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Abstract. We introduce an abstract update framework based on viewing a knowl-
edge base as the set of sets of models of its elements and performing updates by
introducing additional interpretations – exceptions – to the sets of models of ele-
ments of the original knowledge base. In [36], an instantiation of this framework
for performing rule updates has been shown to semantically characterise one of
the syntax-based rule update semantics. In this paper we show that the framework
can also capture a wide range of both model- and formula-based belief update
operators which constitute the formal underpinning of existing approaches to on-
tology updates. Exception-driven operators thus form a unifying perspective on
both ontology and rule updates, opening new possibilities for addressing updates
of hybrid knowledge bases consisting of both an ontology and a rule component.

1 Introduction

In this paper we propose a novel generic method for specifying update operators. By
viewing a knowledge base as the set of sets of models of its elements, and seeing updates
as adding new interpretations to those sets, we are able to capture a range of model- and
formula-based belief update operators. When coupled with the results of [36] in which
an instantiation of this framework was shown to characterise a syntax-based rule update
semantics, our findings imply that exception-driven operators are the first approach that
embraces these two seemingly irreconcilable approaches to updates.

Throughout the last decade, standardisation efforts gave rise to widely accepted
knowledge representation languages such as the Web Ontology Language (OWL)1 and
Rule Interchange Format (RIF),2 based on Description Logics [4] and Logic Program-
ming [16], respectively. This has fostered a large number of ontologies and rule bases
with different levels of complexity and scale. Whereas ontologies provide the logical
underpinning of intelligent access and information integration, rules are widely used to
represent business policies, regulations and declarative guidelines about information.

Since both ontologies and rules offer important features for knowledge represen-
tation, considerable effort has been invested in identifying a unified hybrid knowledge
framework where expressivity of both formalisms could be seamlessly combined. This
task turned out to be very challenging because of the inherent semantic differences
between the two knowledge representation paradigms.

1 http://www.w3.org/TR/owl-overview/
2 http://www.w3.org/2005/rules/wiki/RIF_Working_Group
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Over the years, work on hybrid knowledge bases has matured significantly and fun-
damental semantic as well as computational problems were addressed successfully (see
[20] for an overview). The recent formalisms, based on an embedding to a unifying
non-monotonic formalism, such as the Autoepistemic Logic [6] or the Logic of Mini-
mal Knowledge and Negation as Failure (MKNF) [27], provide a tight and semantically
neat integration of ontologies and rules, allowing predicates to be defined concurrently
in the ontology as well as by rules. Nevertheless, they only deal with static knowledge.

One of the main challenges for knowledge engineering and information manage-
ment is to efficiently and plausibly deal with the incorporation of new, possibly conflict-
ing knowledge and beliefs. In other words, support for knowledge dynamics is essential.
This topic has been extensively addressed in the context of both Description Logics and
Logic Programs, when taken separately.

Ontology Updates. The area of research called ontology change encompasses a num-
ber of strongly related though distinguishable subareas, such as ontology matching, on-
tology integration and merging, or ontology translation (a survey can be found in [14]).
The purest type of change, concerned with modifications to a single ontology, is gen-
erally referred to as ontology evolution. Approaches to ontology evolution with a firm
semantic underpinning, thus amenable to a formal analysis of their behaviour and prop-
erties, are based on research in the area of belief change, initiated by the seminal work
of Alchourrón, Gärdenfors and Makinson (AGM) [1] who proposed a set of desirable
properties of change operators on monotonic logics, now called AGM postulates.

Subsequently, revision and update were distinguished as two very related but ul-
timately different belief change operations [39,21,28]. While revision deals with in-
corporating new information about a static world into a knowledge base, update takes
place when a knowledge base needs to be brought up to date when the modelled world
changes. While AGM postulates were deemed appropriate for describing revision, a
different set of postulates was suggested for belief update [21,28].

