Modelling the Safety and Surveillance of the AI Race

The Anh Han1,*, Luís Moniz Pereira 2, Francisco C. Santos3,4, Tom Lenaerts4,5

July 26, 2019

1 School of Computing and Digital Technologies, Teesside University, Middlesbrough, UK TS1 3BA
2 NOVA Laboratory for Computer Science and Informatics (NOVA LINCS), Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
3 INESC-ID and Instituto Superior Tecnico, Universidade de Lisboa
4 Université Libre de Bruxelles, Boulevard du Triomphe CP212, Brussels, Belgium
5 Vrije Universiteit Brussel, Boulevard de la Plaine 2, 1050 Ixelles, Belgium
Abstract

Innovation, creativity, and competition are some of the fundamental underlying forces driving the advances in Artificial Intelligence (AI). This race for technological supremacy creates a complex ecology of choices that may lead to negative consequences, in particular, when ethical and safety procedures are underestimated or even ignored. Here we resort to a novel game theoretical framework to describe the ongoing AI bidding war, also allowing for the identification of procedures on how to influence this race to achieve desirable outcomes. By exploring the similarities between the ongoing competition in AI and evolutionary systems, we show that the timelines in which AI supremacy can be achieved play a crucial role for the evolution of safety prone behaviour and whether influencing procedures are required. When this supremacy can be achieved in a short term (near AI), the significant advantage gained from winning a race leads to the dominance of those who completely ignore the safety precautions to gain extra speed, rendering of the presence of reciprocal behavior irrelevant. On the other hand, when such a supremacy is a distant future, reciprocating on others’ safety behaviour provides in itself an efficient solution, even when monitoring of unsafe development is hard. Our results suggest under what conditions AI safety behaviour requires additional supporting procedures and provide a basic framework to model them.

Keywords: AI race modelling, emergence, cooperation, evolutionary game theory.
1 Introduction

Interest in Artificial intelligence (AI) has exploded in academia and businesses in the last few years. This excitement is, on one hand, due to a series of superhuman performances which have been exhibited. Although mostly successful in highly specialised tasks, exceeding human ability and precision, these AI success stories appear often in the imagination of the general public as Hollywood-like Artificial General Intelligence (AGI), able to perform a broad set of intellectual tasks while continuously improving itself. Large scale surveys show that AI researchers expect that AI systems will eventually reach and then exceed human-level performance in many of the surveyed tasks, although the timelines are quite diverse. On the other hand, the excitement is promoted by business leaders as they anticipate important gains from turning their previously idle data into active assets within business plans. All these (un)announced business and political ambitions indicate that an AI race or bidding war has been triggered, where stake-holders in private and public sectors are competing to be the first to cross the finish line and hence the leader in the development and deployment of powerful, transformative AI.

Irrespectively of the anticipated benefits, many actors have urged for due diligence as i) these AI systems can also be employed for more nefarious activities, e.g. espionage and cyberterrorism and ii) when trying to be the first/best then some ethical consequences as well as safety procedures may be underestimated or even ignored, notwithstanding the issue that certain claims about achieving AGI may be overly optimistic or just oversold. These concerns are highlighted by the many letters of scientists against the use of AI in military applications and the proclamations on ethical use of AI in the world.

While potential AI disaster scenarios are many, the uncertainties in accurately predicting these risks and outcomes are high. As insufficient data is available, the essential approach
to clearly grasp what can be expected is to create models, i.e. dynamic descriptions of the key features (of parts thereof) of this race in order to understand what outcomes are possible under certain conditions and what crucial factors play an essential role. The Future of Life Institute (FLI) as well as other similar institutes have therefore launched open calls for projects to foster research on the topic of AI safety and the exploration of the AI race dynamics we are currently witnessing. This manuscript provides a baseline model established within one of the FLI awarded projects in 2018, discussing under what conditions unsafe versus safe AI developments may lead to disastrous outcomes, in races involving two or many more participants. This baseline model resorts to the framework of evolutionary game theory19,31 to study the dynamics and emergent behaviours within an AI development race.

Concretely, the model assumes that in order to achieve AI supremacy (AIS) in a domain X, a number of development steps or rounds (W) are required. Distinct values of W capture different regimes of AIS: in the limit of small W, AIS can be expected to happen in the near future (near AIS regime) while when W is large, AIS will only be achieved far away in time (distant AIS regime). Large-scale surveys and analysis of AI experts on their beliefs and predictions about progress in AI suggest that the perceived timeline for AIS is highly diverse across domains and regions4,16. Because this is a race, each participant acts by herself during each step in order to reach the target and differs in the speed (s) with which they can complete each of the subtasks at each round. A fast participant will, therefore, reap benefits (b) at each step, winning the ultimate prize (B) once it carries out the final step achieving AIS in the domain X. If multiple participants reach the end of intermediate steps or the final target at the same time they share the benefits b and B. Yet, one can also assume that higher s also implies that some ethical/safety procedures might be ignored. It takes time and effort to comply to precautionary requirements or acquire ethical approvals. Following a safe development process is thus not only more costly (c), it also results in a slower development speed. One can therefore consider that participants in
the AI race that act safely (SAFE) pay a cost $c > 0$, which is not paid by participants that ignore ethical/safety procedures (UNSAFE) and ii) the speed of development of UNSAFE participants is faster ($s > 1$), compared to the speed of SAFE participants being normalised to $s = 1$. So essentially a SAFE player needs W rounds to complete the task, whereas an UNSAFE player will only need W/s. Yet, UNSAFE strategists may suffer a disaster, which is assumed here to increase with the number of times the safety requirements have been skirted. The probability that disaster occurs is denoted by p_r and assumed to increase linearly with the frequency the participant violates the safety precautions. For example, if a participant always plays SAFE then $p_r = 0$, while the participant that only follows it half of the time has a total probability of $p_r/2$ over all rounds. Moreover, if some sort of institutional or peer monitoring comes into place, we assume that with some probability p_{fo} those playing UNSAFE might be found out and disclosed concerning their unsafe development and their products will therefore not be used, leading to 0 benefit for the current round.

