Generalizing Modular Logic Programs

João Moura and Carlos Viegas Damásio
CENTRIA - Centre for Artificial Intelligence
Universidade Nova de Lisboa, Portugal

Abstract

Even though modularity has been studied extensively in conventional logic programming, there are few approaches on how to incorporate modularity into Answer Set Programming, a prominent rule-based declarative programming paradigm. A major approach is Oikarinen and Janhunen’s Gaifman-Shapiro-style architecture of program modules, which provides the composition of program modules. Their module theorem properly strengthens Lifschitz and Turner’s splitting set theorem for normal logic programs. However, this approach is limited by module conditions that are imposed in order to ensure the compatibility of their module system with the stable model semantics, namely forcing output signatures of composing modules to be disjoint and disallowing positive cyclic dependencies between different modules. These conditions turn out to be too restrictive in practice and in this paper we discuss alternative ways of lifting both restrictions independently, effectively solving the first, widening the applicability of this framework and the scope of the module theorem.

1. Introduction

Over the last few years, answer set programming (ASP) emerged as one of the most important methods for declarative knowledge representation and reasoning. Despite its declarative nature, developing ASP programs resembles conventional programming: one often writes a series of gradually improving programs for solving a particular problem, e.g., optimizing execution time and space. Until recently, ASP programs were considered as integral entities, which becomes problematic as programs become more complex, and their instances grow. Even though modularity is extensively studied in logic programming, there are only a few approaches on how to incorporate it into ASP (Gaifman and Shapiro 1989; Oikarinen and Janhunen 2008). These modules being composed. A use case for this requirement can be found in the following example.

Example 1

Alice wants to buy a car, wanting it to be safe and not expensive; she preselected 3 cars, namely c_1, c_2 and c_3. Her friend Bob says that car c_2 is expensive, while Charlie says that car c_3 is expensive. Meanwhile, she consulted two car magazines reviewing all three cars. The first considered c_1 safe and the second considered c_1 to be safe while saying that c_3 may be safe. Alice is very picky regarding safety, and so she seeks some kind of agreement between the reviews.
The described situation can be captured with five modules, one for Alice, three other for her friends, and another for each magazine. Alice should conclude that c₁ is safe since both magazines agree on this. Therefore, one would expect Alice to opt for car c₁ since it is not expensive, and it is reviewed as being safe. However, the current state-of-the-art does not provide any way of combining these modules since they share common output atoms.

In summary, the fundamental results of (Oikarinen and Janhunen 2008) require a syntactic operation to combine modules – basically corresponding to the union of programs –, and a compositional semantic operation joining the models of the modules. The module theorem states that the models of the combined modules can be obtained by applying the semantics of the natural join operation to the original models of the modules – which is compositional.

The authors show however that allowing common outputs destroys this property. There are two alternatives to pursue:

1. **Keep the syntactic operation:** use the union of programs to syntactically combine modules, plus some bookkeeping of the interface, and thus the semantic operation on models has to be changed;

2. **Keep the semantic operation:** the semantic operation is the natural join of models, and thus a new syntactic operation is required to guarantee compositional.

Both will be explored in this paper as they correspond to different and sensible ways of combining two sources of information, already identified in Example[1] the first alternative is necessary for Alice to determine if a car is expensive; the second alternative captures the way Alice determines whether a car is safe or not. Keeping the syntactic operation is shown to be impossible since models do not convey enough information to obtain compositional. We present a solution to this problem based on a transformation that introduces the required extra information. The second solution is possible, and builds on the previous module transformation.

This paper proceeds in Section 2 with an overview of the modular logic programming paradigm, identifying some of its shortcomings. In Section 3 we discuss alternative methods for lifting the restriction that disallows positive cyclic dependencies, and in Section 4 introduce two new forms of composing modules allowing common outputs, one keeping the original syntactic union operator and the other keeping the original semantic model join operator. We finish with conclusions and a general discussion.

2. Modularity in Answer Set Programming

Modular aspects of Answer Set Programming have been clarified in recent years, with authors describing how and when two program parts (modules) can be composed (Oikarinen and Janhunen 2008; Dao-Tran et al. 2009; Jarvisalo et al. 2009) under the stable model semantics. In this paper, we will make use of Oikarinen and Janhunen’s logic programs defined in analogy to (Gelfond and Lifschitz 1988) which we review after presenting the syntax of answer set programs.

2.1 Answer set programming paradigm

Logic programs in the answer set programming paradigm are formed by finite sets of rules \(r \) having the following syntax:

\[
L_1 \leftarrow L_2, \ldots, L_m, \not L_{m+1}, \ldots, \not L_n, \quad (n \geq m \geq 0) (1)
\]

where each \(L_i \) is a logical atom without the occurrence of function symbols – arguments are either variables or constants of the logical alphabet.

Considering a rule of the form (1), let \(\text{Head}_P(r) = L_1 \) be the literal in the head, \(\text{Body}_P(r) = \{L_2, \ldots, L_m\} \) be the set with all positive literals in the body, \(\text{Body}_P(r) = \{L_{m+1}, \ldots, L_n\} \) be the set containing all negative literals in the body, and \(\text{Body}_P(r) = \{L_2, \ldots, L_n\} \) be the set containing all literals in the body. If a program is positive we will omit the superscript in \(\text{Body}_P^+(r) \). Also, if the context is clear we will omit the subscript mentioning the program and write simply \(\text{Head}(r) \) and \(\text{Body}(r) \) as well as the argument mentioning the rule.