Update operators based on these postulates, usually referred to as model-based,
were later used to partially address ontology updates [25,10], namely to update the
part of the ontology with assertions about individuals (the ABox). On the other hand,
model-based operators are considered inappropriate for updating ontological axioms
that define the terminology (the TBox) [7,34]. Their antipole, formula-based operators,
which manipulate the knowledge base at a syntactic level and are strongly related to
base revision operators, were adopted for performing TBox updates instead [7].

Rule Updates. When updates were tackled in the context of Logic Programming, it
was only natural to consider adapting the belief update postulates and operators to deal
with them. However, this led to counterintuitive results because the model-based ap-
proach fails to capture the essential relationships between literals encoded in rules [23],
and the formula-based approach is too crude as it does not allow rules to be reactivated
when reasons for their suppression disappear [40]. Although state-of-the-art approaches
to rule updates are guided by the same basic intuitions and aspirations as belief updates,
they build upon fundamentally different principles and methods.

Many of them are based on the causal rejection principle [23,3,12,2] which states
that a rule is rejected only if it is directly contradicted by a more recent rule. This
essentially means that inertia and minimal change, applied at the level of literals in



model-based belief update operators, is instead applied to rules and the truth values of
literals follow from the set of unrejected rules. Causal rejection semantics are useful in
a number of practical scenarios and their behaviour is intuitively predictable. Alterna-
tive approaches to rule updates employ syntactic transformations and other methods,
such as abduction [31], prioritisation and preferences [40,11], or dependencies on de-
fault assumptions [32,22]. The main feature of all these approaches is that they need
to refer to the syntactic structure of a logic program: the individual rules and, in most
cases, also the literals in heads and bodies of these rules. These properties render them
seemingly irreconcilable with belief updates since ontology axioms and formulae in
Classical Logic simply have no heads and bodies.

Towards Updates of Hybrid Knowledge Bases. The question that arises, then, is:
How can we combine methods used for updating ABoxes, TBoxes and rules in a single
framework that allows us to update hybrid knowledge bases?

In [34,37] we provided partial solutions to this problem but the inherent differences
between the distinct approaches to updates have prevented us from suggesting a uni-
versal hybrid update semantics. Subsequently, in [33,35,36] we looked for a suitable
semantic foundation of rule updates which would be independent of rule syntax and, at
the same time, would retain the fundamental properties of existing rule update seman-
tics. This led to the study of exception-driven rule update operators and a definition
of particular operators that semantically capture the justified update semantics for rule
updates [23] and enjoy a number of syntactic as well as semantic properties.

In this paper we go one step beyond and show that exception-driven operators also
capture a range of belief update operators, both model- and formula-based. In other
words, they form a common basis for both ontology and rule updates and create room
for their cross-fertilisation, ripening and further development.

Our main contributions in this paper are as follows:

– We define abstract exception-driven operators for any knowledge representation
formalism with a model-theoretic semantics.

– We show that they capture a wide range of belief update operators.
– We discuss the relationship between belief set and belief base revision operators,

on the one hand, and exception-driven operators, on the other.

This work has the following structure: In Sect. 2 we introduce update operators for
first-order knowledge bases which form the basis for ontology updates. Sections 3 and
4 introduce abstract exception-driven operators and show how they are able to charac-
terise belief updates. We discuss the relationship between our update framework and
revision operators and point at interesting future research directions in Sect. 5.

2 Preliminaries

In this section we introduce model- and formula-based update operators for first-order
knowledge bases which underlie the formal approaches to ontology updates [25,10,7,24].

One of the main issues with ontology updates is the expressibility of the result of
an update which arises due to the fact that Description Logics are fragments of first-
order logic, so the result of an update operator may not be expressible in the DL used to



encode the original ontology and its update [5]. Nevertheless, in this paper we abstract
away from this problem, noting that Description Logics for which expressibility is guar-
anteed have been identified [25,10], approximation techniques for the updated ontology
also constitute a viable solution to this problem [10], and the recent work on belief re-
vision within Horn and other fragments of classical logic may show this problem from
a new viewpoint (see e.g. [8] and references therein).

