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Abstract

Ontologies and rules are usually loosely coupled in knowledge representation formalisms.
In fact, ontologies use open-world reasoning while the leading semantics for rules use
non-monotonic, closed-world reasoning. One exception is the tightly-coupled framework
of Minimal Knowledge and Negation as Failure (MKNF), which allows statements about
individuals to be jointly derived via entailment from an ontology and inferences from rules.
Nonetheless, the practical usefulness of MKNF has not always been clear, although recent
work has formalized a general resolution-based method for querying MKNF when rules
are taken to have the well-founded semantics, and the ontology is modeled by a general
oracle. That work leaves open what algorithms should be used to relate the entailments
of the ontology and the inferences of rules. In this paper we provide such algorithms,
and describe the implementation of a query-driven system, CDF-Rules, for hybrid knowl-
edge bases combining both (non-monotonic) rules under the well-founded semantics and
a (monotonic) ontology, represented by a CDF Type-1 (ALCQ) theory.

KEYWORDS: Knowledge representation, well-founded semantics, description logics, im-
plementation.

1 Introduction

Ontologies and rules offer distinctive strengths for the representation and trans-

mission of knowledge over the Semantic Web. Ontologies offer the deductive ad-

vantages of first-order logics with an open domain, while guaranteeing decidability.

Rules employ non-monotonic (closed-world) reasoning that can formalize scenarios

under locally incomplete knowledge; rules also offer the ability to reason about fixed

points (e.g. reachability) which cannot be expressed within first-order logic.

∗ This work was partially supported by by project ERRO (PTDC/EIA-CCO/121823/2010). The
first author was supported by the grant SFRH/BD/64038/2009.
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Example 1

Consider a scenario application for a Customs Agency where an ontology is used to

assess and classify aspects of imports and exports. An ontology with such charac-

teristics would embrace several thousand axioms. In these axioms, as an example,

one can define several axioms about countries (e.g. Scandinavian countries are Eu-

ropean countries; Norway is a Scandinavian country; etc). Moreover, one can also

model in the ontology knowledge that is certain, in the sense that it does not allow

for exception. With such certain knowledge, first-order logics deduction is what is

desired. For example, in this scenario, one could state that Scandinavian countries

are always considered safe countries. All of this can be easily represented by an

ontology defined in a Description Logic (DL) language (Baader et al. 2007)1 (1).

ScandinavianCountry v EuropeanCountry
Norway : ScandinavianCountry

ScandinavianCountry v SafeCountry
(1)

Besides these axioms about countries, one may want to specify some additional

knowledge, e.g. for defining conditions about whether or not to inspect entering

shipments based on their country of origin. For example, we may want to state that

one should inspect any vessel containing a shipment coming from a country that is

not guaranteed to be safe. Note here that the closed world assumption is needed

to define such a statement. In fact, intuitively one wants to assume that, if one is

unsure whether given country is safe, then (at least for the sake of this statement)

the country should be considered unsafe and an inspection performed. When using

description logic with classical negation this behavior would not be obtained, as a

condition ¬SafeCountry(country) would only be true in case one knows for sure

that the country is not safe. However, this statement can be easily expressed by

using a (non-monotonic) rule with default negation2 as in (2).

inspect(X)← hasShipment(X,Country),not safeCountry(Country). (2)

Such rules are non-monotonic in the sense that further knowledge – in this case

about safety of countries – can invalidate previous conclusions about inspection.

This kind of non-monotonic rule is quite useful to specify default knowledge that

may be subject to exceptions. In this sense rule (2) can be seen as stating that by

default shipments should be inspected, but an exception to this default rule are

shipments coming from safe countries.

Note that defining some statements about a predicate using default rules does not

necessarily mean that all statements defining that predicate should be default rules.

For example, we may want to state that diplomatic shipments are not subject to

inspection, regardless their country of origin. Here no default reasoning is involved.

1 We write DL formulas with the usual notation and the usual DL operators (see (Baader et al.
2007)): so that the argument variable of a unary predicate is not displayed and the first letter
of the predicate’s name is capitalized.

2 We write rules in the usual notation for logic programming, where predicates names are non-
capitalized (even if common to the ontology, where they are capitalized), and variables are
capitalized and implicitly universally quantified in the rule head.
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Moreover, negation here is not the default negation of logic programming, but rather

classical negation. Such a statement could be modeled using normal logic programs

extended with explicit negation (Gelfond and Lifschitz 1990) with the rule:

¬inspect(X)← diplomaticShipment(X) (3)

or, having the possibility to use an ontology formalized as a fragment of first-order

logic, with a statement:

DiplomaticShipment v ¬Inspect (4)

However, these two representations of the statement above are not equivalent. In

particular, with axiom 4 one can conclude that a given shipment is not diplomatic

whenever one knows, by some other rule, that it should be inspected; this is not

the case with rule 3. The behavior of rules with explicit negation can be easily

modeled by using ontologies; for that it suffices to create a new concept standing

for the explicit negation, say NonInspect, replacing the explicitly negated literal in

the rule by this new concept, and adding the axiom NonInspect ≡ ¬Inspect. On

the contrary, with programs extended with explicit negation one cannot obtain the

full expressivity that is obtained with some of the DL-based languages for ontolo-

gies, simply because some of these languages belong to a higher complexity class.

Another important feature not supported by explicit negation but typically sup-

ported by DL-based ontologies, is the possibility of using existential quantification

as illustrated in Example 2 below.

The foregoing example briefly illustrates some advantages of combining features

of ontologies with features of logic programming-like rules, and of doing so in a way

that allows knowledge about instances to be fully inter-definable between rules and

an ontology (as happens with the predicate inspect/1 above, which is both defined

in the rules and the ontology).

In fact, this combination of ontology and rule languages has gained particular

importance in the context of the Semantic Web (Horrocks et al. 2006). In this

context, a family of languages for representing background knowledge in the Web,

OWL 2 (Hitzler et al. 2009), has been recommended by the World Wide Web

Consortium (W3C). OWL 2 languages are based on Description Logics (Baader

et al. 2007), which, as in the example above, employ open-world assumption. In

addition, the rule interchange language RIF (Morgenstern et al. 2010) has recently

been formally recommended to the W3C. RIF has many similarities with the logic

programming language used in the example above, and adopts the closed-world

assumption.

The existence of both rules and ontology languages should make it possible to

combine open and closed world reasoning, and this combination is indeed important

in several domains related to the Semantic Web. As a further example where this

combination is desired, consider the large case study described in (Patel et al. 2007),

containing millions of assertions concerning matching patient records to clinical

trials criteria. In this case study, open world reasoning is needed in deductions

about domains such as radiology and laboratory data: unless a lab or radiology test
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asserts a negative finding no arbitrary assumptions about the results of the test can

be made (e.g. we can only be certain that some patient does not have a specific kind

of cancer if the corresponding test is known to have negative result). However, as

observed in (Patel et al. 2007), closed world reasoning can and should be used with

pharmacy data to infer that a patient is not on a medication if this is not asserted.

The work of (Patel et al. 2007) applies only open world reasoning but claims that

the usage of closed world reasoning in pharmacy data would be highly desirable.

Similar situations occur e.g. in matchmaking using Semantic Web Services (cf.

(Grimm and Hitzler 08)), where again a combination of ontology languages relying

on open-world reasoning, with rule languages relying on closed-world reasoning is

considered highly desirable.

Several factors influence the decision of how to combine rules and ontologies into a

hybrid knowledge base. The choice of semantics for the rules, such as the answer-set

semantics (Gelfond and Lifschitz 1990) or the well-founded semantics (WFS) (van

Gelder et al. 1991), can greatly affect the behavior of the knowledge base system.

