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Abstract. We present the Protégé plug-in NoHR that allows the user to take an
& Eir ontology, add a set of non-monotonic (logic programming) rules — suitable
e.g. to express defaults and exceptions — and query the combined knowledge base.
Our approach uses the well-founded semantics for MKNF knowledge bases as
underlying formalism, so no restriction other than DL-safety is imposed on the
rules that can be written. The tool itself builds on the procedure SLG(O) and,
with the help of OWL 2 EL reasoner ELK, pre-processes the ontology into rules,
whose result together with the non-monotonic rules serve as input for the top-
down querying engine XSB Prolog. With the resulting plug-in, even queries to
very large ontologies, such as SNOMED CT, augmented with a large number
of rules, can be processed at an interactive response time after one initial brief
pre-processing period. At the same time, our system is able to deal with possible
inconsistencies between the rules and an ontology that alone is consistent.

1 Introduction

Ontology languages have become widely used to represent and reason over taxonomic
knowledge, and often such knowledge bases are expressed within the language of the
OWL 2 profile OWL 2 EL [23]]. For example, the clinical health care terminology
SNOMED CT/l arguably the most prominent example in the area of medicine and cur-
rently used for electronic health record systems, clinical decision support systems, or
remote intensive care monitoring, to name only a few, builds on a fragment of OWL 2
EL and its underlying description logic (DL) E£1 [3].

Whereas the OWL ontology languages based on DLs [4] are monotonic by nature,
which means that once drawn conclusions persist when adopting new additional infor-
mation, the ability to model defaults and exceptions with a closed-world view is fre-
quently requested as a missing feature. For example, in [25], modeling pharmacy data
of patients with the closed-world assumption would have been preferred in the study
to match patient records with clinical trials criteria, because usually it can be assumed
that a patient is not under a specific medication unless explicitly known. Similarly, in
clinical health care terminology, it would be advantageous to be able to express that
normally the heart is on the left side of the body unless the person is a dextrocardiac.

In recent years, there has been a considerable amount of effort devoted to extending
DLs with non-monotonic features — see, e.g., related work in [12/24]) — and many of
the existing approaches focus on combining DLs and non-monotonic rules as known
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from Logic Programming. The latter are one of the most well-studied formalisms that
admit expressing defaults, exceptions, and also integrity constraints in a declarative
way and are part of RIF [6]], the other expressive language for the Semantic Web whose
standardization is driven by the W3C

Here we focus on one such combination — Hybrid MKNF under the well-founded
semantics [20] — for two reasons. First, the overall approach, which was introduced in
[24] and is based on the logic of minimal knowledge and negation as failure (MKNF)
[22], provides a very general and flexible framework for combining DL ontologies and
non-monotonic rules (see [24]]). Second, [20], which is a variant of [24] based on the
well-founded semantics [[14] for logic programs, has a (lower) polynomial data com-
plexity and is amenable for applying top-down query procedures, such as SLG(O) [2]],
to answer queries based only on the information relevant for the query, and without
computing the entire model — no doubt a crucial feature when dealing with large on-
tologies such as SNOMED with over 300,000 classes or [25] with millions of assertions.

In this paper, we describe the system NoHR, realized as a plug-in for the ontology
editor Protégé 4 X that allows the user to query combinations of £ EI ontologies and
non-monotonic rules in a top-down manner. To the best of our knowledge, it is the first
Protégé plug-in to integrate non-monotonic rules and top-down queries. Our approach
is theoretically founded in the abstract procedure SLG(Q) and based on utilizing the
consequence-driven, concurrent £L reasoner ELK, which is considerably faster than
other £L reasoners [18]], to classify the ontology part and then translate the result into
rules which, together with the non-monotonic rules, serve as input for the top-down
query engine XSB Prologﬂ Additional features of the plug-in include: the possibility
to load and edit rule bases, and define predicates with arbitrary arity; guaranteed termi-
nation of query answering, with a choice between one/many answers; robustness w.r.t.
inconsistencies between the ontology and the rule part. Our main contributions are:

— We generalize the procedure presented in [2] to avoid the normalization of £ Ejr_
knowledge bases, which is not necessary for ELK, also reducing the size of the
XSB file and of the tables in XSB. At the same time we significantly improve the
formalization in [2] — including the correct handling of complex concept assertions
—in order to show that our procedure is correct.

— We describe an implementation of this revised procedure in Java including an ELK
reasoner for preprocessing the ontology, whose translated output, together with the
rules, can be queried interactively under XSB via the Java front-end Interprologﬁ

— We evaluate the performance of our tool, showing that even SNOMED augmented
with a large number of rules can be preprocessed in a brief period of time and then
query answering is possible at interactive response time.

