program in Figure 2 below.

The elder’s physical states are employed in a priori preferences and expectation
rules to guarantee that only choices that are contextually safe for the elder are generated.
Only after that other aspects, for example the elder’s pleasure w.r.t. to each kind of drink,
are taken into account, in a posteriori preferences.

The information regarding the environment (current time, current temperature) and the
physical states of the elder is coded in the Prolog part of the program (lines 9-11). The
assisting system is supposed to be aware of this information in order to provide good
suggestions.

Line 1 is the declaration of program abducibles: water, coffee, tea, and juice. All of
them are always expected (line 2). Line 3 picks up a recognized intention verified by
the planner. The counter-expectation rules in line 4 state that coffee is not expected if
the elder has high blood pressure, experiences difficulty to sleep or it is late; and juice
is not expected if it is late. Note that the reserved predicate prolog/1 is used to allow
embedding prolog code in an EPA program. More details can be found in [2,3]. The
integrity constraints in line 5 say that is is not allowed to have at the same time the
following pairs of drink: tea and coffee, tea and juice, coffee and juice, and tea and
water. However, it is the case that the elder can have coffee or juice together with water
at the same time.

1. abds([water/0, coffee/0, tea/0, juice/0]).

2. expect (coffee). expect (tea). expect (water). expect (juice).

3. on_observe (drink) <- has_intention(elder,drink).
drink <- tea. drink <- coffee. drink <- water. drink <- juice.

4. expect_not (coffee) <- prolog(blood_high_pressure).
expect_not (coffee) <- prolog(sleep_difficulty).
expect_not (coffee) <- prolog(late).
expect_not (juice) <- prolog(late).

5. <- tea, coffee. <- coffee, juice.
<- tea, Jjuice. <- tea, water.

6. coffee '<|’ tea <- prolog(morning_ time).
coffee ’"<|’ water <- prolog(morning_time).
coffee '<|’ juice <- prolog(morning_time).

7. Jjuice ’<|’ coffee <- prolog(hot). juice ’'<|’ tea <- prolog(hot).
juice ’'<|’ water <- prolog(hot). water ’'<|’ coffee <- prolog(hot).
water '<|’ tea <- prolog(hot).

8. tea '<|’ coffee <- prolog(cold). tea ’'<|’ Jjuice <- prolog(cold).
tea '<|’ water <- prolog(cold).

9. pleasure_level (3) <- coffee. pleasure_level (2) <- tea.
pleasure_level (1) <- Jjuice. pleasure_level (0) <- water.

10.sugar_level (1) <- coffee. sugar_level(l) <- tea.
sugar_level (5) <- juice. sugar_level (0) <- water.

ll.caffein_level (5) <- coffee. caffein_level (0) <- tea.
caffein_level (0) <- juice. caffein_level(0) <- water.

12.A1 << Aj <- holds_given (pleasure_level (V1), Ai),

holds_given (pleasure_level (V2), Aj), V1 > V2.
13.0on_observe (health_check) <- time_for_health_ check.
health_check <- precise_result.
health_check <- imprecise_result.

14 .expect (precise_result) <- no_hight_sugar, no_high_caffein.
expect (imprecise_result) .
no_high_sugar <- sugar_level (L), prolog(L < 2).
no_high_caffein <- caffein_level (L), prolog(L < 2).

15.E1 <<< Ej <- holds_in_evol (precise_result, Ei),

holds_in_evol (imprecise_result, Ej).

beginProlog.

:— assert (scheduled_events (1, [has_intention(elder,drink)])),

assert (scheduled_events (2, [time_for_health_check])).

late :— time(T), (T > 23; T < 5).

morning_time :- time(T), T > 7, T < 10.

hot :- temperature(TM), TM > 32.

cold :- temperature(TM), TM < 10.

blood_high_pressure :- physical_state(blood_high_pressure).

sleep_difficulty :- physical_state(sleep_difficulty).
endProlog.

Fig. 2: Elder Care: Suggestion for a Drink

The a priori preferences in line 6 say in the morning coffee is preferred to tea,
water and juice. And if it is hot, juice is preferred to all other kinds of drink and water
is preferred to tea and coffee (line 7). In addition, the a priori preferences in line 8 state
if the weather is cold, tea is the most favorable, i.e. preferred to all other kinds of drink.

