
Reductio ad Absurdum Argumentation in Normal Logic
Programs

Luı́s Moniz Pereira and Alexandre Miguel Pinto
{lmp|amp}@di.fct.unl.pt

Centro de Inteligência Artificial (CENTRIA)
Universidade Nova de Lisboa

Quinta da Torre
2829-516 Caparica, Portugal

Abstract. This paper introduces a new method for defining the argumentative se-
mantics of Normal Logic Programs. In doing so, our single and unified approach
allows one to obtain the Stable Models [11] as a special case, or the more general
Revision Complete Scenarios here defined.
Normal Logic Programs are approached as assumption-based argumentation sys-
tems. We generalize this setting by allowing both negative and positive assump-
tions. Negative assumptions are made maximal, consistent with existence of a
semantics, and positive assumptions are adopted only insofar as they guarantee
such existence. Our argumentation semantics thus extends the classical one of
[7], and guarantees existence of semantics for any Normal Logic Program, whilst
providing all the scenarios corresponding to Stable Models semantics.
Additionally, we provide equivalent and correct algorithms for incrementally com-
puting our scenarios, with three variants. One starts by assuming all atoms as
positive assumptions; another assumes them all negative; a third rests on a com-
bination of the first two, and may start with any choice of assumptions. The latter
may be employed to address the problem of finding those complete scenarios
most compatible with an initial collection of complete scenarios. Consequently,
argumentation can be put to collaborative use, not just an antagonistic one. Our re-
sults are achieved by generalizing the definitions of the classical approach, which
allows only for negative hypotheses, and our definitions fall back on the classical
ones when specialized to disallow positive hypotheses.
Finally, integrity constraints are introduced to prune undesired scenarios, whilst
permitting these to be produced nevertheless.
Keywords: Argumentation, Reductio ad Absurdum, Logic Programs, Argu-
ment Revision

1 Introduction

After introducing in [15] and [14] the new Revised Stable Models semantics for Normal
Logic Programs further work using the Reductio ad Absurdum (RAA) principle has
been developed, namely the Revised Well-Founded Semantics [16]. Considering an
argument-based view of Logic Programs, we define a new semantics which inherits the
RAA principle studied in [15, 14] and apply it to argumentation.

Logic Programs can be viewed as a collection of argumentative statements (rules)
based on arguments (default negated literals) [5, 2, 6, 17, 3, 13, 9, 8, 7]. In the quest for
finding a Consistent and Complete argumentative scenario one can guess it and check
its compliance with these properties; or, innovatively, start with an arbitrary scenario,
calculate its consequences, and make revisions to the initial assumptions if necessary in
order to achieve 2-valued Completeness and Consistency. This is the road we propose
now, revision of assumptions justified by means of Reductio ad Absurdum reasoning.

This paper introduces a new method for defining the argumentative semantics of
Normal Logic Programs. In doing so, our single and unified approach allows one to
get the Stable Models [11] as a special case, or the more general Revision Complete
Scenarios here defined.

Normal Logic Programs are approached as assumption-based argumentation sys-
tems. We generalize this setting by allowing both negative and positive assumptions.
Negative assumptions are made maximal, consistent with existence of a semantics, and
positive assumptions are adopted only insofar as they guarantee such existence. The jus-
tification of positive assumptions rests on the use of reductio ad absurdum, to the effect
that replacing any one positive hypothesis (or assumption) by its negative counterpart,
in a complete scenario, would result in its inconsistency. Hence, that complete 2-valued
scenario must retain its positive assumptions. Our argumentation semantics thus extends
the classical one of [7], and guarantees existence of semantics for any Normal Logic
Program, whilst providing all the scenarios corresponding to Stable Models semantics.

Additionally, we provide equivalent and correct algorithms for incrementally com-
puting our scenarios, with three variants. One starts by assuming all atoms as positive
assumptions; another assumes them all negative; a third rests on a combination of the
first two, and may start with any choice of assumptions. The latter may be employed
to address the problem of finding those complete scenarios most compatible with an
initial collection of complete scenarios. Consequently, argumentation can be put to col-
laborative use, not just an antagonistic one. Our results are achieved by generalizing
the definitions of the classical approach, which allow only for negative hypotheses, and
our definitions fall back on the classical ones when specialized to disallow positive
hypotheses.

Finally, integrity constraints are introduced to prune undesired scenarios, whilst per-
mitting these to be produced nevertheless.

In essence, our approach caters for the treatment of loops over an odd number of
default negated literals, in that it assigns and justifies complete 2-valued models to any
Normal Logic Program.

We start by presenting the general Motivation of this paper and, after introducing
some needed Background Notation and Definitions, the more detailed Problem Descrip-
tion. We proceed by setting forth our proposal — the Revision Complete Scenarios—
and show how it extends previous known results.

Before the Conclusions and Future Work, we show how our approach can enable
Collaborative Argumentation, complementing the classical Competitive view of Argu-
mentation.

1.1 Motivation

Ever since the beginning of Logic Programming the scientific community has formally
define, in several ways, the meaning, the semantics of a Logic Program. Several seman-
tics were defined, some 2-valued, some 3-valued, and even multi-valued semantics. The
current standard 2-valued semantics for Normal Logic Programs— the Stable Models
Semantics [11] — has been around for almost 20 years now, and it is generally accepted
as the de facto standard 2-valued semantics for NLPs. This thoroughly studied seman-
tics, however, lacks some important properties among which the guarantee of Existence
of a Model for every NLP.

In [14] we defined a 2-valued semantics— the Revised Stable Models— which ex-
tends the Stable Models Semantics, guarantees Existence of a Model for every Normal
Logic Program, enjoys Relevancy (allowing for top-down query-driven proof-procedures
to be built) and Cumulativity (allowing the programmer to take advantage of tabling
techniques for speeding up computations).