Let us consider a population of size Z in which players engage in a pairwise or N-player race, where they can choose to consistently follow safety precautions (denoted by AS, the SAFE players) or completely ignore them (denoted by AU, the UNSAFE players). Additionally, we assume that, upon realising that UNSAFE players ignore safety precautions to gain a greater development speed leading to the winning of the prize B (and a larger share of the intermediate benefit in each round, b, especially in the regime of hard monitoring or low p_{fo}), SAFE players might adopt the same course of actions to avoid further disadvantage. It is indeed observed that competing countries or companies might engage in such a safety-cutting corner behaviour in deploying unsafe AI to avoid falling behind. We therefore consider, in line with previous literature of repeated games, an alternative strategy (denoted by CS, the conditionally safe strategy), which plays SAFE in the first round and then adopts the move its co-player used in the previous round. This so-called direct reciprocity strategy has been shown to promote
cooperation in the context of repeated social dilemmas, outperforming consistently defective individuals\,5,31. In the following, we will examine, across different regimes of the AIS, under which conditions (for instance, regarding the disaster probability), safety behaviour should to be promoted or externally enforced. Similarly, we shall address when one should omit the safety precautions for a larger social welfare and when the benefits gained in doing so exceeds the disaster risk. Moreover, given the first-mover advantage of UNSAFE players in the race to AI supremacy (i.e., acquire B), we will examine whether (and under what regime of the AIS) conditional behaviours can still act as a promoting mechanism to achieve safety when required, or otherwise other mechanisms are needed. For the sake of presentation, we start by describing the pairwise race model and go on to describe the general N-player ($N \geq 2$) race results afterwards.

\section{Results}

We calculate the long-term frequency of each possible behavioural composition of the population, the so-called stationary distribution (cf. Methods). The stochastic evolutionary dynamics of the population occurs in the presence of errors, both in terms of errors of imitation and of behavioural mutations, the latter representing an open exploration of the possible strategies19,31.

Figure 1 shows the frequencies of the three strategies AS, AU and CS across a spectrum of regimes of AIS: i) near AIS: in this regime, AIS will be achieved after a limited number of development steps, making the ultimate prize of winning the race B highly significant (i.e. $B/W \gg b$); ii) distant AIS (very large W): in this regime, AIS will not be achieved in a foreseeable future, making the ultimate prize of winning the race B insignificant compared to the cost and benefit at each step of the race (i.e. $B/W \ll b, c$). We observe that in the near AIS regime, AU dominates the population whenever the probability that an AI disaster occurs
Figure 1. Different regimes of AIS: when W is small (near AIS) vs when W is large (distant AIS). Panels (a) and (b) show the frequency of each strategy in a population of AS, AU and CS ($p_r = 0.75$). In the near AIS regime, AU dominates the population, while AS and CS outperform AU in the distant AIS regime. This observation is valid for sufficiently small p_r, see panel (c) ($p_{fo} = 0.1$). For a high risk probability of disaster occurring due to ignoring safety precautions (high p_r), AU has a low frequency in both regimes. Parameters: $c = 1$, $b = 4$, $W = 100$, $B = 10000$, $\beta = 0.01$, population size, $Z = 100$.

due to unsafe development (p_r) is not too high (Figure 1c; in panels a and b, $p_r = 0.75$). In the distant AI regime, all strategies are present in the population, where AS and CS are slightly more frequent (Figure 1a-b). When an AI disaster is more likely to occur due to unsafe developments (i.e. large p_r, see Figure 1c), AU has a low frequency in both regimes. Moreover, AU frequency increases much more dramatically from high risk to low risk in the near AIS regime, compared to the distant AIS one (also see SI Figure 9 for other values of p_{fo}). It implies that more efforts and care are needed in the near AIS regime, since that can dramatically change the safety outcome of the race. Below we elaborate on each regime of AIS in greater detail.

Near AIS regime: speedy development overcomes the risk

First of all, we describe the conditions under which a population of individuals closely following safety precautions actually has a greater social welfare or average payoff than that of a
population of players never following safety precautions, that is, when $\Pi_{AS,AS} > \Pi_{AU,AU}$. In
the near AIS regime, it is equivalent to (see SI for the proof)

$$p_r > 1 - \frac{1}{s}.$$ \hspace{1cm} (1)

That is, when the risk probability of AI disaster occurring due to the omission of safety precau-
tions is large enough compared to the gain of a greater development speed by doing so, safety
development is the preferred collective outcome for the population. On the other hand, when
this risk is shallow compared to the gain of omitting safety precautions, UNSAFE is the more
beneficial collective outcome. It would be detrimental however, to prevent this outcome from
emerging (i.e. over-regulation of AI development).