The remainder of the paper is structured as follows. In Sect. 2l we briefly recall the
DL £ EI and MKNF knowledge bases as a tight combination of the former DL and
non-monotonic rules. Then, we present the revised reasoning algorithm that allows us
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Table 1. Syntax and semantics of ££7

Syntax Semantics
atomic concept A€ Nc AT c A?
atomic role R € Ngr R* - AT x AT
individual a €N at e AT
top T AT
bottom L 1]
conjunction cnb ctnp*
existential restriction 3R.C {z e AT |Iyec AT : (z,y) € RE Ay c CF}
concept inclusion cCcD ctcD?
role inclusion RLCS RTC §%
role composition Rio---oR,L,C S (z1,22) € RFA...A(zk,y) € RF — (z1,y) € ST
concept assertion C(a) at et
role assertion R(a,b) (a®,bF) € RT

to query such MKNF knowledge bases in Sect. Bl In Sect.[4] we introduce our imple-
mentation of the plug-in and evaluate it in Sect. 3] before we conclude in Sect.[@

2 Preliminaries

2.1 Description Logic £ EI

We start by recalling the syntax and semantics of 8/:1“, a large fragment of ELT [3],
the DL underlying the tractable profile OWL 2 EL [23]], following the presentation in
[[L8!19]]. For a more general and thorough introduction to DLs we refer to [4].

The language of £ EI is defined over countably infinite sets of concept names Nc,
role names NR, and individual names N, as shown in the upper part of Table[Il Building
on these, complex concepts are introduced in the middle part of Table[T] which, together
with atomic concepts, form the set of concepts. We conveniently denote individuals by
a and b, (atomic) roles by R and S, atomic concepts by A and B, and concepts by C
and D. All expressions in the lower part of Table [l are axioms. A concept equivalence
C = D is an abbreviation for C' C D and D C C. Concept and role assertions are ABox
axioms and all other axioms TBox axioms, and an ontology is a finite set of axioms.

The semantics of £L£7 is defined in terms of an interpretation T = (AT, -T) consist-
ing of a non-empty domain AZ and an interpretation function L. The latter is defined
for (arbitrary) concepts, roles, and individuals as in Table[Il Moreover, an interpretation
7 satisfies an axiom «, written Z = q, if the corresponding condition in Table [T holds.
If 7 satisfies all axioms occurring in an ontology O, then Z is a model of O, written
T = O.1If O has at least one model, then it is called consistent, otherwise inconsistent.
Also, O entails axiom a, written O |= «, if every model of O satisfies a.. Classification
requires to compute all concept inclusions between atomic concepts entailed by O.



A Query Tool for £L with Non-monotonic Rules 219

2.2 MKNF Knowledge Bases

MKNF knowledge bases (KBs) build on the logic of minimal knowledge and negation
as failure (MKNF) [22]. Two main different semantics have been defined [24420], and
we focus on the well-founded version [20], due to its lower computational complexity
and amenability to top-down querying without computing the entire model. Here, we
only point out important notions, and refer to [20] and [2] for the details.

We start by recalling MKNF knowledge bases as presented in [2]] to combine an
€ EI) ontology and a set of non-monotonic rules (similar to a normal logic program).

Definition 1. Letr O be an ontology. A function-free first-order atom P(t1, ..., t,) such
that P occurs in O is called DL-atom; otherwise it is called non-DL-atom. A rule r is
of the form

H<+ Ay,...,A,,notBy,..., notB,, (D
where the head of v, H, and all A; with 1 < i < nand B; with1 < j < m in the body
of r are atoms. A program P is a finite set of rules, and an MKNF knowledge base K is
a pair (O, P). A rule r is DL-safe if all its variables occur in at least one non-DL-atom
A; with 1 < i <mn, and K is DL-safe if all its rules are DL-safe.

DL-safety ensures decidability of reasoning with MKNF knowledge bases and can be
achieved by introducing a new predicate o, adding o(%) to P for all constants ¢ appearing
in K and, for each rule r € P, adding o(X) for each variable X appearing in r to the
body of r. Therefore, we only consider DL-safe MKNF knowledge bases.

Example 2. Consider an MKNF knowledge base for recommending vacation destina-
tions taken from [24]] (with a few modifications). We denote DL-atoms and constants
with upper-case names and non-DL-atoms and variables with lower-case namesfd
PortCity(Barcelona)
PortCity(Hamburg) NonSeaSideCity(Hamburg)
RainyCity(Manchester)
Recreational (AquaticsCenter)
SeaSideClity © dHas. Beach

Beach T Recreational

OnSea(Barcelona, Mediterranean)

Has(Manchester, AquaticsCenter)

JHas. Recreational = RecreationalCity
SeaSideCity(z) < PortCity(x), not NonSeaSideCity(x)
interestingCity(z) < RecreationalCity(x), not RainyCity(x)
hasOnSea(z) < OnSea(z, y)
false < SeaSideCity(z), nothasOnSea(x)
summerDestination(x) < interestingCity(z), OnSea(z,y)

