
Intention-based Decision Making with Evolution
Prospection

Han The Anh and Lúıs Moniz Pereira

Centro de Inteligência Artificial (CENTRIA)
Departamento de Informtica, Faculdade de Cincias e Tecnologia

Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
h.anh@fct.unl.pt, lmp@di.fct.unl.pt

Abstract. We explore a coherent combination, for decision making, of
two Logic Programming based implemented systems, Evolution Prospec-
tion and Intention Recognition. The Evolution Prospection system has
proven to be a powerful system for decision making, designing and imple-
menting several kinds of preferences and useful environment-triggering
constructs. It is here enhanced with an ability to recognize intentions of
other agents—an important aspect not explored so far. The usage and
usefulness of the combined system is illustrated with several extended
examples.

Keywords. Decision Making, Evolution Prospection, Preferences, In-
tention Recognition, Logic Programming.

1 Introduction

Given the important role that intentions play in the way we make decisions
[10,24], one would expect intentions to occupy a substantial place in any theory
of action. Surprisingly enough, in what is perhaps the most influential theory of
action—rational choice theory—which includes the theory of decision making—
explicit reference is made to actions, strategies, information, outcomes and pref-
erences but not to intentions.

This is not to say that no attention has been paid to the relationship between
rational choice and intentions. Quite the contrary, a rich philosophical literature
has developed on the relation between rationality and intentions (see for example
[29]). However, to our knowledge, there has been no real attempt to model and
implement the role of intentions in decision making, within a rational choice
framework.

In this paper, we set forth a coherent Logic Programming (LP) based system
for decision making—which extends the existing work on Evolution Prospection
(EP) for decision making [17,18]—but taking into consideration now the inten-
tions of other agents. Obviously, when being immersed in a multi-agent system,
knowing the intentions of other agents can benefit the agent in a number of
ways. It enable the recognizing agents to predict what other agents will do next
or might have done before—thereby, being able to plan in advance and taking

the best advantage from the prediction, or acting to take remedial action. In
addition, an important role of recognizing intentions is to enable coordination
of your own actions and in collaborating with others [11,10]. We have recently
studied the role of intention recognition in the evolution of cooperative behavior
[14,27], showing that intention recognition strongly promotes the emergence of
cooperation in populations of self-regarding individuals [5,4].

The Evolution Prospection system is an implemented LP-based system for
decision making [18,22] (described in Section 2). An EP agent can prospectively
look ahead a number of steps into the future to choose the best course of evolution
that satisfies a goal. This is achieved by designing and implementing several
kinds of prior and post preferences and several useful environment-triggering
constructs for decision making.

In order to take into account the intentions of other agents in decision making
processes, we integrate into EP a previously and separately implemented, but
also LP-based, intention recognition system [19,22]. Intention recognition can be
defined as the process of inferring the intention or goal of one other agent (called
“individual intention recognition”) or a group of other agents (called “collective
intention recognition”) through their observable actions or their actions’ observ-
able effects [13,26,1,28]. The intention recognition system performs via Causal
Bayesian Networks [15] and plan generation techniques. We will briefly recall
the system in Section 3.

2 Evolution Prospection

2.1 Preliminary

The implemented EP system has been proven to be useful for decision making
[18]. It has been applied for providing appropriate suggestions for elderly people
in Ambient Intelligence domain [2,1]. The advance and easiness of expressing
preferences in EP [21,18] enable to closely take into account elders’ preferences.
The EP system is implemented on top of XSB Prolog [31]. We next describe the
constructs of EP, to the extent we use them here. A full account can be found
in [18].

Language Let L be a first order language. A domain literal in L is a domain
atom A or its default negation not A. The latter is used to express that the atom
is false by default (Closed World Assumption). A domain rule in L is a rule of
the form:

A← L1, . . . , Lt (t ≥ 0)

where A is a domain atom and L1, . . . , Lt are domain literals. An integrity
constraint in L is a rule with an empty head. A (logic) program P over L is
a set of domain rules and integrity constraints, standing for all their ground
instances.

