
Universidade Nova de Lisboa
Faculdade de Ciências e Tecnologia
Departamento de Informática

Combining Open and Closed
World Reasoning for the

Semantic Web

Matthias Knorr

Dissertação para obtenção do Grau de Doutor
em Informática

Orientador: Prof. Doutor José Júlio Alferes
Co-orientador: Prof. Doutor Pascal Hitzler

Lisboa

(Maio 2011)

mailto:mknorr@di.fct.unl.pt

ii

Acknowledgements

First of all, I want to thank José Júlio Alferes and Pascal Hitzler for su-

pervising this work. This thesis would not have been possible without their

incentives, their guidance and support during the last years, their availabil-

ity for discussions in person or by mail, and their patience when reading and

discussing preliminary versions of this thesis or prior scientific publications.

They introduced me to scientific work and the scientific community and I

am very grateful for that. I want to thank particularly José Júlio Alferes for

being available and taking care of any bureaucratic obstacle that required

some insight or language capability I did not have, including the help on

the abstract in Portuguese.

Part of the work presented in this thesis was developed in collaboration

with Terrance Swift. I am thankful for the joint discussions, his detailed

introduction into the subtleties of SLG resolution with tabling, and, not

the least, his help with software issues, such as creating the improved fig-

ure of the derivation forest. I also want to thank all my colleagues from

CENTRIA, and in particular the participants of the KRR seminars (and

its predecessors, such as WALK) for the interesting presentations and dis-

cussions (during the seminars but not limited to that). They created a

pleasant working environment, which besides their comments on this work

most certainly had an additional positive impact on it. I am indebted to

all those anonymous reviewers whose comments helped improve papers in

which part of the developed work was presented.

I want to thank for the working space and the institutional support of this

thesis by the Departamento de Informática of Faculadade para a Ciência e

a Tecnologia, Universidade Nova de Lisboa. This thesis was supported by

iii

FCT (Fundação para a Ciência e a Tecnologia) under the grant contract

SFRH/BD/28745/2006.

A special thanks goes to my family for all their support and care during my

entire life and the time of the PhD in spite of the distance. My final thanks

for being with me go to Márcia.

iv

Abstract

One important problem in the ongoing standardization of knowledge repre-

sentation languages for the Semantic Web is combining open world ontology

languages, such as the OWL-based ones, and closed world rule-based lan-

guages. The main difficulty of such a combination is that both formalisms

are quite orthogonal w.r.t. expressiveness and how decidability is achieved.

Combining non-monotonic rules and ontologies is thus a challenging task

that requires careful balancing between expressiveness of the knowledge

representation language and the computational complexity of reasoning.

In this thesis, we will argue in favor of a combination of ontologies and non-

monotonic rules that tightly integrates the two formalisms involved, that

has a computational complexity that is as low as possible, and that allows

us to query for information instead of calculating the whole model. As our

starting point we choose the mature approach of hybrid MKNF knowledge

bases, which is based on an adaptation of the Stable Model Semantics to

knowledge bases consisting of ontology axioms and rules. We extend the

two-valued framework of MKNF logics to a three-valued logics, and we pro-

pose a well-founded semantics for non-disjunctive hybrid MKNF knowledge

bases. This new semantics promises to provide better efficiency of reason-

ing, and it is faithful w.r.t. the original two-valued MKNF semantics and

compatible with both the OWL-based semantics and the traditional Well-

Founded Semantics for logic programs. We provide an algorithm based

on operators to compute the unique model, and we extend SLG resolution

with tabling to a general framework that allows us to query a combina-

tion of non-monotonic rules and any given ontology language. Finally, we

investigate concrete instances of that procedure w.r.t. three tractable on-

tology languages, namely the three description logics underlying the OWL

2 profiles.

Key words: Semantic Web, Non-monotonic Reasoning, Description Logics,

Logic Programming

v

vi

Resumo

A combinação de linguagens de ontologias baseadas na assunção de mundo

aberto (como a linguagem OWL), com linguagens de regras baseadas na as-

sunção de mundo fechado, é um dos assuntos importantes para a estandard-

ização de linguagens de representação de conhecimento na “Semantic Web”.