Now let us look at the suggestions provided by the Elder Care assisting system
modelled by this EPA program, considering some cases:

1. time(24) (late); temperature(16) (not hot, not cold); no high blood pressure; no
sleep difficulty: there are two a priori abductive solutions: [tea], [water]. Final
solutions: [tea] (since it has greater level of pleasure than water, which is ruled out
by the a posteriori preference in line 12).

2. time(8) (morning time); temperature(16) (not hot, not cold); no high blood pres-
sure; no sleep difficulty: there are two abductive solutions: [coffee], [coffee, water].
Final: [coffee], [coffee, water].

3. time(18) (not late, not morning time); temperature(16) (not cold, not hot); no high
blood pressure; no sleep difficulty: there are six abductive solutions: [coffee], [cof-
fee,water], [juice], [juice,water], [tea], and [water]. Final: [coffee], [coffee,water].

4. time(18) (not late, not morning time); temperature(16) (not cold, not hot); high
blood pressure; no sleep difficulty: there are four abductive solutions: [juice],
[juice,water], [tea], and [water]. Final: [tea].

5. time(18) (not late, not morning time); temperature(16) (not cold, not hot); no
high blood pressure; sleep difficulty: there are four abductive solutions: [juice],
[juice,water], [tea], and [water]. Final: [tea].

6. time(18) (not late, not morning time); temperature(8) (cold); no high blood pres-
sure; no sleep difficulty: there is only one abductive solution: [tea].

7. time(18) (not late, not morning time); temperature(35) (hot); no high blood pres-
sure; no sleep difficulty: there are two abductive solutions: [juice], [juice,water].
Final: [juice], [juice,water].

If the evolution result a posteriori preference in line 15 is taken into account and the
elder is scheduled to go to the hospital for health check in the second day: the first
and the second cases do not change. In the third case: the suggestions are [tea] and
[water] since the ones that have coffee or juice would cause high caffein and sugar
levels, respectively, which can make the checking result (health) imprecise (lines 13-
15). Similarly for other cases ...

Note future events can be asserted as Prolog code using the reserved predicate
schedule_events/2. For more details of its use see [2,3].

As one can gather, the suggestions provided by this assisting system are quite con-
textually appropriate. We might elaborate current factors (time, temperature, physical
states) and even consider more factors to provide more appropriate suggestions if the
situation gets more complicated.

4 Conclusions and Future Work

We have shown a coherent LP-based system for assisting elderly people based on an
intention recognizer and Evolution Prospection system. The recognizer is to figure out

intentions of the elders based on their observed actions or the effects their actions have
in the environment, via a combination of situation-sensitive Causal Bayes Nets and a
planner. The implemented Evolution Prospection system, being aware of the external
environment, elders’ preferences and their note future events, is then employed to pro-
vide contextually appropriate suggestions that achieve the recognized intention. The
system built-in expectation rules and a priori preferences take into account the phys-
ical state (health reports) information of the elder to guarantee that only contextually
safe healthy choices are generated; then, information such as the elder’s pleasure, inter-
ests, scheduled events, etc. are taken into account by a posteriori and evolution result a
posteriori preferences.

We believe to have shown the usefulness and advantage of our approach of combin-
ing several needed features to tackle the application domain, by virtue of an integrated
logic programming approach.

One future direction is to implement meta-explanation about evolution prospection.
It would be quite useful in the considered setting, as the elder care assisting system
should be able to explain to elders the whys and wherefores of suggestions made.

Moreover, it should be able to produce the abductive solutions found for possible
evolutions, keeping them labeled by the preferences used (in a partial order) instead of
exhibiting only the most favorable ones. This would allow for final preference change
on the part of the elder.

References

1. L. M. Pereira, H. T. Anh. Intention Recognition via Causal Bayes Networks plus Plan Gen-
eration, Procs. 14th Portuguese Conf. on Al (EPIA’09), Springer LNAI, October 2009 (to
appear).

2. L. M. Pereira, H. T. Anh. Evolution Prospection, in: K. Nakamatsu (ed.), Procs. Intl. Sympo-
sium on Intelligent Decision Technologies (KES-IDT’09), pages 51-63, Springer Studies in
Computational Intelligence 199, 2009.

3. L. M. Pereira, H. T. Anh. Evolution Prospection in Decision Making. Intl. Journal of Intelli-
gent Decision Technologies, IOS Press (to appear in 2009).