Aiming to find a general perspective to seamlessly unify the Stable Models Seman-
tics and the Revised Stable Models Semantics we drew our attention to Argumentation
as a means to achieve it. This is the main motivation of the work we present in this pa-
per: by taking the Argumentation perspective we intend to show methods of identifying
and finding a 2-valued complete Model for any NLP. The approach is unifying in the
sense that it allows us to find the Stable Models and also some other Models needed to
ensure guarantee of Existence of a Model. In the process we extend the argumentation
stance itself with the ability to incorporate positive hypotheses as needed.

Example 1. An invasion problem Some political leader thinks that “If Iran will have
Weapons of Mass Destruction then we intend to invade Iran”, also “If we do not intend
to invade then surely they will have Weapons of Mass Destruction”.

intend we to invade ← iran will have WMD
iran will have WMD ← not intend we to invade

If we assume that “we do not intend to invade Iran” then, according to this program
we will conclude that “Iran will have Weapons of Mass Destruction” and “we intend
to invade Iran”. These conclusions, in particular “we intend to invade Iran”, contradict
the initial hypothesis “we do not intend to invade Iran”. So, reasoning by Reductio ad
Absurdum in a 2-valued setting, we should “intend to invade Iran” in the first place.

This example gives a hint on how we resolve inconsistent scenarios in the rest of
the paper.

Example 2. A vacation problem Another example puts together three friends that are
discussing where they will spend their next joint vacations. John says “If I cannot go
the mountains I’d rather go traveling”. Mary says “Well, I want to go to the beach, but
if that’s not possible then I’d rather go to the mountains”. Finally, Michael says “I want
to go traveling, and if that’s not possible then I want to go to the beach”.

We put together the three friends’ statements formalized into a Normal Logic Pro-
gram:

travel← not mountain mountain← not beach beach← not travel

Now, because the three friends need to save money, they must minimize the number
of places they will go to on vacation. So they start by assuming they are going nowhere
— the cheapest solution. That is, they assume {not mountain, not beach, not travel}
as true. According to the program above, with these initial hypotheses the friends will
conclude they will go traveling, to the beach and to the mountains; and this contradicts
the initial hypotheses. They need to revise some of their initial assumptions. If they
revise not mountain to mountain they will now conclude {mountain, beach} and if
we put it together with the new set of hypotheses {not beach, not travel, mountain}
we get the resulting set {mountain, beach, not beach, not travel}. We still have a
contradiction on beach and not beach, which we can easily remove by transforming
the hypotheses set into {mountain, beach, not travel}.

There are two more alternative solutions — {beach, travel, not mountain} and
{travel,mountain, not beach}— which are symmetric to this one.

Example 3. A time-out problem John likes Mary a lot so he asked her out: he said
“We could go to the movies”. Mary is more of a sports girl, so she replies “Either that,
or we could go to the swimming pool”. “Now, that’s an interesting idea”, John thought.
The problem is that John cannot swim because he hasn’t started learning to. He now
thinks “Well, if I’m going to the swimming pool with Mary, and I haven’t learned how
to swim, I’m might risk drowning! And if I’m risking drowning then I really should
want to start learning to swim”.

Here is the Normal Logic Program corresponding to these sentences:

start learning to swim← risk drowning
risk drowning ← go to pool, not start learning to swim
go to pool ← not go to movies
go to movies ← not go to pool

If John is not willing to go to the swimming pool — assuming not go to pool —
he just concludes go to movies and maybe he can convince Mary to join him.

On the other hand, if the possibility of having a nice swim with Mary is more
tempting, John assumes he is not going to the movies not go to movies and there-
fore he concludes go to pool. In this case, since John does not know how to swim
he could also assume not start learning to swim. But since John is going to the
swimming pool, he concludes risk drowning. And because of risk drowning he
also concludes start learning to swim. That is, he must give up the hypothesis of
not start learning to swim in favor of start learning to swim because he wants
to go to the swimming pool with Mary. As a nice side-effect he no longer risks drown-
ing.

Example 4. Middle Region Politics In a Middle Region two factions are at odds. One
believes that if terrorism does not stop then oppression will do it and hence become

unnecessary.

oppression← not end of terrorism end of terrorism← oppression

The other faction believes that if oppression does not stop then terrorism will do it and
hence become unnecessary.

terrorism← not end of oppression end of oppression← terrorism

According to these rules, if we assume the not end of terrorism we conclude that
there is oppression which in turn will cause the end of terrorism. So, the end of terrorism
should be true in the first place, instead of not end of terrorism. The same happens
with end of oppression. In spite of the peaceful resulting scenario we propose,
{end of oppression, end of terrorism}, there is no Stable Model for this program.

1.2 Background Notation and Definitions

Definition 1. Logic Rule A Logic Rule r has the general form
L ← b1, b2, . . . , bn, not c1, not c2, . . . , not cm where L is a literal, i.e., an atom h or
its default negation not h, and n, m ≥ 0.

We call L the head of the rule — also denoted by head(r). And body(r) denotes
the set {b1, b2, . . . , bn, not c1, not c2, . . . , not cm} of all the literals in the body of r.
Throughout this paper we will use ‘not ’ to denote the default negation.

When the body of the rule is empty, we say the head of rule is a fact and we write
the rule as just h or not h. ut

Definition 2. Logic Program A Logic Program (LP for short) P is a (possibly infinite)
set of ground Logic Rules of the form presented in definition 1. If the heads of all the
rules in P are positive literals, i.e., they are simple atoms, and not default negated
literal, we say we have a Normal Logic Program (NLP). If at least one of the heads of
a rule of P is a default negated literal, and there is no explicit negation in the program
— we say we have a Generalized Logic Program (GLP). If there is explicit negation,
besides default negation, in the program we say we have an Extended Logic Program
(ELP). ut

Definition 3. Atoms of a Logic Program P — Atoms(P) Atoms(P) denotes the set
of all atoms of P . Formally,

Atoms(P) = {a : ∃r∈P

(
head(r) = a∨head(r) = not a∨a ∈ body(r)∨not a ∈

body(r)
)
} ut

Throughout the rest of this paper we will focus solely on Normal Logic Programs
hence, when we write just a Program or a Logic Program we mean a Normal Logic
Program.