Throughout the remainder of this paper we thus assume to be using a function-
free first-order language consisting of disjoint non-empty sets of constant and predicate
symbols C and P . First-order formulae are defined in the standard way and by a (first-
order) knowledge base we mean a set of first-order sentences.

From a semantic viewpoint we adopt first-order interpretations under the standard
names assumption in order to simplify comparison between first-order interpretations,
problematic when the interpretation of constants may vary [39,10]. More formally, we
assume that the set of constant symbols C is infinite and all first-order interpretations
are over the universe C where every constant is interpreted by itself. In addition, we
assume that the equality predicate ≈ is allowed to be interpreted by any congruence
relation on C that allows for replacement of equals by equals, enabling us to support
updates of equality assertions. The set of all interpretations satisfying these conditions
is denoted by I . Note that due to Theorems 5.9.4 and 9.3.9 in [13], the semantics we
adopt preserves the standard first-order consequences of all finite knowledge bases.

Furthermore, every interpretation I ∈ I directly corresponds to the set of ground
atoms that it entails; in the following we use these two notions interchangeably. We
denote the set of models of a knowledge base B by [[B ]] and say that B is consistent if
B has a model. Given two knowledge bases B, C, we say that B entails C, denoted by
B |= C, if [[B ]] ⊆ [[C ]], and that B is equivalent to C, denoted by B ≡ C, if [[B ]] = [[C ]].

We liberally define an update operator as any function that takes the original knowl-
edge base and its update as inputs, and returns the updated knowledge base.

Definition 1 (Update Operator). A (first-order) update operator is a binary function
over the set of all knowledge bases. Any update operator � is inductively generalised to
finite sequences of knowledge bases 〈Bi〉i<n as follows:

3〈B0〉 = B0 , 3〈Bi〉i<n+1 = (3〈Bi〉i<n) � Bn .

In the following we consider two complementary ways of further specifying an
update operator. While the first one puts constraints on the models of knowledge bases
produced by it, the second directly defines the resulting knowledge base by performing
modifications at the syntactic level.

Model-Based Update Operators. The basic idea underlying model-based update op-
erators is that models of the original knowledge base are viewed as alternative states of
the modelled world, only one of which is the true one. Given this perspective, it is nat-
ural to perform an update with U by updating each of the alternatives independently of
the others, making it consistent with U , and thus obtaining a new set of interpretations
– the models of the updated knowledge base. Formally this is captured by the equation

[[B � U ]] =
⋃

I∈[[B ]]

incorporate([[U ]], I) , (1)



where incorporate(M, I) returns the members of M closer to I so that the original
information in I is preserved as much as possible. A natural way of defining this set
is by assigning a preorder ≤I over I to each interpretation I and taking the minima
of ≤I within M, i.e. incorporate(M, I) = min(M,≤I). In the following we first
formally establish the concept of an order assignment; thereafter we define when an
update operator is characterised by an order assignment.

Given a set S, a preorder over S is a reflexive and transitive binary relation over S;
a strict preorder over S is an irreflexive and transitive binary relation over S. Given a
preorder ≤ over S, we denote by < the strict preorder induced by ≤, i.e. s < t if and
only if s ≤ t and not t ≤ s. For any subset T of S, the set of minimal elements of T
w.r.t. ≤ is denoted by min(T ,≤). A preorder assignment over S is any function ω that
assigns a preorder ≤sω over S to each s ∈ S. A preorder assignment ω is faithful if for
all s, t ∈ S with s 6= t, s <sω t.

Definition 2 (Model-Based Update Operator [21]). Let � be a first-order update op-
erator and ω a preorder assignment over I . We say that � is characterised by ω if for
all knowledge bases B, U ,

[[B � U ]] =
⋃

I∈[[B ]]

min
(
[[U ]],≤Iω

)
.