On the other hand, we found that both the safety complying strategies, AS and CS, are
preferred over AU by natural selection (i.e. see risk-dominance analysis in SI) when

$$p_r > 1 - \frac{1}{3s}.$$ \hspace{1cm} (2)

Thus, the two boundary conditions in Equations 1 and 2 divide the parameter space $s-p_r$ into
three regions, see Figure 2a: (I) when $p_r > 1 - \frac{1}{3s}$: safety development is both the preferred
collective outcome and selected by evolution (see Figure 2b for an example: for $s = 1.5$ the
condition becomes $p_r > 0.78$); (II) when $1 - \frac{1}{3s} > p_r > 1 - \frac{1}{s}$: although it is more desirable
to ensure safety development as the collective outcome, natural selection/social learning would
nevertheless drive the population to the state where safety precaution is mostly ignored (see
Figure 2c for an example: for $s = 1.5$ the condition becomes $0.78 > p_r > 0.33$); (III) when
$p_r < 1 - \frac{1}{s}$, unsafe development is both the preferred collective outcome and the one selected
by evolution. Numerical results (cf. Methods below) in Figure 2 confirm this division of the
regions. In SI, we show that these observations are also robust for other intensities of selection,
Figure 2. Near AIG regime. (a) Frequency of AU as a function of the speed gained, s, and the probability of AI disaster occurring, p_r, when ignoring safety. In general, we observe that when the risk probability is small, AU is dominant. The larger s is, AU dominates for a larger range. Region (II): The two solid lines inside the plots indicate the boundaries $p_r \in [1 - 1/s, 1 - 1/(3s)]$ where safety development is the preferred collective outcome but unsafe development is selected by evolution. Regions (I) and (III) indicate where safe (resp., unsafe) development is both the preferred collective outcome and the one selected by evolution. Panels (b) ($p_r = 0.9$) and (c) ($p_r = 0.75$): transition probabilities and stationary distribution in a population of AS, AU, and CS, with $s = 1.5$. AU dominates in panel (c), corresponding to region (II), while AS and CS dominate in panel (b), corresponding to region (I). We only show the stronger directions. Parameters: $c = 1, b = 4, W = 100, p_{fo} = 0.5, B = 10000, \beta = 0.01$, population size, $Z = 100$.
In regions (I) and (III), the preferred collective outcomes are selected by evolution. In the latter, a significant speed gained by unsafe development actually compensates for the risk due to ignoring safety precautions: taking risks (AI innovation) is better off because of high gain. Region (II) is the most important one to study as additional mechanisms are needed to promote safety behaviour against the unsafe one.

Note that the boundaries established in Equations 1 and 2 are applicable for both CS and AS when playing against AU. Thus, similar results are obtained if we consider a population of just two strategies AS and AU (see SI, Figure 8). Adding CS does not change the overall outcome and conditions for safety development to be selected.

In short, we have seen that in the near AIS regime, conditionally safe behaviours cannot overcome the speedy development advantage gained by completely ignoring the safety precautions. This points to the fact that external interference such as institution incentives need to be established, in order to effectively regulate safety behaviour in this regime. Moreover, sufficient care needs to be put in place to avoid over-regulation preventing a beneficial extra-speedy development (in region (III)). It is noteworthy that our this result is robust when we consider the AI race with among N teams (for all $N \geq 2$, see SI). The main difference when increasing the group size is that the upper bound of region (II) would increase. That is, unsafe behaviour is selected by natural selection for a larger range of the parameter space $s-p_r$. The reason is, the larger the group size, the greater the chance that there is at least one AU player in the group (with other AS and CS players), who would then win the development race.
Figure 3. Distant AIS regime. (a) Frequency of AU as a function of the probability of unsafe development being found out, p_{fo}, and the probability of AI disaster occurring p_r, when the number of development steps to reach AIS is very large ($W = 10^6$). AU has a low frequency whenever p_{fo} or p_r are sufficiently high. (b-c): transition probabilities and stationary distribution ($p_r = 0.75$). Against AU, AS performs better than CS when p_{fo} is large, which is reversed when p_{fo} is small. Parameters: $c = 1$, $b = 4$, $s = 1.5$, $B = 10000$, $\beta = 0.01$, population size, $Z = 100$.

Distant AIS regime: conditional behaviour prevails even under weak monitoring

When AIS is unachievable in the short term, the effect of increasing p_r (from low to high risk) on the frequency of safe and unsafe behaviours is less dramatic than in the near AIS regime, see Figure 3. In general, all strategies are present, where the frequency of AU decreases as a function of p_{fo} and p_r. In contrast to the near AIS regime, the conditionally safe strategy, CS, contributes significantly to enhancing the safety behaviour outcome. Indeed, CS outperforms AS when the probability of uncovering an unsafe development in each round p_{fo} is small (which is is reversed for larger p_{fo}) (see Figure 1a-b; see also SI Figure 6). That is, when monitoring of unsafe development is highly efficient (i.e. large p_{fo}), it is best to follow closely the safety precautions to avoid AI disaster by all means, even when facing unsafe opponents. However, when this monitoring is not efficient, acting conditionally provides the more efficient solution to
prevent unsafe behaviour as it can avoid being disadvantageous after the first round. These ob-
servations can also be studied analytically (see SI). Namely, we derive conditions under which
AS and CS are selected over AU by natural selection, as well as when safety behaviour is the
preferred collective outcome than the unsafe one (see SI, Figure 4). For a greater efficiency of
monitoring (the larger p_{fo}) or a lower speed gained by omitting safety precaution (the smaller
s), we show that a lower threshold for the disaster risk p_r is required for those conditions to
hold. Moreover, this threshold for AS is higher than that for CS when p_{fo} is small, which is
reversed when it is large. As shown in the SI, all these observations remain valid if, instead of
pairwise interactions, we consider a general N-team AI race.