The answer-set semantics offers several advantages: for instance, description logics

can be translated into the answer-set semantics providing a solid basis for combining

the two paradigms (Baral 2002; Eiter et al. 2004a; Swift 2004; Motik 2006). On

the other hand, WFS is weaker than the answer-set semantics (in the sense that

it is more skeptical), but has the advantages of lower complexity and its ability

to be evaluated in a query-oriented fashion, which have led to its integration into

Prolog systems. Another possibility of maintaining the complexity under reasonable

bounds for Semantic Web applications, is to limit the expressivity of both the

ontological part of the knowledge base, and of the rules. For instance, (Cal̀ı et al.

2012) considers variants of Datalog that allow for existential quantification in rule

heads along with other features to support a restricted form of ontological reasoning,

yet restrict the rule syntax to obtain tractability.

Keeping to the general form of logic programming rules, but maintaining the

complexity of reasoning under reasonable bounds, several formalisms have con-

cerned themselves with combining ontologies with general WFS rules (Drabent and

Ma luszynski 2007; Eiter et al. 2004b; Knorr et al. 2008). Among these, the Well-

Founded Semantics for Hybrid MKNF knowledge bases (MKNFWFS), introduced

in (Knorr et al. 2008) and overviewed in Section 2 below, is the only one that allows

knowledge about instances to be fully inter-definable between rules and an ontology

that is taken as a parameter of the formalism. MKNFWFS assigns a well-founded

semantics to Hybrid MKNF knowledge bases, is sound w.r.t. the original semantics

of (Motik and Rosati 2007) and, as in (Motik and Rosati 2007), allows the knowl-

edge base to have both closed- and open-world (classical) negation. For comparisons

of MKNFWFS with the approaches for combining rules with ontologies mentioned

above, see (Knorr et al. 2011).

Example 2

The following fragment, adapted from an example in (Motik and Rosati 2007),

concerning car insurance premiums illustrates several properties of MKNFWFS .

The ontology consists of the following axioms, which state that Married and
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NonMarried are complementary concepts, that anyone who is not married is high

risk, and that anyone with a spouse is married:

NonMarried ≡ ¬Married

¬Married v HighRisk
∃Spouse.> vMarried.

MThe rule base consists of the following rules, which state that anyone who is not

known to be married is to be assumed to be non-married, that those who are known

to be high-risk should have a surcharge, and that those that have a known spouse

should have a discount:

K nonMarried(X)← K person(X),not married(X).

K surcharge(X)← K highRisk(X),K person(X).

K discount(X)← K spouse(X,Y ),K person(X),K person(Y ).

Note that married and nonMarried are defined both by axioms in the ontology

and by rules. Within the rule bodies, literals with the K or not operators (e.g.

K highRisk(X)) may require information both from the ontology and from other

rules; other literals are proven directly by the other rules (e.g. person(X)). Intu-

itively, Kϕ stands for “ϕ is known to be true”, whereas not ϕ stands for “ϕ is not

known to be true”.

Suppose person(john) were added as a fact (in the rule base). Under closed-

world negation, the first rule would derive nonMarried(john). By the first ontology

axiom, ¬married(john) would hold, and by the second axiom highRisk(john) would

also hold. By the last rule, surcharge(john) would hold as well. Thus the proof

of surcharge(john) involves interdependencies between the rules with closed-world

negation, and the ontology with open-world negation. At the same time the proof

of surcharge(john) is relevant in the sense that properties of other individuals, not

related to john either through rules nor axioms in the ontology, do not need to be

considered.

Now suppose that one learns that a person named Bill has a spouse, and that

Bob is the spouse of Ann. This can be formalized by adding the corresponding

facts for the predicate person, the fact spouse(bob, ann) and the DL assertion bill :

∃Spouse.>. In this case one would expect that neither Bill nor Bob are considered

high risk, and so should not have a surcharge; and that since Bob (contrary to

Bill) has a known spouse, he should have a discount. This is in fact the result of

MKNFWFS . Note that, it is only possible to represent the difference between the

situations of Bill and Bob by using the existential quantification of DL, something

that is not possible in logic programming alone.

In the original definition of MKNFWFS , the inter-dependencies of the ontology

and rules were captured by a bottom-up fixed-point operator with multiple levels

of iterations. Recently, a query-based approach to hybrid MKNF knowledge bases,

called SLG(O), has been developed using tabled resolution (?). SLG(O) is sound

and complete, as well as terminating for various classes of programs (e.g. datalog).
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In addition SLG(O) is relevant in the sense of Example 2, i.e. in general one does

not need to compute the whole model (for every object in the knowledge base)

to answer a specific query. This relevancy is a critical requirement for scalability

in numerous practical applications (e.g. in the area of Semantic Web): without

relevance a query about a particular individual I may need to derive information

about other individuals even if those individuals were not connected to I through

rules or axioms. This is also clear e.g. in the above mentioned case study about

matching patient records for clinical trials criteria (Patel et al. 2007). In this study

one is interested in finding out whether a given patient matches the criteria for a

given trial or, at most, which patients match a given criteria; for scalability, it is

crucial that such a query does not need to go over all patients and all criteria. In

a similar manner, when assessing a shipment in Example 1, it is infeasible to have

to consider all shipments into a country: the query must be relevant to be useful.

SLG(O) serves as a theoretical framework for query evaluation of MKNFWFS

knowledge bases, but it models the inference mechanisms of an ontology abstractly,

as an oracle. While this abstraction allows the resolution method to be parameter-

ized by different ontology formalisms in the same manner as MKNFWFS , it leaves

open details of how the ontology and rules should interact and these details must

be accounted for in an implementation.

This paper describes, in Section 4, the design and implementation of a proto-

type query evaluator3 for MKNFWFS , called CDF-Rules, which fixes the ontology

part to ALCQ theories, and makes use of the prover from XSB’s ontology man-

agement library, the Coherent Description Framework (CDF) (Swift and Warren

2003) (overviewed in Section 3). To the best of our knowledge, this implementa-

tion is the first working query-driven implementation for Hybrid MKNF knowledge

bases, combining rules and ontology and complete w.r.t. the well-founded semantics.

2 MKNF Well-Founded Semantics

Hybrid MKNF knowledge bases, as introduced in (Motik and Rosati 2007), are

essentially formulas in the logics of minimal knowledge and negation as failure

(MKNF) (Lifschitz 1991), i.e. first-order logics with equality represented as the con-

gruence relation ≈, and two modal operators K and not , which allow inspection

of the knowledge base. Intuitively, given a first-order formula ϕ, K ϕ asks whether

ϕ is known, while not ϕ checks whether ϕ is not known. A Hybrid MKNF knowl-

edge base consists of two components: a decidable description logic (DL) knowledge

base, translatable into first-order logic; and a finite set of rules of modal atoms.

Definition 1

Let O be a DL knowledge base built over a language L with distinguished sets of

countably infinitely many variables NV , along with finitely many individuals NI

and predicates (also called concepts) NC . An atom P (t1, . . . , tn), where P ∈ NC

3 The implementation is available from the XSB CVS repository as part of the CDF package in
the subdirectory packages/altCDF/mknf.
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and ti ∈ NV ∪ NI , is called a DL-atom if P occurs in O, otherwise it is called

non-DL-atom.

An MKNF rule r is of the form

K H ← K A1, . . . ,K An,not B1, . . . ,not Bm (5)

where Hi, Ai, and Bi are atoms. H is called the (rule) head and the sets {K Ai},
and {not Bj} form the (rule) body. Atoms of the form K A are also called positive

literals or modal K-atoms while atoms of the form not A are called negative literals

or modal not-atoms. A rule r is positive if m = 0 and a fact if n = m = 0. A program

P is a finite set of MKNF rules and a hybrid MKNF knowledge base K is a pair

(O,P).