An operator � is model-based if it is characterised by some faithful preorder assignment.

The model-based operator that underlies the work on ABox updates [25,10] is
Winslett’s operator which compares interpretations based on the sets of ground atoms
that they interpret differently than the original interpretation.

Definition 3 (Winslett’s Operator [39]). The preorder assignment W is defined for all
interpretations I, J,K ∈ I as J ≤IW K if and only if (J ÷ I) ⊆ (K ÷ I), where ÷
denotes the set-theoretic symmetric difference. Winslett’s operator �W is a fixed update
operator that is characterised by W.

Formula-Based Operators. The traditional formula-based update operators that ma-
nipulate a knowledge base syntactically are Set-Of-Theories, Cross-Product and WID-
TIO (see [39] and references therein). The central notion for these operators is that of
a possible remainder which is a maximal set of formulae from the original knowledge
base that is consistent with the update. Formally, given knowledge basesB and U , the set
of possible remainders rem(B,U) is the set of maximal subsets B′ of B such that B′∪U
is consistent. The distinct formula-based operators differ in how they deal with multi-
ple possible remainders. The Set-Of-Theories operator returns the set of all alternative
results, i.e. the set of knowledge bases B′∪U for every B′ ∈ rem(B,U). Assuming that
the initial knowledge base is finite, the Cross-Product operator compiles these different
remainders into a single formula and returns a single knowledge base that is equivalent
to the “disjunction” of knowledge bases returned by the Set-Of-Theories operator.

Definition 4 (Cross-Product Operator). The formula-based operator �CP is defined
for all finite knowledge bases B,U as B �CP U = U ∪ { ψ } where ψ is the formula∨

B′∈rem(B,U)

∧
φ∈B′

φ .



On the other hand, the operator WIDTIO (When In Doubt, Throw It Out [39]) takes
the safe path – it keeps exactly those formulae that belong to the intersection of all
remainders and throws away the rest.

Definition 5 (WIDTIO Operator). The formula-based operator �WIDTIO is defined for
all knowledge bases B, U as B �WIDTIO U = U ∪

⋂
rem(B,U).

Recently, an operator inspired by WIDTIO was defined in [24] to tackle ABox up-
dates. Additionally, in [7] the new formula-based operator Bold was suggested for per-
forming TBox updates because of the counterintuitive behaviour of model-based op-
erators when used for this purpose. The Bold operator solves the problem of multiple
remainders by using a selection function to choose one and commit to it.

Definition 6 (Bold Operator [7]). A remainder selection function is a function s that
assigns to every set of remaindersR a remainder s(R) ∈ R.

Given a remainder selection function s, the formula-based operator �sBOLD is for all
knowledge bases B, U defined as B �sBOLD U = U ∪ s(rem(B,U)).

3 Exception-Driven Operators

In order to show how belief- and formula-based operators can be characterised in a uni-
fied manner, we define an abstract framework for exception-driven operators, usable
for any knowledge representation formalism with a monotonic model-theoretic seman-
tics. We also demonstrate how the justified update semantics (or JU-semantics) for rule
updates [23] was characterised semantically in [36] using exception-driven operators.

Abstract Exception-Driven Operators. Throughout this subsection we assume to be
using some knowledge representation formalism in which a knowledge base is a sub-
set of the set of all knowledge atoms Ω and Z denotes the set of all semantic structures
among which the models of knowledge atoms are chosen. The set of models of a knowl-
edge atom α is denoted by [[α ]]. The semantic characterisation of a knowledge base K
is the set of sets of models of its knowledge atoms: 〈〈K〉〉 = { [[α ]] | α ∈ K }. The models
of K are the models of all its elements, i.e. [[K ]] =

⋂
〈〈K〉〉.