3 Discussion

Our results suggest that it is significantly more challenging to achieve safety behaviour in the
regime where AI supremacy is achievable within a limited number of development steps (near
AIS) than when it is only feasible at a distant future (distant AIS). In the former regime, the
extra development speed gained by ignoring safety precautions gives the unsafe players the
first-mover advantage that could not be overcome by a conditionally safe strategy (CS). To
the contrary, in the latter regime, such a conditional strategy provides an efficient pathway to
achieve safety behavior, especially when the monitoring of unsafe development is difficult.

Our results thus point out that it is essential to provide in the near AIS regime the necessary
supporting mechanisms (such as suitable rewards and sanctions)17,34 to control the speed of
AI development of rogue teams, in order to drive the AI development dynamics towards more
beneficial directions and outcomes. Without such mechanisms, the unconditional unsafe players
(AU) would always win the race against any other strategies that play SAFE at any development
round (such as CS players in our analysis, which only does so only in the first round), achieving
a significant payoff advantage. On the other hand, in the distant AIS regime, because reciprocal
behaviour by itself is sufficient to ensure high levels of beneficial safe behaviour, less effort
would be needed to ensure sustainable AI systems. This observation is in line with the response
to the risk of AGI by many researchers that ‘no action needed’ because AGI development will
take a long time or will not be possible at all8,13 (see also a survey of responses in ref.34).

Moreover, our results imply that by advertising that AGI is about to arrive might lead to an
acceleration of the AI race, and to a decrease of safety precautions. In other words, our results
thus support the argument that the rhetoric and framing of the AI development race and how
close it is to achieve the AGI might strongly influence the dynamics and outcome of the AI
race6,11.

In the current models we assume that an AI disaster might occur only when a true AI or AGI
has been achieved, i.e. after the W development steps have been completed. However, it might
be the case that some smaller scaled disasters might occur before that milestone, especially
when it is not clear whether and when AGI will or has been be achieved, and there might even
be false beliefs regarding its presence. What is more, parties may release over simplistic AI but
deliberatively advertise more than it can achieve, thereby leading to unforeseen usage disasters.
We will analyse these scenarios in future works.

Last but not least, it is noteworthy that despite focusing on AI development race in this
paper, our results are generally applicable to any kind of racing situations such as technological
innovation problems where there is a significant advantage to be achieved when reaching a
target first.
4 Methods

AI race model definition. The AI development race is modeled as a repeated two-player game, consisting of W development rounds. In each round, the players can collect benefits from their intermediate AI products, depending on whether they choose to play SAFE or UNSAFE. Assuming a fixed benefit, b, from the AI market, teams will share this benefit proportionally to their development speed. Moreover, we assume that with some probability p_{fo} those playing UNSAFE might be found out about their unsafe development and their products won’t be used, leading to 0 benefit. Thus, in each round of the race, we can write the payoff matrix as follows (with respect to the row player)

$$
\pi = \begin{pmatrix}
 \text{SAFE} & \text{UNSAFE} \\
 -c + \frac{b}{2} & -c + (1 - p_{fo}) \frac{b}{s+1} + p_{fo}b \\
 (1 - p_{fo}) \frac{sb}{s+1} & (1 - p_{fo}^2) \frac{b}{2}
\end{pmatrix}.
$$

(3)

For instance, when two SAFE players interact, each needs to pay the cost c and they share the benefit b. When a SAFE player interacts with an UNSAFE one the SAFE player pays a cost c and obtains the full benefit b in case the UNSAFE co-player is found out (with probability p_{fo}), and obtains a small part of the benefit $b/(s+1)$ otherwise (i.e. with probability $1 - p_{fo}$). When playing with a SAFE player, the UNSAFE does not have to pay any cost and obtains a larger share $bs/(s+1)$ when not found out. Finally, when an UNSAFE player interacts with another UNSAFE, it obtains the shared benefit $b/2$ when both are not found out and the full benefit b when it is not found out while the co-player is found out, and 0 otherwise. The payoff is thus:

$$
(1 - p_{fo}) [(1 - p_{fo})(b/2) + p_{fo}b] = (1 - p_{fo}^2) \frac{b}{2}.
$$

The payoff matrix defining averaged payoffs
for the three strategies reads

\[
\Pi = \begin{pmatrix}
\frac{B}{2W} + \pi_{11} & \pi_{12} & \frac{B}{2W} + \pi_{11} \\
(1 - p_r) \left(\frac{sB}{W} + \pi_{21} \right) & (1 - p_r) \left(\frac{sB}{2W} + \pi_{22} \right) & \left(1 - p_r \right) \left[\frac{sB}{W} + \frac{s}{W} \left(\pi_{21} + \left(\frac{W}{s} - 1 \right) \pi_{22} \right) \right] \\
\frac{B}{2W} + \pi_{11} & \frac{s}{W} \left(\pi_{12} + \left(\frac{W}{s} - 1 \right) \pi_{22} \right) & \frac{B}{2W} + \pi_{11}
\end{pmatrix}
\]