In Definition 1, the modal operators of MKNF logics are only applied to atoms in

the rules, which might indicate that it would suffice to use a simpler logic that does

not deal with the application of the modal operators to complex formulae. However,

for defining the meaning of these hybrid knowledge bases, modal operators do need

to be applied to complex formulas, namely to the whole ontology O (cf. Definition

7). Intuitively, a hybrid knowledge base specifies that: for each rule of the form (5)

in P, the atom H is known if all the Ai are known and none of the Bj is known; and

that the whole ontology O is known (i.e. K O). As such, using the more general

MKNF logic eases the definition of the semantics of hybrid knowledge bases, so

similarly to (Motik and Rosati 2007) and (Knorr et al. 2008), we resort to the full

MKNF logic (Lifschitz 1991).

For decidability DL-safety is assumed, which basically constrains the use of rules

to individuals actually appearing in the knowledge base under consideration. For-

mally, an MKNF rule r is DL-safe if every variable in r occurs in at least one

non-DL-atom K B occurring in the body of r. A hybrid MKNF knowledge base

K is DL-safe if all its rules are DL-safe (for more details we refer to (Motik and

Rosati 2007)).

The well-founded MKNF semantics, MKNFWFS , presented in (Knorr et al. 2008),

and further developed in (Knorr et al. 2011), is based on a complete three-valued

extension of the original MKNF semantics. However here, as we are only inter-

ested in querying for literals and conjunctions of literals, we limit ourselves to the

computation of what is called the well-founded partition in (Knorr et al. 2008):

basically the atoms that are true or false. For that reason, and in correspondence

to logic programming, we name this partition the well-founded model. First, we

recall some notions from (Knorr et al. 2008) which will be useful in the definition

of the operators for obtaining that well-founded model.

Definition 2

Consider a hybrid MKNF knowledge base K = (O,P). The set of K-atoms of K,

written KA(K), is the smallest set that contains (i) all modal K-atoms occurring in

P, and (ii) a modal atom K ξ for each modal atom not ξ occurring in K.
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Furthermore, for a set of modal atoms S, SDL is the subset of DL-atoms of S

(Definition 1), and Ŝ = {ξ | K ξ ∈ S}.

Basically KA(K) collects all modal atoms of predicates appearing in the rules, and

Ŝ just removes K operators from the argument set S.

To guarantee that all atoms that are false in the ontology are also false by default

in the rules, we introduce new positive DL atoms that represent first-order false

DL atoms, along with a program transformation making these new modal atoms

available for reasoning with the respective rules.

Definition 3

Let K be a DL-safe hybrid MKNF knowledge base. We obtain K+ from K by adding

an axiom ¬P v NP for every DL atom P which occurs as head in at least one rule

in K where NP is a new predicate not already occurring in K. Moreover, we obtain

K∗ from K+ by adding not NP (t1, . . . , tn) to the body of each rule with a DL

atom P (t1, . . . , tn) in the head.

In K+, NP represents ¬P (with its corresponding arguments) while K∗ introduces

a restriction on each rule with such a DL atom in the head, saying intuitively that

the rule can only be used to conclude the head if the negation of its head cannot

be proved4. For example, to guarantee in Example 1 that proving falsity of Inspect

for some shipment (via the ontology) enforces default negation of Inspect for that

shipment, one would build K+ by adding to the ontology the axiom ¬Inspect v
N Inspect (where N Inspect is a new symbol not appearing elsewhere), and in

K∗ all original rules with inspect(X) in the head would be transformed by adding

not n inspec(X) to the body. In this case, the rule in (2) would be transformed to:

K inspect(X)← K hasShipment(X,Country),not safeCountry(Country),

not n inspect(X).

We continue by recalling the definition in (Knorr et al. 2008) of an operator TK
to allow conclusions to be drawn from positive hybrid MKNF knowledge bases (i.e.

knowledge bases where rules have no default negation).

Definition 4

For K a positive DL-safe hybrid MKNF knowledge base, RK, DK, and TK are

defined on subsets of KA(K∗) as follows:

RK(S) = S ∪ {K H | K contains a rule of the form (1) such that K Ai ∈ S
for each 1 ≤ i ≤ n}

DK(S) = {K ξ | K ξ ∈ KA(K∗) and O ∪ ŜDL |= ξ} ∪ {K Q(b1, . . . , bn) |
K Q(a1, . . . , an) ∈ S \ SDL, K Q(b1, . . . , bn) ∈ KA(K∗), and

O ∪ ŜDL |= ai ≈ bi for 1 ≤ i ≤ n}
TK(S) = RK(S) ∪DK(S)

4 Note that K+ and K∗ are still hybrid MKNF knowledge bases, so we only refer to K+ and K∗
explicitly when it is necessary.
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RK derives consequences from the rules in a way similar to the classical TP operator

of definite logic programs, while DK obtains knowledge from the ontology O, both

from non-DL-atoms and the equalities occurring in O, where the ≈ operator defines

a congruence relation between individuals.

The operator TK is shown to be monotonic in (Knorr et al. 2008) so, by the

Knaster-Tarski theorem, it has a unique least fixed point, denoted lfp(TK), which

is reached after a finite number of iteration steps.

The computation of the well-founded models follows the alternating fixed point

construction (van Gelder 1989) of the well-founded semantics for logic programs.

This approach requires turning a hybrid MKNF knowledge base into a positive one

to make TK applicable.

Definition 5
Let KG = (O,PG) be a ground DL-safe hybrid MKNF knowledge base and let

S ⊆ KA(KG). The MKNF transform KG/S = (O,PG/S) is obtained by PG/S

containing all rules K H ← K A1, . . . ,K An for which there exists a rule

K H ← K A1, . . . ,K An,not B1, . . . ,not Bm

in PG with K Bj 6∈ S for all 1 ≤ j ≤ m.

The above transformation resembles that used for answer-sets (Gelfond and Lifs-

chitz 1990) of logic programs and the following two operators are defined.

Definition 6
Let K = (O,P) be a DL-safe hybrid MKNF knowledge base and S ⊆ KA(K∗). We

define:

ΓK(S) = lfp(TK+
G/S), and Γ′K(S) = lfp(TK∗

G/S)

Both operators are shown to be antitonic (Knorr et al. 2008), hence their compo-

sition is monotonic and form the basis for defining the well-founded MKNF model.

Here we present its alternating computation.

T0 = ∅ TU0 = KA(K∗)
Tn+1 = ΓK(TUn) TUn+1 = Γ′K(Tn)

Tω =
⋃
Tn TUω =

⋂
TUn

Note that by finiteness of the ground knowledge base (Definition 1) the iteration

stops before reaching ω. It was shown in (Knorr et al. 2008) that the sequences are

monotonically increasing and decreasing respectively, and that Tω and TUω form

the well-founded model in the following sense:

Definition 7
Let K = (O,P) be a DL-safe hybrid MKNF knowledge base and let TK,TUK ⊆
KA(K), with TK being Tω and TUK being TUω both restricted to the modal

atoms occurring in KA(K). Then

MWF = {K A | A ∈ TK} ∪ {K π(O)} ∪ {not A | A ∈ KA(K) \TUK}

is the well-founded MKNF model of K, where π(O) denotes the first-order logic

formula equivalent to the ontology O (for details on the translation of O into first-

order logic see (Motik and Rosati 2007)) .



10 A S Gomes, J J Alferes and T Swift

All modal K-atoms in MWF are true, all modal not-atoms are false and all other

modal atoms from KA(K) are undefined.