An exception-driven operator views a knowledge K through its semantic character-
isation 〈〈K〉〉 and introduces exceptions to its knowledge atoms by adding new semantic
structures to their original sets of models. The formalisation of this idea is straight-
forward: an exception-driven update operator is characterised by an exception function
that, given the set of models of a knowledge atom α and the semantic characterisations
of the original and updating knowledge base, returns the set of semantic structures that
are to be introduced as exceptions to α.

Definition 7 (Exception Function). An exception function is any function

ε : 2Z × 22
Z
× 22

Z
→ 2Z .

Given such an exception function and knowledge bases K, U , it naturally follows
that the semantic characterisation resulting from updating K by U should consist of



sets of models of each knowledge atom α from K, each augmented with the respective
exceptions, and also the unmodified sets of models of knowledge atoms from U . In
other words, we obtain the set of sets of models

{ [[α ]] ∪ ε([[α ]], 〈〈K〉〉, 〈〈U〉〉) | α ∈ K } ∪ 〈〈U〉〉 . (2)

Turning to the syntactic side, an update operator is binary function over 2Ω that
takes the original knowledge base and its update as inputs and returns the updated
knowledge base. An exception-driven update operator is then formalised as follows:

Definition 8 (Exception-Driven Update Operator). We say that an update opera-
tor ⊕ is exception-driven if for some exception function ε, 〈〈K ⊕ U〉〉 is equal to (2)
for all K,U ⊆ Ω. In that case we also say that ⊕ is ε-driven.

Before we begin formally comparing model- and formula-based operators with
exception-driven ones, we briefly illustrate how the results of [36], where the JU-se-
mantics for rule updates was semantically characterised, fit within our abstract frame-
work for exception-driven operators. Our main intention in doing so is to provide the
reader with a broader picture of exception-driven operators; the technical details left out
in what follows can be found in [36].

Exception-Driven Rule Updates. We adopt the standard syntax and the stable models
semantics of propositional logic programs [16]. In particular, given a set of atoms A,
a literal is an atom p ∈ A or its default negation ∼p, a rule consists of a pair of sets
of literals (H(π), B(π)), usually written (H(π) ← B(π).), and a program is a set of
rules. An interpretation is a subset of A that naturally assigns truth values to atoms and
a model of a rule is an interpretation that satisfies the rule when interpreted as a classical
implication. Models of a program P are the models of all its rules and an interpretation
J is a stable model of P if it is a subset-minimal model of its Gelfond-Lifschitz reduct
PJ [16]. The set of stable models of P is denoted by [[P ]]SM.

The goal of rule update semantics [26,23,3,12,2,31,40,11,22,32] is to generalise the
definition of stable models to pairs or sequences of programs where each component
represents an update of the preceding ones. These semantics are usually constrained
to finite sequences of non-disjunctive programs which we call dynamic logic programs
(DLPs). Typically, they are defined by referring to the syntactic structure of the pro-
grams in a DLP. As a consequence, analysis of their semantic properties is very daunting
and most of them do exhibit undesirable behaviour, e.g. by being sensitive to tautolog-
ical updates which is counterintuitive in the context of updates – a tautology cannot
encode a change in the modelled world because it is always true. The historically first
semantics for DLPs is the JU-semantics [23]. We denote the set of all JU-models of a
DLP D by [[D ]]JU.

The operators introduced in [36] can be seen as an instantiation of the abstract
framework introduced above. In this context, the set of knowledge atoms Ω consists
of all rules and programs and the set of semantic structures Z of three-valued interpre-
tations. A knowledge base (or rule base) is thus any set of rules and programs and its
elements are perceived as atomic pieces of knowledge. Note that a program is a special
case of a rule base. The reason why we allow for programs inside a rule base is that



when a rule is updated, by adding exceptions to its set of models, the resulting set of
models is usually not expressible by a rule, only by a program. Note also that the notion
of a stable model can be naturally generalised to rule bases by introducing models of a
rule base as the models of all its elements and defining the Gelfond-Lifschitz reduct of
a rule baseR asRJ =

{
ΠJ

∣∣ Π ∈ R }.
In [36], the semantics assigned to each rule or program in a rule base is given by

a refinement of SE-models [38], dubbed RE-models, which can distinguish additional
classes of rules, indispensable in the context of updates. An exception function, here
denoted by εJU, is then defined. Details about RE-models and εJU can be found in [36].