This example shows that we can seamlessly express defaults and exceptions, such as
every port city normally being a seaside city, integrity constraints, such as requir-

ing to know for every seaside city on which sea it lies, and at the same time taxo-
nomic/ontological knowledge including information over unknown individuals, such as

® To ease readability, we omit the auxiliary atoms that ensure DL-safety and leave them implicit.
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a seaside city being recreational even if we do not know the specific name of the beach.
Note that, unlike [24]], the rule with head false is not a true integrity constraint in our
case. Rather, whenever the keyword false would be derivable, we know that there is at
least one seaside city for which we do not know on which sea it lies.

The semantics of MKNF knowledge bases K is usually given by a translation 7 into
an MKNF formula 7 (/C), i.e., a formula over first-order logic extended with two modal
operators K and not. Namely, every rule of the form (I) is translated into KH <
KA;,...,KA,,notBy,...,notB,,, 7(P) is the conjunction of the translations of
its rules, and 7(K) = Kn(O) A w(P) where w(O) is the first-order translation of O.
Reasoning with such MKNF formulas is then commonly achieved using a partition of
modal atoms, i.e., all expressions of the form K for each K¢ or noty occurring in
(K). For [20]], such a partition assigns true, false, or undefined to (modal) atoms, and
can be effectively computed in polynomial time. If IC is MKNF-consistent, then this
partition does correspond to the unique model of /C [20], and, like in [2]], we call the
partition the well-founded MKNF model M,¢(K). Here, K may indeed not be MKNF-
consistent if the £ £1r ontology alone is inconsistent, which is possible if L occurs, or
by the combination of appropriate axioms in O and P, e.g., A C L and A(a) +. In
the former case, we argue that the ontology alone should be consistent and be repaired
if necessary before combining it with non-monotonic rules. Thus, we assume in the
following that O occurring in K is consistent.

2.3 Querying in MKNF Knowledge Bases

In [2], a procedure, called SLG(O), is defined for querying MKNF knowledge bases
under the well-founded MKNF semantics. This procedure extends SLG resolution with
tabling [9] with an oracle to O that handles ground queries to the DL-part of /C by
returning (possibly empty) sets of atoms that, together with O and information already
proven true, allows us to derive the queried atom. We refer to [2] for the full account of
SLG(0), and only recall a few crucial notions necessary in the following.

SLG(O) is based on creating top-down derivation trees with the aim of
answering (DL-safe) conjunctive queries ) of the form ¢(X) <« Ai,...,
A,,notBy, ..., notB,, where each variable in ) occurs in at least one non-DL atom
in @, and where X is the (possibly empty) set of requested variables appearing in the
body.

In general, the computation of M¢(KC) uses two different versions of K in parallel
to guarantee that a) coherence is ensured, i.e., if =P(a) is derivable, then not P(a) has
to be true as well (cf. also [20]), and b) MKNF-consistency of /C can be verified. For
a top-down approach this is impractical, so, instead, a doubled MKNF knowledge base
K? = (O,0% P9) is defined in which a copy of O with new doubled predicates is
added, and two rules occur in P? for each rule in P, intertwining original and doubled
predicates (see Def. 3.1 in [2])). It is shown that an atom A is true in M (K) iff A is
true in Mys(K?) and A is false in My (K) iff A9 is false in Mys(K?). Note that K¢ is
indeed necessary in general, but if JC does not contain L, then we can use K directly.
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In [2], the notion of oracle is defined to handle ground queries to the ontology, but
before we recall that notion, we use an example to illustrate the idea.

Example 3. Recall K in Ex.[2l Since | does not occur in /C, we can restrict ourselves to
K here. First, consider query ¢ = interestingCity(Manchester). We find a rule whose
head unifies with ¢, and obtain two new queries, RecreationalCity(Manchester) and
not RainyCity(Manchester). There is no rule whose head matches the former, but we
can query the ontology and the answer is yes together with an empty set of atoms,
i.e., RecreationalCity(Manchester) can be proven from O alone. Now we handle
not RainyCity(Manchester), so we query RainyCity(Manchester) which can also
be proven by O alone. Therefore not RainyCity( Manchester) fails, so g is false.

Now, consider ¢; = interestingCity(Barcelona). We obtain again two new queries,
g2 = RecreationalCity(Barcelona) and g5 = notRainyCity(Barcelona). In this
case, g2 = RecreationalCity(Barcelona) cannot be proven from O alone, but the or-
acle could return Has(Barcelona, X') and Recreational(X), which, if we would find
a value for X, would allow us to derive g». However, neither of the two atoms ap-
pear in a rule head in P, so we will never be able to derive it from P. In fact, the
only proper answer the oracle may return is ¢4 = SeaSideCity(Barcelona). From the
corresponding rule in P we obtain two new queries g5 = PortCity(Barcelona) and
gé = notNonSeaSideCity(Barcelona). Then, g5 can be derived from O alone, and ¢
succeeds, because NonSeaSideClity(Barcelona) fails. So g4 succeeds, and therefore
also ¢2. Finally g3 succeeds since RainyCity(Barcelona) fails, so gy is true.