Definition 4. Default negation of a set S of literals — not S Throughout this paper
we will sometimes use the not S default negation of a set S notation, where S is a set
of literals, in order to denote the set resulting from default negating every literal of S.
Formally, not S = {not a : a ∈ S} ∪ {b : not b ∈ S} ut

Definition 5. Scenario A scenario of a NLP P is the Horn theory P ∪ H , where
H = H+ ∪H−, H+ ⊆ Atoms(P), H− ⊆ not Atoms(P), and not H+ and H− are
disjoint. H is called a set of hypotheses, positive and negative. ut

Definition 6. ` operator Let P be a NLP and H a set of hypotheses. P ′ is the Horn
theory obtained from P by replacing every default literal of the form not L in P by
the atom not L. H ′ is likewise obtained from H using the same replacement rule. By
definition, P ′ ∪H ′ is a Horn theory, and so it has a least model M . We define ` in the
following way, where A is any atom of P :

P ∪H ` A iff A ∈M P ∪H ` not A iff not A ∈M ut

Definition 7. Consistent scenario A scenario P ∪H is consistent iff for all literals L,
if P ∪H ` L then P∪ ` H 0 not L, where not not L ≡ L. ut

Definition 8. Consistent program A Logic Program P is consistent iff P ∪ ∅ is a
consistent scenario. NLPs are of course consistent. ut

2 Revision Complete Scenarios

In [4] the author proves that every Stable Model (SM) of a NLP is a 2-valued com-
plete (total), consistent, admissible scenario. The author considers a scenario as a set
of default negated literals — the hypotheses. However, not every NLP has a consis-
tent, 2-valued complete scenario when one considers as hypotheses just default negated
literals.

Also in [4], the author shows that preferred maximal (with maximum default negated
literals) scenarios are always guaranteed to exist for NLPs. However, preferred maximal
scenarios are, in general, 3-valued.

The problem we address now is to find a way to render 2-valued total a preferred
maximal scenario. In this paper we take a step further from what was previously achieved
in [4], extending its results. We allow a set of hypotheses to contain also positive lit-
erals, but only those absolutely necessary to guarantee Existence of a Model. These
positive hypotheses are those who are justified true by a specific Reductio ad Absurdum
reasoning we accept.

Before presenting the formal Definition of a Revision Complete Scenario we give a
general intuitive idea to help the reader grasp the concept. For the formal definition of
Revision Complete Scenario we will also need some preliminary auxiliary definitions.

2.1 Intuition

In [3] the authors prove that every SM of a NLP corresponds to a stable set of hypotheses
which correspond in turn to a 2-valued complete, consistent, admissible scenario.

In order to guarantee the Existence of a 2-valued total Model for every NLP we
allow positive hypotheses to be considered besides the usual negative hypotheses. Under
this setting, the easiest way to solve the problem would be to accept every atom of a
program as a positive hypotheses. However, we want to our semantics to be the most
skeptical possible while ensuring stratification compatibility among hypotheses.

To further keep the semantics skeptical we want to have the maximal possible neg-
ative hypotheses and the minimum non-redundant positive hypotheses. Intuitively, a
positive hypothesis L is considered redundant if, by the rules of the program and the
rest of the hypotheses, L is already determined true. The formal definition of this notion
of non-redundancy of positive hypotheses is presented and explained below.

The formal notion of compatibility will also be depicted and explained below, but
for now the intuitive idea is that one positive hypothesis L must not contradict other
hypotheses.

2.2 Definition

Definition 9. Evidence for a literal L A negative set of hypotheses E ⊆ not Atoms(P)
is evidence for a literal L in program P iff P ∪ E ` L. If P is understood we write
E L. We also say E attacks not L. Notice that we do not require an evidence to be
consistent. ut

Definition 10. Weakly Admissible set of hypotheses H−

The notion of weakly admissible set presented here is in line with that of weak
stability, first defined in [12].

Let P be a NLP, H− ⊆ not Atoms(P) a set of negative hypotheses, not L a
default negated literal in P and E an evidence for L. We say H− is weakly admissible
iff ∀not L∈H−∀E L∃not A∈EP ∪H− ∪ E ` A ut

The classical notion of admissible set checks only if P ∪ H− ` A. By doing this test
with P ∪H− ∪E we allow E to be inconsistent. It suffices to see that if P ∪H− 0 A
and P ∪H− ∪ E ` A it means that E is essential to derive A in the P ∪H− context.
Since we know not A ∈ E and P ∪H− ∪ E ` A we conclude that E is inconsistent.

There are some sets of hypotheses H− which were not admissible according to the
classical definition (with just P ∪H−) and are weakly admissible — according to the
definition using P ∪H− ∪ E. These sets of hypotheses which are accepted as weakly
admissible are just the ones where the adding of the evidence E was essential to derive
A, that is, where E is inconsistent.

Since the ` operator is monotonic, every admissible set of hypotheses according to
the classical definition (using P ∪ H−) is also weakly admissible — according to the
definition with P ∪H− ∪ E.

Example 5. Weakly Admissible vs Non Weakly Admissible sets of negative hy-
potheses Consider the following NLP:

k ← not t t← a, b a← not b b← not a

In this program we can easily see that the bottom Even Loop Over Negation (ELON,
for short) over a and b allows only one of them to be true — when we demand minimal-
ity of positive information. Under this setting we will never have t true for it needs both
a and b to be true simultaneously to support its truthfulness. Therefore, k will always
be true, since t is always false.

Let us analyze the different possible sets of hypotheses from an admissibility point
of view. Consider the following two sets of negative hypotheses H1 = {not b, not t}
and H2 = {not b, not k}. The other two sets of negative hypotheses H3 and H4 are
just symmetric to H1 and H2, respectively, on not a and not b; therefore we are going
to focus solely on H1 and H2.

H1 is weakly admissible whereas H2 is not. Let us see why. Analyzing not b we
verify that there is only one possible evidence E = {not a} for b and that P ∪H1∪E `
a, i.e., H1 ∪ E attacks (in the sense presented in definition 9) not a. In this particular
case even just H1 attacks not a.