A maior dificuldade nesta combinação reside no factos de ambos os formalis-

mos serem ortogonais, tanto no que diz respeito à sua expressividade, como

no que respeita à forma como em ambos os casos se restringem as lingua-

gens para obter decidibilidade. Assim, a combinação de ontologias e regras

não-monotónicas constitui um desafio que requer um equiĺıbrio cuidadoso

entre a expressividade da linguagem de representação de conhecimento e a

complexidade da computação do racioćınio.

Esta dissertação defende uma forma de combinação de ontologias e regras

não-monotónicas com um grande ńıvel de integração, e mantendo uma com-

plexidade computacional tão baixa quanto posśıvel. Além disso, defende-se

também a importância, para aplicações à “Semantic Web”, de procedimen-

tos eficientes para resposta a perguntas que não exijam o cálculo de modelos

completos, e apresentam-se procedimentos que cumprem com esse requisito.

Como ponto de partida para a proposta aqui apresentada, foi escolhida a

lógica h́ıbrida MKNF, a qual se baseia numa adaptação dos modelos estáveis

para bases de conhecimento que consistem em axiomas ontológicos e regras.

A lógica MKNF original, a dois valores, é estendida para uma lógica a

três valores e propõe-se uma semântica bem fundada para bases do con-

hecimento h́ıbridas MKNF não disjunctivas. Esta nova semântica promete

fornecer uma maior eficiência de racioćınio, é fiel relativamente à semântica

original MKNF a dois valores, e é compat́ıvel quer com a semântica do

OWL quer com a semântica bem fundada tradicional para programas em

lógica. É ainda definido um algoritmo baseado em operadores para com-

putar o modelo bem fundado completo de uma base de conhecimento, e um

procedimento geral de resolução, que estende o SLG com tabelação, e que

vii

permite responder a perguntas sobre bases de conhecimento com regras não-

monotónicas e ontologias descritas por uma qualquer lógica de descrição.

Finalmente, são investigados casos concretos deste procedimento, respei-

tantes às três lógicas de descrição que se encontram na base dos perfis do

OWL 2, mostrando que nesses casos a introdução de regras não-monotónicas

não faz aumentar o ńıvel de complexidade.