We recall the notions of a complete and a (correct) partial oracle from [2].

Definition 4. Let K¢ = (O, 0%, P%) be a doubled MKNF KB, T a set of ground atoms
(already proven to be true), S a ground query, and L a set of ground atoms such that
each L € L is unifiable with at least one rule head in P?. The complete oracle for
O, denoted compTo, is defined by compTo(Z, S, L) if OUZLZUL = SorOtUTU
L E S. A partial oracle for O, denoted pTo, is a relation pTo(Z, S, L) such that if
pTo(Z,S,L), then OUT UL = Sor O*UTU L = S for consistent O UT U L and
OYUT UL, respectively.

A partial oracle pTo is correct w.r.t. compTo iff, for all MKNF-consistent K¢, re-
placing compTo in SLG(O) with pTo succeeds for exactly the same set of queries.

Partial oracles may avoid returning unnecessary answers L, such as non-minimal
answers or those that try to derive an MKNF-inconsistency even though K¢ is MKNF-
consistent. Moreover, correctness of partial oracles is only defined w.r.t MKNF-
consistent /C. The rationale is that, when querying top-down, we want to avoid checking
whether the entire KB K¢ is MKNF-consistent. This leads to para-consistent derivations
if K¢ is not MKNF-consistent, e.g., some atom P is true, yet P4 is false, while other
independent atoms are evaluated as if K was MKNF-consistent (see [2]]).

3 Pre-processing the Ontology and Querying

In [2], an SLG(O) oracle for €£I is defined based on the reasoning algorithm for
ontology classification presented in [5]], which is restricted to normalized ontologies.
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Even though the process of normalizing €L ontologies is linear, it introduces auxiliary
predicates to achieve the normal form, which, e.g., not only is counter-intuitive to the
idea of finding meaningful explanations for information derived by top-down queries
but also increases the size of the resulting XSB file and tables used in XSB. Since the
reasoning algorithm of ELK [18l19] is defined for the general case, and ELK is the
reasoner we want to use for implementing our query-tool, because it is considerably
faster than other £L reasoners, we generalize the algorithm in [2]] to non-normalized
ontologies. At the same time, we fix a problem in [2] w.r.t. handling non-atomic concept
assertions, and we improve the formalization to prove correctness of our oracle.

In the following, we first utilize the algorithm underlying ELK to compute implicit
information derivable from a given ontology. After that, we discard certain axioms,
because, with the implicit information computed, they are no longer required for the
query task used in SLG(O). Then, we translate the remaining set of axioms into rules,
which can equally be used as an £L oracle.

3.1 Simplifying the Ontology

The basic idea for an £ EI oracle is to translate the ontology into rules. The only ob-
stacle are concept inclusions with 3R.C' on the right-hand side since these cannot be
translated straightforwardly. However, such axioms alone can never contribute to ora-
cle derivations. Consider, e.g., querying K in Ex.[2l for Beach(:) for any constant s:
an oracle cannot derive Beach(i) even if SeaSideCity(c) and has(c, i) were already
known to be true. Yet, such axioms are useful indirectly, e.g., to obtain that proving
SeaSideCity(Barcelona) would suffice to derive RecreationalCity(Barcelona). So,
classification is applied first to make such implicit links explicit, and then all concept
inclusions with sub-concepts 3R.C on the right-hand side can be rewritten or removed.
The consequence-based procedure for classification of TBoxes in £ EI is described
in [19]. Here we only sketch it with a focus on the results important for our purposes.
First, the initial set input is defined to contain one axiom init(A) for each atomic
concept A in O. Then, a set of £ Ei inference rules for TBox reasoning in E,er_ (see
[19]) is applied exhaustively to input, yielding Closure as final result, which contains
axioms derivable from O and axioms of the form init(C) and C' R, D, where the latter
represents that, for two (initialized) concepts C' and D, C' C 3R.D is entailed.

Theorem 5 ([19]). Let O be an €£j ontology, input a set of expressions init(C),
and Closure the closure of input under the 551 inference rules w.rt. O. Then, for
each concept C such that init(C) € Closure and each atomic concept A, we have

1. O CC LifCLC L € Closure,
2. OECLCAjfCC L € ClosureorC C A € Closure.

Note that one of the inference rules (R3) allows init(D) € Closureif C C 3R.D €
Closure. Hence, Theorem[3] does not apply only to init(C') € input.