Analyzing not t we can see that there is only one evidence E = {not a, not b} for
t. P ∪H1 ∪ E derives both a and b, i.e., P ∪H1 ∪ E ` a and P ∪H1 ∪ E ` b; hence
H1 is weakly admissible.

Let us see what happens with H2. We have already seen not b, we just need to test
not k. The only evidence for k is E = {not t}. We can see however that P∪H2∪E 0 t,
which leads us to conclude that H2 is not weakly admissible.

Example 6. Allowing Inconsistent Evidence Consider the following NLP:

k ← not t t← not t

The hypotheses H1 = {not t} is admissible and weakly admissible. However, since
P ∪H1 is not a consistent scenario, no model exists with not t.

The only possible hypotheses left are the empty set and H2 = {not k}. Considering
the classical notion of admissible set (with P ∪ H−) H2 is non-admissible; however,
H2 is weakly admissible. Notice that the evidence for k is E = {not t} and that P ∪
H2 ∪ E ` t. P ∪H2 is a consistent scenario, but it is not complete. Since we already
know that not t cannot be in any consistent model, in a 2-valued setting we would like
to “complete” the scenario P ∪ H2 with t in order to obtain a 2-valued complete and
consistent model. In such case we say {t} is our set of positive hypotheses.

Definition 11. Non-redundant set H+ of positive hypotheses Let P be a NLP, and
H = H+ ∪H− a set of positive and negative hypotheses, i.e., (H+ ⊆ Atoms(P)) and
(H− ⊆ not Atoms(P)). We say H+ is non-redundant iff ∀L∈H+P ∪H \{L} 0 L ut

As just explained, we wish to allow some positive hypotheses when they are ab-
solutely needed in order to obtain 2-valued complete and consistent scenarios. How-
ever, we require the positive set of hypotheses to be non-redundant, that is, all positive
hypotheses must not be already derived by other hypotheses. This is the purpose of
definition 11 above.

Example 7. Redundant positive hypotheses Consider the following program P :

b← a a← not a

In the previous example 6 we saw how a rule like t ← not t forbids the negative
hypothesis not t. By the same token, in this example’s program, the hypothesis not a
is also forbidden. Also {not b} is not a weakly admissible set of negative hypotheses.

Since we are looking for 2-valued complete (total) and consistent scenarios, we would
like one including both a and b.

The question now is: should both a and b be considered positive hypotheses? Since
we are looking for the minimum possible set of positive hypotheses (compatible with
the negative ones), we answer no in this case, because assuming the positive hypothesis
a is enough to automatically determine the truth of b. That is why we say the set {a, b}
of positive hypotheses is redundant, whereas {a} is not.

Definition 12. Unavoidable set H+ of positive hypotheses Let P be a NLP, and H =
H+ ∪ H− a set of positive and negative hypotheses. We say H+ is unavoidable iff
∀L∈H+P ∪

(
H \ {L}

)
∪ {not L} is an inconsistent scenario ut

In a nutshell, this definition imposes that every positive hypothesis must be accepted as
true for the sake of consistency and completeness in the context of all other hypotheses.
We ensure this by demanding that any if positive hypothesis L was to be considered
false — i.e., not L considered true — the whole scenario of P with all the hypotheses,
except L, and including not L instead (for the sake of 2-valued completeness) would be
inconsistent. So, there is no consistent 2-valued way to avoid having L true in the con-
text of the remaining hypotheses. Additionally, one may need the condition as stating
that, if the scenario with not L is consistent, then L is avoidable.

Example 8. Unavoidable vs Avoidable sets of positive hypotheses Let P be the fol-
lowing NLP:

d← not c c← not b b← not a a← not a

In this example we consider H1 = H+
1 ∪ H−

1 , where H+
1 = {a} and H−

1 =
{not b, not d}; and H2 = H+

2 ∪H−
2 , where H+

2 = {a, b} and H−
2 = {not c}.

By the same reason as in example 7 not a cannot be in any H− and, in order to
obtain a 2-valued total model with an H , a must be accepted as true — in that sense we
say a is unavoidable.

Definition 13. Revision Complete Scenarios Let P be a NLP and H = H+ ∪ H− a
set of positive (H+) and negative (H−) hypotheses. We say H is a Revision Complete
Scenario iff

1. P ∪H is a consistent scenario and least(P ∪H) is a 2-valued complete model of
P

2. H− is weakly admissible
3. H+ is not redundant
4. H+ is unavoidable

ut

2.3 The Exhaustive Model Generation Algorithm

Another method for finding the Revision Complete Scenarios is an iterative and incre-
mental way.

Definition 14. Inconsistency avoidance algorithm for generating the Revision Com-
plete Scenarios (RCSs)

1. Start with i = 0, H+
i = Atoms(P) and H−

i = ∅.
2. If H−

i is not weakly admissible then H+
i ∪H−

i is not a Revision Complete Scenario
and the algorithm terminates unsuccessfully.

3. If H−
i is weakly admissible then:

4. If H+
i = ∅ then H+

i ∪H−
i is a RCS and the algorithm terminates successfully in

this case.
5. If H+

i 6= ∅ then non-deterministically take one arbitrary L ∈ H+
i and check if H+

i

is redundant on L. If it is then:
6. H+

i+1 = H+
i \ {L} and go back to step 3 (a).

7. If H+
i is non-redundant then:

8. Check if H+
i is unavoidable and, if so, then H+

i ∪H−
i is a RCS and the algorithm

terminates successfully.
9. If H+

i is not unavoidable and L ∈ H+
i is one of the positive hypotheses rendering

H+
i non-unavoidable then H+

i+1 = H+
i \ {L} and H−

i+1 = H−
i ∪ {not L} and go

on to step 2 again.
ut

This algorithm starts with all the possible positive hypotheses (all the atoms of the
program) and no negative hypotheses. By construction, a scenario with such H+ and
H− is necessarily consistent and 2-valued complete. Along the execution of the algo-
rithm, at each time, we either just remove one positive hypothesis because redundant,
or non-deterministically remove one positive hypothesis and add its correspondent de-
fault negation to the set of negative hypotheses. By construction, the algorithm guaran-
tees that H = H+ ∪ H− is consistent. When we just remove one positive hypothesis
L ∈ H+ the 2-valued completeness of the resulting scenario is guaranteed because L
was removed from H+ only because L was rendering H+ redundant. When we remove
L from H+ and add not L to H− 2-valued completeness is naturally assured.

