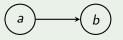
Instantiating Knowledge Bases in Abstract Dialectical Frameworks

Hannes Strass

Computer Science Institute Leipzig University, Germany

CLIMA XIV 16 September 2013

Hannes Strass


CSI Leipzig University

Motivation: AFs

State of the art in abstract argumentation

Abstract Argumentation Frameworks (AFs)

• syntactically: directed graphs

- conceptually: nodes are arguments, edges denote attacks between arguments
- semantics: determine which arguments can be accepted together
- used as target language for translations from more expressive languages (e.g. ASPIC)
- drawback: can only express attack

Hannes Strass

Motivation: ADFs

Recent improvements

Abstract Dialectical Frameworks (ADFs)

- generalise AFs, arguments are now called statements
- can also (although less directly) be visualised as graphs
- edges express that there is some relationship between the two statements
- relationship need not be "attack", precise nature specified by acceptance condition for each statement
- acceptance condition specifies status of node given status of direct predecessors

Outline

Background

- Defeasible Theory Bases
- Abstract Argumentation Frameworks
- Abstract Dialectical Frameworks

2 From DTBs to AFs

- General Scheme
- Caminada & Amgoud: ASPIC
- Wyner, Bench-Capon & Dunne
- From DTBs to ADFs

4 Conclusion

Outline

Background

- Defeasible Theory Bases
- Abstract Argumentation Frameworks
- Abstract Dialectical Frameworks

2 From DTBs to AFs

- General Scheme
- Caminada & Amgoud: ASPIC
- Wyner, Bench-Capon & Dunne
- 3 From DTBs to ADFs

Conclusion

Defeasible Theory Bases

Defeasible Theories

consist of strict and defeasible rules

- Lit . . . set of literals p, q, ¬q
- semantical negation $\overline{\cdot}$ with $\overline{p} = \neg p$ and $\overline{\neg p} = p$
- $S \subseteq Lit$ is consistent iff there is no $\psi \in Lit$ with $\psi, \neg \psi \in S$
- strict rule: $r: \phi_1, \ldots, \phi_n \to \psi$
- defeasible rule: $r: \phi_1, \dots, \phi_n \Rightarrow \psi$
- ψ ... rule head, ϕ_1, \ldots, ϕ_n ... rule body, r ... rule name
- defeasible theory base (DTB): (Lit, StrInf, DefInf)
 - StrInf ... set of strict rules
 - DefInf ... set of defeasible rules
 - a/ka defeasible theory, a/ka theory base

Abstract Argumentation Frameworks

Abstract Argumentation Frameworks¹

are for determining acceptance of abstract arguments

Definition: Abstract Argumentation Framework

- pair F = (A, R)
- A . . . set of arguments
- $R \subseteq A \times A \dots$ attack relation

Abstract Argumentation Semantics

- labelling (valuation) of the arguments as accepted (true), rejected (false) or undecided (unknown)
- e.g. stable labelling: no attacks between accepted arguments, every rejected argument is attacked by some accepted one

¹Phan Minh Dung. "On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic Reasoning, Logic Programming and n-Person Games". In: *Artificial Intelligence* 77 (2 1995), pages 321–358.

Hannes Strass

Abstract Dialectical Frameworks

Abstract Dialectical Frameworks² Syntax

Definition: Abstract Dialectical Framework

An abstract dialectical framework (ADF) is a triple D = (S, L, C),

• S ... set of statements (correspond to AF arguments)

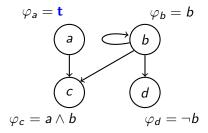
•
$$L \subseteq S \times S \dots$$
 links

$$(par(s) = L^{-1}(s))$$

•
$$C = \{C_s\}_{s \in S} \dots$$
 acceptance conditions

- links denote some kind of dependency relation
- acceptance condition: Boolean function $C_s : 2^{par(s)} \rightarrow \{\mathbf{t}, \mathbf{f}\}$
- here: C_s often specified by propositional formula φ_s

²Gerhard Brewka and Stefan Woltran. "Abstract Dialectical Frameworks". In: Proceedings of the Twelfth International Conference on the Principles of Knowledge Representation and Reasoning (KR). 2010, pages 102–111.