The main property of εJU is that stable models of the rule base produced by an
εJU-driven operator, when applied to a DLP D, coincide with its JU-models. This holds
whenever D does not contain local cycles, i.e. rules π with both { p,∼p } ∩H(π) 6= ∅
and { p,∼p } ∩B(π) 6= ∅ for some p ∈ A.

Theorem 9 ([36]). Let D be a DLP without local cycles, J an interpretation and ⊕ an
εJU-driven rule update operator. Then [[

⊕
D ]]SM = [[D ]]JU.

This means that up to the marginal case of local cycles, εJU can be seen as a se-
mantic characterisation of the JU-semantics: it leads to stable models that coincide with
JU-models. In case the DLP contains local cycles, less stable models than JU-mod-
els are found [36]. Local cycles correspond to two different kinds of rules: tautological
rules and rules with the negation of their head in the body. The different behaviour in the
presence of tautological rules is a strict improvement over JU-models, as it introduces
immunity to tautological updates. The other differences are a consequence of treating
constraints such as (p ← ∼p.) and (← ∼p.) uniformly while the JU-semantics treats
them differently under certain circumstances.

This tight relationship allowed us to study the semantic properties of JU-models
under a range of different notions of program equivalence and entailment, and to shed
new light on the problem of state condensing since εJU-driven operators compress any
DLP into a single equivalent rule base.

Even more importantly, these results, along with the developments in this paper,
show that exception-driven operators form a common semantic basis for both ontology
and rule updates, and so create room for addressing updates of hybrid knowledge bases.

4 Belief Updates Using Exception-Driven Operators

Concrete exception-driven operators for first-order knowledge bases are obtained from
the abstract framework developed in Sect. 3 by identifying the set of knowledge atoms
Ω with the set of first-order sentences and the set of semantic structures Z with first-
order interpretations under the standard names assumption, as introduced in Sect. 2.

In [21] it was shown that propositional model-based update operators are exactly
those that satisfy a collection of eight update postulates. These postulates express basic
desirable properties of update operators and most of them can be directly generalised
to the first-order case. Here we use the following three basic properties of first-order
update operators and prove results about the class of all operators satisfying them. The



properties are formulated for an update operator � and quantified over all knowledge
bases B, C, U , V .3

(U1) B � U |= U .

(U2.1) B ∪ U |= B � U .

(U4) If B ≡ C and U ≡ V , then B � U ≡ C � V .

The intuitive reading of (U1) is that information from the update must be retained
in the updated knowledge base, also known as the principle of primacy of new infor-
mation [9]; (U2.1) expresses that models of B that are also models of U , and thus need
not be updated, are kept as models of the updated knowledge base; (U4) specifies that
the operator must be syntax-independent, i.e. it must provide equivalent results given
equivalent inputs. All model-based update operators, including Winslett’s, satisfy these
principles:

Proposition 10 (Properties of Model-Based Updates). Every model-based update
operator satisfies (U1), (U2.1) and (U4).

Furthermore, any operator satisfying these three principles can be faithfully mod-
elled by an exception-driven operator. Formally:

Theorem 11 (Model-Based Updates Using Exception-Driven Operators). If � is an
update operator that satisfies (U1), (U2.1) and (U4), then there exists an exception func-
tion ε such that for every ε-driven update operator ⊕ and all finite sequences of knowl-
edge bases D, [[3D ]] = [[

⊕
D ]].