In this paper, we consider solely Normal Logic Programs (NLPs), those
whose heads of rules are positive literals, i.e. positive atoms, or empty. We focus

furthermore on abductive logic programs, i.e. NLPs allowing for abducibles –
user-specified positive literals without rules, whose truth-value is not fixed. Ab-
ducibles instances or their default negations may appear in bodies of rules, like
any other literal. They stand for hypotheses, each of which may independently
be assumed true, in positive literal or default negation form, as the case may be,
in order to produce an abductive solution to a query.

Definition 1 (Abductive Solution). An abductive solution is a consistent
collection of abducible instances or their negations that, when replaced by true
everywhere in P , affords a model of P that satisfies the query true and the ICs
– a so-called abductive model, for the specific semantics being used on P .

Active Goals In each cycle of its evolution the agent has a set of active goals
or desires. We introduce the on observe/1 predicate, which we consider as rep-
resenting active goals or desires that, once triggered by the observations figuring
in its rule bodies, cause the agent to attempt their satisfaction by launching all
the queries standing for them, or using preferences to select them. The rule for
an active goal AG is of the form:

on observe(AG)← L1, ..., Lt (t ≥ 0)

where L1,...,Lt are domain literals. During evolution, an active goal may be
triggered by some events, previous commitments or some history-related infor-
mation. When starting a cycle, the agent collects its active goals by finding all
the on observe(AG) that hold under the initial theory without performing any
abduction, then finds abductive solutions for their conjunction.

Preferring Abducibles An abducible A can be assumed only if it is a consid-
ered one, i.e. if it is expected in the given situation, and, moreover, there is no
expectation to the contrary

consider(A)← expect(A), not expect not(A), A

The rules about expectations are domain-specific knowledge contained in the
theory of the program, and effectively constrain the hypotheses available in a
situation. To express preference criteria among abducibles, we envisage an ex-
tended language L?. A preference atom in L? is of the form a / b, where a and
b are abducibles. It means that if b can be assumed (i.e. considered), then a / b
forces a to be assumed too if it can. A preference rule in L? is of the form:

a / b← L1, ..., Lt (t ≥ 0)

where L1, ..., Lt are domain literals over L?.
A priori preferences are used to produce the most interesting or relevant con-

jectures about possible future states. They are taken into account when generat-
ing possible scenarios (abductive solutions), which will subsequently be preferred
amongst each other a posteriori.

A Posteriori Preferences Having computed possible scenarios, represented
by abductive solutions, more favorable scenarios can be preferred a posteriori.
Typically, a posteriori preferences are performed by evaluating consequences of
abducibles in abductive solutions. An a posteriori preference has the form:

Ai � Aj ← holds given(Li, Ai), holds given(Lj , Aj)

where Ai, Aj are abductive solutions and Li, Lj are domain literals. This means
that Ai is preferred to Aj a posteriori if Li and Lj are true as the side-effects of
abductive solutions Ai and Aj , respectively, without any further abduction when
testing for the side-effects. Optionally, in the body of the preference rule there
can be any Prolog predicate used to quantitatively compare the consequences of
the two abductive solutions.

Evolution Result A Posteriori Preference While looking ahead a num-
ber of steps into the future, the agent is confronted with the problem of hav-
ing several different possible courses of evolution. It needs to be able to prefer
amongst them to determine the best courses from its present state (and any
state in general). The a posteriori preferences are no longer appropriate, since
they can be used to evaluate only one-step-far consequences of a commitment.
The agent should be able to also declaratively specify preference amongst evo-
lutions through quantitatively or qualitatively evaluating the consequences or
side-effects of each evolution choice.

A posteriori preference is generalized to prefer between two evolutions. An
evolution result a posteriori preference is performed by evaluating consequences
of following some evolutions. The agent must use the imagination (look-ahead
capability) and present knowledge to evaluate the consequences of evolving ac-
cording to a particular course of evolution. An evolution result a posteriori pref-
erence rule has the form:

Ei ≪ Ej ← holds in evol(Li, Ei), holds in evol(Lj , Ej)

where Ei, Ej are possible evolutions and Li, Lj are domain literals. This prefer-
ence implies that Ei is preferred to Ej if Li and Lj are true as evolution history
side-effects when evolving according to Ei or Ej , respectively, without making
further abductions when just checking for the side-effects. Optionally, in the
body of the preference rule there can be recourse to any Prolog predicate, used
to quantitatively compare the consequences of the two evolutions for decision
making.