As shown in (Knorr et al. 2008), the well-founded model is sound with respect to

the original semantics of (Motik and Rosati 2007), i.e. all atoms true (resp. false)

in the well-founded model are also true (resp. false) in the model of (Motik and

Rosati 2007). In fact, the relation between the semantics of (Knorr et al. 2008)

and (Motik and Rosati 2007), is tantamount to that of the well-founded semantics

and the answer-sets semantics of logic programs. Moreover, this definition is in fact

a generalization of the original definition of the well-founded semantics of normal

logic programs, in the sense that if the ontology is empty then this definition exactly

yields the well-founded models according to (van Gelder et al. 1991). For more

properties, as well as motivation and intuitions on MKNFWFS , the reader is referred

to (Knorr et al. 2008).

3 XSB Prolog and the Coherent Description Framework

Our implementation of MKNFWFS is based on XSB Prolog (xsb.sourceforge.net)

for two reasons. First, XSB’s tabling engine evaluates rules according to WFS,

and ensures rule termination for programs and goals with the bounded term-size

property 5. Second, the implementation uses the prover from XSB’s ontology man-

agement system, the Coherent Description Framework (CDF) (Swift and Warren

2003).

CDF has been used in numerous commercial projects, and was originally devel-

oped as a proprietary tool by the company XSB, Inc 6. Since 2003, CDF has been

used to support extraction of information about aircraft parts from free-text data

fields, about medical supplies and electronic parts from web-sites and electronic cat-

alogs, and about the specifics of mechanical parts from scanned technical drawings.

Also, CDF is used to maintain screen models for graphical user interfaces that are

driven by XSB and its graphics package, XJ (www.xsb.com/xj.aspx). We discuss

features of CDF that are relevant to the implementation described in Section 4.

Type-0 and Type-1 Ontologies All classes in CDF are represented by terms of

the form cid(Identifier, Namespace), instances by terms of the form oid(Identifier,

Namespace), and relations by terms of the form rid(Identifier, Namespace), where

Identifier and Namespace can themselves be any ground Prolog term.

Commercial use has driven CDF to support efficient query answering from Prolog

for very large knowledge bases. A key to this is that ontologies in CDF can have

a restricted, tractable form. Type-0 ontologies do not allow representation of nega-

tion or disjunction within the ontology itself, and implicitly use the closed-world

assumption. As such, Type-0 ontologies resemble a frame-based representation more

5 Intuitively, a program P and goal G have the bounded term-size property if there is a finite
number n such that all subgoals and answers created in the evaluation of the goal G to P have
a size less than n.

6 Most of CDF is open-source, including all features used in this paper. CDF is distributed as a
package in XSB’s standard release, and full details can be found in its accompanying manual.
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Man v Person uMale
isa(cid(man),cid(person))

isa(cid(man),cid(male))

Husband v Man u ∃Spouse.Person
isa(cid(husband),cid(man)).

hasAttr(cid(husband),rid(spouse),cid(person)

adam : Husband
isa(oid(adam),cid(husband)

Fig. 1. Some DL Axioms and their Type-0 Counterparts

than a description logic, and do not add any complexity to query evaluation beyond

that of WFS. Support for query answering motivates the representation of Type-0

ontologies. The predicate isa/2 is used to state inclusion: whether the inclusion

is a subclass, element of, or subrelation depends on the type of the term (not all

combinations of types of terms are allowed in a CDF program). Relational atoms

in CDF have the form:

• hasAttr(Term1, Rel1, T erm2) which has the meaning Term1 v ∃Rel1.T erm2;

• allAttr(Term1, Rel1, T erm2) with the meaning Term1 v ∀Rel1.T erm2;

• along with other forms that designate cardinality constraints on relations.

Figure 1 presents some DL Axioms and their Type-0 counterparts, where names-

pace information has been omitted for readability. The fact that Type-0 ontologies

cannot express negation is crucial to their ability to be directly queried. In other

words, isa/2, hasAttr/3 and other atoms can be called as Prolog goals, with any

instantiation pattern for the call. Query answering for Type-0 goals checks inher-

itance hierarchies and does not rely on unification alone. Type-0 ontologies use

tabling to implement inheritance and use tabled negation so that only the most

specific attribute types for a hasAttr/3 or other query are returned to a user.

Besides the constructs of Type-0 ontologies, Type-1 ontologies further allow

atoms of the form

necessCond(Term1, CE)

where CE can be any ALCQ class expression over CDF terms. For instance, the

axiom

Woman v Person u ¬Man

would be represented by the atom

necessCond(cid(woman),(cid(person),neg(cid(man))))

where the comma represents conjunction, as in Prolog. Because they use open-world

negation, atoms for Type-1 ontologies cannot be directly queried; rather they are

queried through goals such as allModelsEntails(Term,ClassExpr), succeeding
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if Term v ClassExpr is provable in the current state of the ontology. Type-1

ontologies deduce entailment using a tableau prover written in Prolog.

System Features of CDF Regardless of the type of the ontology, atoms such as

isa/2, hasAttr/2, etc. can be defined extensionaly via Prolog atoms, or intensionaly

via Prolog rules. For instance, evaluation of the goal

hasAttr(Class1,Rel,Class2)

would directly check extensional Prolog facts through a subgoal

hasAttr_ext(Class1,Rel,Class2)

and would also check intensional rules through a subgoal

hasAttr_int(Class1,Rel,Class2)

Intensional definitions are used so that atoms can be lazily defined by querying a

database or analyzing a graphical model: their semantics is outside that of CDF.

In fact, using combinations of rules and facts, Type-0 ontologies are commonly

used comprising tens of thousands of classes and relations, and tens of millions of

statments about individuals. At the same time, intensional definitions in a Type-1

ontology provide a basis for the tableau prover to call rules, as is required to support

the interdependencies of MKNFWFS , and will be further discussed in Section 4.2.

Despite their restrictions, the vast majority of knowledge used by XSB, Inc.

is maintained in Type-0 ontologies. Although Type-0 ontologies have supported

numerous commercial projects, their limitations of course preclude the full use of

information in ontologies. Support of a uniform querying mechanism for individualss

in MKNFWFS as described below is intended as a means to allow commercial

projects to use a more powerful form of knowledge representation.

Related Work

CDF was originally developed in 2002-2003, and Type-0 ontologies were envisioned

as a means to represent object-oriented knowledge in Prolog. Unlike Flora-2 (Yang

et al. 2003) CDF was intended to be a Prolog library, and its inheritance was de-

signed to be entirely monotonic for compatibility with description logics. Type-1

ontologies were originally evaluated through a translation into ASP (Swift 2004):

this approach pre-dated that of KAON2 (Motik 2006) and was abandoned due to

the difficulty of dynamically pruning search in ASP; afterwards the current tableau

approach was developed which attempts to examine as small a portion of the on-

tology as possible when proving entailment (cf. e.g. (Horrocks and Patel-Schneider

1999) for a discussion of how search may be pruned in tableau provers for on-

tologies). CDF’s approach may be distinguished from (Lukacsy et al. 2008), which

also combines ontological deduction with Prolog. Type-0 ontologies rely on WFS

reasoning and so achieve good scalability under a weak semantics; theorem prov-

ing for Type-1 ontologies is used only when needed; (Lukacsy et al. 2008) takes

a more uniform approach to deduction which relies on WAM-level extensions for
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efficiency; to our knowledge this approach is research-oriented, and has not been

used commercially.