Hannes Strass

From DTBs to ADFs

Conclusion

Abstract Dialectical Frameworks

Abstract Dialectical Frameworks

Hannes Strass

CSI Leipzig University

Abstract Dialectical Frameworks

Abstract Dialectical Frameworks

Semantics

Truth values, interpretations

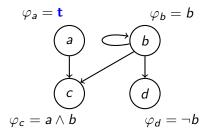
- truth values: true t, false f, unknown u
- interpretation: $v : S \rightarrow \{\mathbf{t}, \mathbf{f}, \mathbf{u}\}$
- interpretations can be represented as consistent sets of literals

Semantics

- two-valued v is a model of D iff $v(s) = v(arphi_s)$ for all $s \in S$
- there is also a *stable model semantics*, which checks for support cycles

Hannes Strass

CSI Leipzig University


From DTBs to ADF

Conclusion

Abstract Dialectical Frameworks

Abstract Dialectical Frameworks

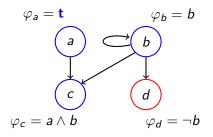
Semantics: Example

• models:

• $v_1 = \{a \mapsto t, b \mapsto t, c \mapsto t, d \mapsto f\}$ • $v_2 = \{a \mapsto t, b \mapsto f, c \mapsto f, d \mapsto t\}$

Hannes Strass

CSI Leipzig University


From DTBs to ADFs

Conclusion

Abstract Dialectical Frameworks

Abstract Dialectical Frameworks

Semantics: Example

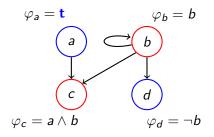
• models:

•
$$v_1 = \{a \mapsto t, b \mapsto t, c \mapsto t, d \mapsto f\}$$

• $v_2 = \{a \mapsto t, b \mapsto f, c \mapsto f, d \mapsto t\}$

Hannes Strass

CSI Leipzig University


From DTBs to ADF

Conclusion

Abstract Dialectical Frameworks

Abstract Dialectical Frameworks

Semantics: Example

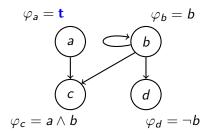
• models:

•
$$v_1 = \{a \mapsto t, b \mapsto t, c \mapsto t, d \mapsto f\}$$

• $v_2 = \{a \mapsto t, b \mapsto f, c \mapsto f, d \mapsto t\}$

Hannes Strass

CSI Leipzig University


From DTBs to ADFs

Conclusion

Abstract Dialectical Frameworks

Abstract Dialectical Frameworks

Semantics: Example

models:

•
$$v_1 = \{a \mapsto t, b \mapsto t, c \mapsto t, d \mapsto f\}$$
 (not stable)
• $v_2 = \{a \mapsto t, b \mapsto f, c \mapsto f, d \mapsto t\}$ (stable)

Hannes Strass

CSI Leipzig University

Outline

Background

- Defeasible Theory Bases
- Abstract Argumentation Frameworks
- Abstract Dialectical Frameworks

2 From DTBs to AFs

- General Scheme
- Caminada & Amgoud: ASPIC
- Wyner, Bench-Capon & Dunne

3 From DTBs to ADFs

4 Conclusion

General Scheme

From DTBs to AFs, General Scheme

how it works

- construct arguments
- Construct attacks
- O determine accepted arguments of AF
- 4 determine accepted conclusions of original DTB