The requirement for weak admissibility of H− in step 3 ensures the resulting H =
H+∪H− corresponds to a consistent scenario. The different non-deterministic choices
engender all the RCSs.

Example 9. Generating RCSs by Inconsistency avoidance

a← not a, not b b← not a, not b

We start the algorithm with all the possible positive hypotheses and no negative
ones:

– H+
0 = {a, b},H−

0 = ∅.
– H−

0 is weakly admissible.
– H+

0 6= ∅ so we check if it is redundant. It is not, so we check if H+
0 is unavoidable.

– H+
0 is not unavoidable. We non-deterministically choose one atom from H+

0 =
{a, b} which makes it non-unavoidable (in this case, both a and b are rendering
H+

0 non-unavoidable, so we can choose any one). Let us say we choose b. Then
H+

1 = H+
0 \ {b} and H−

1 = H−
0 ∪ {not b}. And we go on to step 2 again.

– H−
1 is weakly admissible.

– H+
1 6= ∅.

– H+
1 is not redundant on any L ∈ H+

1 .
– H+

1 is unavoidable and so H1 = H+
1 1 ∪H−

1 = {a, not b} is a Revision Complete
Scenario and the algorithm terminates successfully.

If we were to choose not a instead of not b in step 9, the resulting Revision Com-
plete Scenario would be {not a, b}. There are no other Revision Complete Scenario for
this program besides these two.

Theorem 1. The sets H = H+ ∪ H− resulting from the execution of algorithm of
definition 14 are the Revision Complete Scenarios

Proof. Trivial, by construction of the algorithm. ut

Theorem 2. Existence of Model For any given NLP P there is always at least one
Revision Complete Scenario.

Proof. In the algorithm described above, when we need to non-deterministically choose
one atom L to remove from H+

i , and eventually add not L to H−
i , if there are no

repetitions in the choice, then the algorithm is necessarily guaranteed to terminate.
Moreover, if the first positive hypothesis to remove correspond to atoms upon which

no other atoms depend, then removing that positive hypotheses has causes no inconsis-
tency, nor does it compromise 2-valued completeness. If the next positive hypotheses
in the sequence to be removed always guarantee that the consequences of its removal
(and eventual adding of its default negated counterpart to the set of negative hypothe-
ses) does not change the truth value of positive hypotheses already removed, then it is
necessarily guaranteed that the algorithm will find a Revision Complete Scenario.

Finally, it is always possible to find such a sequence of positive hypotheses to re-
move: the sequence just needs to be in reverse order of the stratification of the program.
I.e., the first positive hypotheses in the sequence must be from the top strata of the pro-
gram, the second hypotheses from the second strata counting from the top, and so on.
The notion of stratification we are unsing here can be intuitively explained as: (1) atoms
in a loop are all in the same strata; (2) atoms which are not in a loop, and are in the head
of a rule are in a strata which is always one directly above the atoms in the body of the
rule. ut

Theorem 3. M is a Stable Model of a NLP P iff there is some Revision Complete
Scenario H such that M = least(P ∪H) with H+ = ∅

Proof. Let H = H+ ∪H− a set of positive and negative hypotheses. Let us consider
the particular case where H+ = ∅, therefore H = H−.

In [4], the author already proved that when H = H−, P ∪H is a consistent scenario
and M = least(P ∪H) is a 2-valued complete scenario iff M is a Stable Model of P .

Stable Models are just a particular case of Revision Complete Scenarios. ut

A variation of this algorithm reversing the direction of the changes in H+ and H−

can also be depicted. In such an algorithm we start with H− = not Atoms(P) and
H+ = ∅. 2-valued completeness is also assured at the starting point, although consis-
tency of P ∪H is not. The algorithm is:

Definition 15. Inconsistency removal algorithm for generating the Revision Com-
plete Scenarios (RCSs)

1. Start with i = 0, H−
i = not Atoms(P) and H+

i = ∅.
2. If P ∪Hi is a consistent scenario then Hi is a RCS and the algorithm terminates

successfully.
3. Check if H+

i is redundant:
4. If it is redundant then non-deterministically take one arbitrary atom L ∈ H+

i such
that P ∪H \ {L} ` L and construct H+

i+1 = H+
i \ {L}.

5. If H+
i is non-redundant construct H+

i+1 = H+
i .

6. Check if H+
i+1 is unavoidable:

7. If H+
i+1 is non-unavoidable then H+

i+1 ∪ H−
i+1 is not a RCS and the algorithm

terminates unsuccessfully.
8. If H+

i+1 is unavoidable then check if P ∪Hi+1 is a consistent scenario:
9. If P ∪Hi+1 is a consistent scenario then:

10. Check if P ∪Hi+1 is also a 2-valued complete scenario and if it is then Hi+1 is a
RCS and the algorithm terminates successfully.

11. If P∪Hi+1 is not a 2-valued complete scenario then construct H+
i+2 = H+

i+1∪{L},
where P ∪Hi+1 0 L and P ∪Hi+1 0 not L, and H+

i+2 is non-redundant. Go on
to step 4 again.