4 Goal-Driven MKNF Implementation

In Section 2 we presented a bottom-up computation that constructs the complete

well-founded model for a given hybrid knowledge base. However, in practical cases,

especially when considering the context of the Semantic Web, this is not what

is intended. In fact, it would make little sense to compute the whole model of

anything that is related to the World Wide Web. Instead, one would like to query

the knowledge base for a given predicate (or propositional atom) and determine

its truth value. As an illustration, recall Example 1 where we wanted to know if

a given shipment should be inspected or not when it arrived, or the case study of

(Patel et al. 2007) where one may want to know whether a given patient matches

the criteria for a given trial. Deriving all the consequences of a knowledge base to

answer a query about a given shipment or patient would be impractical.

In this section we describe the algorithms and the design of CDF-Rules, a goal-

driven implementation for Hybrid MKNF Knowledge Bases under the Well-Founded

Semantics that minimizes the computation to the set of individuals that are relevant

to a query. CDF-Rules makes use of XSB’s tabled SLG Resolution (Chen and

Warren 1996) for the evaluation of a query, together with tableaux mechanisms

supported by CDF theorem prover to check entailment on the ontology. CDF-

Rules is tuned for Type-1 ontologies, and thereby is also compatible with Type-0

ontologies. For the description of the solution, we assume that the reader has a

general knowledge of tabled logic programs (cf. e.g. (?)).

4.1 A Query-Driven Iterative Fixed Point

At an intuitive level, a query to CDF-Rules is evaluated in a relevant (top-down

like) manner through SLG resolution, until the selected goal is a literal l formed

over a DL-atom. At that point, in addition to further resolution, the ontology also

uses tableau mechanisms to derive l. However, as a tableau proof of l may require

propositions (literals) inferred by other rules, considerable care must be taken to

integrate the tableau proving with rule-based query evaluation.

In its essence, a tableau algorithm decides the entailment of a formula ϕ w.r.t. an

ontology O by trying to construct a common model for ¬ϕ and O, sometimes called

a completion graph (cf. e.g. (Schmidt-Strauss and Smolka 1990)). If such a model

can not be constructed, O |= ϕ; otherwise O does not entail ϕ. Similar to other

description logic provers, the CDF theorem prover attempts to traverse as little of

an ontology as possible when proving ϕ. As a result, when the prover is invoked on

an atom A, the prover attempts to build a model for the underlying individual(s)

to which A refers, and explores additional individuals only as necessary.

For our purposes, given the particular interdependence between the rules and

the ontology in MKNFWFS , the prover must consider the knowledge inferred by
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the rules in the program for the entailment proof, as a DL-atom can be derived by

rules, which in turn may rely on other DL-atoms entailed by the ontology. Thus, a

query to a DL-atom p(o), iteratively computes a (sub-)model for o, deriving at each

iteration new information about the roles and classes of o, along with information

about other individuals related to o either in the ontology (via CDF’s tableau

algorithm) or in the rules (via SLG procedures) until a fixed point is reached.

We start by illustrating the special case of positive knowledge bases without

default negation in the rules.

Example 3

Consider the following KB (with the program on the left and the ontology on the

right7) and the query third(X):

K third(X)← p(X),K second(X).

K first(callback). F irst v Second
p(callback).

The query resolves against the rule for third(X), leading to the goals p(X) and

K second(X). The predicate p, although not a DL-atom, assures DL-safety, restrict-

ing the application of the rules to known individuals. The call p(X) returns true for

X = callback. Accordingly, the next subgoal is K second(callback) which depends

on the DL-atom second(callback), corresponding in the ontology to the proposi-

tion Second. At this point, the computation calls the CDF theorem prover which

starts to derive a model for all the properties of the individual callback. Yet in this

computation, the proposition Second itself depends on a predicate defined in the

rules – First. It can thus be seen that the evaluation of the query third(callback)

must be done iteratively – the (instantiated) goal third(callback) should suspend

(using tabling) until second(callback) is resolved. Furthermore, second(callback)

needs first to prove first(callback) from the rules. In general, goals to DL-atoms

may need to suspend in order to compute an iterated fixed point, after which they

may either succeed or fail.

To formalize the actions in Example 3 on the special case of definite programs,

we start by considering the computation for all individuals (i.e. temporarily disre-

garding the relevance of individuals, as discussed above).

Definition 8

Let K = (O,P) be a DL-safe hybrid MKNF knowledge base, where P does not con-

tain default negation. Let I be a fixed set of individuals. The function Tableau(O)

computes for a theory O the entailments of O for I, disregarding the rules compo-

nent. The function SLG(P) computes via tabling the set of DL-atoms true in the

minimal model of P for a set of individuals, I, disregarding the ontology component.

7 To simplify reading, for rules we omit the K before non-DL atoms. In fact, in the implementation
the ontology must be written according to CDF syntax, and in the rules the modal operators K
and not are replaced by (meta-)predicates known/1 and dlnot/1, respectively (see Section 4.2).
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The model is obtained as the union of the least fixed point of the sequences:

D0 = Tableau(O) R0 = SLG(P)

D1 = Tableau(O ∪R0) R1 = SLG(P ∪D0)

. . . . . .

Dn = Tableau(O ∪Rn−1) Rn = SLG(P ∪Dn−1)

Definition 8 resembles Definition 4 of the operator TK in Section 2. In fact, the

Ri sequence is similar to the RK(S) operator which collects new conclusions from

the rules, whereas the Di sequence is similar to the DK(S) operator which collects

new conclusions from the ontology. Rather than starting with the empty set of

conclusions from the rules, as is the case for TK of Definition 4, here the Ri sequence

starts with all conclusions that can be drawn from the program alone 8. Given these

minor differences, taking the function Tableau(O) as correct w.r.t. the consequence

relation of the description logic in use, and taking the function SLG(P) as correct

w.r.t. the least model semantics of definite logic programs, it is easy to see that if I
is the set of all individuals in the knowledge base then the union of the Dn and Rn

at the fixed point exactly coincides with the least fixed point of TK. Furthermore,

as long as the program P respects DL-safety, MKNF rules are lazily grounded with

respect to the set of individuals I. In fact, given a DL-safe set of MKNF rules, and

a set of queries grounded with the individuals in I, the evaluation of the queries

results in a complete grounding of the rules, and so the fixed point is guaranteed

in a finite number of steps.

Definition 8 captures certain aspects of how the rules and the ontology use each

other to derive new knowledge in CDF-Rules, via an alternating computation be-

tween the rules and the ontology. However it does not capture cases in which the

relevant set of individuals changes (i.e. it does not deal with changes in the set

I), or the presence of default negation in rule bodies. With regard to relevant in-

dividuals, since it is possible both to define n-ary predicates in rules and roles in

the ontology, a query may depend on several individuals. Therefore, the fixed point

computation must take into account the entire set of individuals that the query

depends on. This is done by tabling information about each individual in the set of

individuals relevant to the query. This set may increase throughout the fixed point

iteration as new dependency relations between individuals (including equality) are

discovered. The iteration stops when it is not possible to derive anything else about

these individuals, i.e., when both the set of individuals and the classes and roles of

those individuals have reached a fixed point. The details of this iterative increase in

the set of considered individuals can be found in the algorithm of Figure 2, which

also addresses default negation and its interplay with first-order negation.

The following example considers the presence of default negation in rule bodies.

Example 4

8 Since TK is monotonic, it is clear that starting the iteration of this operator with all conclusions
drawn from the rules alone would yield exactly the same (least) fixed point.
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Consider the following knowledge base:

K fourth(X)← p(X),not third(X). Fourth v Fifth
K third(X)← p(X),K second(X). F irst v Second
K first(callback).

p(callback).