One thing missing so far, which is not correctly covered in the translation presented
in [2],, is that concept assertions also have to be considered since, e.g., IR.C(a) together
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with 3R.C' C D, make D(a) derivable, yet the 5/:1“ inference rules are defined for
TBox axioms. The solution, adapted from [19], is to apply a transformation N that
translates concept assertions C'(a) into concept inclusions N, T C, where the set of
atomic concepts contains an atomic concept N, for every a € N, s.t. N, does not
appear in O, and leaves all other axioms unchanged. Note that we do not translate role
assertions R(a, b), because R is just an atomic role without occurrences of concepts of
the form JR.C'. Still, it holds for consistent O and axiom « that do not contain atomic
concepts of the form N, that O | « iff N(O) | N(«) ([19], Theorem 3).
We are now ready to present the new definition of a reduced ontology.

Definition 6. Let O be an £ Ejr_ ontology, input a set of expressions init(A) for each
atomic concept A, and Closure the closure of input under the £ /er_ inference rules
w.r.t. N(O). The reduced ontology of O is obtained from O; = N(O) U Closure as
follows.

1. Remove all statements of the forms init(C), C X, D, and C T 3R.D from Oy;
2. Remove all sub-concepts of the form AR.D from the right-hand side of any axiom
C C Dy M Dy € Oy if no conjunct is left, remove the entire axiom from Oy;

3. Substitute all concept inclusions of the form N, T C remaining after 1. and 2. by
C(a) forall a € N.

Note that input does contain init(N,) forall a € N,. Moreover, steps 1. and 2. already
remove all sub-concepts of the form 3R.D from concept inclusions that represent con-
cept assertions, so indeed the reduced ontology does not contain concepts of the form
JR.D in concept assertions and the right-hand sides of concept inclusions. We can show
that reduced O contain all atomic concept assertions they entail.

Lemma 7. Let O be reduced and A an atomic concept. If O |= A(a), then A(a) € O.
Also O and the reduced O’ entail the same unary and binary atoms.

Lemma 8. Let O be an £ EI ontology, O’ the reduced ontology of O, A a unary and
R a binary predicate: O |= A(a) iff O’ |= A(a) and O |= R(a,b) iff O’ = R(a,b).

Now, we show that we can use the reduced ontology of O instead of O as an ELT
oracle. First, we specify a partial oracle that is necessarily a correct partial oracle for O.

Definition 9. Let K¢ = (O, 04, P?) be a doubled MKNF KB, T a set of ground atoms
(already proven to be true), S a ground query, and L a set of ground atoms such that
each L € L is unifiable with at least one rule head in P¢. The abstract partial oracle for
O, denoted pT 3, is a relation pT&(ZL, S, L) such that pT&(Z, S, L) iff OUZUL = S
or OYUT UL = S for consistent O UL U L and O UL U L, respectively.

Such an abstract partial oracle is not necessarily efficient, since it does return all possible
consistent tuples (Z, S, £) but it certainly is correct.

Proposition 10. Let K¢ = (O, 04, P?) be a doubled MKNF KB. The abstract partial
oracle pT is correct w.r.t. compTo.
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Based on this result, we can show that O can be substituted with the reduced ontology
of O and still yield a correct partial oracle.

Theorem 11. Let K¢ = (O, 0% P%) be a doubled MKNF KB and O’ the reduced
ontology of O. Then pT§, is a correct partial oracle w.r.t. compTo.

3.2 Translation into Rules

Now, we can show how to translate a reduced E,er_ ontology into rules. The only
thing missing is pointing out a technical detail on how coherence and detection of
MKNF-inconsistencies is achieved in [20,2]]. We would like to remind that coherence
intuitively ensures that an atom being “classically” false also is false by default in the
non-monotonic rules. That allows us, e.g., to derive from C' C L, C(a) + notD(a),
and D(a) < notC(a) that C(a) is false and D(a) is true, and is therefore useful in
general, even if K¢ is MKNF-consistent. In SLG(O), special atoms N H (t;) are used
to represent a query —H (¢;) to the oracle. Care must be taken when translating an on-
tology containing L to rules, so that these queries still work properly. Of course, if L
does not appear in O, then considering /C suffices.

To ease the presentation of the following translation, we introduce a few a priori
simplifications. First, in a reduced ontology, the concepts C' of concept assertions C'(a)
and the right-hand sides D of concept inclusions C' C D are all of the form C 1. . .MC,,
withn > 0. We can separate these into an equivalent set of n axioms C;(a) and C C C,
respectively, for 1 < i < n, simplifying in particular where some C; is L and another
an atomic concept. Moreover, we assume without loss of generality that 1 does not
occur on the left-hand side of concept inclusions. We know that | M C' and 3R. L are
both equivalent to 1 and | = C is always true, so we do not need to care translating
such cases into rules. Finally, for T, only axioms of the form T C C and sub-concepts
of the form 3R.T deserve our attention, all other instances, namely T (a), C = T, or
C'MT C D, areirrelevant. Hence, T is not considered in assertions, the right-hand side
of concept inclusions, and in conjunctions on the left-hand side of concept inclusions,
all the more, since T does not appear in P. We also omit the auxiliary DL-safe atoms.