12. If P ∪ Hi+1 is not a consistent scenario, take one not L ∈ H−
i+1 such that P ∪

Hi+1 ` L and P ∪Hi+1 ` not L (i.e., there is a contradiction in L with P ∪H−
i+1)

and construct H−
i+2 = H−

i+1 \ {not L} and H+
i+2 = H+

i+1 ∪ {L}, i.e., we revise
the assumption not L to L making it a positive hypothesis. Go on to step 3 again.

ut

This algorithm starts with all the possible negative hypotheses (the default negation
of all the atoms of the program) and no positive hypotheses. By construction, a scenario
with such H+ and H− is necessarily consistent and 2-valued complete. Along the exe-
cution of the algorithm, at each time, we either just remove one positive hypothesis —
because it is redundant — , or remove one negative hypothesis not L and add its corre-
spondent positive L to the set of positive hypotheses — i.e., we revise the assumption
not L to L, when the set of negative hypotheses with not L is not consistent.

Also by construction the algorithm guarantees that H = H+∪H− is consistent and,
therefore, that H− is weakly admissible. When we just remove one positive hypothesis
L ∈ H+ the 2-valued completeness of the resulting scenario is guaranteed because L
was redundant in H+. When we remove not L from H− and add L to H+ 2-valued
completeness is naturally assured. The different non-deterministic choices engender all
the RCSs.

Example 10. Generating RCSs by Inconsistency removal Let us revisit the example
9 and see the Inconsistency removal version of it.

a← not a, not b b← not a, not b

We start the algorithm with all the possible negative hypotheses and no positive
ones:

– H−
0 = {not a, not b},H+

0 = ∅.
– P ∪H0 is not a consistent scenario.
– H+

0 = ∅ is non-redundant.
– H+

1 = H+
0 is unavoidable.

– P ∪H1 is not a consistent scenario.
– We non-deterministically choose one negative hypothesis not L from H−

1 = {not a, not b}
such that P ∪H1 ` L and P ∪H1 ` not L. In this case, both not a and not b, so we
can choose any one of them. Let us say we choose not a. Then H+

2 = H+
1 ∪ {1}

and H−
2 = H−

1 \ {not a}. And we go on to step 3 again.
– H+

2 is non-redundant.
– H+

3 = H+
2 is unavoidable.

– P ∪H3 is a consistent scenario.
– P ∪H3 is a 2-valued complete scenario, so H3 = H+

3 ∪H−
3 = {a} ∪ {not b} =

{a, not b} is a Revision Complete Scenario and the algorithm terminates success-
fully.

If we were to choose not b instead of not a in step 12, the resulting Revision Com-
plete Scenario would be {not a, b}. These Revision Complete Scenario coincide with
those produced by the algorithm in definition 14.

Theorem 4. The sets H = H+ ∪ H− resulting from the execution of algorithm of
definition 15 are the Revision Complete Scenarios

Proof. Trivial, by construction of the algorithm. ut

2.4 The Name of the Game

Why the name “Revision” Complete Scenarios? The “Revision” part of the name comes
from the assumption revision we do when an assumption not A ∈ H− leads to a
contradiction in P , i.e.,

(
P∪H− ` {A,not A}

)
∧

(
P∪(H−\{not A}) 0 {A,not A}

)
.

In such a case we accept to revise not L to its positive counterpart L. This is the
specific form of reasoning by Reductio ad Absurdum we take here: if adding not A to P
in the context of H− leads to self inconsistency, then, by absurdity, we should assume
A instead of not A. A becomes, thus, one of the positive hypotheses.

3 Syntactic Perspective of Revision Complete Scenarios over
Normal Logic Programs

In [3] the authors proved that every Stable Model of a NLP corresponds to a 2-valued
complete, consistent and admissible scenario. In [10] the author shows that when a NLP
has no SMs it is because the Normal Logic Program has Odd Loops Over Negation
(OLONs) and/or Infinite Chains Over Negation (ICONs), although the author does not
employ these designations. These designations are taken from [14].

For the sake of readability and self-containment we briefly present some examples
of OLONs and ICONs. Intuitively an OLON is a set of rules of a NLP which induce

a cycle over some literals in the dependency graph. The cycle of an OLON has the
characteristic of having an Odd number of default Negated arcs around the cycle.

An example of an OLON is given in example 1. There we can see that the atom
intend we to invade is in a cycle across the dependency graph, and that along that
cycle there is only 1 (an Odd number) default negation.

Another example of an OLON is present in example 2. There the atom mountain
is in a cycle with 3 default negations along the circular dependency graph. The same is
true for travel and beach.

The classical example of an ICON was first presented in [10]. It goes as follows:

p(X)← p(s(X)) p(X)← not p(s(X))

where X is a variable. The ground version of this program when there is only one
constant 0 is the infinite program

p(0)← p(s(0)) p(0)← not p(s(0))
p(s(0))← p(s(s(0))) p(s(0))← not p(s(s(0)))
p(s(s(0)))← p(s(s(s(0)))) p(s(s(0)))← not p(s(s(s(0))))
...

...

This example in particular is the one to which every other possible variation of an
ICON reduces to (proven in [10]). As it can be easily seen, there is an infinitely long
chain of support for any p(X) with an infinite number of default negations.

As we just said, in [10] the author proves that only OLONs and/or ICONs can pre-
vent the existence of SMs in a NLP. Therefore, since our Revision Complete Scenario
guarantee the Existence of a Model for any given NLP it follows that the Revision
Complete Scenario deal with OLONs and ICONs in a way that the Stable Models se-
mantics did not. This is achieved by means of the reasoning by Reductio ad Absurdum
we explained in subsection 2.4.

4 Collaborative Argumentation

The classical perspective on Argumentation is typically of a competitive nature: there
are arguments and counter-arguments, all of them attacking each other and struggling
for admissibility. The ones which counter-attack all its attackers are admissible.

Typically, one takes one argument — a set of hypotheses H — and check if it is
admissible, and if P ∪H is a consistent scenario. If 2-valuedness is a requisite, then an
extra test for 2-valued completeness is required.

We now generalize this approach in a constructive way, by building up a compro-
mise Revision Complete Scenario starting from several conflicting 2-valued complete
and consistent Models of P — each corresponding to an argument. This is what the
algorithm below does.