In this example a predicate fourth(X) is defined as the default negation of

third(X). Since fourth(X) is defined in the rules, the negation is closed world,

that is, fourth(X) should only succeed if it is not possible to prove third(X).

Consequently, if we employed SLG resolution blindly, an iteration where the truth of

second(callback) had not been made available to the rules from the ontology might

mistakenly fail the derivation of third(callback) and so succeed fourth(callback).

Likewise, the rules may pass to the ontology knowledge, that after some iterations,

no longer applies — in this case if the ontology were told that fourth(callback)

was true, it would mistakenly derive Fifth.

Example 4 illustrates the need to treat default negation carefully, as the truth

of default literals requires re-evaluation when new knowledge is inferred. Recall the

manner in which the operators ΓK and Γ′K of Definition 6 address the problem of

closed-world negation. Roughly, one step in ΓK (or Γ′K) is defined as the application

of TK until reaching a fixed point. Applying Γ′K followed by ΓK is a monotonic

operation and thus is guaranteed to have a least fixed point. In each dual application

of ΓK and Γ′K two different models follow – a monotonically increasing model of

true atoms (i.e. true predicates and propositions), and a monotonically decreasing

model of non-false atoms.

In a similar way, the implementation of CDF-Rules makes use of two fixed points:

an inner fixed point where we apply Definition 8 corresponding to TK; and an outer

fixed point for the evaluation of nots, corresponding to ΓK (and Γ′K). In the outer

iteration, the evaluation of closed-world negation is made by a reference to the

previous model obtained by ΓK. Thus in CDF-Rules, not(A) succeeds if, in the

previous outer iteration, A was not proven.

Example 5

To illustrate the need to apply two fixed points, consider the knowledge base below

and the query c(X):

K c(X)← p(X),K a(X),not b(X). A v B
K a(object).

p(object).

When evaluating the query c(X), X is first bound to object by p, and then the

nested iteration begins. The inner iteration follows the steps of Definition 8, and

since these operators are defined only for definite rules, each negative body literal

in a rule such as p(X) is evaluated according to its value in the previous outer fixed

point, or is simply evaluated as true in the first outer iteration. (As we will see,

this is done lazily by CDF-Rules). The first stage of the inner iteration computes

R0 = {a(object), p(object), c(object)} (Definition 8) via the rules; and computes via
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the ontology D0 = ∅, asO 6|= A. In the second inner stage the rules achieve the same

fixed point as in the first, so R1 = R0, but the ontology derives object : B in D1.

After sharing this knowledge, there is nothing else to infer by either components,

and we achieve the first inner fixed point with:

T1 = {a(object), b(object), c(object), p(object)}

So now, the second outer iteration starts the computation of the inner iteration

again and, in this iteration, negative literals in the rules are evaluated w.r.t. T1. As a

consequence, c(object) fails, since b(object) ∈ T1. The fixed point of the second inner

iteration contains p(object), a(object) and b(object), which is in fact the correct

model for object. Afterwards, a final outer iteration is needed to to determine that

an outer fixed point has in fact been reached. Since c(object) is in the model of the

final iteration, the query c(X) succeeds for X = object.

The procedure to compute a lazily invoked iterative fixed point over a DL-

safe MKNF Hybrid Knowledge Base is summarized in Figure 2 using predicates

that are described in detail in Section 4.2. In each inner iteration, the tabled

predicate known/3 is used to derive knowledge from the rules component, while

allModelsEntails/3 infers knowledge from the ontology via tableau proofs. Within

rules evaluated by known/3, the default negation of a DL-atom A is obtained by the

predicate dlnot(A), which succeeds if A was not proven in the last outer iteration.

The predicates definedClass/2 and definedRole/3 are used to obtain the relevant

classes and roles defined for a given individual. We assume that these predicates are

defined explicitly by the compiler or programmer, but they can also be inferred via

the DL-safe restriction 9. Regardless of whether inference is used, whenever a role

is encountered for an individual, a check is made to determine whether the related

individual Individual1 is already in the list of individuals in the fixed point, and

Individual1 is added if not.

In order to compute MKNFWFS the algorithm shown in Figure 2 must create two

different sets (cf. Definition 7): a credulous set, TU , containing the atoms that are

true or undefined corresponding to application of the operator Γ′K ; and a skeptical

set, T , of the atoms that are true corresponding to ΓK (Definition 6). The itera-

tions in Figure 2 capture the construction of these sets in the following manner. The

first iteration of OutIter in known(Term,OutIter, InIter) (where OutIter = 0)

corresponds to the first step of computation of the set TU , whereas the second

iteration corresponds to the second step of computation of the set T . As a conse-

quence, iterations where OutIter is indexed with an even number are monotonically

decreasing TU iterations, while iterations indexed with an odd number are mono-

tonically increasing T iterations. By making use of this property, the algorithm of

Figure 2 ensures that the fixed point will only be achieved in TU iterations. This

way, Query is true if known(Query,OuterFinal−1, InnerFinal) holds. If this is not

9 Because of DL-safety, every DL-rule must contain a positive literal that is only defined in the
rules. Such a literal limits the evaluation of the rules to known individuals, so that CDF-Rules
can infer the set of individuals that are applicable to a given rule.
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Input: A query Query to a DL-Atom
Output: Value of the input query in MKNFWFS

addIndividuals(Query,IndividualList);1

foreach Individual in IndividualList do2

OutIter, InIter = 0;3

S = S1 = {};4

P = P1 = {};5

repeat6

P = P1;7

repeat8

S = S1;9

foreach Class in definedClass(Individual,Class) do10

Term = Class(Individual);11

S1 = S1∪ known(Term, OutIter, InIter);12

S1 = S1∪ allModelsEntails(Term, OutIter, InIter);13

S1 = S1∪ allModelsEntails(neg(Term), OutIter, InIter);14

end15

foreach Role in definedRole(Individual,Individual1,Role) do16

Term = Role(Individual,Individual1);17

add Individual1 to IndividualList if necessary18

S1 = S1∪ known(Term, OutIter, InIter);19

S1 = S1∪ allModelsEntails(Term, OutIter, InIter);20

S1 = S1∪ allModelsEntails(neg(Term), OutIter, InIter);21

end22

InIter++;23

until S = S1 ;24

P = S;25

OutIter++;26

until OutIter is even (a TU evaluation) and P = P1 ;27

end28

if known(Query,OuterFinal-1,Inner Final) then29

return true30

else31

if known(Query,OuterFinal,Inner’Final) then32

return undefined33

else34

return false35

end36

end37

Fig. 2. The Top-Level Algorithm:ComputeFixedPoint(Query)

the case, then Query is undefined if known(Query,OuterFinal, InnerFinal) holds,

and Query is false otherwise.

4.2 Implementing MKNFWFS Components

We now describe the various predicates in the algorithm of Figure 2, including
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the manner in which the rule and ontology components exchange knowledge, and

how the fixed point is checked.

4.2.1 Rules Component

As mentioned, rules are transformed to use known/1 corresponding to K and

dlnot/1 corresponding to not. As shown in Figure 3, given the goal known(A) with

A = p(O), the code first calls computeF ixedPoint(p(O)) to perform the fixed point

computation for the object instance O. As in Figure 2, computeF ixedPoint(p(O))

calls the lower-level known/3 and dlnot/3 to determine the truth of literals during

the fixed point computation. Once the fixed point has been reached, known/1 uses

get object iter(p(O),Outer,Inner) to obtain the final iteration indices for O from a

global store, and calls known/3 again to determine the final truth value of p(O).

Note that known/3 is always called with the iteration indices (arguments 2 and

3) bound, so that they are always contained in the table entries. Thus, the post-

fixed point call to known/3 simply checks the table, and is not computationally

expensive.

