
Evolving Multi-Context Systems

Ricardo Gonçalves and Matthias Knorr and João Leite 1

Abstract. Managed Multi-Context Systems (mMCSs) provide a
general framework for integrating knowledge represented in hetero-
geneous KR formalisms. However, mMCSs are essentially static as
they were not designed to run in a dynamic scenario. In this paper,
we introduce evolving Multi-Context Systems (eMCSs), a general
and flexible framework which inherits from mMCSs the ability to in-
tegrate knowledge represented in heterogeneous KR formalisms, and
at the same time is able to both react to, and reason in the presence of
commonly temporary dynamic observations, and evolve by incorpo-
rating new knowledge. We show that eMCSs are indeed very general
and expressive enough to capture several existing KR approaches that
model dynamics of knowledge.

1 Introduction

Multi-Context Systems (MCSs) were introduced in [7], building on
the work in [15, 19], to address the need for a general framework
that integrates knowledge bases expressed in heterogeneous KR for-
malisms. Intuitively, instead of designing a unifying language to
which other languages could be translated, in an MCS the differ-
ent formalisms and knowledge bases are considered as modules, and
means are provided to model the flow of information between them.

More specifically, an MCS consists of a set of contexts, each of
which is a knowledge base in some KR formalism, such that each
context can access information from the other contexts using so-
called bridge rules. Such non-monotonic bridge rules add their heads
to the context’s knowledge base provided the queries (to other con-
texts) in their bodies are successful. Managed Multi-Context Systems
(mMCSs) were introduced in [8] to provide an extension of MCSs by
allowing operations, other than simple addition, to be expressed in
the heads of bridge rules. This allows mMCSs to properly deal with
the problem of consistency management within contexts.

One recent challenge for KR languages is to shift from static appli-
cation scenarios which assume a one-shot computation, usually trig-
gered by a user query, to open and dynamic scenarios where there is
a need to react and evolve in the presence of incoming information.
Examples include EVOLP [2], Reactive ASP [13, 12], C-SPARQL
[5], Ontology Streams [18] and ETALIS [3], to name only a few.

Whereas mMCSs are quite general and flexible to address the
problem of integration of different KR formalisms, they are essen-
tially static in the sense that the contexts do not evolve to incorporate
the changes in the dynamic scenarios.

In such scenarios, new knowledge and information is dynamically
produced, often from several different sources – for example a stream
of raw data produced by some sensors, new ontological axioms writ-
ten by some user, newly found exceptions to some general rule, etc.
With mMCSs, it is already possible to reason with such information

1 CENTRIA & Departamento de Informática, Faculdade Ciências e Tecnolo-
gia, Universidade Nova de Lisboa, email: rjrg@fct.unl.pt

– it can simply be treated as belonging to some new (observation)
contexts which, together with some additional bridge rules, could in-
fluence what currently follows from the mMCS.

However, the requirements of such dynamic systems are more sub-
stantial. Surely, we want these observations to influence the current
semantics of the mMCS, but, at the same time, to somehow be able
to change the contexts of the mMCS in a more permanent way, mak-
ing them evolve into a new (updated) version. This could simply be
achieved by adding all these observations to some of the contexts, but
doing so is often not desirable – for example, the stream of raw data
may contain many facts that are irrelevant to some database (con-
text) in the mMCS. Perhaps more importantly, simply adding even
only some of these observations to a context might not be adequate,
requiring more sophisticated operations such as belief revision or up-
date – for example, some new observed (more reliable) fact may con-
flict with an old (less reliable) fact stored in some context, in which
case we need to both add the new one and delete the old one; or some
newly observed exception to a rule may require a change in the pre-
conditions of that rule. Additionally, such transitions where contexts
evolve from one state to the next should be able to depend on the
earlier state of the system – for example, the observation that a light
switch was flipped should result in a transition from a state (encoded
in some context) where the light is on if it was previously off, and
vice versa. Finally, the KR formalism in which observations are en-
coded may be different from the one of the context in which they
need to be incorporated, thus requiring some form of conversion.

From these requirements, it is clear that we need to distinguish two
different ways in which contexts needs to react to incoming observa-
tions. On the one hand, they need to react by allowing observations
to influence the current state, and on the other hand, they need to
react by adopting some more enduring changes that persist beyond
the temporal scope of the observations, and both should be subject to
consistency management.

With these requirements in mind, in this work, we propose a
dynamic extension of mMCSs, called evolving Multi-Context Sys-
tems (eMCSs), a general and flexible framework which inherits from
mMCSs the ability to integrate and manage knowledge represented
in heterogeneous KR formalisms, and adds to it the possibility to in-
corporate, with different levels of persistence and through different
belief change operations, knowledge obtained from dynamic obser-
vations. Just like an mMCS, an eMCS is composed of a collection
of components, each of which contains knowledge represented in
some logic, interconnected by bridge rules which can specify differ-
ent ways to share knowledge. Some contexts of an eMCS called ob-
servation contexts, are reserved for dynamic incoming observations,
changing at each state according to what is observed. More impor-
tantly, we endow eMCSs with expressive bridge rules which allow
the specification of how contexts should react and evolve. The re-
sulting system will be equipped with a semantics based on the novel

ECAI 2014
T. Schaub et al. (Eds.)
© 2014 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-419-0-375

375

notion of evolving equilibrium which extends the notion of equilib-
rium to the dynamic setting. We also discuss consistency manage-
ment, and study complexity issues.