Palavras-chave: Semantic Web, Racioćınio Não-monotónico, Lógicas de De-

scrição, Programação em Lógica

viii

Contents

List of Figures xiii

I Combining Rules and Ontologies 1

1 Introduction 3

1.1 OWA – Description Logics . 4

1.2 CWA – Logic Programming Rules . 7

1.3 Open vs. Closed World Reasoning . 9

1.4 The Problem: Combining Rules and Ontologies efficiently 12

1.5 Existing Combinations of Rules and Ontologies 15

1.6 A Novel Approach . 18

1.7 Contributions . 20

1.8 Outline . 21

2 Rules in Logic Programming 23

2.1 Fixed Point Semantics for Logic Programs 24

2.2 Computational Complexity . 26

2.3 Terminology of Logic Programs . 28

2.4 Answer Set Semantics . 31

2.5 Stable Model Semantics . 32

2.6 Well-founded Semantics . 34

3 SROIQ – An Expressive Description Logic 39

3.1 Syntax of SROIQ . 40

3.2 Semantics of SROIQ . 45

ix

CONTENTS

3.3 Tractable Fragments of SROIQ . 49

4 MKNF Logics and Hybrid MKNF Knowledge Bases 55

4.1 Syntax of MKNF Logics . 56

4.2 Semantics of MKNF Logics . 57

4.3 Standard Names Assumption . 58

4.4 Hybrid MKNF+ Knowledge Bases . 60

4.5 Semantic Properties of Hybrid MKNF+ 61

4.6 Decidability for Hybrid MKNF . 63

4.7 Hybrid MKNF with Normal Rules . 66

II A Well-founded Semantics for Hybrid MKNF Knowledge Bases 71

5 A Three-valued MKNF Semantics 73

5.1 Evaluation in MKNF Structures . 74

5.2 Three-valued MKNF Models . 77

5.3 General Properties of three-valued MKNF 80

5.4 A Well-Founded MKNF Model . 81

5.5 Relation with the Two-valued MKNF Semantics 83

6 Alternating Fixpoint for the Well-founded MKNF Model 85

6.1 Partitions of Modal Atoms . 86

6.2 Computation of the Alternating Fixpoint 91

6.3 An Alternative Characterization based on Unfounded Sets 103

6.4 The Well-Founded MKNF Model and Related Properties 109

7 Comparison to Related Approaches 119

7.1 Two-valued MKNF semantics . 121

7.2 Combinations with First-Order Rules . 123

7.3 Ontologies and Non-Monotonic Rules . 129

7.4 Combinations based on the Well-Founded Semantics 138

x

CONTENTS

III Querying Hybrid MKNF Knowledge Bases 145

8 SLG(O)– A General Querying Procedure 147

8.1 Alternative Bottom-Up Iteration . 148

8.2 Top-Down Queries with SLGO . 156

8.3 Properties of SLG(O) . 166

9 Querying Tractable Hybrid MKNF Knowledge Bases 175

9.1 An Oracle for REL . 176

9.2 An Oracle for DL-LiteR . 184

9.3 An Oracle for DLP . 192

10 Conclusions 195

10.1 Accomplishments . 195

10.2 Future Work . 197

Index 200

References 205

xi

CONTENTS

xii

List of Figures

3.1 Semantics of role and concept expressions in SROIQ for an interpreta-

tion I with domain ∆I . 45

3.2 Semantics of SROIQ axioms for an interpretation I with domain ∆I . 46

3.3 Syntax and semantics of REL. 50

3.4 Syntactic restrictions on class expressions in DL-LiteR where D is any

allowed concept expression and R ∈ R. 51

3.5 Syntactic restrictions on class expressions in DLP where C is any allowed

concept expression and R ∈ R. 52

4.1 Data complexity of instance checking in Admissible MKNF KBs 66

7.1 Comparison of combinations of ontologies with monotonic rules. 123

7.2 Comparison of combinations of ontologies with non-monotonic rules based

on stable models. 130

7.3 Comparison of combinations of ontologies with non-monotonic rules based

on well-founded semantics. 138

8.1 Final Forest for the query discount(Bill) to K 166

9.1 Algorithm Consistent . 186

9.2 Algorithm DL-LiteR Oracle . 190

xiii

LIST OF FIGURES

xiv

Part I

Combining Rules and Ontologies

1

1

Introduction

Knowledge Representation and Reasoning (KRR) [Hayes, 1979; Levesque, 1984] is of

major importance in the field of Artificial Intelligence1 (AI). The general idea of KRR

is to store information about a domain of interest in so-called knowledge bases in

a way that allows automated systems to access and use that data, and that, even

more importantly, allows the derivation of information only implicitly present in the

knowledge base (KB) under consideration.

In the last decade, the Semantic Web [Berners-Lee et al., May 2001] has become

a major source of inspiration for KRR. The underlying idea of the Semantic Web is

to augment the information of web pages with data that is machine-processable. In

particular, KRR techniques are intended to be used to enhance data in the World Wide

Web with knowledge bases, making this data available for processing by intelligent

systems. The research is driven by the ongoing standardization process of the World

Wide Web Consortium (W3C), which aims at bringing the Web to its full potential2. As

such, Semantic Web has become a mature field of research, and industrial applications

of Semantic Web technologies are on the way. Semantic Web is a topic that is clearly

here to stay.

Nowadays, among the most prominent KRR formalisms applied in the Semantic

Web are the ontology languages that are based on description logics. However, we

believe that these ontology languages are not adequate for several application areas

within the Semantic Web and one of the important problems [Shadbolt et al., 2006] is

1See, e.g., [Russell and Norvig, 2010] for an extensive introduction into AI and the area of KRR.
2http://www.w3c.org

3

http://www.w3c.org

1. INTRODUCTION

the inability of expressing some form of closed-world modeling, such as the one provided

by non-monotonic negation in Logic Programming. In fact, over the last few years a

significant amount of scientific work on combining ontologies and some form of rule

language has been presented (see, e.g., [Drabent et al., 2009; Eiter et al., 2008a; Hitzler

and Parsia, 2009; Krisnadhi et al., 2011a] for a brief survey). This combination is of

particular interest since the two formalisms provide quite different means for expressing

knowledge and a combination of the two yields a richer KRR formalism.

Our thesis is that combining Description Logics underlying the ontology languages

and non-monotonic rules of Logic Programming is of major benefit for the expressive-

ness of KRR formalisms in the Semantic Web, and that reasoning in such a combination

can be achieved in an efficient way. This includes the possibility of querying for partic-

ular information in the knowledge base, thus considering only the information relevant

for the query instead of computing/constructing a model for the entire knowledge base.