Hannes Strass

CSI Leipzig University

Background

Caminada & Amgoud: ASPIC

From DTBs to AFs, ASPIC-style³

structured arguments

- arguments are constructed inductively from rules
- base case: rule " $\Rightarrow \psi$ " with empty body leads to argument $A = [\Rightarrow \psi]$ with conclusion ψ
- induction: arguments A₁,..., A_n with conclusions φ₁,..., φ_n and rule r : φ₁,..., φ_n ⇒ ψ lead to argument
 A = [A₁,..., A_n ⇒ ψ] with conclusion ψ (A_i are subarguments of A)
- argument is *strict* if only strict rules used for construction (otherwise the argument is defeasible)

Hannes Strass

³Martin Caminada and Leila Amgoud. "On the evaluation of argumentation formalisms". In: *Artificial Intelligence* 171.5–6 (2007), pages 286–310.

Caminada & Amgoud: ASPIC

From DTBs to AFs, ASPIC-style

rebuts, undercuts

- two possible reasons for attacks between arguments
- rebut: A rebuts B if subargument A' of A has conclusion ψ and *defeasible* subargument B' of B has conclusion $\overline{\psi}$
- undercut: A undercuts B if B uses defeasible rule r and subargument A' of A disputes applicability of r
- will only look at rebut here

Caminada & Amgoud: ASPIC

From DTBs to AFs, ASPIC-style Example

- w ... John wears something that looks like a wedding ring
- g ... John often goes out late with his friends
- m... John is married
- b... John is a bachelor
- h... John has a spouse
- StrInf = { $r_1 :\rightarrow w, r_2 :\rightarrow g, r_3 : b \rightarrow \neg h, r_4 : m \rightarrow h$ }
- $DefInf = \{r_5 : w \Rightarrow m, r_6 : g \Rightarrow b\}$
- ASPIC: S = {w,g,m,b} are sceptical conclusions ("John is a married bachelor"), indirectly inconsistent

Hannes Strass

CSI Leipzig University

Caminada & Amgoud: ASPIC

Rationality Postulates

Intend to capture semantically "rational" behaviour

• given a DTB and its argumentation translation:

Direct Consistency

Any model of the translation is consistent.

Closure

Any model is closed under strict rules.

Indirect Consistency

Any model's closure under strict rules is consistent.

Hannes Strass

CSI Leipzig University

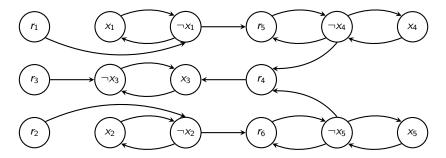
Wyner, Bench-Capon & Dunne

Direct translation⁴ from DTBs to AFs

- "C&A conflate different senses of the term argument"
- "subarguments and defeat in terms of subarguments are problematic departures from Dung [1995]"

direct translation: literals and rule names become arguments

- opposite literals attack each other
- rules are attacked by the negations of their body literals
- defeasible rules are attacked by the negation of their head
- all rules attack the negation of their head


Hannes Strass

⁴Adam Wyner, Trevor Bench-Capon, and Paul Dunne. "Instantiating knowledge bases in abstract argumentation frameworks". In: *Proceedings of the AAAI Fall Symposium – The Uses of Computational Argumentation*. 2009.

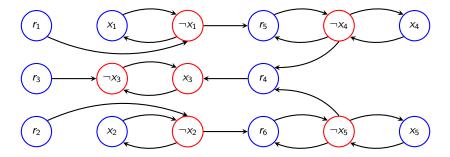
Translation of Wyner et al.

Example with an undesired stable labelling

$$\begin{aligned} \text{Lit} &= \{x_1, x_2, x_3, x_4, x_5, \neg x_1, \neg x_2, \neg x_3, \neg x_4, \neg x_5\} \\ \text{StrInf} &= \{r_1 :\to x_1, \quad r_2 :\to x_2, \quad r_3 :\to x_3, \quad r_4 : x_4, x_5 \to \neg x_3\} \\ \text{DefInf} &= \{r_5 : x_1 \Rightarrow x_4, \quad r_6 : x_2 \Rightarrow x_5\} \end{aligned}$$

Hannes Strass

CSI Leipzig University


Translation of Wyner et al.