3 Intention Recognition

In [19], a method for individual intention recognition via Causal Bayesian Nets
(CBN) and plan generation techniques was presented. The CBN is used to gen-
erate conceivable intentions of the intending agent and compute their likelihood
conditional on the initially available observations, and so allow to filter out the

much less likely ones. The plan generator thus only needs to deal with the re-
maining more relevant intentions, because they are more probable or credible,
rather than all conceivable intentions. In this work we do not need the net-
work causal property; hence, only background of the naive Bayesian Networks is
recalled. Note that the first component of the intention recognition system is im-
plemented based on P-log [6,7]—a probabilistic logic framework—implemented
on top of XSB Prolog [31]. The second component is also implemented on top of
XSB Prolog. This allows us an appropriate and coherent integration of EP and
the intention recognition system.

Definition 2. A Bayes Network is a pair consisting of a directed acyclic graph
(DAG) whose nodes represent variables and missing edges encode conditional
independencies between the variables, and an associated probability distribution
satisfying the Markov assumption of conditional independence, saying that vari-
ables are independent of non-descendants given their parents in the graph [16,15].

Definition 3. Let G be a DAG that represents causal relations between its
nodes. For two nodes A and B of G, if there is an edge from A to B (i.e. A
is a direct cause of B), A is called a parent of B, and B is a child of A. The set
of parent nodes of a node A is denoted by parents(A). Ancestor nodes of A are
parents of A or parents of some ancestor nodes of A. If node A has no parents
(parents(A) = ∅), it is called a top node. If A has no child, it is called a bottom
node. The nodes which are neither top nor bottom are said intermediate. If the
value of a node is observed, the node is said to be an evidence node.

In a BN, associated with each intermediate node of its DAG is a specification
of the distribution of its variable, say A, conditioned on its parents in the graph,
i.e. P (A|parents(A)) is specified. For a top node, the unconditional distribution
of the variable is specified. These distributions are called Conditional Probability
Distribution (CPD) of the BN.

Suppose nodes of the DAG form a causally sufficient set, i.e. no com-
mon causes of any two nodes are omitted, the joint distribution of all node
values of a causally sufficient can be determined as the product of condi-
tional probabilities of the value of each node on its parents P (X1, ..., XN) =∏N

i=1 P (Xi|parents(Xi)), where V = {Xi|1 ≤ i ≤ N} is the set of nodes of the
DAG.

Suppose there is a set of evidence nodes in the DAG, say O = {O1, ..., Om} ⊂
V . We can determine the conditional probability of a variable X given the ob-
served value of evidence nodes by using the conditional probability formula

P (X|O) =
P (X, O)
P (O)

=
P (X, O1, ..., Om)
P (O1, ..., Om)

(1)

where the numerator and denominator are computed by summing up the joint
probabilities over all absent variables with respect to V (see [19] for details).

In short, to define a BN, one needs to specify the structure of the network,
its CPD and the prior probability distribution of the top nodes.

Network Structure for Intention Recognition The first phase of the in-
tention recognition system is to find out how likely each conceivable intention
is, based on current observations such as observed actions of the intending agent
or the effects of its actions had in the environment. A conceivable intention is
the one having causal relations to all current observations. It is brought out by
using a CBN with nodes standing for binary random variables that represent
causes, intentions, actions and effects.

Intentions are represented by those nodes whose ancestor nodes stand for
causes that give rise to intentions. Intuitively, we extend Heinze’s tri-level model
[13,22] with a so-called pre-intentional level that describes the causes of inten-
tions, used to estimate prior probabilities of the intentions. However, if these
prior probabilities can be specified without considering the causes, intentions
are represented by top nodes (i.e. nodes that have no parents). These reflect the
problem context or the intending agent’s mental state.

Observed actions are represented as children of the intentions that causally
affect them. Observable effects are represented as bottom nodes (having no chil-
dren). They can be children of observed action nodes, of intention nodes, or of
some unobserved actions that might cause the observable effects that are added
as children of the intention nodes.