The new eMCSs are in line with the broad motivation presented
in [6], and share some of the features with the framework of reactive
Multi-Context Systems (rMCS) sketched in [6, 11]. However, some
differences set them apart – which will become more apparent after
we present eMCS – namely regarding how observations are handled,
and also the kind of state transitions that can be made, with implica-
tions in the fulfillment of the requirements for this kind of systems.

Example 1 (Running example) Throughout this paper, we will il-
lustrate some concepts using the scenario of an internet forum. As
usual, users are divided into categories, and this division influences
their permissions to post messages. In such a scenario, it is natural
that knowledge is distributed among several contexts and we con-
sider three: a local database which contains all information about
existing users, topics, and posts; an ontology context, meant to be a
previously existing general ontology2 that provides a comprehensive
model to represent online communities and related user-generated
content; finally, a context to model login and permission policy rules.

2 Preliminaries

Following [7], a multi-context system (MCS) consists of a collec-
tion of components, each of which contains knowledge represented
in some logic, defined as a triple L = 〈KB,BS,ACC〉 where KB
is the set of well-formed knowledge bases of L, BS is the set of pos-
sible belief sets, and ACC : KB → 2BS is a function describing
the semantics of L by assigning to each knowledge base a set of ac-
ceptable belief sets. We assume that each element of KB and BS is
a set. We also define FL = {s : s ∈ kb ∧ kb ∈ KBL}.

In addition to the knowledge base in each component, bridge rules
are used to interconnect the components, specifying what knowledge
to assert in one component given certain beliefs held in the com-
ponents of the MCS. Yet, bridge rules in MCSs only allow adding
information to the knowledge base of their corresponding context.

In [8], an extension, called managed Multi-Context Systems (mM-
CSs), is introduced in order to allow other types of operations to
be performed on a knowledge base. For that purpose, each con-
text of an mMCS is associated with a management base, which
is a set of operations that can be applied to the possible knowl-
edge bases of that context. Given a management base OP and a
logic L, let FOP

L = {op(s) : op ∈ OP ∧ s ∈ FL} be the set
of operational formulas that can be built from OP and FL. Each
context of an mMCS gives semantics to operations in its manage-
ment base using a management function over a logic L and a man-
agement base OP , mng : 2F

OP
L × KB → (2KB \ {∅}), i.e.,

mng(op, kb) is the (non-empty) set of possible knowledge bases that
result from applying the operations in op to the knowledge base kb.
We assume that mng(∅, kb) = {kb}. Now, for a sequence of log-
ics L = 〈L1, ... , Ln〉 and a management base OPi, an Li-bridge
rule σ over L, 1 ≤ i ≤ n, is of the form H(σ) ← B(σ) where
H(σ) ∈ FOPi

Li
and B(σ) is a set of bridge literals of the forms

(r : b) and not (r : b), 1 ≤ r ≤ n, with b a belief formula of Lr .
A managed Multi-Context System (mMCS) is a sequence M =

〈C1, ... , Cn〉, where each Ci, i ∈ {1, ... , n}, called a managed con-
text, is defined as Ci = 〈Li, kbi, br i, OPi,mngi〉 where Li =
〈KBi,BSi,ACCi〉 is a logic, kbi ∈ KBi, br i is a set of Li-bridge

2 See, e.g., http://www.w3.org/TR/hcls-sioc/

rules, OPi is a management base, mngi is a management function
over Li and OPi. For the sake of readability, we consider a slightly
restricted version of mMCSs where ACC is a function and not a set
o functions as for logic suites [8].

Example 2 (Ctd.) We present a simplified configuration of the
knowledge bases of the three contexts for the internet forum exam-
ple and refer to [10] and [8] for the (standard) definitions of their
logics. The knowledge base of the database (DB) context is the set
{RegUser(Bob), topic(T),Admin(John)}, representing that Bob is a
registered user, John an administrator and T a topic. The knowledge
base of the Description Logic (DL) [4] context is the set of DL axioms
{Admin
 Mod, Mod
 RegUser} encoding that every administra-
tor is a moderator, which in turn is a registered user. The knowledge
base of the logic programming (LP) [14] context is the program:

canWrite(x,t)← loggedIn(x), topic(t), not closed(t) (1)

canClose(x,t)← loggedIn(x),mod(x), topic(t), not closed(t) (2)

sendSMS(x)← failLogin(x), not SMSsent(x) (3)

blocked(x)← failLogin(x), SMSsent(x) (4)
(1) and (2) define when an user can write a post and close a topic,
respectively. (3) represents that an SMS should be sent to the user
when the first failed login occurs. In case an SMS was already sent,
a failed login causes the user to be blocked (4).

For an mMCS M = 〈C1, ... , Cn〉, a belief state of M is a se-
quence S = 〈S1, ... , Sn〉 such that each Si is an element of BSi. For
a bridge literal (r : b), S |= (r : b) if b ∈ Sr and S |= not (r : b)
if b /∈ Sr; for a set of bridge literals B, S |= B if S |= L for every
L ∈ B. We say that a bridge rule σ of a context Ci is applicable
given a belief state S of M if S satisfies B(σ). We can then define
appi(S), the set of heads of bridge rules of Ci which are applicable
in S, by setting appi(S) = {H(σ) : σ ∈ br i ∧ S |= B(σ)}.