The semantics of stable models is defined via the reduc tion operation (Gelfond and Lifschitz 1988). Given an interpretation \(M \) (a set of ground atoms), the reduc tions of a program \(P \) with respect to \(M \) is the program

\[
P^M = \{ \text{Head}(r) \leftarrow \text{Body}^+(r) \mid r \in P, \text{Body}^-(r) \cap M = \emptyset \}
\]

The interpretation \(M \) is a stable model of \(P \) iff \(M = \text{LM}(P^M) \), where \(\text{LM}(P^M) \) is the least model of program \(P^M \).

The syntax of logic programs has been extended with other constructs, namely weighted and choice rules (Niemelä 1998). In particular, choice rules have the following form:

\[
\{A_1, \ldots, A_n\} \leftarrow B_1, \ldots, B_k, \not C_1, \ldots, \not C_m, (n \geq 1) (2)
\]

As observed by (Oikarinen and Janhunen 2008), the heads of choice rules possessing multiple atoms can be freely split without affecting their semantics. When splitting such rules into \(n \) different rules \(\{a_i\} \leftarrow B_1, \ldots, B_k, \not C_1, \ldots, \not C_m \) where \(1 \leq i \leq n \), the only concern is the creation of \(n \) copies of the rule body \(B_1, \ldots, B_k, \not C_1, \ldots, \not C_m \). However, new atoms can be introduced to circumvent this. There is a translation of these choice rules to normal logic programs (Ferraris and Lifschitz 2005), which we assume is performed throughout this paper but that is omitted for readability. We deal only with ground programs and use variables as syntactic place-holders.

2.2 Modular Logic Programming

Modules, in the sense of (Oikarinen and Janhunen 2008), are essentially sets of rules with an input and output interface:

Definition 1 (Program Module) A logic program module \(P \) is a tuple \(\langle R, I, O, H \rangle \) where:

1. \(R \) is a finite set of rules;
2. \(I \), \(O \), and \(H \) are pairwise disjoint sets of input, output, and hidden atoms;
3. \(At(R) \subseteq At(P) \) defined by \(At(P) = I \cup O \cup H \); and
4. Head\((R) \cap I = \emptyset.\)

The set of atoms in \(At(P) = I \cup O \) are considered to be visible and hence accessible to other modules composed with \(P \) either to produce input for \(P \) or to make use of the output of \(P \). We use \(At_i(P) = I \) and \(At_o(P) = O \) to represent the input and output signatures of \(P \), respectively. The hidden atoms in \(At_b(P) = At(P) \setminus At_i(P) \) are used to formalize some auxiliary concepts of \(P \) which may not be sensible for other modules but may save space substantially. The condition \(head(R) \not= I \) ensures that a module may not interfere with its own input by defining input atoms of \(I \) in terms of its rules. Thus, input atoms are only allowed to appear as conditions in rule bodies.

Example 2 The use case in Example 7 is encoded into the five modules shown here:

\[
P_A = \langle \{
\text{buy}(X) \leftarrow \text{car}(X), \text{safe}(X), \text{not}\text{ exp}(X).
\text{car}(c_1), \text{car}(c_2), \text{car}(c_3)\},
\{
\text{safe}(c_1), \text{safe}(c_2), \text{safe}(c_3),
\text{exp}(c_1), \text{exp}(c_2), \text{exp}(c_3)\}
\rangle
\]

\[
P_B = \langle \{
\text{exp}(c_2)\}, \{
\text{exp}(c_2), \text{exp}(c_3)\}\}
\rangle
\]

\[
P_C = \langle \{
\text{exp}(c_3)\}\}
\rangle
\]

\[
P_{m_1} = \langle \{
\text{safe}(c_1), \text{safe}(c_2), \text{safe}(c_3)\}\}
\rangle
\]

\[
P_{m_2} = \langle \{
\text{safe}(c_1) \leftarrow \text{car}(X), \text{airbag}(X).
\text{car}(c_1), \text{car}(c_3), \text{airbag}(c_1),
\text{airbag}(c_3)\}
\rangle
\]

In Example 2 module \(P_A \) encodes the rule used by Alice to decide if a car should be bought. The safe and expensive atoms are its inputs, and the buy atom its outputs; it uses hidden atoms \(\text{car}(1) \) to represent the domain of variables. Modules \(P_B, P_C \) and \(P_{m_1} \) capture the factual information in Example 1. They have no input and no hidden atoms, but Bob has only analyzed the price of cars \(c_2 \) and \(c_3 \). The ASP program module for the second magazine is more interesting\(^1\) and expresses the rule used to determine if a car is safe, namely that a car is safe if it has an airbag; it is known that \(\text{car}(1) \) has an airbag, \(c_2 \) does not, and the choice rule states that \(\text{car}(3) \) may or may not have an airbag.