The causal relations among nodes of the CBNs (e.g. which causes give rise to
an intention, which intentions trigger an action, which actions have an effect),
as well as their Conditional Probability Distribution tables and the distribu-
tion of the top nodes, are specified by domain experts. However, they might be
learnt mechanically from plan corpora [8,3]. In addition, as it is usually not easy
to create the whole BN, we have recently provided a method to incrementally
construct it from simple, easily maintained, small fragments of Bayesian Net-
works [3]. It would enable an easy deployment of the method for real application
domains.

Example 1 (Fox-Crow). Consider Fox-Crow story, adapted from Aesop’s fable.
There is a crow, holding a cheese. A fox, being hungry, approaches the crow and
praises her, hoping that the crow will sing and the cheese will fall down near
him. Unfortunately for the fox, the crow is very intelligent, having the ability of
intention recognition.

The Fox’s intentions CBN is depicted in the Figure 1. The initial possi-
ble intentions of Fox that Crow comes up with are: Food - i(F), Please - i(P)
and Territory - i(T). The facts that might give rise to those intentions are how
friendly the Fox is (Friendly fox) and how hungry he is (Hungry fox). Currently,
there is only one observation which is: Fox praised Crow (Praised). Using for-
mula (1) we can compute the probability of each intention conditional on this
observation. More details and examples can be found in [22].

4 Evolution Prospection with Intention Recognition

There are several ways an EP agent can benefit from the ability to recognize
intentions of other agents, both in friendly and hostile settings. Knowing the in-

Fig. 1: Fox’s Intentions CBN

tention of an agent is a means to predict what he will do next or might have done
before. The recognizing agent can then plan in advance to take the best advan-
tage of the prediction, or act to take remedial action. Technically, in EP system,
this new kind of knowledge may impinge on the body of several EP constructs,
such as active goals, expectation and counter-expectation rules, preference rules,
context-sensitive integrity constraints, etc., providing a new kind of trigger. In
the sequel we draw closer attention to some of those constructs.

4.1 Intention Triggering Active Goals

Recall that an active goal has the form

on observe(AG)← L1, ..., Lt (t ≥ 0)

where L1,...,Lt are domain literals. At the beginning of each cycle of evolution,
those literals are checked with respect to the current evolving knowledge base
and trigger the active goal if they all hold. Now, for intention triggering active
goals, the domain literals in the body can be some predicate, either directly or
indirectly, affected by intentions of other agents.

It is easily seen that intention triggering active goals are ubiquitous. New
goals often appear when we recognize some intentions in others. In a friendly

setting, we might want to help others achieve their intention, which is generally
represented as follows

on_observe(help_achieve_goal(G)) <-
friend(P), has_intention(P,G).

while in a hostile setting, we probably want to prevent the opponents to achieve
their goal

on_observe(prevent_achieve_goal(G)) <-
opponent(P), has_intention(P,G).

or, perhaps we simply want to plan in advance to take advantage of the hypo-
thetical future obtained when the intending agent employs the plan that achieves
his intention

on_observe(take_advantage(F)) <- agent(P),
has_intention(P,G), future(employ(G),F).

Note that the reserved Prolog predicate has intention(P,G) holds if person
P has an intention or goal G—which is validated by the presented intention
recognition system (Section 3). Once a predicate has intention(P,G) is called,
the (integrated) system triggers its intention recognition component to evaluate
if G is the most likely intention of the observed agent (i.e., P). One can also
extend to consider N -best intention approach, i.e., assess whether the intention
of the agent is amongst the most N likely intentions (see, e.g., our recent work
in [3]). Sometimes one needs to be more cautious about the intention of others.
Furthermore, it has been shown that by increasing N , the recognition accuracy
in significantly improved [9,3]. In general, any intention recognition method can
be considered, but to facilitate the integration, LP-based intention recognition
method as we adopt here, is most favorable.

Let us look a little closer at each setting, providing some ideas how they can
be enacted. When helping someone to achieve an intention, what we need to do
is to help him/her with executing a plan achieving that intention successfully,
i.e., all the actions involved in that plan can be executed. In contrast, in order to
prevent an intention from being achieved, we need to guarantee that all possible
plans achieving the intention cannot be executed successfully. For that, at least
one action in each plan must be prevented, if the plan is conformant, i.e., a
sequence of actions; in case of a conditional plan (see for example [19]), each
branch is considered as a conformant plan and must be prevented.