Equilibria are belief states that simultaneously assign an accept-
able belief set to each context in the mMCS such that the applicable
operational formulas in bridge rule heads are taken into account. For-
mally, a belief state S = 〈S1, ... , Sn〉 of an mMCS M is an equi-
librium of M if, for every 1 ≤ i ≤ n, Si ∈ ACCi(kb) for some
kb ∈ mngi(appi(S), kbi).

3 Evolving Multi-Context Systems

In this section, we introduce evolving Multi-Context Systems, which
generalize mMCSs to a dynamic scenario in which contexts are en-
abled to react to external observations and evolve. For that pur-
pose, we consider that some of the contexts in the MCS become
so-called observation contexts whose knowledge bases will be con-
stantly changing over time according to the observations made, sim-
ilar, e.g., to streams of data from sensors.3

The changing observations will then also affect other contexts by
means of the bridge rules. Such effect will either be instantaneous
and temporary, i.e., limited to the current time instant, similar to
(static) mMCSs, where the body of a bridge rule is evaluated in a
state that already includes the effects of the operation in its head, or
only affect the state at the next time instant, though persistent. To
achieve the latter, we extend the operational language with a unary
meta-operation next that can only be applied on top of operations.

Definition 1 Given a management base OP and a logic L, we de-
fine eFOP

L , the evolving operational language, as eFOP
L = FOP

L ∪
{next(op(s)) : op(s) ∈ FOP

L }.
3 For simplicity of presentation, we consider discrete steps in time here.

R. Gonçalves et al. / Evolving Multi-Context Systems376

http://www.w3.org/TR/hcls-sioc/

We can now define evolving Multi-Context Systems.

Definition 2 An evolving Multi-Context System (eMCS) is a se-
quence Me = 〈C1, ... , Cn〉, where each evolving context Ci, i ∈
{1, ... , n} is defined as Ci = 〈Li, kbi, br i, OPi,mngi〉 where

• Li = 〈KBi,BSi,ACCi〉 is a logic
• kbi ∈ KBi

• br i is a set of Li-bridge rules s.t. H(σ) ∈ eFOPi
Li• OPi is a management base

• mngi is a management function over Li and OPi.

As already outlined, evolving contexts can be divided into regular
reasoning contexts and special observation contexts that are meant to
process a stream of observations which ultimately enables the entire
eMCS to react and evolve in the presence of incoming observations.
To ease the reading and simplify notation, w.l.o.g., we assume that
the first � contexts, 0 ≤ � ≤ n, in the sequence 〈C1, ... , Cn〉 are
observation contexts, and, whenever necessary, such an eMCS can
be explicitly represented by 〈Co

1 , ... , C
o
� , C�+1, ... , Cn〉.

As for mMCSs, a belief state for Me is a sequence S =
〈S1, ... , Sn〉 such that, for each 1 ≤ i ≤ n, we have Si ∈ BSi.

Recall that the heads of bridge rules in an eMCS are more ex-
pressive than in an mMCS, since they may be of two types: those
that contain next and those that do not. The former affect the current
state of the knowledge base with a non persistent effect, while the lat-
ter are used to produce the knowledge base at the subsequent state,
with a persisting effect. Therefore, we distinguish these two subsets.

Definition 3 Let Me = 〈C1, ... , Cn〉 be an eMCS and S a belief
state for Me. Then, for each 1 ≤ i ≤ n, consider the following sets:

• appnext
i (S) = {op(s) : next(op(s)) ∈ appi(S)}

• appnow
i (S) = {op(s) : op(s) ∈ appi(S)}

To achieve a change in the current state while making such change
persist, we can use two bridge rules with identical body, one with and
one without the next operator.

Example 3 (Ctd.) We now present the internet forum eMCS Me =
〈Co

1 , C2, C3, C4〉 composed of one observation context Co
1 and three

reasoning contexts C2, C3 and C4, corresponding to the DB, DL, and
LP context, respectively, whose knowledge bases are given in Exam-
ple 2. The knowledge base and belief set language of Co

1 is composed
of all the ground instances of write(x,t,p), register(x), mkPrvt(x,t),
login(x), logout(x), and failLogin(x). The function ACC1 assigns
{K} to every set K of knowledge base formulas and br1 is empty.
The DB context comprises the set of bridge rules br2:4

next(ins(RegUser(x)))←1:register(x), not 2:RegUser(x)

next(ins(HasReply(t,p)))←1:write(x,t,p), 4:canWrite(x,t)

next(ins(Closed(t)))←1:close(x,t), 4:canClose(x,t)
The rules express how kb2 evolves in face of incoming observa-

tions and the permission policies in C4 declaring when to add a new
registered user, a new post to a topic, or closing a topic, where ins
is the usual database insertion operation. The use of next ensures
that the effects persist. The bridge rules of the DL context C3 import
information from C2 to allow further inferences.
add(Admin(x))← 2 : Admin(x) add(Mod(x))← 2 : Mod(x)

add(RegUser(x))← 2 : RegUser(x)
Note that, since we do not want to duplicate information already in
C2, we only import it temporarily to C3 without using the operator

4 Bridge rules with variables represent all their ground instances.

next. The LP context contains the following bridge rules:
next(upd(loggedIn(x)←))←1: login(x), not 4: loggedIn(x)

not 4:blocked(x), 3:RegUser(x)

next(upd(not loggedIn(x)←))←1: logout(x), 4: loggedIn(x)

upd(failLogin(x)←)←1: failLogin(x)

next(upd(SMSsent(x)←))←4:sendSMS(x)

upd(mod(x)←)←3:Mod(x), 1:close(x,t)

upd(closed(x)←)←2:Closed(x)

upd(topic(t)←)←2:HasReply(t,p)

next(upd(rule))←1:mkPrvt(y,t), 3:Admin(y),

4: topic(t)
where rule = not canWrite(x,t) ← notmod(x). We assume that
upd is the LP update operator described in [1]. The first two rules
deal with the successful login and logout of an user, while the next
two handle a failed login. Note that failLogin is instantaneous and
used in 3, while SMSsent is persistent from the next instant on. The
next three rules import information from C3 and C2, while the last
one declares that an admin can make a topic private in the sense that
only mods can continue to write in it.