Next, the stable model semantics is generalized to cover modules by introducing a generalization of the Gelfond-Lifschitz’s fixpoint definition. In addition to weekly default literals (i.e., \(\text{not} \)), also literals involving input atoms are used in the stability condition. In (Oikarinen and Janhunen 2008), the stable models of a module are defined as follows:

\(^1\)\(\text{car} \) belongs to both hidden signatures of \(P_A \) and \(P_{m_2} \) which is not allowed when composing these modules, but for clarity we omit a renaming of the \(\text{car}(1) \) predicate.

Definition 2 (Stable Models of Modules) An interpretation \(M \subseteq At(P) \) is a stable model of an ASP program module \(P = \langle R, I, O, H \rangle \), if and only if \(M = LM \cup \{a,a \in M \cap I\} \). The stable models of \(P \) are denoted by \(AS(P) \).

Intuitively, the stable models of a module are obtained from the stable models of the rules part, for each possible combination of the input atoms.

Example 3 Program modules \(P_{B}, P_{C} \), and \(P_{m_1} \) have each a single answer set \(AS(P_{B}) = \{ \{\text{exp}(c_2)\}\} \), \(AS(P_C) = \{\{\text{exp}(c_3)\}\} \) and \(AS(P_{m_1}) = \{\{\text{safe}(c_1)\}\} \). Module \(P_{m_2} \) has two stable models, namely: \(\{\text{safe}(c_1), \text{car}(1), \text{car}(2), \text{car}(3), \text{airbag}(c_1)\}\), and \(\{\text{safe}(c_1), \text{safe}(c_3), \text{car}(1), \text{car}(2), \text{car}(3), \text{airbag}(c_1), \text{airbag}(c_3)\}\).

Alice’s ASP program module has \(2^6 = 64 \) models corresponding each to an input combination of safe and expensive atoms. Some of these models are:

\[
\begin{align*}
\{ & \text{buy}(c_1), \text{car}(1), \text{car}(2), \text{car}(3), \text{safe}(c_1) \} \\
\{ & \text{buy}(c_1), \text{buy}(c_3), \text{car}(1), \text{car}(2), \text{car}(3), \text{safe}(c_1), \text{safe}(c_3) \} \\
\{ & \text{buy}(c_1), \text{car}(1), \text{car}(2), \text{car}(3), \text{exp}(c_3), \text{safe}(c_1), \text{safe}(c_3) \}
\end{align*}
\]

2.3 Composing programs from models

The composition of models is obtained from the union of program rules and by constructing the composed output set as the union of modules’ output sets, thus removing from the input all the specified output atoms. (Oikarinen and Janhunen 2008) define their first composition operator as follows: Given two modules \(P_1 = \langle R_1, I_1, O_1, H_1 \rangle \) and \(P_2 = \langle R_2, I_2, O_2, H_2 \rangle \), their composition \(P_1 \oplus P_2 \) is defined when their output signatures are disjoint, that is, \(O_1 \cap O_2 = \emptyset \), and they respect each others hidden atoms, i.e., \(H_1 \cap At(P_2) = \emptyset \) and \(H_2 \cap At(P_1) = \emptyset \). Then their composition is:

\(P_1 \oplus P_2 = \langle R_1 \cup R_2, (I_1 \setminus O_2) \cup (I_2 \setminus O_1), O_1 \cup O_2, H_1 \cup H_2 \rangle \)

However, the conditions given for \(\oplus \) are not enough to guarantee compositionality in the case of answer sets and as such they define a restricted form:

Definition 3 (Module Union Operator \(\square \)) Given modules \(P_1, P_2 \), their union is \(P_1 \sqcup P_2 = P_1 \oplus P_2 \) whenever (i) \(P_1 \oplus P_2 \) is defined and (ii) \(P_1 \) and \(P_2 \) are mutually independent.

Natural join (\(\bowtie \)) on visible atoms is used in (Oikarinen and Janhunen 2008) to combine stable models of modules as follows:

Definition 4 (Join) Given modules \(P_1 \) and \(P_2 \) and sets of interpretations \(A_1 \subseteq 2^{At(P_1)} \) and \(A_2 \subseteq 2^{At(P_2)} \), the natural join of \(A_1 \) and \(A_2 \) is:

\[
A_1 \bowtie A_2 = \{ M_1 \cup M_2 \mid M_1 \in A_1, M_2 \in A_2 \text{ and } M_1 \cap At_v(P_2) = M_2 \cap At_v(P_1) \}
\]

\(^2\)There are no positive cyclic dependencies among rules in different modules, defined as loops through input and output signatures.
This leads to their main result, stating that:

Theorem 1 (Module Theorem) If \(P_1, P_2 \) are modules such that \(P_1 \sqcup P_2 \) is defined, then

\[
\text{AS}(P_1 \sqcup P_2) = \text{AS}(P_1) \bowtie \text{AS}(P_2)
\]

Still according to (Oikarinen and Janhunen 2008), their module theorem also straightforwardly generalizes for a collection of modules because the module union operator \(\sqcup \) is commutative, associative, and has the identity element \(\emptyset, \odot, \emptyset, \emptyset \).