4.2 Intention Triggering Preferences

Having recognized an intention of another agent, the recognizing agent may ei-
ther favor or disfavor an abducible (a priori preferences), an abductive solution
(a posteriori preferences) or an evolution (evolution result a posteriori prefer-
ences) with respect to another, respectively, depending on the setting they are
in. If they are in a friendly setting, the one which provides more support to

achieve the intention is more favored; in contrast, in a hostile setting, the one
providing more support is disfavored. The recognizing agent may also favor the
one which takes better advantage of the recognized intention.

To illustrate the usage of intention triggering a priori preferences, in the
sequel we revise the Tea-Coffee example (see [18]).

Example 2 (Tea-Coffee with Intention Recognition). Being thirsty, I consider
making tea or coffee. I realize that my roommate, John, also wants to have
a drink. To be friendly, I want to take into account his intention when making
my choice. This scenario is represented with the following EP program.

1. abds([coffee/0, tea/0]).

2. expect(coffee). expect(tea).

3. on_observed(drink) <- thirsty.

drink <- tea. drink <- coffee.

4. expect_not(coffee) <- blood_high_pressure.

5. coffee <| tea <- has_intention(john,coffee).

tea <| coffee <- has_intention(john,tea).

Fig. 2: Tea-Coffee Considering Intentions

There are two abducibles, coffee and tea, declared in line 1. Both abducibles are
expected (line 2). The only active goal is to drink, which is triggered when being
thirsty (line 3). The rule in line 4 states that coffee is not expected if the blood
pressure is high.

In line 5, the first preference says that tea is preferable, a priori, to coffee if
John intends to drink tea; and vice versa, if John intends to drink coffee, coffee is
preferable. The recognition of what John intends is done by the intention recog-
nition system described above (Section 3)—which is triggered when a reserved
predicate has intention/2 is called.

Next, to illustrate other kind of preferences, consider the following revised
extended version of the saving city example, presented in [18].

Example 3 (Saving cities by means of intention recognition). During war time,
agent David, a general, needs to decide to save a city from his enemy’s attack
or leave it to keep the military resource, which might be important for some
future purpose. David has recognized that a third party is intending to make an
attack to the enemy on the next day. David will have a good chance to defeat
the enemy if he has enough military resource to coordinate with the third party.
The described scenario is coded with the program in Figure 3.

In the first cycle of evolution, there are two abducibles, save and leave, declared
in line 1, to solve the active goal choose—which is triggered when being attacked
(line 3). Similar to the original version in [18], in the case of being a bad general
who just sees the situation at hand, David would choose to save the city since

1. abds([save/0, leave/0]).

2. expect(save). expect(leave).

3. on_observe(choose) <- be_attacked.

choose <- save. choose <- leave.

4. save_men(5000) <- save. save_men(0) <- leave.

lose_resource <- save. save_resource <- leave.

5. Ai << Aj <- holds_given(save_men(Ni), Ai),

holds_given(save_men(Nj), Aj), Ni > Nj.

6. on_observe(decide) <- decide_strategy.

decide <- stay_still.

decide <- counter_attack.

7. good_opportunity <- has_intention(third_party,attack).

expect(counter_attack) <- good_opportunity, save_resource.

expect(stay_still).

8. pr(win,0.9) <- counter_attack.

pr(win,0.01) <- stay_still.

9. Ei <<< Ej <- holds_in_evol(pr(win,Pi), Ei),

holds_in_evol(pr(win,Pj), Ej), Pi > Pj.

Fig. 3: Saving or Leaving

it would save more people (5000 vs. 0, line 4), i.e. the a posteriori preference in
line 5 is taken into account immediately, to rule out the case of leaving the city
since it would save less people. Then, next day, he would not be able to attack
since the military resource is not saved (line 7), and that leads to the outcome
with very small probability of winning the whole war (line 8).

But, fortunately, being able to look ahead plus to do intention recognition,
David can see that on the next day, if he has enough military resources, he
has a good opportunity to make a counter-attack on his enemy (line 7), by
coordinating with a third party who exhibits the intention to attack the enemy
on that day as well; and a successful counter-attack would lead to a very much
higher probability of winning the conflict as a whole (line 8). The evolution
result a posteriori preference is employed in line 9 to prefer the evolution with
higher probability of winning the whole conflict.