In the sequel, after introducing the two formalisms that realize open and closed

world reasoning respectively, namely Description Logics (Section 1.1) and rules of logic

programs (Section 1.2), we motivate why KRR formalisms combining open and closed

world reasoning are sometimes preferable over fragments of classical first-order log-

ics, such as description logics, and we present application scenarios illustrating the

requirement for that combination (Section 1.3). We discuss why combining two such

formalisms is a nontrivial task (Section 1.4). Then, we recall the already existing ap-

proaches of such combinations (Section 1.5), and we argue in favor of an approach that

is as expressive, as general, and as robust as possible while its computational com-

plexity remains as low as possible (Section 1.6). This motivates our work whose main

contributions we present subsequently (Section 1.7) before we outline the rest of the

thesis (Section 1.8).

1.1 OWA – Description Logics

Open world reasoning is based on the Open World Assumption (OWA). This means

that (negative) conclusions drawn from a knowledge base must be based on informa-

tion explicitly present in it. The most prominent highly expressive KRR approach

employed in Semantic Web research is based on the Web Ontology Language OWL

[Patel-Schneider et al., 2004], respectively the revised language OWL 2 [Hitzler et al.,

4

1.1 OWA – Description Logics

2009a]. OWL 2 is the new recommended standard by the W3C for modeling Semantic

Web knowledge bases (commonly known as ontologies). Such ontology languages are

based on Description Logics(DLs) [Baader et al., 2007a; Hitzler et al., 2009b], e.g., OWL

is based on the description logic SHOIN (D), and OWL 2 is based on SROIQ(D).

Description Logics bear a first-order predicate logic semantics, they are monotonic and

adhere to the OWA.

Description Logics have evolved1 from semantic networks [Quillian, 1967] and frames

[Minsky, 1981]. Both these early KRR formalisms are based on the notions of classes

of individuals and relations between these classes, and the main motivation for their

development was the intention of representing taxonomic knowledge, i.e., relations be-

tween classes of individuals. The problem of semantic networks and frames is the lack

of formal semantics – a relation between two classes could mean that either there is

some relation between the individuals of these classes, or that the relation is true for all

individuals of these related classes, or even that the relation is a default relation that

holds until contradictory knowledge is available explicitly. The consequence is that a

lot of the early systems based on such so-called network-based structures [Lehmann,

1992] behave differently, even though they appear to be almost identical.

In [Hayes, 1979], it was realized that frames could basically be given a semantics by

relying on first-order logics: sets of individuals can be represented by unary predicates,

and relations between such sets can be represented by binary predicates. By means of

certain boolean constructors, we can express non-trivial sets of individuals, such as the

set of all persons that have at least two children that are all female:

C ≡ (> 2 HasChild) u (∀ HasChild.Female) (1.1)

In this example, Female is a unary predicate, HasChild a binary one, u represents

intersection of sets of individuals, > 2 HasChild specifies all individuals that are related

to at least two other individuals via HasChild, and ∀ HasChild.Female defines a class

of all those individuals that relate via HasChild only to individuals that belong to the

class Female. Such a class description can be translated straightforwardly into first-

order logic (see, e.g., [Baader et al., 2007a]) and its semantics can be applied to the

result of the translation. For example, the complex concept C above can be translated

1The historic overview is inspired by [Baader et al., 2007a], which presents further details.

5

1. INTRODUCTION

into first-order logic with equality.

φC(x) =(∃y, z : HasChild(x, y) ∧ HasChild(x, z) ∧ (y 6= z)) (1.2)

∧ (∀y : HasChild(x, y)→ Female(y))

However, semantic networks and frames do not require the full expressiveness of first-

order logic. It suffices to use fragments of it [Brachman and Levesque, 1985], and the

intended interpretations for the relations in each of those network-based structures can

be represented by different boolean constructors resulting in different fragments of first-

order logic. As a consequence, it was recognized that reasoning in such structure-based

representations could be achieved by specialized reasoners without relying on full first-

order theorem provers, and that differing domains of interest lead to different fragments

of first-order logic, and these result in computational problems of differing complexity.