Example 4 Consider the composition \(Q = (P_A \sqcup P_{mg1}) \sqcup P_B \). First, we have

\[
P_A \sqcup P_{mg1} = \left\{ \begin{array}{l}
\{\text{buy}(X) \leftarrow \text{car}(X), \text{safe}(X), \text{not exp}(X).
\text{car}(c_1), \text{car}(c_2), \text{car}(c_3), \text{safe}(c_1)\},
\{\text{exp}(c_1), \text{exp}(c_2), \text{exp}(c_3)\},
\{\text{buy}(c_1), \text{buy}(c_2), \text{buy}(c_3), \text{safe}(c_1), \text{safe}(c_2), \text{safe}(c_3)\},
\{\text{car}(c_1), \text{car}(c_2), \text{car}(c_3)\}
\end{array} \right\}
\]

It is immediate to see that the module theorem holds in this case. The visible atoms of \(P_A \) are \(\text{safe}/1 \), \(\text{exp}/1 \) and \(\text{buy}/1 \), and the visible atoms for \(P_{mg1} \) are \(\{\text{safe}(c_1), \text{safe}(c_2)\} \). The only model for \(P_{mg1} = \{\text{safe}(c_1)\} \) when naturally joined with the models of \(P_A \), results in eight possible modules where \(\text{safe}(c_1), \text{not safe}(c_2), \text{not safe}(c_3) \), and \(\text{exp}/1 \) vary. The final ASP program module \(Q \) is

\[
\{\text{buy}(X) \leftarrow \text{car}(X), \text{safe}(X), \text{not exp}(X).
\text{car}(c_1), \text{car}(c_2), \text{car}(c_3), \text{exp}(c_2), \text{safe}(c_1)\},
\{\text{exp}(c_1)\},
\{\text{buy}(c_1), \text{buy}(c_2), \text{buy}(c_3), \text{exp}(c_2), \text{safe}(c_1), \text{safe}(c_2), \text{safe}(c_3)\},
\{\text{car}(c_1), \text{car}(c_2), \text{car}(c_3)\}
\]

The stable models of \(Q \) are thus:

\[
\{\text{safe}(c_1), \text{exp}(c_1), \text{exp}(c_2), \text{car}(c_1), \text{car}(c_2), \text{car}(c_3)\}
\{\text{buy}(c_1), \text{safe}(c_1), \text{exp}(c_2), \text{car}(c_1), \text{car}(c_2), \text{car}(c_3)\}
\]

2.4 Visible and Modular Equivalence

The notion of visible equivalence has been introduced in order to neglect hidden atoms when logic programs are compared on the basis of their models. The compositional property from the module theorem enabled the authors to port this idea to the level of program modules—giving rise to modular equivalence of logic programs.

Definition 5 Given two logic program modules \(P \) and \(Q \) they are:

Visibly equivalent: \(P \equiv_v Q \) iff \(\text{At}_v(P) = \text{At}_v(Q) \) and there is a bijection \(f : \text{AS}(P) \rightarrow \text{AS}(Q) \) such that for all \(M \in \text{AS}(P) \), \(M \cap \text{At}_v(P) = f(M) \cap \text{At}_v(Q) \).

Modularly equivalent: \(P \equiv_m Q \) iff \(\text{At}_i(P) = \text{At}_i(Q) \) and \(P \equiv_v Q \).

So, two modules are visibly equivalent if there is a bijection among their stable models, and they coincide in their visible parts. If additionally, the two program modules have the same input and output atoms, then they are modularly equivalent.

2.5 Shortcomings

The conditions imposed in these definitions bring about some shortcomings such as the fact that the output signatures of two modules must be disjoint which disallows many practical applications e.g., we are not able to combine the results of program module \(Q \) with any of \(P_C \) or \(P_{mg2} \), and thus it is impossible to obtain the combination of the five modules. Also because of this, the module union operator \(\sqcup \) is not reflexive. By trivially waiving this condition, we immediately get problems with conflicting modules. The compatibility criterion for the operator \(\bowtie \) also rules out the compositional property of mutually dependent modules, but allows positive loops inside modules or negative loops in general.

Example 5 (Common Outputs) Given \(P_B \) and \(P_C \), which respectively have:

\[
\text{AS}(P_B) = \{\text{exp}(c_2)\} \quad \text{and} \quad \text{AS}(P_C) = \{\text{exp}(c_3)\}
\]

the single stable model of their union \(\text{AS}(P_B \sqcup P_C) \) is:

\[
\{\text{exp}(c_2), \text{exp}(c_3)\}
\]

However, the join of their stable models is \(\text{AS}(P_B) \bowtie \text{AS}(P_C) = \emptyset \), invalidating the module theorem.

We illustrate next the issue with positive loops between modules.