In this example we can see, in line 7, how a detected intention of another
agent can be used to enhance the decision making process. It is achieved by
providing an (indirect) trigger for an abducible expectation which affects the
evolution result a posteriori preference in line 9.

4.3 Hostile setting

In this hostile setting, having confirmed the intention, and the plans achieving
that intention being followed by the intending agent, the recognizing agent must
act to prevent those plans from happening, i.e., prevent at least one action of

each plan to be successfully executed; and in case of impossibility to do so, act
to reduce as much as possible the losses.

Example 4 (Fox-Crow, cont’d). Suppose in Example 1, the final confirmed Fox’s
intention is that of getting food (to see how it is actually recognized look at ref.
[19]). Having recognized Fox’s intention, what should Crow do to prevent Fox
from achieving it? The following EP program helps Crow with that.

1. abds([decline/0, sing/0, hide/2, eat/2, has_food/0, find_new_food/0]).

2. expect(decline). expect(sing). expect(hide(_,_)). expect(eat(_,_)).

3. on_observe(not_losing_cheese) <- has_intention(fox, food).

not_losing_cheese <- decline.

not_losing_cheese <- hide(crow,cheese), sing.

not_losing_cheese <- eat(crow,cheese), sing.

4. expect_not(eat(A,cheese)) <- animal(A), full(A).

animal(crow).

5. <- decline, sing. <- hide(crow,cheese), eat(crow,cheese).

6. eat(crow,cheese) <| hide(crow,cheese).

7. no_pleasure <- decline. has_pleasure <- sing.

8. Ai << Aj <- holds_given(has_pleasure,Ai), holds_given(no_pleasure,Aj).

9. on_observe(feed_children) <- hungry(children).

feed_children <- has_food. feed_children <- find_new_food.

<- has_food, find_new_food.

10.expect(has_food) <- decline, not eat(crow,cheese).

expect(has_food) <- hide(crow,cheese), not stolen(cheese).

expect(find_new_food).

11.Ei <<< Ej <- hungry(children), holds_in_evol(had_food,Ei),

holds_in_evol(find_new_food,Ej).

12.Ei <<< Ej <- holds_in_evol(has_pleasure,Ei),

holds_in_evol(no_pleasure,Ej).

There are two possible ways so as not to lose the Food to Fox, either simply
decline to sing (but thereby missing the pleasure of singing) or hide or eat the
cheese before singing.

Line 1 is the declaration of program abducibles (the last two abducibles are
for the usage in the second phase, starting from line 9). All of them are always
expected (line 2). The counter-expectation rule in line 4 states that an animal
is not expected to eat if he is full. The integrity constraints in line 5 say that
Crow cannot decline to sing and sing, hide and eat the cheese, at the same time.
The a priori preference in line 6 states that eating the cheese is always preferred
to hiding it (since it may be stolen), of course, just in case eating is a possible
solution (this is assured in our semantics of a priori preferences [18]).

Suppose Crow is not full. Then, the counter expectation in line 4 does
not hold. Thus, there are two possible abductive solutions: [decline] and

[eat(crow,cheese), sing] (since the a priori preference prevents the choice
containing hiding).

Next, the a posteriori preference in line 8 is taken into account and rules out
the abductive solution containing decline since it leads to having no pleasure
which is less preferred to has pleasure—the consequence of the second solution
that contains sing (line 7). In short, the final solution is that Crow eats the
cheese then sings, without losing the cheese to Fox and having the pleasure of
singing.

Now, let us consider a smarter Crow who is capable of looking further
ahead into the future in order to solve longer term goals. Suppose that Crow
knows that her children will be hungry later on, in the next stage of evo-
lution (line 9); eating the cheese right now would make her have to find
new food for the hungry children. Finding new food may take long, and
is always less favourable than having food ready to feed them right away
(evolution result a posteriori preference in line 11). Crow can see three possi-
ble evolutions: [[decline], [had food]]; [[hide(crow , cheese), sing], [had food]] and
[[eat(crow , cheese), sing], [find new food]]. Note that in looking ahead at least
two steps into the future, local preferences are not taken into account only after
all evolution one were applied (full discussion can be found in [18]).