Similar to equilibria in mMCS, the (static) equilibrium is defined
to incorporate instantaneous effects based on appnow

i (S) alone.

Definition 4 Let Me = 〈C1, ... , Cn〉 be an eMCS. A belief state
S = 〈S1, ... , Sn〉 for Me is an equilibrium of Me iff, for each 1 ≤
i ≤ n, there exists some kb ∈ mngi(app

now
i (S), kbi) such that

Si ∈ ACCi(kb).

To be able to assign meaning to an eMCS evolving over time, we
introduce evolving belief states, which are sequences of belief states,
each referring to a subsequent time instant.

Definition 5 Let Me = 〈C1, ... , Cn〉 be an eMCS. An evolving be-
lief state of size s for Me is a sequence Se = 〈S1, ... , Ss〉 where
each Sj , 1 ≤ j ≤ s, is a belief state for Me.

To enable an eMCS to react to incoming observations and evolve,
an observation sequence, defined next, has to be processed. The idea
is that the knowledge bases of the observation contexts Co

i change
according to that sequence.

Definition 6 Let Me = 〈Co
1 , ... , C

o
� , C�+1, ... , Cn〉 be an

eMCS. An observation sequence for Me is a sequence Obs =
〈O1, ... ,Om〉, such that, for each 1 ≤ j ≤ m, Oj = 〈oj1, ... , oj�〉 is
an instant observation with oji ∈ KBi for each 1 ≤ i ≤ �.

To be able to update the knowledge bases in the evolving con-
texts, we need one further notation. Given an evolving context Ci

and k ∈ KBi, we denote by Ci[k] the evolving context in which kbi
is replaced by k, i.e., Ci[k] = 〈Li, k, br i, OPi,mngi〉.

We can now define that certain evolving belief states are evolving
equilibria of an eMCS Me = 〈Co

1 , ... , C
o
� , C�+1, ... , Cn〉 given an

observation sequence Obs = 〈O1, ... ,Om〉 for Me. The intuitive
idea is that, given an evolving belief state Se = 〈S1, ... , Ss〉 for
Me, in order to check if Se is an evolving equilibrium, we need to
consider a sequence of eMCSs, M1, ... ,Ms (each with � observation
contexts), representing a possible evolution of Me according to the
observations in Obs, such that Sj is a (static) equilibrium of M j .
The knowledge bases of the observation contexts in M j are exactly
their corresponding elements oji inOj . For each of the other contexts
Ci, � + 1 ≤ i ≤ n, its knowledge base in M j is obtained from the
one in M j−1 by applying the operations in appnext

i (Sj−1).

R. Gonçalves et al. / Evolving Multi-Context Systems 377

Definition 7 Let Me = 〈Co
1 , ... , C

o
� , C�+1, ... , Cn〉 be an eMCS,

Se = 〈S1, ... , Ss〉 an evolving belief state of size s for Me,
and Obs = 〈O1, ... ,Om〉 an observation sequence for Me such
that m ≥ s. Then, Se is an evolving equilibrium of size s of
Me given Obs iff, for each 1 ≤ j ≤ s, Sj is an equilibrium
of M j = 〈Co

1 [o
j
1], ... , C

o
� [o

j
�], C�+1[k

j
�+1], ... , Cn[k

j
n]〉 where, for

each �+ 1 ≤ i ≤ n, kbji is defined inductively as follows:

• k1
i = kbi

• kj+1
i ∈ mngi(app

next
i (Sj), kj

i)

Note that next in bridge rule heads of observation contexts are
thus without any effect, in other words, observation contexts can
indeed be understood as managed contexts whose knowledge base
changes with each time instant.

Example 4 (Ctd.) Consider the observation sequence Obs =
〈O1,O2,O3〉 such that o11 = {register(Anna), failLogin(Bob)},
o21 = {login(Anna), failLogin(Bob), mkPrvt(John,T)}, and o31 =
{write(Anna,T,P), login(Bob)}. Then, an evolving equilibrium of
size 3 of Me given Obs is the sequence Se = 〈S1, S2, S3〉
such that, for each 1 ≤ j ≤ 3, Sj = 〈Sj

1, S
j
2, S

j
3, S

j
4〉.

Since it is not feasible to present the entire Se, we just highlight
some interesting parts related to the evolution of the system. E.g.,
we have that sendSMS(Bob) ∈ S1

4 ; RegUser(Anna) ∈ S2
2 and

SMSsent(Bob) ∈ S2
4 ; and {blocked(Bob), loggedIn(Anna)} ⊆ S3

4 ,
but not CanWrite(Anna,T) ∈ S3

4 since T was made private in the
previous time instant by admin John.