The first system moving from semantic networks to such a formal semantics is

KL-ONE [Brachman and Schmolze, 1985]. It introduced many of the notions used

in description logics and the examination of KL-ONE and similar systems was the

starting point for the description logic systems. In particular, these systems showed

the importance of the trade-off between the expressiveness of a DL language and the

complexity of its reasoning capabilities. CLASSIC [Brachman et al., 1991] permits only

a limited set of constructors such that the computation is efficient and complete. Other

approaches, such as LOOM [MacGregor and Bates, 1987] and BACK [Nebel and von Luck,

1988], were much more expressive but incomplete, in the sense that the systems were not

able to detect all answers that are logically implied by the respective language fragment.

This can be understood as a result of the fact that the underlying logical fragment

is undecidable. Further investigations revealed that the source of incompleteness in

such systems were certain combinations of constructs in the language. This led to the

development of systems, such as KRIS [Baader and Hollunder, 1991], that were less

efficient but expressive and complete.

The need for expressive and decidable DL languages has driven the development

of more advanced systems, and tableaux-based algorithms were an important means

for that. The most prominent modern approaches based on tableaux algorithms are

FaCT++ [Tsarkov and Horrocks, 2006], Pellet [Sirin et al., 2007], and RACER [Haarslev

et al., 2011]. Alternative approaches are, e.g., KAON2 [Motik and Sattler, 2006],

which is based on resolution, the hyper-tableaux system HermiT [Motik et al., 2009c],

6

1.2 CWA – Logic Programming Rules

approaches based on type elimination, such as [Rudolph et al., 2008a,b], and so-called

consequence-based approaches [Kazakov, 2009].

Many of the before-mentioned systems were developed for some specific applica-

tion and these applications of DL systems have been, and are being used in software

engineering, configuration of systems, medicine, digital libraries, and Web-based infor-

mation systems in the Semantic Web, but also planning, data mining, natural language

processing, and database management (see, e.g., [Baader et al., 2007a] for details).

1.2 CWA – Logic Programming Rules

Closed world reasoning relies on the Closed World Assumption (CWA), under which all

non-provable expressions are assumed to be false. This is used in formalisms, such as

default reasoning [Reiter, 1980] or circumscription [McCarthy, 1980], but most famously

as default negation in non-monotonic rules of Logic Programming.

Knowledge representation and reasoning formalisms based on rules themselves have

a very long tradition. In fact, one can easily interpret Aristotle’s syllogisms as rules

since the term rule, as such, may refer to any statement that ensures that some premise

implies a certain conclusion. Therefore, there is a large variety of formalisms based on

rules and the ones most commonly used are rules in Logic Programming, association

rules in data bases, and production rules in business rule systems. Among these, rules

in Logic Programming are of particular interest since they admit the usage of the so-

called default negation, an operator that allows non-monotonic reasoning in rules of

logic programs. This distinctive feature, which is not expressible in first-order logic,

makes logic program rules an appropriate means for closed world reasoning since it

permits to model defaults and exceptions, and that is why we focus in this thesis on

rules in logic programs.

Logic Programming (LP) [Apt and Bol, 1994; Baral and Gelfond, 1994; Lloyd, 1987]

is a field that started around the same time as the first semantic network approaches

(see, e.g., [Kowalski, 1988] for one account of the early days of LP). In opposite to the

procedural paradigm of imperative programming languages, LP represents the declar-

ative programming paradigm. The idea is to simply encode the knowledge and the

problem of interest in a program, and to let the computer solve the problem without

specifying a sequence in which the program has to be executed. Thus, the program

7

1. INTRODUCTION

can be understood as a description of the problem. One may, e.g., represent that one’s

uncle is the brother of one’s parent (where, as usual in LP notation, the variables are

implicitly all-quantified):

uncle(x, z)← brother(x, y), parent(y, z) (1.3)

This is obviously easy to understand as a plain representation of the essential relation.

In a procedural definition we would have to devise how we retrieve the instances of

the relations brother and parent and how we link them to obtain the proper uncle

relation.

LP is closely related to the language of PROLOG [Colmerauer and Roussel, 1996],

which was introduced in the early seventies. Given a logic program including the

rule above, one can query the program for the truth of the uncle relation for two

concrete given individuals or request some or even all instances of the uncle relation

that are stored in the program. This relation between the declarative paradigm of LP

and PROLOG systems was not immediately established but the results of theoretical

research led ultimately to systems that were more advanced, more expressive, and closer

to the declarative paradigm.