Now the two evolution result a posterirori preferences in lines 11-12 are taken
into account. The first one rules out the evolution including finding new food
since it is less preferred than the other two which includes had food. The second
one rules out the one including decline. In short, Crow will hide the food to keep
for her hungry children, and still take pleasure from singing.

5 Related Work

Many issues concerning intentions have been widely discussed in the literature
of agent research. Some philosophers, e.g., Bratman [10,11] have been concerned
with the role that intention plays in directing rational decision making and guid-
ing future actions. Many agent researchers have recognized the importance of
intentions in developing useful agent theories, architectures, and languages, such
as Rao and Georgeff with their BDI model [23], which has led to the commer-
cialization of several high-level agent languages (e.g., see [12,30]).

However, to the best of our knowledge, there has been no real attempt to
model and implement the role of intentions in decision making, within a rational
choice framework. Intentions of other relevant agents are always assumed to be
given as the input of a decision making process; no system that integrates a
real intention recognition system into a decision making system has been imple-
mented so far.

The existent work of Pereira and Han [2,20,22] also attempts to combine the
two systems, Evolution Prospection and Intention Recognition, but in a com-
pletely different manner. They use an intention recognition system to recognize
the goal of the observed agent (e.g., an elder [20]), which the evolution prospec-
tion system uses to derive appropriate courses of actions to help achieve. Our

approach is more general and genuinely integrated: the intention recognition
system is employed also to evaluate other different kinds of information being
utilized within an EP program here.

6 Conclusions and Future Work

We have summarized the existent work on Evolution Prospection and Intention
Recognition and shown a coherent combination of them for decision making. The
Evolution Prospection system has been proven to be a useful one for decision
making, and now it has been empowered to take into account intentions of other
agents—an important aspect that had not been explored so far. The fact that
both systems are LP-based enabled their easy integration. We have described and
exemplified several ways in which an Evolution Prospection agent can benefit
from having an ability to recognize intentions of other (relevant) agents.

As a future direction, we will apply our combined system to tackle different
real application domains, e.g., Ambient Intelligence [2,25] and Elder Care [20],
where decision making techniques as well as intention recognition abilities are of
increasing importance [26,25,2].

We also plan to provide a formal semantics for our new combined system
on top of the one of Evolution Prospection—given in [18]—and the theoretical
modelling of intention within a rational choice framework [24].

7 Acknowledgments

We thank the reviewers for useful comments. HTA acknowledges the support
from FCT-Portugal, grant SFRH/BD/62373/2009.

References

1. H. T. Anh and L. M. Pereira. Collective intention recognition and elder care. In
AAAI 2010 Fall Symposium on Proactive Assistant Agents (PAA 2010). AAAI,
2010. http://www.aaai.org/ocs/index.php/FSS/FSS10/paper/view/2178/2697.

2. H. T. Anh and L. M. Pereira. Proactive intention recognition for home ambient
intelligence. In IE Workshop on AI Techniques for Ambient Intelligence, Ambient
Intelligence and Smart Environments, volume 8, pages 91–100. IOS Press, 2010.

3. H. T. Anh and L. M. Pereira. Context-dependent incremental intention recognition
through bayesian network model construction. In A. Nicholson, editor, Bayesian
Modelling Applications Workshop (BMAW-11), Conference on Uncertainty in Ar-
tificial Intelligence (UAI-2011). CEUR Workshop Proceedings, 2011.

4. H. T. Anh, L. M. Pereira, and F. C. Santos. The role of intention recognition in
the evolution of cooperative behavior. In IJCAI’2011, 2011.

5. H. T. Anh, L. M. Pereira, and F. C. Santos. Intention recognition promotes the
emergence of cooperation. Adaptive Behavior, June, 2011.

6. H. T. Anh, C. K. Ramli, and C. V. Damásio. An implementation of extended p-
log using xasp. In Proceedings of International Conference on Logic Programming
(ICLP08), pages 739–743. Springer LNCS 5366, 2008.

7. C. Baral, M. Gelfond, and N. Rushton. Probabilistic reasoning with answer sets.
Theory and Practice of Logic Programming, 9(1):57–144, 2009.

8. N. Blaylock and J. Allen. Corpus-based, statistical goal recognition. In Proceedings
of the 18th international joint conference on Artificial intelligence (IJCAI’03),
pages 1303–1308, 2003.