In Def. 7, the number of considered time instances of observations,
m, is greater or equal to the size of the evolving belief state. The
intuition is that an equilibrium may also be defined for a part of the
observation sequence only. An immediate consequence is that any
subsequence of an evolving equilibrium is an evolving equilibrium.

Proposition 1 Let Me = 〈C1, ... , Cn〉 be an eMCS and Obs =
〈O1, ... ,Om〉 an observation sequence for Me. If Se = 〈S1, ... , Ss〉
is an evolving equilibrium of size s of Me given Obs, then, for each
1 ≤ j ≤ s, and every j ≤ k ≤ m, we have that 〈S1, ... , Sj〉 is an
evolving equilibrium of size j of Me given the observation sequence
〈O1, ... ,Ok〉.

It is not hard to see that an mMCS is a particular case of an eMCS
with no observation context and whose bridge rule heads do not
contain the operator next. Note that, since there are no observation
contexts, an observation sequence for an mMCS is necessarily a se-
quence of empty instant observations. We prove the following result.

Proposition 2 Let M = 〈C1, ... , Cn〉 be an mMCS. Then, S =
〈S1, ... , Sn〉 is an equilibrium of M iff 〈S〉 is an evolving equilib-
rium of size 1 of M for some observation sequence Obs for M of
size at least 1.

We now define an operator that incrementally constructs the set of
evolving equilibria of an eMCS, i.e., it constructs the set of evolv-
ing equilibria of size n from the set of evolving equilibria of size
n−1. Formally, given an eMCS Me = 〈C1, ... , Cn, O1, ... , O�〉 and
an observation sequence Obs = 〈O1, ... ,Om〉 for Me, we define an
operator Γ on the set of evolving belief sets for Me of size at most m.
First, given an evolving belief state Se = 〈S1, ... , Ss〉 with s ≤ m,
we define the set Tr(Se) of its traces, which describes how the rea-
soning contexts evolve:

Tr(Se) = {〈K1, ... ,Ks〉| each Kj = 〈kj
�+1, ... , k

j
n〉 and, for

each � + 1 ≤ i ≤ n, kj
i is defined inductively as: k1

i = kbi
and kj+1

i ∈ mngi(app
next
i (Sj), kj

i), and Sj is an equilibrium of
〈Co

1 [o
j
1], ... , C

o
� [o

j
�], C�+1[k

j
�+1], ... , C�[k

j
n]〉, for each 1 ≤ j ≤ s}.

Let S be a set of evolving belief states for Me of size less than m.
We define operator Γ as follows:

Γ(S) = {〈S1, ... , Ss, Ss+1〉 | 〈S1, ... , Ss〉 ∈ S and there exists
〈K1, ... ,Ks〉 ∈ Tr(〈S1, ... , Ss〉) and, for each � + 1 ≤ i ≤ n,
there exists ks+1

i ∈ mngi(app
next
i (Ss), ks

i), such that Ss+1 is an
equilibrium of 〈Co

1 [o
s+1
1], ... , Co

� [o
s+1
�], C1[k

s+1
�+1], ... , Cn[k

s+1
n]〉}.

Intuitively, this operator constructs, from all evolving belief states
of size s in S, all possible evolving belief states of size s + 1
with respect to the observation sequence Obs. Using operator Γ we
can inductively define a sequence 〈Sj〉j∈{1,...,m} as follows: S1 =
{〈S〉 | S equilibrium of 〈Co

1 [o
1
1], ... , C

o
� [o

1
�], C�+1, ... , Cn〉}; and

Sj+1 = Γ(Sj). We can then prove that the sequence 〈Sj〉j∈{1,...,m}
incrementally constructs all evolving equilibria of an eMCS.

Theorem 1 Let Me = 〈C1, ... , Cn〉 be an eMCS and Obs an ob-
servation sequence for Me. Then, Se is an evolving equilibrium of
size s of Me given Obs iff Se ∈ Ss.

4 Inconsistency Management

Inconsistency management is an important topic for frameworks that
aim at integrating knowledge from different sources, and this is all
the more true when knowledge changes over time.

For the case of mMCSs, three forms of inconsistency are consid-
ered: nonexistence of equilibria, local inconsistency, and operator
inconsistency [8]. The first has been extensively studied for MCSs
[10] and is also termed global inconsistency, while the second one
deals with inconsistent belief sets potentially occurring in an equilib-
rium, provided the contexts in the considered mMCS admit such a
notion. The third form aims at handling conflicts between operations
in the heads of bridge rules. Since the latter is tightly connected to
the management function, which is also crucial for dealing with local
inconsistency [8], we only consider global and local inconsistency,
generalize related concepts of [8] and transfer them to eMCSs.

We start by introducing two notions of (global) consistency differ-
ing only on which observation(s) to consider.

Definition 8 Let Me = 〈C1, ... , Cn〉 be an eMCS and Obs =
〈O1, ... ,Om〉 an observation sequence for Me. Then, Me is con-
sistent with respect to Obs if it has an evolving equilibrium of size m
given Obs, and strongly consistent if, for every observation sequence
Obs for Me, Me is consistent with respect to Obs.

From Prop. 1, we immediately obtain that if there is subsequence
of Obs such that the considered eMCS is inconsistent, then the eMCS
is also inconsistent for the entire sequence (and vice-versa).

Corollary 1 Let Me = 〈C1, ... , Cn〉 be an eMCS and Obs =
〈O1, ... ,Om〉 an observation sequence for Me. Then, Me is con-
sistent w.r.t. Obs, iff Me is consistent w.r.t. 〈O1, ... ,Oj〉 for every
1 ≤ j ≤ m.