Similar results can be achieved for formula-based update operators. First we in-
troduce the following principles, counterparts of the respective belief update postu-
lates, which are satisfied by many formula-based operators. We denote by 〈〈B〉〉I the set
〈〈B〉〉 ∪ { I } for any knowledge base B. The principles are as follows:

(F1) 〈〈B � U〉〉 ⊇ 〈〈U〉〉.
(F2.1) 〈〈B ∪ U〉〉 ⊇ 〈〈B � U〉〉.
(F4) If 〈〈B〉〉I = 〈〈C〉〉I and 〈〈U〉〉I = 〈〈V〉〉I , then 〈〈B � U〉〉I = 〈〈C � V〉〉I .

We can see that (F1) and (F2.1) are stronger versions of (U1), and (U2.1), respec-
tively. While (F1) requires that the sets of models of formulae in U be retained in the
semantic characterisation of B�U , (F2.1) states that every formula in B�U be equivalent
to some formula in B ∪ U . Intuitively, this means that B � U is obtained from B ∪ U by
deleting some of its elements, modulo equivalence. Finally, (F4) is a reformulation of
(U4) that is satisfied by formula-based operators – it can be seen as syntax-independence
w.r.t. the set of sets of models of a knowledge base, modulo the presence of tautologies,
instead of the overall set of models as in (U4). In some ways it is weaker than (U4) as
its antecedent is much stronger.

The WIDTIO operator satisfies all of these principles, and so does the Bold operator
if it is based on a remainder selection function that selects remainders with the same
semantic characterisation when given sets of remainders with the same sets of semantic
characterisations. More formally:

3 Their numbers are as in [21,19].



Definition 12 (Regular Bold Operator). Let R be a set of remainders. We denote the
set { 〈〈B′〉〉I | B′ ∈ R} by ((R))I .

We say that the Bold operator �sBOLD is regular if for all sets of remainders R1, R2

such that ((R1))
I = ((R2))

I it holds that 〈〈s(R1)〉〉I = 〈〈s(R2)〉〉I .

The regularity condition guarantees a certain degree of independence of syntax, e.g.
given the sets of remainders R1 = { { p } , { q } } and R2 = { { p ∧ p } , { q ∨ q } }, a
regular Bold operator either selects { p } from R1 and { p ∧ p } from R2, or it selects
{ q } from R1 and { q ∨ q } from R2. A non-regular one might select, say, { p } from
R1 and { q ∨ q } from R2. Thus the regularity condition ensures that the operator is
independent of the syntax of individual formulae in the knowledge base.

The Cross-Product operator satisfies (F1), (U2.1) and (F4), but not (F2.1).

Proposition 13 (Properties of Formula-Based Updates). The WIDTIO and regular
Bold operators satisfy (F1), (F2.1) and (F4). The Cross-Product operator satisfies (F1),
(U2.1) and (F4) but does not satisfy (F2.1).

The following result establishes that formula-based operators such as WIDTIO and
regular Bold can be fully captured by exception-driven operators. In addition, operators
such as Cross-Product can be captured for the case of a single update.

Theorem 14 (Formula-Based Updates Using Exception-Driven Operators). If � is
an update operator that satisfies (F1), (F2.1) and (F4), then there exists an exception
function ε such that for every ε-driven update operator ⊕ and all finite sequences of
knowledge bases D, [[3D ]] = [[

⊕
D ]].

If � is an update operator that satisfies (F1), (U2.1) and (F4), then there exists an
exception function ε such that for every ε-driven update operator ⊕ and all knowledge
bases B, U , [[B � U ]] = [[B ⊕ U ]].

5 Discussion

We have introduced exception-driven operators for first-order knowledge bases and
shown that they can fully capture update operators that form the basis of ontology up-
dates, such as the model-based Winslett’s operator, or the formula-based WIDTIO and
Bold operators [25,10,7,24]. The Cross-Product operator can be captured when a single
update is performed. Furthermore, the same can be said about the Set-Of-Theories op-
erator since for a single update it is equivalent to the Cross-Product operator [39], with
alternative knowledge bases interpreted disjunctively. However, neither of these two op-
erators offers a viable alternative for updating ontologies. Cross-Product requires that
disjunctions of ontology axioms be performed, which is typically not supported in DLs,
and Set-Of-Theories produces a disjunctive ontology which is impractical and deviates
from mainstream DL research.