9. N. Blaylock and J. Allen. Statistical goal parameter recognition. In Shlomo Zil-
berstein, Jana Koehler, and Sven Koenig, editors, Proceedings of the 14th Inter-
national Conference on Automated Planning and Scheduling (ICAPS04), pages
297–304. AAAI, 2004.

10. M. E. Bratman. Intention, Plans, and Practical Reason. The David Hume Series,
CSLI, 1987.

11. M. E. Bratman. Faces of Intention: Selected Essays on Intention and Agency.
Cambridge University Press, 1999.

12. B. Burmeister, M. Arnold, F. Copaciu, and G. Rimassa. BDI-agents for agile goal-
oriented business processes. In Proceedings of the 7th international joint conference
on Autonomous agents and multiagent systems: industrial track, AAMAS ’08, pages
37–44, 2008.

13. C. Heinze. Modeling Intention Recognition for Intelligent Agent Systems. PhD
thesis, The University of Melbourne, Australia, 2003.

14. Martin A. Nowak. Five rules for the evolution of cooperation. Science,
314(5805):1560, 2006. DOI: 10.1126/science.1133755.

15. J. Pearl. Causality: Models, Reasoning, and Inference. Cambridge U.P, 2000.
16. Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible

Inference. Morgan Kaufmann, 1988.
17. L. M. Pereira and H. T. Anh. Evolution prospection. In Proceedings of Interna-

tional Symposium on Intelligent Decision Technologies (KES-IDT’09), pages 51–
63. Springer Studies in Computational Intelligence 199, 2009.

18. L. M. Pereira and H. T. Anh. Evolution prospection in decision making. Intelligent
Decision Technologies, 3(3):157–171, 2009.

19. L. M. Pereira and H. T. Anh. Intention recognition via causal bayes networks
plus plan generation. In Progress in Artificial Intelligence, Proceedings of 14th
Portuguese International Conference on Artificial Intelligence (EPIA’09), pages
138–149. Springer LNAI 5816, October 2009.

20. L. M. Pereira and H. T. Anh. Elder care via intention recognition and evolution
prospection. In select extended papers from the 18th International Conference on
Applications of Declarative Programming and Knowledge Management (INAP’09),
pages 170–187. Springer, LNAI 6547, 2011.

21. L. M. Pereira, P. Dell’Acqua, A. M. Pinto, and G. Lopes. Inspecting and preferring
abductive models. In Handbook on Reasoning-based Intelligent Systems. World
Scientific Publishers, 2011. (forthcoming).

22. L. P. Pereira and H. T. Anh. Intention recognition with evolution prospection and
causal bayesian networks. In Ana Madureira, Judite Ferreira, and Zita Vale, edi-
tors, Computational Intelligence for Engineering Systems: Emergent Applications,
volume 46, pages 1–33. Springer, 2011.

23. A. S. Rao and M. P. Georgeff. BDI-agents: from theory to practice. In Proceeding
of First International Conference on Multiagent Systems, 1995.

24. Olivier Roy. Thinking before Acting: Intentions, Logic, Rational Choice. PhD
thesis, ILLC Dissertation Series DS-2008-03, Amsterdam., 2009.

25. F. Sadri. Ambient intelligence, a survey. ACM Computing Surveys, 2010.
26. F. Sadri. Logic-based approaches to intention recognition. In Handbook of Research

on Ambient Intelligence: Trends and Perspectives. 2010.

27. Karl Sigmund. The Calculus of Selfishness. Princeton U. Press, 2010.
28. Gita Sukthankar and Katia Sycara. Robust and efficient plan recognition for

dynamic multi-agent teams. In Proceedings of International Conference on Au-
tonomous Agents and Multi-Agent Systems, pages 1383–1388, 2008.

29. M. van Hees and O. Roy. Intentions and plans in decision and game theory. In
Bruno Verbeek, editor, Reasons and intentions, pages 207–226. Ashgate Publishers,
2008.

30. Michael Wooldridge. Reasoning about rational agents. The Journal of Artificial
Societies and Social Simulation, 5, 2002.

31. XSB. The XSB system version 3.2 vol. 2: Libraries, interfaces and packages, March
2009.