Within a given iteration, p(O) may be known in one of two ways. Either it can

be directly derived from the rules; or O ∈ P (i.e. o:P) may have been entailed

by the ontology in the previous inner iteration step, as determined by the call

allModelsEntails(p(O), OutIter, PrevIter). In either case, care must be taken so

that that if ¬A holds, then not A holds as well. In the formalism of Definition 3 this

is guaranteed in two steps. First, an axiom ¬P v NP is added for each DL-atom

that occurs in the head of a rule; in addition, the literal not NP is added the body

of each rule with head P : this rewrite is used by the Γ′K operator to produce the

TU set. Accordingly in Figure 3, when we try to derive known(A,OutIter, InIter)

and OutIter is even (i.e. corresponding to a TU step via Γ′K in Definition 7 ) we

check whether the ontology derived ¬A in the previous inner iteration by the call

no prev neg(A,OutIter, PrevIter). If ¬A was derived, then no prev neg/3 fails via

the call to tnot/1, (which is XSB’s operator for tabled negation), and the top-level

goal also fails.

On the other hand, the predicate dlnot(A) which uses closed world assumption,

succeeds if A fails (Figure 4). As discussed in Example 5, the evaluation of dlnot/2

must take into account the result of the previous outer iteration. Accordingly, in

Figure 4 the call dlnot(A) with A = p(O) gets the current outer iteration for O,

and immediately calls dlnot/2. If the outer iteration index is greater than 1, the

second clause of dlnot/2 simply finds the index of the (inner) fixed point of the

previous outer iteration, and determines whether A was true in that fixed point.

Since the call to known/3 in tnot/1 is tabled, dlnot/[1,2] do not need to be tabled

themselves. As described before, outer iterations alternately represent iterations of

T and TU sets of Definition 7, where T sets are monotonically increasing while TU

sets are monotonically decreasing. To assure that the first TU set is the largest set

(KA(K∗) following Definition 6), we compel all calls to dlnot/1 to succeed in the

first outer iteration, as represented by the first clause of dlnot/2.
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known(A):-

computeFixedPoint(A),

get_object_iter(A,OutIter ,InIter),

known(A,OutIter ,InIter).

:- table known /3.

known(A,OutIter ,InIter):-

PrevIter is InIter - 1,

( call(A),

;

InIter > 0,

allModelsEntails(A,OutIter ,PrevIter)

),

( OutIter mod 2 =:= 1 ->

true

;

no_prev_neg(A,OutIter , PrevIter)

).

/* Enforce coherence of default negation with first -order

negation */

no_prev_neg(_A,_OutIter , PrevIter) :-

PrevIter < 0,!.

no_prev_neg(A,OutIter , PrevIter) :-

tnot(allModelsEntails(neg(A),OutIter ,PrevIter)).

Fig. 3. Prolog Implementation of K for Class Properties

dlnot(A):-

computeFixedPoint(A),

get_object_iter(A,OutIter ,_InIter),

dlnot(A,OutIter).

/* In first iteration , ensure that TU = KA(K*) */

dlnot(_A ,0):- !.

/* In subsequent iterations , check previous outer iteration */

dlnot(A,OutIter):-

PrevIter is OutIter - 1,

get_final_iter(A,PrevIter ,FinIter),

tnot(known(A,PrevIter ,FinIter)).

Fig. 4. Prolog Implementation of not for Class Properties

4.2.2 Ontology Component

The tabled predicate allModelsEntails/3 provides the interface to CDF’s tableau

theorem prover (Figure 5). It is called with an atom or its classical negation, and

with the its iteration indices bound. Although the iterations are not used in the body
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:- table allModelsEntails /3.

allModelsEntails(neg(Atom),_OutIter ,_InIter):- !,

/* transform Atom to CDF object identifier and

class expression */

/* add individuals to current fixed point list */

(rec_allModelsEntails(Id ,CE) -> fail ; true).

allModelsEntails(Atom ,_OutIter ,_InIter):-

/* transform Atom to CDF object identifier and

class expression */

/* add individuals to current fixed point list */

(rec_allModelsEntails(Id ,neg(CE)) -> fail ; true).

Fig. 5. Prolog Pseudo-code for allmodelsEntails/3

of allModelsEntails/3, representing the iteration information in the head ensures

its availability in table entries for use by known/3. allModelsEntails/3 first converts

the atomic form of a proposition to one used by CDF. That is, it translates a 1-

ary DL-atom representing an individual’s class membership to the CDF predicate

isa/2, and a 2-ary DL-atom representing an individual’s role to the CDF predicate

hasAttr/3 (see Section 3). In addition, if Atom is a 2-ary role, the target individual

may be added to the fixed point set of individuals. As is usual with tableau provers,

entailment of a formula ϕ by an ontology O is shown if the classical negation of ϕ is

inconsistent with O. Thus, rec alModelsEntails/2 immediately fails if the classical

negation of ϕ is consistent with O in the present iteration; otherwise, ϕ is entailed.

The tableau prover, called by rec allModelsEntails/2, obtains all information

inferred by the rules during the previous inner iteration, in accordance with Defini-

tion 8. This is addressed via the CDF intensional rules. As discussed in Section 3,

the architecture of a CDF instance can be divided into two parts – extensional

facts and intensional rules. Extensional facts define CDF classes and roles as simple

Prolog facts; intensional rules allow classes and roles to be defined by Prolog rules

that are outside of the MKNFWFS semantics. In our case, the intensional rules

support a programming trick to check rule results from a previous iteration. As

shown in Figure 6 they convert the CDF form of an ontology axiom into a 1-ary or

2-ary predicate, and then check the known/3 table for a previous iteration using

the predicate lastKnown/1 (not shown). If roles or classes are uninstantiated in

the call from the tableau prover, all defined roles and classes for the individual are

instantiated using definedClass/3 or definedRole/4 before calling lastKnown/1.

4.2.3 Usage

An MKNF Hybrid Knowledge base is defined over a XSB-Prolog knowledge base

together with an ontology specified over CDF. In CDF-Rules such a knowledge base

is written into two files as follows:

• rules.P – containing the set of MKNF rules and facts. A rule is defined as
standard Prolog rules as follows:
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isa_int(oid(Obj ,NS),cid(Class ,NS1)):-

ground(Obj),ground(Class) ,!,

Call =.. [Class ,Obj], /* Call = Class(Obj) */

lastKnown(Call).

/* Find all possible classes for Obj if called with superclass

argument uninstantiated */

isa_int(oid(Obj ,NS),cid(Class ,NS)):-

ground(Obj),var(Class) ,!,

definedClass(Call ,Class ,Obj),

lastKnown(Call).

hasAttr_int(oid(Obj1 ,NS),rid(Role ,NS1),oid(Obj2 ,NS2)):-

ground(Obj1), ground(Obj2), ground(Role) ,!,

Call =.. [Role ,Obj1 ,Obj2], /* Call = Role(Obj1 ,Obj2) */

last_known(Call).

/* Find all possible rules for Obj if called with role argument

uninstantiated */

hasAttr_int(oid(Obj1 ,NS),rid(Role ,NS1),oid(Obj2 ,NS2)):-

ground(Obj1), ground(Obj2), var(Role) ,!,

definedRole(Call ,Role ,Obj1 ,Obj2),

last_known(Call).

Fig. 6. Callbacks from the ontology component to the rules component

Head :- A1, ... Ak,known(B1),. . .,known(Bn),dlnot(C1),. . .,dlnot(Cm).

where k, n,m ≥ 0, and the Ais are all non-DL predicates (i.e. predicates that

are not defined in the ontology), and the Bis and Cis are predicates that can

be both defined in the rules and in the ontology. If k = n = m = 0 then the

rule is a fact, and it is written as usual in Prolog, omitting the ‘:-’ operator.