An interesting point regarding the results of Sect. 4 is that the principles (U1), (U2.1)
and (U4) are not specific to update operators, they are also satisfied by AGM revision
operators. These operators are developed for the case of revising a belief set which is a
set of formulae closed w.r.t. a logical consequence operator Cn. A revision operator ?



takes an original belief set T and a formula µ representing its revision and produces
the revised belief set T ? µ. The typical properties satisfied by AGM revision operators
include success, inclusion and extensionality [18], formalised, respectively, as

µ ∈ T ? µ , T ? µ ⊆ Cn(T ∪ {µ }) , If µ ≡ ν, then T ? µ = T ? ν.

These three properties directly imply that (U1), (U2.1) and (U4) are satisfied by AGM
revision operators if the initial knowledge base is a belief set and each of its updates a
single formula. This essentially means that Theorem 11 directly applies to AGM revi-
sion operators as well. Note that the operator adopted for ABox updates in [24], inspired
by WIDTIO, performs a deductive closure of the ABox before updating it, so it corre-
sponds to the standard full meet AGM revision operator.

Similarly, principles (F1), (F2.1) and (F4) are closely related with the properties of
base revision operators [15,18], of which direct instances are the WIDTIO and Bold
operators. In particular, two types of base revision are identified in [18], the internal
and external base revision. Both of them satisfy base revision counterparts of success
and inclusion and, in addition, internal revision operators satisfy a property called uni-
formity. These three principles together entail that internal revision operators satisfy
(F1), (F2.1) and one half of (F4); the other half can be achieved by putting additional
constraints on the two-place selection function that generates the revision operator, sim-
ilar to the regularity condition we imposed on the Bold operator above. Such regular
internal revision operators are thus directly subject to Theorem 14. The same however
does not hold for regular external revision operators as they need not satisfy uniformity.
Note also that the WIDTIO and Bold operators coincide with internal full meet base
revision and internal maxichoice base revision operators, respectively.

To sum up, in this paper we introduced the abstract framework for exception-driven
operators which view a knowledge base or program as the set of sets of models of its
elements, and perform updates by adding new interpretations – exceptions – to the sets
of models of elements in the original knowledge base or program. The most impor-
tant feature of this approach is that it provides a common basis for a wide range of
model- and formula-based belief update operators as well as for the JU-semantics, a
traditional syntax-based approach to rule updates. In other words, exception functions
and exception-driven operators offer a uniform framework that bridges two very distinct
approaches to updates, previously considered irreconcilable.

Along with this, new possibilities for addressing updates of hybrid knowledge bases
arise. The different methods used for dealing with ABox, TBox and rule updates can
be viewed uniformly by looking at their associated exception functions. When coupled
with a counterpart of SE- or RE-models in the context of hybrid knowledge bases, this
can lead to universal hybrid update semantics which in turn can further improve our
understanding of the relation between the distinct update paradigms.

Our discussion of the expressivity of exception-driven operators w.r.t. revision op-
erators, on both belief sets and belief bases, can be used to tackle and unify approaches
to ontology revision [29,17,30]. This seems relevant even in the context of ontology
updates since it has been suggested in the literature that the strict distinction between
revision and update is not suitable in the context of ontologies [7].

Furthermore, exception-driven characterisations of additional rule update semantics
need to be investigated. This poses a number of challenges due to the need to detect non-



tautological irrelevant updates [2,32]. Insights gained by obtaining exception-driven
characterisations of various rule update semantics may also shed light on the problem
of updating disjunctive programs which has received very little attention up until now.
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