It is obvious that strong consistency implies consistency w.r.t.
any observation sequence, but not vice-versa, and that Corollary 1
can also be adapted for strong consistency. Unfortunately, verifying
strong consistency is highly complex since it requires checking all
possible observation sequences. Still, strong consistency is an im-
portant property if we want to ensure that an eMCS always has an

R. Gonçalves et al. / Evolving Multi-Context Systems378

evolving equilibrium independently of the considered observation se-
quence, which is why we now establish conditions that ensure that
an eMCS is strongly consistent (and thus consistent) and at the same
time discuss some notions on inconsistency management.

Inconsistency management was discussed in [10] for MCSs based
on the notions of diagnoses and explanations. Diagnosis aims at find-
ing modifications on the bridge rules such that consistency is re-
stored. Dually, explanations look for bridge rules that avoid/cause
inconsistencies. Both notions were generalized to mMCSs in [8].
These notions can also be straightforwardly generalized to eMCSs,
yielding evolving sequences of sets of diagnoses and explanations,
respectively, one for each time instant. In general, these sets in such
a sequence differ from one instant to another, thus not allowing one
unique diagnosis or explanation. Those diagnoses and explanations
that persist in each such set possibly indicate a more general struc-
tural problem in the eMCS. We leave the technical details, including
an adaptation of Prop. 4 from [8], for an extended version, and focus
only on two notions sufficient to ensure (strong) consistency.

The first one is that each context always has at least one acceptable
belief set independently of the applicable operational formulas. For-
mally, a context Ci with kbi in an eMCS Me is totally coherent iff,
for every kb ∈ KBi, ACCi(kb) �= ∅. The second one describes cy-
cles between contexts that may cause inconsistency. Given an eMCS
Me = 〈C1, ... , Cn〉, we write refr(i, j) iff r is a bridge rule of
context Ci and (j : p) occurs in the body of r. For an eMCS Me

and {r1, ... , rk} ∈
⋃

br i, we say that (r1, ... , rk) forms a cycle iff
refr1(i1, i2), ... , refrk−1(ik−1, ik), and refrk (ik, i1) hold. Then,
Me is acyclic if no such cycles exist. We can show the following.

Proposition 3 Any acyclic eMCS with totally coherent contexts is
strongly consistent.

A similar property holds for consistent mMCSs, which indicates that
the extension to eMCSs as such does not decrease the likelihood of
existence of (evolving) equilibria.

An adequate treatment of local inconsistency was one of the mo-
tivations for the introduction of mMCSs, and this extends to eMCSs
with incoming observations that also should be subject to consis-
tency management. As in [8], we need to assume that each context
has a notion of inconsistent belief state, which usually exists or is
easily definable. This allows us to introduce the following notions. A
knowledge base kbi ∈ KBi of a context Ci is said to be consistent if
ACCi(kbi) does not contain an inconsistent belief set. A manage-
ment function mngi of a context Ci is said to be locally consistency
preserving (lc-preserving), if for every set Opi ⊆ FOPi

Li
and con-

sistent knowledge base kbi ∈ KBi, we have that every element of
mngi(Opi, kbi) is a consistent knowledge base.

Definition 9 Let Me be an eMCS and Obs an observation sequence
for Me. Then, Me is locally consistent with respect to Obs if every
evolving equilibrium S = 〈S1, ... , Ss〉 of Me with respect to Obs is
such that, for each 1 ≤ j ≤ s, all belief sets in Sj are consistent.

Note that we do not consider a strong notion of local consistency,
since this would require investigating properties of concrete man-
agement functions, which we leave for future work.

Recall that observations are subject to consistency management
in each context. If the management functions are lc-preserving, then
consistent observations do not make a consistent eMCS inconsistent.

Proposition 4 Let Me = 〈C1, ... , Cn〉 be an eMCS s.t. for each Ci,
kbi is consistent and mngi lc-preserving. If Obs = 〈O1, ... ,Om〉 is
an observation sequence for Me s.t. each Oj

i is a consistent knowl-
edge base, then Me is locally consistent w.r.t. Obs.

5 Complexity

The computational complexity of MCSs and mMCS has been stud-
ied with a focus on existence of equilibria [7, 8] and inconsistency
analysis [10]. Here, we consider the existence of an evolving equilib-
rium of size s for an eMCS Me given an observation sequence Obs,
i.e., we check whether Me is consistent, denoted CONS(M).

Using the operator Γ for that purpose would not be efficient, since
it would, in general, compute all exponentially many evolving equi-
libria. Still, what the iteration of Γ clearly shows is that the compu-
tation of one evolving equilibrium of size s is simply a sequence of
s computations – one for each time instant – which is why we can
divide the problem and rely on notions previously developed.

For analyzing the complexity in each time instant, we can uti-
lize output-projected belief states [10]. The idea is to consider only
those beliefs that appear in some bridge rule body. Formally, given
an evolving context Ci within Me = 〈C1, ... , Cn〉, we can de-
fine OUTi to be the set of all beliefs of Ci occurring in the body
of some bridge rule in Me. The output-projection of a belief state
S = 〈S1, ... , Sn〉 of Me is the belief state S′ = 〈S′1, ... , S′n〉,
S′i = Si ∩ OUTi, for 1 ≤ i ≤ n. We obtain the following result
for (static) equilibria which is adapted from the case of mMCSs [8].