(4)

Evolutionary Dynamics in Finite Populations. We adopt here Evolutionary Game Theory (EGT) methods for finite populations to derive analytical results and numerical observations. In a repeated games, players’ average payoff over all the game rounds (see the payoff matrix in Equation 4) represents their fitness or social success, and evolutionary dynamics is shaped by social learning, whereby the most successful players will tend to be imitated more often by the other players. In the current work, social learning is modeled using the so-called pairwise comparison rule, assuming that a player A with fitness f_A adopts the strategy of another player B with fitness f_B with probability given by the Fermi function, \((1 + e^{-\beta(f_B - f_A)})^{-1}\), where β conveniently describes the selection intensity ($\beta = 0$ represents neutral drift while $\beta \to \infty$ represents increasingly deterministic selection). For convenience of numerical computations, but without affecting analytical results, we assume here small mutation limit. As such, at most two strategies are present in the population simultaneously, and the behavioural dynamics can thus be described by a Markov Chain, where each state represents a homogeneous population and the transition probabilities between any two states are given by the fixation probability of a single mutant. The resulting Markov Chain has a stationary distribution, which describes the average time the population spends in an end state. In two-player game, the average payoffs in a population of k A players and $(Z - k)$ B players...
can be given as below (recall that Z is the population size), respectively,

$$P_A(k) = \frac{(k-1)\Pi_{A,A} + (Z-k)\Pi_{A,B}}{Z-1}, \quad P_B(k) = \frac{k\Pi_{B,A} + (Z-k-1)\Pi_{B,B}}{Z-1}. \quad (5)$$

The fixation probability that a single mutant A taking over a whole population with $(Z-1)$ B players is as follows:

$$\rho_{B,A} = \left(1 + \sum_{i=1}^{Z-1} \prod_{j=1}^{i} T^-(j) \prod_{j=1}^{T^+(j)} \right)^{-1}, \quad (6)$$

where $T^\pm(k) = \frac{Z-k}{Z} \left[1 + e^{\pm\beta[P_A(k) - P_B(k)]}\right]^{-1}$ describes the probability to change the number of A players by \pm one in a time step. Specifically, when $\beta = 0$, $\rho_{B,A} = 1/Z$, representing the transition probability at neural limit.

Having obtained the fixation probabilities between any two states of a Markov chain, we can now describe its stationary distribution. Namely, considering a set of s strategies, $\{1, \ldots, s\}$, their stationary distribution is given by the normalised eigenvector associated with the eigenvalue 1 of the transposed of a matrix $M = \{T_{ij}\}_{i,j=1}^s$, where $T_{ij,j\neq i} = \rho_{ji}/(s-1)$ and $T_{ii} = 1 - \sum_{j=1,j\neq i}^s T_{ij}$.

Risk-dominant conditions. We can determine which selection direction is more probable: an A mutant fixating in a homogeneous population of individuals playing B or a B mutant fixating in a homogeneous population of individuals playing A. When the first is more likely than the latter, A is said to be **risk-dominant** against B, which holds for any intensity of selection and in the limit of large N when

$$\pi_{A,A} + \pi_{A,B} > \pi_{B,A} + \pi_{B,B}. \quad (7)$$
5 Acknowledgements

This work is supported by Future of Life Institute (grant RFP2-154). L. M. P. acknowledges support from FCT/MEC NOVA LINCS PEst UID/CEC/04516/2019. F. C. S. acknowledges support from FCT Portugal (grants PTDC/EEI-SII/5081/2014, PTDC/MAT/STA/3358/2014).

References

6 Supporting Information (SI)

6.1 Analytical conditions for viability of safety behaviour

6.1.1 When safety behaviour is the preferred collective outcome

We derive analytical condition for which a population of players always following safety precautions has a greater social welfare or average payoff than that of a population of players never following safety precautions, that is, $\Pi_{AS,AS} > \Pi_{AU,AU}$:

$$\frac{B}{2W} + \pi_{11} > (1 - p_r) \left(\frac{sB}{2W} + \pi_{21} \right).$$

(8)

Following the definitions of different AIS regimes in the main texts, we simplify this condition for the two regimes. First, in the near AI regime where $B/W \gg b$, Equation 8 is equivalent to

$$p_r > 1 - \frac{1}{s}.$$

(9)

Now, in the distant AIS regime where $W \rightarrow \infty$ (i.e. $B/W \ll c$), Equation 8 is equivalent to:

$$\pi_{11} > (1 - p_r)\pi_{21}.$$

(10)

which is equivalent to

$$p_{fo} > 1 - \frac{(b - 2c)(s + 1)}{2sb(1 - p_r)}.$$

(11)

or equivalently

$$p_r > 1 - \frac{(b - 2c)(s + 1)}{2sb(1 - p_{fo})}.$$

(12)
6.1.2 When safety behaviour is selected by evolution

We now derive conditions for which AS and CS are risk-dominant against AU, which are the case if and only if, respectively,

\[
\frac{B}{2W} + \pi_{11} + \pi_{12} > (1-p_r) \left(\frac{3sB}{2W} + \pi_{21} + \pi_{22} \right).
\]