Example with an undesired stable labelling

$$Lit = \{x_1, x_2, x_3, x_4, x_5, \neg x_1, \neg x_2, \neg x_3, \neg x_4, \neg x_5\}$$

$$StrInf = \{r_1 :\to x_1, r_2 :\to x_2, r_3 :\to x_3, r_4 : x_4, x_5 \to \neg x_3\}$$

$$DefInf = \{r_5 : x_1 \Rightarrow x_4, r_6 : x_2 \Rightarrow x_5\}$$

Hannes Strass

CSI Leipzig University

Outline

Background

- Defeasible Theory Bases
- Abstract Argumentation Frameworks
- Abstract Dialectical Frameworks

Prom DTBs to AFs

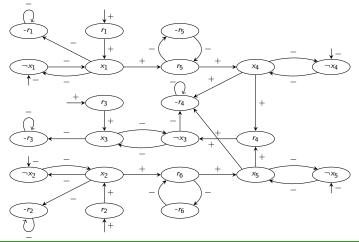
- General Scheme
- Caminada & Amgoud: ASPIC
- Wyner, Bench-Capon & Dunne

Is From DTBs to ADFs

4 Conclusion

statements

• statements: literals, rule names, "negated" rule names $S = Lit \cup \{r, -r \mid r : \phi_1, \dots, \phi_n \Rightarrow \psi \in StrInf \cup DefInf\}$ • for $\psi \in Lit$,


$$\varphi_{\psi} = \neg [\overline{\psi}] \land \bigvee_{r:\phi_1,...,\phi_n \Rightarrow \psi \in \mathsf{StrInf} \cup \mathsf{DefInf}} [r]$$

- for a strict rule $r:\phi_1,\ldots,\phi_n o \psi \in \mathit{StrInf}$,
 - $\varphi_{r} = [\phi_{1}] \wedge \ldots \wedge [\phi_{n}], \qquad \varphi_{r} = [\phi_{1}] \wedge \ldots \wedge [\phi_{n}] \wedge \neg [\psi] \wedge \neg [-r]$
- for a defeasible rule $r: \phi_1, \ldots, \phi_n \Rightarrow \psi \in Deflnf$, we define

$$\varphi_r = [\phi_1] \land \ldots \land [\phi_n] \land \neg[\overline{\psi}] \land \neg[-r]$$
 and $\varphi_{-r} = \neg[r]$

From DTBs to ADFs: Previous Example

 $\begin{aligned} StrInf &= \{r_1 :\to x_1, \quad r_2 :\to x_2, \quad r_3 :\to x_3, \quad r_4 : x_4, x_5 \to \neg x_3 \} \\ DefInf &= \{r_5 : x_1 \Rightarrow x_4, \quad r_6 : x_2 \Rightarrow x_5 \} \end{aligned}$

Hannes Strass

CSI Leipzig University

Some properties of the translation

- support cycles through rules can be detected:
 DefInf = {r₁ : rain ⇒ wet, r₂ : wet ⇒ rain}
- postulates are fulfilled: direct/indirect consistency, closure
- can be computed in polynomial time, blowup in size is quadratic, blowup in number of arguments is linear

Outline

Background

- Defeasible Theory Bases
- Abstract Argumentation Frameworks
- Abstract Dialectical Frameworks

Prom DTBs to AFs

- General Scheme
- Caminada & Amgoud: ASPIC
- Wyner, Bench-Capon & Dunne

3 From DTBs to ADFs

4 Conclusion

Conclusion

of the talk

- reviewed translations from DTBs to AFs
- presented translation from DTBs to ADFs
- future work:
 - allow rules that use rule names as atoms
 - try to avoid integrity constraints, make use of three-valued semantics

Thank you!

Hannes Strass

CSI Leipzig University