Proposition 5 An eMCS Me = 〈C1, ... , Cn〉 has an equilibrium iff
some output-projected belief state S′ = 〈S′1, ... , S′n〉 exists such that,
for all 1 ≤ i ≤ n, S′i ∈ {Si ∩ OUTi : Si ∈ ACCi(kb

′
i) ∧ kb′i ∈

mngi(app
now
i (S′), kbi)}.

Following [10, 8], the context complexity of Ci is the complexity of
the following problem:

(CC) Decide, given Opi ⊆ eFOPi
Li

and S′i ⊆ OUTi, if exist kb′i ∈
mngi(Opi, kbi) and Si ∈ ACCi(kb

′
i) s.t. S′i = Si ∩OUTi.

Note that Ci is explicitly represented by kbi and br i, and the logic
is implicit, i.e., existence of Si is decided by an oracle. The context
complexity CC(M) of an eMCS Me is a (smallest) upper bound for
the context complexity classes of all Ci [8].

Problem (CC) can intuitively be divided into two subproblems:
(MC) compute some kb′i ∈ mngi(Opi, kbi) and (EC) decide
whether Si ∈ ACC(kb′i) exists s.t. S′i = Si ∩ OUTi, but, as ar-
gued in [8], considering (CC) suffices for complexity considerations.

Now, checking whether Me is consistent, essentially amounts to
guessing an evolving belief state of size s and then checking, for
each of the s time instants, (MC) and (EC) ignoring all elements in
Opi with next, and additionally an independent (MC) ignoring all
elements Opi without next. Thus, we limit our considerations to
(CC) and in dependence on CC(M), we show in the following table
the complexity of CONS(M) for several complexity classes used
in [8], where i ≥ 1 and entries denote membership results, resp.
completeness results if (CC) is hard for some Ci:
CC(M) in P ΣP

i ΔP
i PSPACE EXPTIME

CONS(M) NP ΣP
i ΣP

i PSPACE EXPTIME
Note that these results exactly correspond to those for mMCSs

in [8] which means that the transition from mMCSs to eMCS does
not increase the worst case complexity for checking consistency. The
reason is that checking for existence of an evolving equilibrium only
adds factors two and s for computing (MC) independently twice, and
for the size of the evolving equilibrium, respectively. A more fine-
grained analysis would consider (MC) and (EC) separately, but we
conjecture that any changes can be traced back to (MC) and (EC) and
would also affect mMCSs. We leave such a study for future work.

R. Gonçalves et al. / Evolving Multi-Context Systems 379

6 Related and Future Work

Evolving Multi-Context Systems share some of the main ideas of re-
active Multi-Context Systems sketched in [6, 11, 9] inasmuch as both
aim at extending mMCSs to cope with dynamic observations. Three
main differences distinguish them. First, whereas eMCSs rely on a
sequence of observations, each independent from the previous ones,
rMCSs encode such sequences within the same observation contexts,
with its elements being explicitly timestamped. This means that with
rMCSs it is perhaps easier to write bridge rules that refer, e.g., to
specific sequences of observations, which in eMCSs would require
explicit timestamps and storing the observations in some context, al-
though at the cost that rMCSs need to deal with explicit time which
adds an additional overhead. Second, since in rMCSs the contexts
resulting from the application of the management operations are the
ones that are used in the subsequent state, difficulties may arise in
separating non-persistent and persistent effects, for example, allow-
ing an observation to override some fact in some context while the
observation holds, but without changing the context itself – such sep-
aration is easily encodable in eMCSs given the two kinds of bridge
rules, i.e., with or without operator next. Finally, bridge rules with
next allow for the specification of transitions based on the current
state, such as the one encoded by the rule next(add(p)) ← not p,
which do not seem possible in rMCSs. Overall, these differences in-
dicate that an interesting future direction would be to merge both
approaches, exploring a combination of explicitly timestamped ob-
servations with the expressiveness provided by operator next.

Another framework that aims at modeling the dynamics of knowl-
edge is that of evolving logic programs EVOLP [2] focusing on
updates of generalized logic programs. It is possible to show that
EVOLP can be seen as a particular case of eMCSs, using the operator
next to capture the operator assert of EVOLP. We leave the details
for an extended version. Closely related to EVOLP, hence to eMCS,
are the two frameworks of reactive ASP, one implemented as a solver
oclingo [13] and one described in [6]. The system oclingo extends an
ASP solver for handling external modules provided at runtime by a
controller. The output of these external modules can be seen as the
observations of EVOLP. Unlike the observations in EVOLP, which
can be rules, external modules in oclingo are restricted to produce
atoms so the evolving capabilities are more restricted. On the other
hand, oclingo permits committing to a specific answer-set at each
state, a feature that is not part of EVOLP, nor of eMCS. Reactive ASP
as described in [6] can be seen as a more straightforward generaliza-
tion of EVOLP where operations other than assert for self-updating
a program are permitted. Given the above mentioned embedding of
EVOLP in eMCS, and the fact that eMCSs permit several (evolution)
operations in the head of bridge rules, it is also not difficult to show
that Reactive ASP as described in [6] can be captured by eMCSs.

An important topic for future work is to study minimal change in
eMCSs. Whereas minimal change may be desirable to obtain more
coherent evolving equilibria, there are also arguments against adopt-
ing a one-size-fits-all approach embedded in the semantics. Different
contexts, i.e., KR formalisms, may require different notions of mini-
mal change, or even require to avoid it – e.g., suppose we want to rep-
resent a variable that non-deterministically takes one of two values
at each time instant: minimal change could force a constant value.