(13)

\[
\frac{s}{W} \left(\pi_{12} + \left(\frac{W}{s} - 1 \right) \pi_{22} \right) + \frac{B}{2W} + \pi_{11} > (1-p_r) \left[\frac{sB}{2W} + \frac{sB}{W} + \frac{s}{W} \left(\pi_{21} + \left(\frac{W}{s} - 1 \right) \pi_{22} \right) + \pi_{22} \right].
\]

(14)

In the near AI regime where \(B/W \gg b \), both equations are simplified to

\[
p_r > 1 - \frac{1}{3s}.
\]

(15)

On the other hand, in the distant AIS regime where \(W \to \infty \) (i.e. \(B/W \ll c \)), they are simplified to, respectively

\[
\pi_{11} + \pi_{12} > (1-p_r)(\pi_{21} + \pi_{22}).
\]

(16)

\[
\pi_{11} > (1-2p_r)\pi_{22}.
\]

(17)

which are equivalent to, respectively

\[
p_r > \frac{4c(1+s) - b \left(2 + p_{fo}^2 + (-2 + p_{fo}(4 + p_{fo}))s \right)}{b(1 - p_{fo})(1 + p_{fo} + (3 + p_{fo})s)}.
\]

(18)
Thus, for safety behaviour to be both selected and the preferred outcome, all the p_r must satisfy all the Eqs (19), (18) and (12).

It is clear to see that the left hand sides of Eqs (19) and (12) are decreasing functions of p_{fo} whenever $b \geq 2c$. We now show that it is also the case for the left hand side of Eq 18. Indeed, its first order derivative by p_{fo} gives

$$\frac{2(1 + s) \left[b \left(4s + p_{fo}^2s + p_{fo}(3 + s) \right) - 4c(p_{fo} + s + p_{fo}s) \right]}{b(1 - p_{fo})^2(1 + p_{fo} + 3s + p_{fo}s)^2}$$

which is negative whenever $b \geq 2c$ because

$$(4s + p_{fo}^2s + p_{fo}(3 + s)) - 2(p_{fo} + s + p_{fo}s) = 2s + p_{fo}^2s + p - p_{fo}s > 0$$

In short, we have shown that for $b \geq c$, the larger p_{fo} the easier the conditions for the safety behaviour to be both selected and the preferred outcome. Figure 4 validates these observations numerically. Similarly, we also can show that these conditions are harder to achieve the larger s is.

Thus, the hardest conditions are obtained when $p_{fo} = 0$, which is equivalent to

$$p_r > \max\left\{ 1 - \frac{(b - 2c)(s + 1)}{2sb}, \frac{4c(s + 1) + 2b(s - 1)}{b(1 + 3s)}, \frac{c}{b} \right\}. \quad (20)$$

It is easily seen that the right hand side is greater than 1 iff $b < 2c$, i.e. this condition would not be achieved (since $p_r \leq 1$) in that case. Assuming $b \geq 2c$, since $\frac{4c(s+1)+2b(s-1)}{b(1+3s)} > 1$ -
Figure 4. Distant AIS regime ($W = 10^6$). The lines (panel a) and curves (panel c) indicate the conditions above which safety behavior is the preferred collective outcome (black ones) and when AS and CS are risk-dominant against AU (green and blue ones, respectively). The threshold for AS is greater than than CS when p_{fo} is small, which is reversed when p_{fo} is large. (b-d) Frequency of AU as a function of p_r and p_{fo} (panel b; $s = 1.5$) or s (panel d; $p_{fo} = 0$), respectively. Parameters: $c = 1, b = 4, B = 10000, \beta = 0.01$, population size, $Z = 100$.
Figure 5. Distant AGI regime. Frequency of AU when there is no monitoring ($p_{fo} = 0$), for varying p_r and s, for $\beta = 0.01$ (left panel) and $\beta = 0.1$ (right panel). The solid lines indicate the conditions for varying p_{fo}, so that if p_r is above the lines safety behavior is the preferred collective outcome (black line), AS and CS are risk-dominant against AU (green and blue lines, respectively). When there is no monitoring or weak monitoring, CS is more efficient than AS in dealing with AU (green line is always below blue line). Parameters: $c = 1$, $b = 4$, $B = 10000$, $W = 10^6$, population size, $Z = 100$.
Figure 6. Distant AIS regime. Frequency of AU, AS and CS as a function of the probability of unsafe development being found out, p_{fo}, and the probability of AI disaster occurring p_r, when the number of development steps to reach AIS is very large ($W = 10^6$). AU has a low frequency whenever p_{fo} or p_r are sufficiently high. AS performs best when p_{fo} is large.

Parameters: $c = 1, b = 4, s = 1.5, B = 10000, \beta = 0.01$, population size, $Z = 100$.

\begin{equation}
\frac{(b-2c)(s+1)}{2sb} > \frac{c}{k},
\end{equation}

it can be further simplified to

\begin{equation}
p_r > \frac{4c(s + 1) + 2b(s - 1)}{b(1 + 3s)}
\end{equation}

which is the condition for AS to be risk-dominant against AU (see Figure 4 for an example when $s = 1.5$).
6.2 Multiplayer AI race

In this section we describe the N-team model of the AI race, extending the two-team model in the main text. We then describe the Methods used for analysing multi-player games.