Example 6 (Cyclic Dependencies) Take the following two program modules:

\[
P_1 = \{(\text{airbag} \leftarrow \text{safe}), \{\text{safe}, \{\text{airbag}\}, \emptyset)\}
\]

\[
P_2 = \{(\text{safe} \leftarrow \text{airbag}), \{\text{airbag}, \{\text{safe}\}, \emptyset)\}
\]

Their stable models are:

\[
\text{AS}(P_1) = \text{AS}(P_2) = \{\emptyset, \{\text{airbag}, \text{safe}\}\}
\]

while the single stable model of the union \(\text{AS}(P_1 \sqcup P_2) \) is the empty model \(\emptyset \). Therefore \(\text{AS}(P_1 \sqcup P_2) \neq \text{AS}(P_1 \bowtie \text{AS}(P_2) = \{\emptyset, \{\text{airbag}, \text{safe}\}\} \), thus also invalidating the module theorem.

3. Positive Cyclic Dependencies Between Modules

To attain a generalized form of compositionality we need to be able to deal with the two restrictions identified previously, namely cyclic dependencies between modules. In the literature, (Dao-Tran et al. 2009) presents a solution based on a model minimality property. It forces one to check for minimality on every comparable models of all program modules being composed. It is not applicable to our setting though, which can be seen in Example 7 where logical constant \(\bot \) represents value \(false \).

Example 7 (Problem with minimization) Given modules \(P_1 = \{(a \leftarrow b, \bot \leftarrow \text{not } b)\}, \{b\}, \{a\}, \{\}\} \) with one answer set \(\{a, b\} \), and \(P_2 = \{(b \leftarrow a), \{a\}, \{b\}, \{\}\} \) with stable models \(\{a\} \) and \(\{a, b\} \), their composition has no inputs and no intended stable models while their minimal join contains \(\{a, b\} \).

Another possible solution requires the introduction of extra information in the models to be able to detect mutual positive dependencies. This need has been identified before (Slota and Leite 2012) and is left for future work.
4. Generalizing Modularity in ASP by Allowing Common Outputs

After having identified the shortcomings in the literature, we proceed now to seeing how compositionality can be maintained while allowing modules to have common output atoms. In this section we present two versions of compositions: (1) A relaxed composition operator (\otimes), aiming at maximizing information in the stable models of modules. Unfortunately, we show that this operation is not compositional. (2) A conservative composition operator (\ast), aiming at maximizing compatibility of atoms in the stable models of modules. This version implies redefining the composition operator by resorting to a program transformation but uses the original join operator.

4.1 Extra module operations

First, one requires fundamental operations for renaming atoms in the output signatures of modules with fresh ones:

Definition 6 (Output renaming) Let P be the program module $P = \langle R, I, O, H \rangle$, $o \in O$ and $o' \notin At(P)$. The renamed output program module $\rho_{o\leftarrow o'}(P)$ is the program module $\langle R', \{ \leftarrow o', \not o \}, I, \{ o', \not o \}, O, H \rangle$. The program part R' is constructed by substituting the head of each rule $o \leftarrow Body$ in R by $o' \leftarrow Body$. The heads of other rules remain unchanged, as well as the bodies of all rules.

Mark that, by making o an input atom, the renaming operation can introduce extra stable models. However, the original stable models can be recovered by selecting the models where o' has exactly the same truth-value of o. The constraint throws away models where o' holds but not o. We will abuse notation and denote $\rho_{o' \leftarrow o_{1}, \ldots, o_{n}} (P_{A})$ by $\rho_{o' \leftarrow o} (P_{A})$.

Example 8 (Renaming) Recall the module representing Alice’s conditions in Example 2. Its renamed output program module $\rho_{o' \leftarrow o}(P_{A})$ is the program module:

$$\rho_{o' \leftarrow o}(P_{A}) = \langle \{ car' \leftarrow X', safe(e(X)), \not exp(X) \} \cup \{ \not car' \leftarrow X \} \rangle$$

Still before we dwell any deeper in this subject, we define operations useful to project or hide sets of atoms from a module.

Definition 7 (Hiding and Projecting Atoms) Let $P = \langle R, I, O, H \rangle$ be a module and S an arbitrary set of atoms. If we want to hide (denoted as $\setminus S$) from program module P, we use $P \setminus S = \langle R \cup \{ \{ i \} \mid i \in I \setminus S \}, I \setminus S, O \setminus S, H \cup ((I \setminus O) \cap S) \rangle$. Dually, we can Project (denoted as \setminus) over S in the following way: $P \setminus S = \langle R \cup \{ \{ i \} \mid i \in I \cap S \}, I \cap S, O \cap S, H \cup ((I \cap O) \cap S) \rangle$.

Both operators Hide and Project do not change the stable models of the original program, i.e. $AS(P) = AS(P \setminus S) = AS(P \setminus \setminus S)$ but do change the set of visible atoms $At_{v}(P \setminus S) = At_{v}(P) \setminus S$ and $At_{v}(P | S) = At_{v}(P) \cap S$.

4.2 Relaxed Output Composition

For the reasons presented before, we start by defining a generalized version of the composition operator, by removing the condition enforcing disjointness of the output signatures of the two modules being combined.

Definition 8 (Relaxed Composition) Given two modules $P_{1} = \langle R_{1}, I_{1}, O_{1}, H_{1} \rangle$ and $P_{2} = \langle R_{2}, I_{2}, O_{2}, H_{2} \rangle$, their composition $P_{1} \otimes P_{2}$ is defined when they respect each others hidden atoms, i.e., $H_{1} \cap At(P_{2}) = \emptyset$ and $H_{2} \cap At(P_{1}) = \emptyset$. Then their composition $P_{1} \otimes P_{2} = \langle R_{1}, R_{2}, I_{1} \cup I_{2}, O_{1} \cup O_{2}, H_{1} \cup H_{2} \rangle$.