The dynamics of eMCS is one kind of dynamics, but surely not the
only one. Studying the dynamics of the bridge rules is also an impor-
tant topic, to a great extent orthogonal to the current development.
Another form of dynamics is to perform AGM style belief revision
at the (semantic) level of the equilibria, as in Wang et al [20], though

different since knowledge is not incorporated in the contexts.
We can also consider the generalization of the notions of minimal

and grounded equilibria [7] to eMCSs to avoid, e.g., self-supporting
cycles caused by bridge rules, or the introduction of preferences to
deal with the existence of several evolving equilibria of an eMCS.

Also interesting is to apply the ideas in this paper to study the
dynamics of frameworks closely related to MCSs, such as [17, 16].

ACKNOWLEDGEMENTS

We would like to thank the referees for their comments, which
helped improve this paper considerably. Matthias Knorr and João
Leite were partially supported by FCT under project “ERRO
– Efficient Reasoning with Rules and Ontologies” (PTDC/EIA-
CCO/121823/2010). Ricardo Gonçalves was supported by FCT grant
SFRH/BPD/47245/2008 and Matthias Knorr was also partially sup-
ported by FCT grant SFRH/BPD/86970/2012.

REFERENCES

[1] J. Alferes, F. Banti, A. Brogi, and J. Leite, ‘The refined extension prin-
ciple for semantics of dynamic logic programming’, Studia Logica,
79(1), 7–32, (2005).

[2] J. Alferes, A. Brogi, J. Leite, and L. Pereira, ‘Evolving logic programs’,
in JELIA, volume 2424 of LNCS, pp. 50–61. Springer, (2002).

[3] D. Anicic, S. Rudolph, P. Fodor, and N. Stojanovic, ‘Stream reasoning
and complex event processing in ETALIS’, Semantic Web, 3(4), 397–
407, (2012).

[4] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-
Schneider, eds. The Description Logic Handbook: Theory, Implemen-
tation, and Applications. Cambridge University Press, 2003.

[5] D. Barbieri, D. Braga, S. Ceri, E. Della Valle, and M. Grossniklaus, ‘C-
SPARQL: a continuous query language for RDF data streams’, Int. J.
Semantic Computing, 4(1), 3–25, (2010).

[6] G. Brewka, ‘Towards reactive multi-context systems’, in LPNMR, vol-
ume 8148 of LNCS, pp. 1–10. Springer, (2013).

[7] G. Brewka and T. Eiter, ‘Equilibria in heterogeneous nonmonotonic
multi-context systems’, in AAAI, pp. 385–390. AAAI Press, (2007).

[8] G. Brewka, T. Eiter, M. Fink, and A. Weinzierl, ‘Managed multi-context
systems’, in IJCAI, pp. 786–791. IJCAI/AAAI, (2011).

[9] G. Brewka, S. Ellmauthaler, and J. Pührer, ‘Multi-context systems for
reactive reasoning in dynamic environments’, in ECAI, (2014). To ap-
pear.

[10] T. Eiter, M. Fink, P. Schüller, and A. Weinzierl, ‘Finding explanations
of inconsistency in multi-context systems’, in KR. AAAI Press, (2010).

[11] S. Ellmauthaler, ‘Generalizing multi-context systems for reactive
stream reasoning applications’, in ICCSW, volume 35 of OASICS, pp.
19–26. Schloss Dagstuhl, Germany, (2013).

[12] M. Gebser, T. Grote, R. Kaminski, P. Obermeier, O. Sabuncu, and
T. Schaub, ‘Stream reasoning with answer set programming: Prelim-
inary report’, in KR. AAAI Press, (2012).

[13] M. Gebser, T. Grote, R. Kaminski, and T. Schaub, ‘Reactive answer set
programming’, in LPNMR, volume 6645 of LNCS, pp. 54–66. Springer,
(2011).

[14] M. Gelfond and V. Lifschitz, ‘Classical negation in logic programs and
disjunctive databases’, New Gen. Comput., 9(3/4), 365–386, (1991).

[15] F. Giunchiglia and L. Serafini, ‘Multilanguage hierarchical logics or:
How we can do without modal logics’, Artif. Intell., 65(1), 29–70,
(1994).

[16] R. Gonçalves and J. Alferes, ‘Parametrized logic programming’, in
JELIA, volume 6341 of LNCS, pp. 182–194. Springer, (2010).

[17] M. Knorr, M. Slota, J. Leite, and M. Homola, ‘What if no hybrid rea-
soner is available? Hybrid MKNF in multi-context systems’, J. Log.
Comput., (2013).

[18] F. Lécué and J. Pan, ‘Predicting knowledge in an ontology stream’, in
IJCAI. IJCAI/AAAI, (2013).

[19] F. Roelofsen and L. Serafini, ‘Minimal and absent information in con-
texts’, in IJCAI, pp. 558–563. Professional Book Center, (2005).

[20] Y. Wang, Z. Zhuang, and K. Wang, ‘Belief change in nonmonotonic
multi-context systems’, in LPNMR, volume 8148 of LNCS, pp. 543–
555. Springer, (2013).

R. Gonçalves et al. / Evolving Multi-Context Systems380

	Introduction
	Preliminaries
	Evolving Multi-Context Systems
	Inconsistency Management
	Complexity
	Related and Future Work