6.2.1 N-player AI Race definition

The AI development race is modeled as a repeated N-player game, consisting of W development rounds. In each round, the players can collect benefits from their intermediate AI products, depending on whether they choose to play SAFE or UNSAFE. Assuming a fixed benefit, b, from the AI market, teams will share this benefit proportionally to their development speed. Moreover, we assume that with some probability p_{fo} those playing UNSAFE might be found out.
Figure 8. Frequency of AU in a population of two strategies, AS and AU, as a function of the speed gained when ignoring safety, s, and the the risk probability p_r. In general, we observe that when the risk probability is small, AU is dominant. Also, the larger B and s, AU dominates for a larger range. The two solid lines inside the plots indicate the boundaries $p_r \in [1 - 1/(3s), 1 - 1/s]$ where safety development is preferred but non-safety development is preferable (risk-dominant against CS and AS). The observations are valid for varying the selection intensities: $\beta = 0.001, 0.01, 0.1$ for panels (a), (b) and (c), respectively. Other parameters: $c = 1, b = 4, W = 100, p_{fo} = 0.5, B = 10000$, population size, $Z = 100$.

Figure 9. Different regimes of AIS: when W is small (near AIS) vs when W is large (distant AIS). Frequency of AU for different p_{fo}. Parameters: $c = 1, b = 4, W = 100, B = 10000, \beta = 0.01$, population size, $Z = 100$.
about their unsafe development and their products won’t be used, leading to 0 benefit.

In a group of where \(k \) players choosing SAFE and \((N-k)\) choosing UNSAFE, the payoffs for players adopting SAFE and UNSAFE in each round of the race are, respectively

\[
\pi(k)_{SAFE} = \begin{cases}
-c + (1 - p_{fo}) \frac{b}{k + s(N-k)} + p_{fo} \frac{b}{k} & \text{if } 1 \leq k < N \\
 c + \frac{b}{N} & \text{if } k = N
\end{cases}
\]

\[
\pi(k)_{UNSAFE} = (1 - p_{fo}) \frac{sb}{k + s(N-k)} \text{ for } 0 \leq k < N
\]

We consider a well-mixed, finite population of size \(Z \), where players repeatedly interact with each other in the AI development process, using one of the following three strategies:

- **AS** (always complies with safety precaution)
- **AU** (never complies with safety precaution)
- **CS** (conditionally safe, plays SAFE in the first round; then plays SAFE if everyone in the group plays SAFE in the previous round and plays UNSAFE otherwise)

The average payoffs for the repeated games (\(k \) denotes the number of AS or CS when playing with AU)

\[
\Pi_{AS, AU}(k) = \begin{cases}
\pi(k)_{SAFE} & \text{if } 1 \leq k < N \\
\frac{B}{NW} + \pi(k)_{SAFE} & \text{if } k = N
\end{cases}
\]

\[
\Pi_{AU, AS}(k) = p \left(\frac{sB}{W(N-k)} + \pi(k)_{UNSAFE} \right) \text{ for } 0 \leq k < N
\]

\(^1\text{For simplicity of calculation, we assume that all the UNSAFE players will be found out or not together, e.g. whenever investigation is done then they are found out; otherwise they are not.}\)
Figure 10. Different regimes of AGI: near AI (small W) vs distant AGI (large W).
Frequency of AS, AU and CS in a population of the three strategies in co-presence. Other parameters: $c = 1$, $b = 4$, $W = 100$, $s = 1.5$, $p_r = 0.75$, $B = 10000$, $N = 5$, $Z = 100$, $\beta = 0.1$.

$$\Pi_{CS, AU}(k) = \begin{cases} \frac{s}{W} (\pi(k)_{SAFE} + (\frac{W}{s} - 1)\pi(0)_{UNSAFE}) & \text{if } 1 \leq k < N \\ \frac{B}{NW} + \pi(k)_{SAFE} & \text{if } k = N \end{cases}$$

$$\Pi_{AU, CS}(k) = p \left[\frac{sB}{W(N-k)} + \frac{s}{W} (\pi(k)_{UNSAFE} + (\frac{W}{s} - 1)\pi(0)_{UNSAFE}) \right] \text{ for } 0 \leq k < N$$

6.2.2 Evolutionary dynamics for different AIS regimes in multiplayer game

In Figures 11 and 10 we show that the results for multi-player games are qualitatively the same as in two-player game, across different regimes of AIS (i.e. varying W).

6.2.3 Near AIS regime: multiplayer games conditions

Condition for $\Pi_{AS, AU}(N) > \Pi_{AU, AU}(0)$, ensuring that a population of players always following safety precautions has a greater social welfare or average payoff than that of a population of
Figure 11. Different regimes of AGI: near AI (small W) vs distant AGI (large W). Frequency AU in a population of the three strategies AS, AU and CS in co-presence, as a function of p_r and W. Other parameters: $c = 1$, $b = 4$, $W = 100$, $s = 1.5$, $p_r = 0.75$, $B = 10000$, $N = 5$, $Z = 100$, $\beta = 0.1$.
players never following safety precautions:

\[
\frac{B}{NW} + \pi(N)_{SAFE} > (1-p_r) \left(\frac{sB}{NW} + \pi(0)_{UNSAFE} \right).
\]

Assuming that \(B \gg b \), it is equivalent to:

\[p_r > 1 - \frac{1}{s}. \]

(22)

On the other hand, AS is risk-dominant against both AU iff

\[
\sum_{k=0}^{N-1} \pi(k)_{AU,AS} < \sum_{k=1}^{N} \pi(k)_{AS,AU}
\]

(23)

For \(B \gg b \), it is equivalent to

\[p_r > 1 - \frac{1}{(NH_N)s}. \]

(24)

where \(H_N = \sum_{i=1}^{N} 1/i \). The same condition is obtained for CS to be risk-dominant against AU.