Obviously, the following important properties hold for \otimes:

Lemma 1 The relaxed composition operator is reflexive, associative, commutative and has the identity element \emptyset.

Having defined the way to deal with common outputs in the composition of modules, we would like to redefine the operator \Rightarrow for combining the stable models of these modules. However, this is shown here to be impossible.

Lemma 2 The operation \otimes is not compositional, i.e. for any join operation \Rightarrow', it is not always the case that $AS(P_{1} \otimes P_{2}) = AS(P_{1}) \Rightarrow' AS(P_{2})$.

As we have motivated in the introduction, it is important to applications to be able to use \otimes to combine program modules, and retain some form of compositionality. The following definition presents a construction that adds the required information in order to be able to combine program modules using the original natural join.

Definition 9 (Transformed Relaxed Composition) Consider the program modules $P_{1} = \langle R_{1}, I_{1}, O_{1}, H_{1} \rangle$ and $P_{2} = \langle R_{2}, I_{2}, O_{2}, H_{2} \rangle$. Let $O = O_{1} \cap O_{2}$, and define the sets of newly introduced atoms $O' = \{ o' \mid o \in O \}$ and $O'' = \{ o'' \mid o \in O \}$. Construct program module:

$$P_{\text{union}} = \langle R_{\text{union}}, O' \cup O'', O, \emptyset \rangle$$

where:

$$R_{\text{union}} = \{ o \leftarrow o' \mid o' \in O' \} \cup \{ o \leftarrow o'' \mid o'' \in O'' \}$$

The transformed relaxed composition is defined as the program module:

$$(P_{1} \otimes_{RT} P_{2}) = \langle \rho_{O' \leftarrow O}(P_{1}) \cup \rho_{O'' \leftarrow O}(P_{2}) \cup P_{\text{union}} \rangle \setminus O' \cup O''$$

Intuitively, we rename the common output atoms in the original modules, and introduce an extra program module that unites the contributions of each module by a pair of rules for each common atom $o \leftarrow o'$ and $o \leftarrow o''$. We then hide all the auxiliary atoms to obtain the original visible signature. If $O = \emptyset$ then P_{union} is empty, and all the other modules are not altered, falling back to the original definition.
Theorem 2 Let \(P_1 \) and \(P_2 \) be arbitrary program modules without positive dependencies among them. Then, modules joined with operators \(\cup \) and \(\cup^{RT} \) are modularly equivalent:

\[
P_1 \cup P_2 \equiv_m P_1 \cup^{RT} P_2.
\]

The important remark is that according to the original module theorem we have: \(AS(\rho^{O \leftarrow O}(P_1) \cup \rho^{O' \leftarrow O}(P_2) \cup P_{union}) = AS(\rho^{O \leftarrow O}(P_1)) \bowtie AS(\rho^{O' \leftarrow O}(P_2)) \bowtie AS(P_{union}) \). Therefore, from a semantical point of view, users can always substitute module \(P_1 \cup P_2 \) by \(P_1 \cup^{RT} P_2 \), which has an extra cost since the models of the renamed program modules may increase. This is, however, essential to regain compositionality.

Example 9 Considering program modules \(Q_1 = \{ a \downarrow a, b \}, \emptyset, \{ a, b \}, \emptyset \rangle \) and \(Q_2 = \{ \{ b \}, \emptyset, \{ b \}, \emptyset \rangle \), we have:

\[
\rho^{a', b' \leftarrow a, b}(P_1) = \begin{cases} \{ a'. \downarrow a', \neg a. \} \\
\{ a, b \}, \{ a', b' \}, \emptyset >
\end{cases}
\]

\[
\rho^{a', b' \leftarrow a, b}(P_2) = \begin{cases} \{ b'. \downarrow a', \neg a. \} \\
\{ a, b \}, \{ a', b' \}, \emptyset >
\end{cases}
\]

\[
P_{union} = \begin{cases} \{ a, b \}, \{ a', b' \}, \emptyset >
\end{cases}
\]

\[
\rho^{a', b' \leftarrow a, b}(Q_1) = \rho^{a', b' \leftarrow a, b}(P_2)
\]

\[
\begin{array}{c}
\rho^{a', b' \leftarrow a, b}(Q_2) =
\end{array}
\]

The stable models of the first two modules are \(\{ \{ a', a' \}, \{ a, b, a' \} \} \) and \(\{ \{ b, b' \}, \{ a, b, b' \} \} \), respectively. Their join is \(\{ \{ a, b, a', b' \} \} \) and the returned model belongs to \(P_{union} \) (and thus is compatible), and corresponds to the only intended model \(\{ a, b \} \) of \(P_1 \cup P_2 \). Note that the stable models of \(P_{union} \) is 16, corresponding to the models of propositional formula \(a \equiv a' \lor a'' \) \(\land \) \(b \equiv b' \lor b'' \). Regarding, the transformed module \(\rho^{a', b' \leftarrow a, b}(Q_1) \) it discards the model \(\{ a, b, a' \} \), having stable models \(\{ \{ a, a' \} \} \). But now the join is empty, as intended.