First, we translate arbitrary concepts into a set of correctly connected atoms.

Definition 12. Let C be an £ EI concept without occurrences of L, x a variable, and
X a set of variables with x & X. We define tr(C, x) as follows:

{A(z)} ifC=A

0 fC=T
tr(Cy,z) Utr(Ca,z)  if C=C1MCy
{R(z,y)}Utr(D,y) ifC=3R.D

tr(C,z) =

where y € X is a new variable that has not been used before. We obtain tr(C, z)? from
tr(C, x) by substituting all predicates P in tr(C, x) with P%, and, given a set of atoms

Tl

S, S is a sequence of all atoms contained in S separated by “,”.

Each y is indeed intended to be a variable that is globally new in the process of translat-
ing C.E.g.,3R.((35.T)N(AMN3R.B)) translates into S = {R(z,y1), S(y1,v2), A(y1),
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R(y1,y3), B(ys)}. Then S is simply “R(x,y1),S(y1,92), A(y1), R(y1,y3), B(ys)”
which can appear as such in a rule body.

Definition 13. Let K = (O, P) be an MKNF KB with consistent and reduced O. We
define P(% from O, where A is an atomic concept, C a concept, D a non-atomic concept,
R, R;, S roles, and a, b individuals, as the smallest set containing:

(al) for each A(a) € O: A(a) + and A%(a) + notN A(a).

(a2) for each R(a,b) € O: R(a,b) + and R%(a,b) < notNR(a,b).

(t1) foreach T C A € O: A(x) + and A%(x) + notNA(z).

(c1) foreachC C A € O : A(x) + tr(C,z) and A%(z) + tr(C,x)?, not N A(a).

(rl) foreach RC S € O: S(z,y) + R(z,y) and
S4(z,y) + R4 (x,y),not NS(z,v).

(r2) foreachRio---o R, C S € O: S(x1,y) « Ri(x1,22),..., Ri(xk,y) and
S (z1,y) + Ri(z1,22), ..., R (zk,y),not NS(z1,y).

(i1) foreach AC 1 € O: NA(z) +.

(i2) foreach DT 1 € O: {NA(y) < tr(D,z) \ {A(y)} | A(y) € tr(D,z)} U
{NR(y,2) — tr(D,2) \ {R(y, )} | R(y, 2) € tr(D,2)}.

We create in P the rule representation for both O and O?. Again, if | does not occur
in O, then we can skip all rules with doubled predicates, and (il) and (i2) will not
contribute anything either. The additional default atoms of the form notN A(x) and
notNS(x,y) are added to the doubled rules to be in line with the idea of the doubling
of rules in [2]]: whenever, e.g., A(z) is “classically false” for some x, then we make
sure that A%(z) is derviable as false for that same x from the rules, but not necessarily
A(z), thus allowing to detect potential MKNF-inconsistencies. That is also the reason
why (il1) and (i2) do not produce the doubled counterparts: atoms based on predicates
of the forms NC? or N R% are not used anywhere.
We can show that the translation also maintains derivability of atoms.

Lemma 14. Let O be a reduced EL7 ontology, A a unary and R a binary predicate:
O E A(a) iff PS | Ala) and O = A%(a) iff P = A%(a), and, likewise,
O E R(a,b) iff P4 = R(a,b) and O = R(a,b) iff P = R4(a,b).

Thus, we can define a correct partial oracle based on Pél).

Theorem 15. Let K¢ = (O, 0%, P9) be a doubled MKNF KB, O, the reduced ontol-
ogy of O, and pT§* a partial EL oracle such that pT§*(Z, S, L) iff PS, UTUL = S.
Then pT(‘g‘: is a correct partial oracle w.r.t. compTo.[?]

Instead of coupling two rule reasoners that interact with each other using an oracle,
we can simplify the process altogether and integrate both into one rule reasoner. The
resulting approach is decidable with data complexity in P.

Theorem 16. Let K = (O, P) be an MKNF KB with ELT O. An SLG(O) evaluation
of a query in K‘%I = (0, (PTUPY)) is decidable with data complexity in P.
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Fig. 1. System Architecture of NoHR
4 System Description

In this Section, we briefly describe the architecture of our plug-in for Protégé as shown
in Fig.[Tland discuss some features of our implementation and querying in XSB.