4. C. Baral, M. Gelfond, and N. Rushton. Probabilistic reasoning with answer sets. In Procs.
Logic Programming and Nonmonotonic Reasoning (LPNMR 7), pages 21-33, Springer LNAI
2923, 2004.

5. H.T. Anh, C. K. Ramli, C. V. Damadsio. An implementation of extended P-log using XASP. In
Procs. Intl. Conf. Logic Programming, Springer LNCS 5366, 2008.

6. C.Baral, M. Gelfond, N. Rushton. Probabilistic reasoning with answer sets. Theory and Prac-
tice of Logic Programming, 9(1): 57-144, January 20009.

7. L. Castro, T. Swift, and D. S. Warren. XASP: Answer set programming with xsb and smodels.
Accessed at http://xsb.sourceforge.net/packages/xasp.pdf

8. A. Cesta, F. Pecora. The Robocare Project: Intelligent Systems for Elder Care. AAAI Fall
Symposium on Caring Machines: Al in Elder Care, USA 2005.

9. A. Mileo, D. Merico, R. Bisiani. A Logic Programming Approach to Home Monitoring for
Risk Prevention in Assisted Living . In Procs. Intl. Conf. Logic Programming, Springer LNCS
5366, 2008.

10. M. V. Giuliani, M. Scopelliti, F. Fornara. Elderly people at home: technological help in
everyday activities. IEEE International Workshop on In Robot and Human Interactive Com-
munication, pp. 365-370, 2005.

11. C. Heinze. Modeling Intention Recognition for Intelligent Agent Systems, Doctoral
Thesis, the University of Melbourne, Australia, 2003. Online available: http
//www.dsto.de fence.gov.au/publications/scienti fic_record.php?record = 3367

12. K. A. Tahboub. Intelligent Human-Machine Interaction Based on Dynamic Bayesian Net-
works Probabilistic Intention Recognition. J. Intelligent Robotics Systems, vol. 45, no. 1,
pages 31-52, 2006.

13. O. C. Schrempf, D. Albrecht, U. D. Hanebeck. Tractable Probabilistic Models for Intention
Recognition Based on Expert Knowledge, In Procs. 2007 IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems (IROS 2007), pages 1429-1434, 2007.

14. H. A. Kautz and J. F. Allen. Generalized plan recognition. In Procs. 1986 Conf. of the Amer-
ican Association for Artificial Intelligence, AAAI 1986: 32-37, 1986.

15. T. Eiter, W. Faber, N. Leone, G. Pfeifer, A. Polleres. A Logic Programming Approach to
Knowledge State Planning, II: The DLV System. Artificial Intelligence 144(1-2): 157-211,
2003.

16. P. H. Tu, T. C. Son, C. Baral. Reasoning and Planning with Sensing Actions, Incomplete
Information, and Static Causal Laws using Answer Set Programming. Theory and Practice of
Logic Programming, 7(4): 377-450, July 2007.

17. C. Glymour. The Mind’s Arrows: Bayes Nets and Graphical Causal Models in Psychology.
MIT Press, 2001.

18. J. Pearl. Causality: Models, Reasoning, and Inference. Cambridge U.P., 2000.

19. J. J. Alferes, A. Brogi, J. A. Leite, L.M. Pereira. Evolving logic programs. Procs. 8th Euro-
pean Conf. on Logics in Al (JELIA’02), pages 50—61, Springer LNAI 2424, 2002.

20. J. J. Alferes, F. Banti, A. Brogi, J. A. Leite. The Refined Extension Principle for Semantics
of Dynamic Logic Programming , Studia Logica 79(1): 7-32, 2005.

21. J. J. Alferes, J. A. Leite, L. M. Pereira, H. Przymusinska, T. C. Przymusinski. Dynamic
updates of non-monotonic knowledge bases. J. Logic Programming, 45(1-3):4370, 2000.

22. 1. Niemeld, P. Simons. Smodels: An implementation of the stable model and well-founded se-
mantics for normal logic programs. 4th Intl. Conf. on Logic Programming and Nonmonotonic
Reasoning, Springer LNAI 1265, pages 420-429, 1997.

23. T. Swift. Tabling for non-monotonic programming. Annals of Mathematics and Artificial
Intelligence, 25(3—4):201-240, 1999.

24. The XSB System Version 3.0 Vol. 2: Libraries, Interfaces and Packages. July 2006.