4.3 Conservative Output Composition

In order to preserve the original outer join operator, which is widely used in databases, for the form of composition we introduce next one must redefine the original composition operator (\(\ominus \)). We do that resorting to a program transformation s.t. the composition operator remains compositionals with respect to the join operator (\(\ominus \)). The transformation we present next consists of taking Definition \(\Box \) and adding an extra module to guarantee that only compatible models (models that coincide on the visible part) are retained.

Definition 10 (Conservative Composition) Let \(P_1 = \{ R_1, P_1, O_1, H_1 \} \) and \(P_2 = \{ R_2, I_2, O_2, H_2 \} \) be modules such that their outputs are disjoint \(O = O_1 \cap O_2 \neq \emptyset \). Let \(O' = \{ o' \mid o \in O \} \) and \(O'' = \{ o'' \mid o \in O \} \) be sets of newly introduced atoms.

Construct program modules:

\[
P_{union} = \langle \rho^{O \leftarrow O}(P_1) \cup \rho^{O' \leftarrow O}(P_2) \cup P_{union} \cup P_{filter} \rangle \setminus (O' \cup O'').
\]

The conservative composition is defined as the program module: \(P_1 \otimes P_2 = \langle (\rho^{O \leftarrow O}(P_1) \cup \rho^{O' \leftarrow O}(P_2) \cup P_{union} \cup P_{filter}) \rangle \setminus (O' \cup O'') \).

The above theorem is very similar to the original Module Theorem of Oikarinnen and Janhunen apart from the extra renamed atoms required in \(P_1 \otimes P_2 \) to obtain compositionality.

Example 10 Returning to the introductory example, we can conclude that \(P_{m_1} \odot P_{m_2} \) has only one answer set:

\(\{ safe(c_1), airbag(c_1), car(c_1), car(c_2), car(c_3) \} \)

since this is the only compatible model between \(P_{m_1} \) and \(P_{m_2} \). The stable models of \(\rho(P_{m_1}) \) and \(\rho(P_{m_2}) \), are collected in the table below where compatible models appear in the first row and \(car(c_1), car(c_2), car(c_3) \) has been omitted from \(AS(\rho(P_{m_2})) \). Atom \(s \) (respectively \(a \)) stands for \(safe \) (respectively \(airbag \)).

<table>
<thead>
<tr>
<th>Answer sets of (\rho(P_{m_1}))</th>
<th>Answer sets of (\rho(P_{m_2}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>{ s(c_1), s(c_3) }</td>
<td>{ s(c_1), s(c_3), a(c_1) }</td>
</tr>
<tr>
<td>{ s(c_1), s(c_2), s'(c_1) }</td>
<td>{ s(c_1), s(c_2), s'(c_1), a(c_1) }</td>
</tr>
<tr>
<td>{ s(c_1), s(c_3), s'(c_1) }</td>
<td>{ s(c_1), s(c_3), s'(c_1), a(c_1), a(c_3) }</td>
</tr>
<tr>
<td>{ s(c_1), s(c_2), s'(c_1), s''(c_1), s'(c_1), a(c_1) }</td>
<td>{ s(c_1), s(c_2), s'(c_1), s''(c_1), a(c_1), a(c_3) }</td>
</tr>
<tr>
<td>{ s(c_1), s(c_2), s'(c_1) }</td>
<td>{ s(c_1), s(c_2), s'(c_1), s''(c_1), a(c_1), a(c_3) }</td>
</tr>
</tbody>
</table>

The only compatible model retained after composing with \(P_{union} \) and \(P_{filter} \) is the combination of the stable models in the first row:

\(\{ s(c_1), s'(c_1), s''(c_1), a(c_1), c(c_1), c(c_2), c(c_3) \} \)

Naturally, this corresponds to the intended result if we ignore the \(s' \) and \(s'' \) atoms.
4.4 Complexity

Regarding complexity, checking the existence of $M \in P_1 \oplus P_2$ and $M \in P_1 \uplus \exists^P \exists^RT P_2$ is an NP-complete problem. It is immediate to define a decision algorithm belonging to Σ_2^p that checks existence of a stable module of the module composition operators. This is strictly less than the results in the approach of (Dao-Tran et al. 2009) where the existence decision problem for propositional theories is NEXP-complete – however their approach allows disjunctive rules.

5. Conclusions and Future Work

We redefined the necessary operators in order to relax the conditions for combining modules with common atoms in their output signatures. Two alternative solutions are presented, both allowing us to retain compositional completeness while dealing with a more general setting than before. (Dao-Tran et al. 2009) provide an embedding of the original composition operator of Oikarinen and Janhunen into their approach. Since our constructions rely on a transformational approach using operator \sqcap of Oikarinen and Janhunen, by composing both translations, an embedding into (Dao-Tran et al. 2009) is immediately obtained. It remains to be checked whether the same translation can be used in the presence of positive cycles. (Tasharoth and Ternovska 2011) take Janhunen et al. (2009) and extend it with an algebra which includes a new operation of feedback (loop) over modules. They have shown that the loop operation adds significant expressive power – modules can express all (and only) problems in NP. The other issues remain unsolved though.