Thus, the two boundary conditions in Equations 22 and 24 divide the parameter space \(s-p_r \) into three regions, see Figure 12a: (I) when \(p_r > 1 - \frac{1}{(NH_N)s} \): safety development is both the preferred collective outcome and selected by evolution (see Figure 12b for an example: for \(s = 1.5 \) the condition becomes \(p_r > 0.94 \)); (II) when \(1 - \frac{1}{(NH_N)s} > p_r > 1 - \frac{1}{s} \): although it is more desirable to ensure safety development as the collective outcome, natural selection/social learning would drive the population to the state where safety precaution is mostly ignored (see Figure 12c for an example: for \(s = 1.5 \) the condition becomes \(0.94 > p_r > 0.33 \)); (III) when \(p_r < 1 - \frac{1}{s} \), unsafe development is both the preferred collective outcome and selected by evolution. Numerical results (cf. Methods below) in Figure 12 confirm this division of the regions.
Figure 12. Dotted lines indicate the condition in Equation 24 for different values of group size N. The solid black line indicates the condition in 22. The larger N the larger the region II and smaller the region I. In panels (b), (c): $N = 5$. Other parameters: $c = 1$, $b = 4$, $W = 100$, $s = 1.5$, $p_{fo} = 0.5$, $B = 10000$, $Z = 100$.

Figure 13. Frequency of AU as a function of the speed gained, s, and the probability of AI disaster occurring p_r, when ignoring safety. Other parameters: $c = 1$, $b = 4$, $W = 100$, $s = 1.5$, $p_{fo} = 0.5$, $B = 10000$, $Z = 100$.

We observed that, the larger s is, the greater the threshold for p_r. Moreover, a larger group size leads to a larger region (II) – AU is selected for a larger range of the parameter space s-p_r. The reason is that, the larger the group size, the greater the chance that there is at least one AU player in the group (with other AS/CS players), who would win the development race.

6.2.4 Methods: Payoffs over group samplings

In finite populations, the groups engaging in a N-player game are given by multivariate hypergeometric sampling. For transition between two pure states (small mutation), this reduces to sampling (without replacement) from a hypergeometric distribution\(^{18,31}\). Namely, in a population of size Z with x individuals of type i and $Z - x$ individuals of type j, the probability to select k individuals of type i and $N - k$ individuals of type j in N trials is\(^{18}\)

$$H(k, N, x, Z) = \frac{\binom{x}{k} \binom{Z - x}{N - k}}{\binom{Z}{N}}.$$

Recall that $\Pi_{ij}(k)$ and $\Pi_{ji}(k)$ (see the section above) denote the payoff of a strategist of type i and j, respectively, when the random sampling consists of k players of type i and $N - k$ players of type j (as derived above). Hence, in a population of x i-strategists and $(Z - x)$ j-strategists,
the average payoffs to \(i\) and \(j\) strategists are\(^{18,31}\):

\[
P_{ij}(x) = \sum_{k=0}^{N-1} H(k, N - 1, x - 1, Z - 1) \Pi_{ij}(k + 1)
\]

\[
= \sum_{k=0}^{N-1} \binom{x - 1}{k} \binom{Z - x}{N - 1 - k} \frac{Z - 1}{N - 1} \Pi_{ij}(k + 1),
\]

\[
P_{ji}(x) = \sum_{k=0}^{N-1} H(k, N - 1, x, Z - 1) \Pi_{ji}(k)
\]

\[
= \sum_{k=0}^{N-1} \binom{x}{k} \binom{Z - 1 - x}{N - 1 - k} \Pi_{ji}(k).
\]

Now, the probability to change the number \(k\) of agents using strategy \(i\) by \(\pm 1\) in each time step can be written as

\[
T^\pm(k) = \frac{Z - k}{Z} \frac{k}{Z} \left[1 + e^{\pm \beta (P_{ij}(k) - P_{ji}(k))}\right]^{-1},
\]

with \(T^+\) corresponding to an increase from \(k\) to \(k + 1\) and \(T^-\) corresponding to the opposite.

Fixation probability and stationary distribution are calculated in the same way as in two-player games.

Risk-dominance condition

An important analytical criteria to determine the evolutionary viability of a given strategy is whether it is risk-dominant with respect to other strategies\(^{15,25}\). Namely, one considers which selection direction is more probable: an \(i\) mutant fixating in a homogeneous population of agents playing \(j\) or a \(j\) mutant fixating in a homogeneous population of agents playing \(i\). When the first is more likely than the latter, \(i\) is said to be risk-dominant against \(j\)\(^{15}\), which holds for
any intensity of selection and in the limit of large population size Z when

$$\sum_{k=1}^{N} \Pi_{ij}(k) \geq \sum_{k=0}^{N-1} \Pi_{ji}(k).$$

(27)