First, we take all the conflicting models N1, N2, . . . , Nn and calculate the set of
all the possible positive hypotheses M+ =

⋃n
i=1 N+

i ; and the set of all the possible
negative hypotheses M− =

⋃n
i=1 N−

i . M+ and M− will now be used to guide the
algorithm below in order to ensure consensus, i.e., the resulting Revision Complete

Scenario H will have no positive hypotheses outside M+, nor will it have negative
hypotheses outside M−. The algorithm goes as follows:

Definition 16. Revision Complete Scenario H construction from conflicting models
N1, N2, . . . Nn

1. Start with M = M+ ∪M−. M0 = M is inconsistent.
2. M+

1 = M+
0 \ {L ∈M+

0 : not L ∈M−
0 }, and M−

1 = M−
0 . M1 is now consistent.

3. If M−
i is not weakly admissible then non-deterministically select one L such that

not L ∈ M−
i , there is an E such that E L, and there is some not a ∈ E such

that P ∪M−
i ∪ E 0 a. Construct M−

i+1 = M−
i \ {not L}. Repeat this step.

4. If M+
i+1 is avoidable then M+

i+2 = M+
i+1\{L}, where P ∪(Mi+1\{L})∪{not L}

is an inconsistent scenario. M−
i+2 = M−

i+1 ∪ {not L} only if L ∈ M−, otherwise
M−

i+2 = M−
i+1. Go on to step 3 again.

5. If P ∪Mi+2 is not a consistent scenario then non-deterministically select one L
such that P ∪Mi+2 ` {L, not L}, and construct M−

i+3 = M−
i+2 \ {not L}. Go on

to step 3 again.
6. If P ∪Mi+2 is not a 2-valued complete scenario then M+

i+3 = M+
i+2 ∪{L}, where

P ∪Mi+2 0 L and P ∪Mi+2 0 not L and L ∈M+, and go on to step 4 again.
7. P ∪ Mi+2 is a 2-valued complete and consistent scenario, where M+

i+2 is non-
redundant and unavoidable, and M−

i+2 is weakly admissible. By definition, Mi+2 is
a Revision Complete Scenario, therefore H = Mi+2 and the algorithm terminates
successfully.

ut

In essence, this algorithm is a mixture of the Inconsistency Avoidance and Inconsis-
tency Removal algorithms presented in subsection 2.3. We start with two sets M+ and
M− containing, respectively, all the possible positive hypotheses that can be adopted
in the final Revision Complete Scenario H , and all the possible negative hypotheses
that can be adopted. Next, we remove from the set of positive hypotheses all those
conflicting with the negative ones in order to ensure consistency. Now we need to en-
sure a weak admissibility of the current negative hypotheses M−

i . For that we check
if the M−

i is weakly admissible, and if it is not, then we non-deterministically select
and remove from M−

i one of the negative hypotheses causing M−
i failing to com-

ply to this requirement. This step is repeated until weak admissibility is verified by
M−

i . Now we turn to the set of positive hypotheses M+
i . If it is avoidable, then we

non-deterministically select and remove from M+
i one positive hypothesis L which

contributes to M+
i avoidability. We also add the correspondent default negation of that

positive hypotheses not L to M−
i , but only if not L was already in M− — the initial

set of all the adoptable negative hypotheses. This extra requirement ensures the final
compromise Revision Complete Scenario H to be found is maximally compatible with
all the initial models N1, N2, . . . , Nn. When we add not L to M−

i we need to recheck
its weak admissibility, so we go on to that step again. If M+

i was unavoidable, then we
need to check it the whole P∪Mi is consistent. If this scenario fails consistency, then we
remove from M−

i one of the negative hypothesis whose positive counterpart was also
being produced by P ∪Mi. Notice that when the resulting scenario is not consistent we

remove one inconsistency in favour of the positive hypotheses, since the presence of the
correspondent negative produced the inconsistency. This is basically the mechanism of
reasoning by Reductio ad Absurdum we use. Again we need to recheck the weak ad-
missibility, so we go on to that step again. If the scenario P ∪Mi was consistent, then
we need to check if it is 2-valued complete. If it is not, then we non-deterministically
select one adoptable positive hypothesis and add it to M+

i . Now we need to recheck
M+

i ’s unavoidability; so we go on to that step again. Finally, if P ∪Mi was 2-valued
complete then H = Mi is a Revision Complete Scenario and the algorithm terminates
successfully.

Example 11. Example 2 revisited — A vacation problem Recall the example 2 pre-
sented earlier. The program is:

travel← not mountain mountain← not beach beach← not travel

Now assume that one of the friends going on vacation with the other two could not
be present when they were getting together to decide their vacations’ destinies. So, only
John (the one who preferred going to the mountains, otherwise traveling it is), and Mary
(she prefers going to the beach, otherwise going to the mountains is ok).

John’s opinion is N1 = {mountain, not travel, not beach}, while Mary’s choice
is N2 = {beach, not mountain, not travel}. We can already see that at least on one
thing they agree: not travel. We now find the largest set of positive hypotheses we can
consider M+ = N+

1 ∪ N+
2 = {mountain, beach} and the largest set of negative hy-

potheses we can consider M− = N−
1 ∪N−

2 = {not travel, not beach, not mountain}.
And now the algorithm starts:

M = M+ ∪M− = {mountain, beach, not mountain, not beach, not travel}
Going through the steps of the algorithm we have:

– M0 = M .
– M+

1 = M+
0 \ {mountain, beach} = ∅, M−

1 = M−
0 .

– M−
1 is not weakly admissible, so we non-deterministically select one L such that

not L ∈ M−
1 is one of the causes for M−

1 not complying to the weak admissibil-
ity condition: for example, L = mountain. M−

2 = M−
1 \ {not mountain} =

{not beach, not travel}. We repeat this set and now we must remove not beach
from M−

2 . M−
3 = M−

2 \ {not beach} = {not travel}.
– M+

3 = M+
2 = M+

1 = ∅ is unavoidable.
– P ∪M3 is a consistent scenario.
– P∪M3 is not a 2-valued complete scenario. So M+

4 = M+
3 ∪{mountain} because

mountain is the only literal which verifies P ∪M3 0 mountain and P ∪M3 0
not mountain. Now we go on to step 4 of the algorithm again.