The module theorem has been extended to the general theory of stable models (Babb and Lee 2012), being applied to non-ground logic programs containing choice rules, the count aggregate, and nested expressions. It is based on the new findings about the relationship between the module theorem and the splitting theorem. It retains the composition condition of disjoint outputs and still forbids positive dependencies between modules. As for disjunctive versions, (Janhunen et al. 2009) introduced a formal framework for modular programming in the context of DLPs under stable-model semantics. This is based on the notion of DLP-functions, which resort to appropriate input/output interfacing. Similar module concepts have already been studied for the cases of normal logic programs and ASPs and even propositional theories, but the special characteristics of disjunctive rules are properly taken into account in the syntactic and semantic definitions of DLP functions presented therein. In (Gebser et al. 2011), MLP is used as a basis for Reactive Answer Set Programming, aiming at reasoning about real-time dynamic systems running online in changing environments.

As future work we can straightforwardly extend these results to probabilistic reasoning with stable models by applying the new module theorem to (Damásio and Moura 2011), as well as to DLP functions and general stable models. An implementation of the framework is also foreseen in order to assess the overhead when compared with the original benchmarks in (Oikarinen and Janhunen 2008). Based on our own preliminary work and results in the literature, we believe that a fully compositional semantics can be attained by resorting to partial interpretations e.g., SE-models (Turner 2003) for defining program models at the semantic level. It is known that one must include extra information about the support of each atom in the models in order to attain generalized compositional and SE-models appear to be enough.

References

One sees that \mathcal{P}_1 and \mathcal{P}_2 have stable models \mathcal{M}_1 and \mathcal{M}_2 respectively, which are pairwise disjoint. Because of this, we are in the conditions of the original Module Theorem and thus it is applicable to the result of the modified composition \sqcup if the transformation did not introduce positive loops between the program parts of the three auxiliary models. If $\mathcal{P}_1 \sqcup \mathcal{P}_2$ had no loops between the common output atoms than its transformation $\mathcal{P}_1 \sqcupRT \mathcal{P}_2$ also does not because it results from a renaming into new atoms.

Consider now the rules part of \mathcal{T}: if we ignore the extra introduced atoms in \mathcal{O}' and \mathcal{O}'' the program obtained has exactly the same stable models of the union of program parts of \mathcal{P}_1 and \mathcal{P}_2. Basically, we are substituting the union of $o \leftarrow \text{Body}_1, \ldots , o \leftarrow \text{Body}_m$ in \mathcal{P}_1, and $o \leftarrow \text{Body}^1_1, \ldots , o \leftarrow \text{Body}^2_1$ in \mathcal{P}_2 by: $o \leftarrow o'$, $o'' \leftarrow \text{Body}^1_1$, $o'' \leftarrow \text{Body}^2_1$, \ldots, $\bot \leftarrow o'$, not o, $\bot \leftarrow o''$, not o.

This guarantees visible equivalence of $\mathcal{P}_1 \sqcup \mathcal{P}_2$ and $\mathcal{P}_1 \sqcupRT \mathcal{P}_2$, since the models of each combined modules are in one-to-one correspondence, and they coincide in the visible atoms. The contribution of the common output atoms is recovered by the joins involving atoms in \mathcal{O}', \mathcal{O}'' and \mathcal{O}, that are all pairwise disjoint, and ensuring that stable models obey to $o = o' \lor o''$ via program module \mathcal{P}_{union}. The constraints introduced in the transformed models $\rho_{o' \lor o''}(\mathcal{P}_1)$ (resp. $\rho_{o' \lor o''}(\mathcal{P}_2)$) simply prune models that have o false and o' resp. o'' true, reducing the number of models necessary to consider. Since the input and output atoms of $\mathcal{P}_1 \sqcup \mathcal{P}_2$ and $\mathcal{P}_1 \sqcupRT \mathcal{P}_2$ are the same, then $\mathcal{P}_1 \sqcup \mathcal{P}_2 \equiv_m \mathcal{P}_1 \sqcupRT \mathcal{P}_2$.

Proof 3 (Theorem) The theorem states that if we ignore the renamed literals in \otimes the models are exactly the same, as expected. The transformed program module $\mathcal{P}_1 \otimes \mathcal{P}_2$ corresponds basically to the union of programs, as seen before. Consider a common output atom o. The constraints in the module part \mathcal{P}_{filter} combined with the rules in \mathcal{P}_{union} restrict the models to the cases for which $o \equiv o' \equiv o''$. The equivalence $o \equiv o'$ restricts the stable models of $\rho_{o' \lor o''}(\mathcal{P}_1)$ to the original stable models (except for the extra atom o') of \mathcal{P}_1, and similarly the equivalence $o \equiv o''$ filters the stable
models of $\rho_{\omega^{\omega}}(P_2)$ obtaining the original stable models of P_2. Now it is immediate to see that compositionality is retained by making the original common atoms o compatible.