The input for our plug-in consists of an OWL file, which can be manipulated as
usual in Protégé, and a rule file. For the latter, we provide a tab called NoHR Rules
that allows us to load, save and edit rule files in a text panel. The syntax follows Prolog
conventions, so that one rule from Ex. 2] can be represented, e.g., by

SeaSideCity (X) :- PortCity(X), not NonSeaSideCity (X) .

The NoHR Query tab also allows for the visualization of the rules, but its main pur-
pose is to provide an interface for querying the combined KB. Whenever the first query
is posed by pushing “Execute”, the translator is started, initiating the ELK reasoner to
classify the ontology and return the inferred axioms to translator. It is verified whether
DisjointWith axioms appear in O which determines whether the application of the
transformations presented in Sect. 3l provides a doubled set of rules or not, and whether
the non-monotonic rules have to be doubled as well. Then, accordingly, a joint (non-
monotonic) rule set is created in which all predicates and constants are encoded using
MDS5 to ensure full compatibility with XSB Prolog’s more restrictive admitted input
syntax. The result is transfered to XSB via InterProlog [8]], which is an open-source
Java front-end allowing the communication between Java and a Prolog engine.

Next, the query is sent via InterProlog to XSB, and answers are returned to the query
processor, which collects them and sets up a table showing for which variable substitu-
tions we obtain true, undefined, or inconsistent valuations (or just shows the truth value
for a ground query). The table itself is shown in the Result tab of the Output panel,
while the Log tab shows measured times and system messages, including those from
XSB via InterProlog. XSB itself not only answers queries very efficiently in a top-down
manner, with tabling, it also avoids infinite loops.

Once the query has been answered, the user may pose other queries, and the system
will simply send them directly without any repeated preprocessing. If the user changes

7 Of course, the partial £L oracle has to be defined w.r.t. the reduced O;.
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" asioms | ELK | Transator | %8| ot |

ChEBI 67184 3,92 7,41 1,75 9,16
EMAP 13730 2,94 5,14 0,00 5,14
Fly Anatomy 19211 2,70 4,99 0,83 5,82
FMA 126548 7,56 14,67 3,58 18,25
GALEN-OWL 36547 5,00 8,76 2,46 11,22
GALEN7 44461 5,88 9,67 4,56 14,23
GALENS 73590 21,90 42,76 28,12 70,88
GO1 28897 3,74 6,06 1,09 7,15
GO2 73590 4,57 8,90 5,02 13,92
Molecule Role 9629 3,41 5,14 0,15 5,29
SNOMED CT 294480 20,61 43,32 24,69 68,01

Fig. 2. Preprocessing time (s) of different £L ontologies

data in the ontology or in the rules, then the system offers the option to recompile, but
always restricted to the part that actually changed.

Our plug-in is under active development and the most recent version is available at
https://code.google.com/p/nohr-reasoner/.

5 Evaluation

In this section, we evaluate our system with the aim of showing that a) different ££
ontologies can be preprocessed for querying in a short period of time, b) adding rules
increases the time of the translation only linearly, and c) querying time is in comparison
to a) and b) in general completely neglectable.

We performed the tests on a Mac book air 13 under Mac OS X 10.8.4 with a 1.8 GHz
Intel Core i5 processor and 8 GB 1600 MHz DDR3 of memory. We used OWL API
3.4.2 for managing ontologies, the ELK libraries 0.3.2, directly integrated into our tool,
InterProlog 2.3a4 as Java front end between Java and Prolog, and XSB 3.4.0 for query-
ing. We ran all tests in a terminal version and Java with the “-XX:+AggressiveHeap”
option, and test results are averages over 5 runs.

First, we preprocessed a number of ontologies without additional rules and measured
the time. The results are shown in Fig.

We considered the ontologies, mentioned in [19], that are available onlinﬂ or, in the
case of SNOMED CT, freely available for research and evaluationﬁ The second column
of Fig.[2lshows the number of axioms in each ontology to give an idea of their size. Very
detailed measures of these ontologies are presented in [19].

We measured the time it takes to only classify these ontologies with the ELK stan-
dalone application for comparison (third column), and also the time to translate the

8 http://code.google.com/p/elk-reasoner/
o http://www.1htsdo.org/licensing/
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Fig. 3. Preprocessing time for SNOMED with a varying number of Rules

OWL file into a file that can be loaded into XSB (Translator, fourth column). Then, we
measured the time to load the resulting file dynamically into XSB (fifth column) and
we also show the total time (sixth column, sum of columns four and five).

One can observe that the total time is not proportional to the number of axioms,
but rather also influenced by which kinds of axioms appear in each ontology which in
particular affects the reasoning time of ELK (see also [19]). We can also see that the
translator (including ELK processing) takes approximately twice the amount of time of
ELK alone, while loading the file in XSB varies from 0 sec. (EMAP) to approximately
the same time as running ELK alone, depending on the number of derived axioms that
can be translated into rules. Still, the total preprocessing time varies from 5.14 sec. to
70.88 sec. which we belief is acceptable since this has to be executed only once before
querying.