– M+
4 is unavoidable.

– P ∪M4 is consistent.
– P ∪M4 is 2-valued complete, so H = M+

4 ∪M−
4 = {mountain, not travel} and

the algorithm terminates successfully.

In the end, the resulting model is least(P ∪H) = {mountain, beach, not travel}.
Notice that beach is just a consequence of not travel in P , it does not have to be a
hypothesis. If other atoms were to be chosen at step 3 other alternative solutions would
be found.

5 Integrity Constraints

Example 12. Middle Region Politics Revisited Recall the example 4 presented earlier.
We are now going to add extra complexity to it.

We already know the two factions which are at odds and their thinking.

oppression← not end of terrorism end of terrorism← oppression
terrorism← not end of oppression end of oppression← terrorism

We now combine these two sets of rules with the two following Integrity Constraints
(ICs) which guarantee that oppression and end of oppression are never simultane-
ously true; and the same happens with terror:

falsum← oppression, end of oppression, not falsum
falsum← terrorism, end of terrorism, not falsum

So far so good, there is still a single joint set of hypotheses resulting in a consistent
scenario {end of oppression, end of terrorism}. Still, there is no SM for this pro-
gram. But introducing either one or both of the next two rules, makes it impossible to
satisfy the ICs:

oppression← not terrorism terrorism← not oppression

In this case all the consistent and 2-valued complete scenarios contain the atom
falsum. There are still no Stable Models for the resulting program. The semantics we
propose allows two models for this program, which correspond to the 2-valued complete
consistent scenarios, both containing falsum. We can discard them on this account or
examine their failure to satisfy the ICs.

6 Conclusions and Future Work

We have managed to assign a complete 2-valued semantics to every Normal Logic
Program, by employing an argumentation framework that readily extends the argumen-
tation framework of Stable Models semantics. We also presented three algorithms for
finding the Revision Complete Scenario of any Normal Logic Program. Every Stable
Model of a Normal Logic Program corresponds to a Revision Complete Scenario and,
in that sense, our algorithms allow for a different perspective on Stable Models seman-
tics: any Stable Model can be seen as the result of an iterative process of Inconsistency
Removal or Inconsistency Avoidance. In any case, Stable Models are the final result of
such inconsistency removal/avoidance where any initial positive hypotheses remain in
the end. In the process, we have extended argumentation with Reductio ad Absurdum
reasoning for that purpose, and shown how Collaborative Argumentation can be defined
in that context.

Future work concerns the extension to Generalized Logic Programs and Extended
Logic Programs, and the seamless merging with more general belief revision in Logic
Programs.

Some of the applications enabled by this improved semantics of Normal Logic Pro-
grams, concern the ability to guarantee that the meaning of diverse programs, e.g. aris-
ing from Semantic Web usage, always has a semantics. Similarly, we can also ensure
this property whenever updating programs, including the case where an autonomous
program evolves through self-updating [1]. Such applications will be enabled by the
ongoing implementation.

Acknowledgments We deeply thank Robert A. Kowalski for his crucial help in
clarifying our ideas and their presentation.

References

1. J. J. Alferes, A. Brogi, J. A. Leite, and L. M. Pereira. Evolving logic programs. In S. Flesca
et al., editor, JELIA, volume 2424 of LNCS, pages 50–61. Springer, 2002.

2. J. J. Alferes and L. M. Pereira. An argumentation theoretic semantics based on non-refutable
falsity. In J. Dix et al., editor, NMELP, pages 3–22. Springer, 1994.

3. A. Bondarenko, P. M. Dung, R. A. Kowalski, and F. Toni. An abstract, argumentation-
theoretic approach to default reasoning. Artif. Intell., 93:63–101, 1997.

4. P. M. Dung. Negations as hypotheses: An abductive foundation for logic programming. In
ICLP, pages 3–17. MIT Press, 1991.

5. P. M. Dung. An argumentation semantics for logic programming with explicit negation. In
ICLP, pages 616–630. MIT Press, 1993.

6. P. M. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artif. Intell., 77(2):321–358, 1995.

7. P. M. Dung, R. A. Kowalski, and F. Toni. Dialectic proof procedures for assumption-based,
admissible argumentation. Artif. Intell., 170(2):114–159, 2006.

8. P. M. Dung, P. Mancarella, and F. Toni. Argumentation-based proof procedures for credulous
and sceptical non-monotonic reasoning. In Computational Logic: Logic Programming and
Beyond, volume 2408 LNCS, pages 289–310. Springer, 2002.

9. P. M. Dung and T. C. Son. An argument-based approach to reasoning with specificity. Artif.
Intell., 133(1-2):35–85, 2001.

10. F. Fages. Consistency of Clark’s completion and existence of stable models. Methods of
Logic in Computer Science, 1:51–60, 1994.

11. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In
ICLP/SLP, pages 1070–1080. MIT Press, 1988.

12. A. C. Kakas and P. Mancarella. Negation as stable hypotheses. In LPNMR, pages 275–288.
MIT Press, 1991.

13. A. C. Kakas and F. Toni. Computing argumentation in logic programming. J. Log. Comput.,
9(4):515–562, 1999.

14. L. M. Pereira and A. M. Pinto. Revised stable models - a semantics for logic programs. In
G. Dias et al., editor, Progress in AI, volume 3808 of LNCS, pages 29–42. Springer, 2005.

15. A. M. Pinto. Explorations in revised stable models — a new semantics for logic programs.
Master’s thesis, Universidade Nova de Lisboa, February 2005.

16. L. Soares. Revising undefinedness in the well-founded semantics of logic programs. Master’s
thesis, Universidade Nova de Lisboa, 2006.

17. F. Toni and R. A. Kowalski. An argumentation-theoretic approach to logic program transfor-
mation. In LOPSTR, volume 1048 of LNCS, pages 61–75. Springer, 1996.