Note that the transformation to include the negation N Head in the body of

a rule for Head as specified in Definition 3 is not needed: such a check is done

by the call to no prev neg/3 in known/3.

To guarantee correctness, each rule must respect DL-safety. However, in the

current implementation it is the programmer’s responsibility to check for this

condition. The current implementation also does not check that the Ai pred-

icates (i.e. the ones not under known/1 or dlnot/1) are not defined in the

ontology. If a programmer opts to not precede the predicate by known/1 or

dlnot/1, any definition for the predicate in the ontology is simply ignored.

• cdf extensional.P – comprising ordinary ontology facts and concepts defined

over the CDF syntax.

• cdf intensional.P – containing predicates allowing the ontology to access

information in the rules as in Figure 6. In addition, the file may contain

other intensional rules to lazily access information from a database, off of the

semanitc web, or from other sources external to CDF-Rules.

Example 6
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The knowledge base of Example 1 can be easily coded in CDF-Rules as:

%rules

inspect(X) :- hasShipment(X,C), dlnot(safeCountry(C)).

%cdf_extensional

isa_ext(cid(scandinavianCtr ,ont),cid(safeCountry ,ont)).

isa_ext(cid(scandinavianCtr ,ont),cid(EuropeanCtr ,ont)).

isa_ext(oid(norway ,ont),cid(scandinavianCtr ,ont)).

necesscond_ext(cid(DiplomaticShipt ,ont),neg(cid(inspect ,ont))).

Note that the ontological portion is Type-1, due to the use of necessCond/2.

4.2.4 Discussion

As described, CDF-Rules implements query answering to hybrid MKNF knowledge

bases, and tries to reduce the amount of relevance required in the fixed point op-

eration. Relevance is a critical concept for query answering in practical systems,

however a poorly designed ontology or rules component can work against one an-

other if numerous individuals depend on one another through DL roles. In such a

case the relevance properties of our approach will be less powerful; however in such

a case, a simple query to an ontology about an individual will be inefficient in itself.

The approach of CDF-Rules cannot solve such problems; but it can make query

answering as relevant as the underlying ontology allows.

We do not present here a formal proof of soundness and completeness for our

algorithm, since this would require the full presentation of the formal derivation

procedures on which both XSB-Prolog and CDF implementations rely. However, we

have given an informal argument along with our description by referring to comple-

mentarity between the implementation and the bottom-up definition of MKNFWFS .

In particular, there is a close correspondence between the inner fixed points of our

computation represented in Definition 8 and the RK, DK and TK operators of Def-

inition 4; a correspondance between the the actions of known/3 in Figure 3 and

the transformation of Definition 5 to ensure the coherency between classical and

default negation; and also a correspondance between our outer fixed points and the

operators ΓK / Γ′K. As a result, one can view our goal-driven implementation as

an optimization of the bottom-up approach where the computation is limited to

the set of relevant objects, and where the evaluation of positive predicates and the

handling of iterations is performed by the use of SLG resolution.

Further optimizations of the described approach are possible. First is to designate

a set of atoms whose value is defined only in the ontology: such atoms would require

tableau proving, but could avoid the fixed point check of computeF ixedPoint/1.

Within computeF ixedPoint/1 another optimization would be to maintain depen-

dencies among individuals. Intuitively, if individual I1 depended on individual I2
but not the reverse, a fixed point for I2 could be determined before that of I1.

However, these optimizations are fairly straightforward elaborations of CDF-Rules

as presented.
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5 Conclusions

In this paper we have described the implementation of a query-driven system, CDF-

Rules, for hybrid knowledge bases combining both (non-monotonic) rules and a

(monotonic) ontology. The system answers queries according to MKNFWFS (Knorr

et al. 2008) and, as such, is also sound w.r.t. the semantics defined in (Motik and

Rosati 2007) for Hybrid MKNF knowledge bases. The definition of MKNFWFS is

parametric on a decidable description logic (in which the ontology is written), and

it is worth noting that, as shown in (Knorr et al. 2008), the complexity of reasoning

in MKNFWFS is in the same class as that in the decidable description logic; a

complexity result that is extended to a query-driven approach in (?). In particular,

if the description logic is tractable then reasoning in MKNFWFS is also tractable.

Our implementation fixes the description logic part to CDF ontologies that, in

its Type-1 version, supports ALCQ description logic. CDF Type-0 ontologies are

simpler, and tractable and, when using Type-0 ontologies only, our implementation

exhibits a polynomial complexity behavior. This fact derives from the usage of

tabling mechanisms, as defined in SLG resolution and implemented in XSB Prolog10

In fact, one of the reasons that highly influenced the choice of CDF as the parameter

ontology logic in our query-driven implementation for Hybrid MKNF knowledge

bases, was the very existence of an implementation of CDF relying on tabling,

that could be coupled together with the tabling we needed for MKNFWFS . But

the algorithms presented here do not rely on particularities of CDF, and we believe

that, for other choices of parameter logics, implementations could be made in a way

similar to the one described in this paper. Of course, such an implementation would

require first an implementation in XSB-Prolog of a prover for the other description

logic of choice, providing at least a predicate allModelsEntails/3 with the meaning

as described above.

Though our choice for the implementation was the Well-Founded Semantics for

Hybrid MKNF knowledge bases, MKNFWFS , (Knorr et al. 2008), there were other

formalisms concerned with combining ontologies with WFS rules (Eiter et al. 2004b;

Drabent and Ma luszynski 2007). The approach of (Eiter et al. 2004b) combines

ontologies and rules in a modular way, i.e. keeps both parts and their semantics

separate, thus having similarities with MKNFWFS . The interface for this approach

is done by the dlv-hex system (Schindlauer 2006). Though with identical data

complexity to MKNFWFS for a tractable DL, it has a less strong integration, having

limitations in the way the ontology can call back program atoms (see (Eiter et al.

2004b) for details). Hybrid programs of (Drabent and Ma luszynski 2007) are even

more restrictive: this formalism only allows the transfer of information from the

ontology to the rules and not the other way around. Moreover, the semantics of

this approach differs from MKNF (both the one of (Motik and Rosati 2007) and

MKNFWFS) and also(Eiter et al. 2004b) in that if an ontology expresses B1 ∨ B2

then the semantics in (Drabent and Ma luszynski 2007) derives p from rules p ←

10 The proof of tractability of the implementation of CDF-Rules with CDF Type-0 ontologies is
beyond the scope of this paper.
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B1 and p ← B2, p while MKNF and (Eiter et al. 2004b) do not. For further

comparisons of MKNF with other proposals, including those not based on WFS

rules, see (Motik and Rosati 2007; Knorr et al. 2008), and for a survey on other

proposals for combining rules and ontologies see (Hitzler and Parsia 2009)

CDF-Rules serves as a proof-of-concept for querying MKNFWFS knowledge bases.

As discussed, XSB and tractable CDF ontologies have been used extensively in

commercial semantic web applications; the creation of CDF-Rules is a step towards

understanding whether and how MKNFWFS can be used in such applications. As

XSB is multi-threaded, CDF-Rules can be extended to a MKNFWFS server in a

fairly straightforward manner. Since XSB supports CLP, further experiments in-

volve representing temporal or spatial information in a hybrid of ontology, rules,

and rule-based constraints. In addition, since the implementation of Flora-2 (Yang

et al. 2003) and Silk (Grosof 2009) are both based on XSB, CDF-Rules also forms

a basis for experimenting with MKNFWFS on these systems.
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