Next, we considered only SNOMED CT and added a varying number of non-
monotonic rules. These rules were generated arbitrarily, using predicates from the on-
tology and additional new predicates (up to arity three), producing rules with a random
number of body atoms varying from 1 to 10 and facts (rules without body atoms) with
a ratio of 1:10. Note that, due to the translation of the DL part into rules, all atoms
literally become non-DL-atoms. So ensuring that each variable appearing in the rule
is contained in at least one non-negated body atom suffices to guarantee DL-safety for
these rules.

The results are shown in Fig. 3] (containing also a constant line for classification of
ELK alone and starting with the values from the first experiment with no additional
rules), and clearly show that the time of translator and loading the file in XSB only
grows linearly on the number of rules with a small degree, in particular in the case of
translator. This indicates that adding non-monotonic rules to ontologies has a rather low
impact on preprocessing.

Finally, we tested the querying time. To this purpose, we randomly generated and
handcrafted several queries of different sizes and shapes, some satisfiable while others
not, using SNOMED CT with a varying number of non-monotonic rules as described in
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the previous experiment. More concretely, we tested queries ranging from single atoms
to complex conjunctive queries. We also varied the depth of classes and properties in the
hierarchies, how many sub-elements the considered classes/properties have themselves
(the more they have, the more answers are returned w.r.t. the arbitrarily many created
rules and facts), and how variables are connected. E.g., we considered sequences of
atoms without any (positive variable) connection between them, thus creating all com-
binations of the answers for each atom, but also queries in which properties (or new
predicates of arity greater 1) introduce connections or where the same variable appears
in different queried classes. In all cases, we observed that the query response time is
interactive, mostly significantly below one second, observing longer reply times only if
the number of replies is very high because either the queried class contains many sub-
classes in the hierarchy or if the arbitrarily generated rules create too many meaningless
links, thus in the worst case requiring to compute the entire model. Requesting only one
solution avoids this problem. Additionally, the question of realistic randomly generated
rule bodies for testing querying time remain an issue of future work.

6 Conclusions

We have presented NoHR, the first plug-in for the ontology editor Protégé that integrates
non-monotonic rules and top-down queries with ontologies in the OWL 2 profile OWL
2 EL. Our approach realizes an SLG(O) oracle for ££7, utilizing the £ £ reasoner ELK
for preprocessing an ontology and then translating it into rules, which can be queried
together with the non-monotonic rules in XSB.

We have generalized the procedure presented in [2] to non-normalized 5EI knowl-
edge bases and shown that this formalization provides a correct SLG(QO) oracle. We
also have discussed how this procedure is implemented in our tool, and that it offers the
representation of non-monotonic knowledge such as defaults and exceptions in a seam-
less way. We have evaluated the performance showing that different £L£ ontologies can
be preprocessed for querying in a short period of time, adding rules increases this time
only linearly, and querying time is in comparison to preprocessing insignificant.

There are several relevant approaches discussed in the literature. Most closely related
are probably [16121]], because both build on the well-founded MKNF semantics [20].
In fact, [[16] is maybe closest in spirit to the original idea of SLG(O) oracles presented
in [1]. It utilizes the CDF framework already integrated in XSB, but its non-standard
language is a drawback if we want to achieve compatibility with standard OWL tools
based on the OWL API. On the other hand, [21]], presents an OWL 2 QL oracle based
on common rewritings in the underlying DL DL-Lite [3]]. Less closely related is the
work pursued in [[7U15] that investigates direct non-monotonic extensions of €L, so that
the main reasoning task focuses on finding default subset inclusions, unlike our query-
centered approach.

Two related tools are DReW [26] and HD Rules [[10], but both are based on different
underlying formalisms to combine ontologies and non-monotonic rules. The former
builds on dl-programs [12]] and focuses on datalog-rewritable DLs [[17], and the latter
builds on Hybrid Rules [[L1]. While a more detailed comparison is surely of interest,
the main problem is that both underlying formalisms differ from MKNF knowledge
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bases in the way information can flow between its two components and how flexible
the language is [12124]. Finally, SWRL-IQ [13] is also interesting because it utilizes
expressive features of XSB, but in a monotonic setting and under Protégé 3.X, so OWL
2 is not supported.

In terms of future work, we consider extending our tool so that it is possible to
load files in RIF format, thereby achieving a tool to jointly utilize the two language
paradigms present in the ongoing standardization of the Semantic Web. We also want
to work on extending the language, to allow nominals, or at least safe nominals [[19].
Finally, improving the user interface is also in our focus leveraging XSB language fea-
tures, in particular in the light of [[13]], which uses an expressive query language and
elaborate traces for finding explanations.
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