The first formal semantics for LP was the least model semantics [van Emden and

Kowalski, 1976] for definite programs, i.e., programs whose rules consist of a conjunction

of atomic formulas in the premise and only one conclusion. The obtained result states

that there is a unique model for every definite program and was soon widely accepted.

However, default negation (or negation as failure) in the premise of rules was not so

easy to incorporate. The underlying Closed World Assumption [Reiter, 1978] aims

at deriving some default negated information only if it is not possible to prove the

contrary. This also means that the addition of new information may alter previously

drawn conclusions. Hence, such normal logic programs are non-monotonic, and thus

default negation is not embeddable into monotonic first-order logics.

Clark’s completion [Clark, 1978] and the three-valued Fitting semantics [Fitting,

1985] provided a semantics to such programs, but sometimes these semantics yield

counterintuitive results, such as a too weak notion of derivability or lack of semantics

in some cases. These were eventually overcome by the two semantics that are nowa-

days considered the standard semantics for normal logic programs: the Stable Model

Semantics (SMS) [Gelfond and Lifschitz, 1988] and the Well-Founded Semantics (WFS)

8

1.3 Open vs. Closed World Reasoning

[van Gelder et al., 1991]. Both semantics are defined in terms of fixpoints of opera-

tors and in fact quite closely related [van Gelder, 1989]. Stable model semantics grew

into the paradigm of Answer Set Programming (ASP) [Gelfond and Lifschitz, 1991]

and corresponding systems, such as DLV [Leone et al., 2006], Smodels [Niemelä and

Simons, 1997], or Clasp [Gebser et al., 2007], can be considered more declarative than

PROLOG: e.g., in a standard PROLOG program the order in which the rules appear

in it is of importance (and thus at least partially procedural), while ASP does not

require that. The reason for this difference is that PROLOG systems answer queries,

for which to some extent a search order has to be specified, while ASP systems simply

compute models. In case of the well-founded semantics, XSB1 can be considered the

standard system providing the functionality of a PROLOG system but in a significantly

improved way (more efficient and complete). All these modern systems are also more

expressive, since they allow, e.g., the usage of classical negation in rules, or disjunctions

as conclusions in case of ASP systems.

Logic programming systems have been used early on for planning and natural lan-

guage processing. The applicability has broadened since, in particular due to one of

the extensions of LP – Constraint Logic Programming [Rossi et al., 2006], to variety

of fields, such as civil and mechanical engineering, circuit verification, control of au-

tonomous agents, automated timetabling, air traffic control, bioinformatics, and also

Web-based information systems (see, e.g., Rule Interchange Format (RIF-Core [Boley

et al., 2010] and RIF-BLD [Boley and Kifer, 2010]) or systems based on F-Logic [Kifer

et al., 1995]).

1.3 Open vs. Closed World Reasoning

Open world reasoning and closed world reasoning rely on inherently different assump-

tions. The decision when to apply which assumption in KRR depends on the reasoning

tasks and the application in mind.

In case of ontology languages, such as OWL, the OWA, and thus open world rea-

soning, is applied. The decision to rely on the OWA appears to be a natural one in

light of the envisioned applications related to the World Wide Web: the absence of

a piece of knowledge should not generally be taken as an indication that this piece

1http://xsb.sourceforge.net

9

http://xsb.sourceforge.net

1. INTRODUCTION

of knowledge is false. However, there are also application scenarios where the CWA,

or at least the partial closure of the knowledge base, is a more natural choice. Such

scenarios can occur, e.g., if ontology-based reasoning is done in conjunction with data

stored in a database. Database data is usually considered to be complete, and so state-

ments not in the database should be taken as false. Alternatively, we might want to

model default information, exceptions, or constraints, and in this case logic programs

of non-monotonic rules are a natural choice.

As a concrete example where a combination of OWA and CWA is desired, consider

the large case study described in [Patel et al., 2007], containing millions of assertions

about matching patient records with clinical trials criteria. In this clinical domain,

open world reasoning is needed in radiology and laboratory data. For example, unless

a lab test asserts a negative finding, no arbitrary assumptions about the results of the

test can be made. That is, we can only be certain that some patient does not have

a specific kind of cancer if the corresponding test has a negative result. However, as

observed in [Patel et al., 2007], the closed world assumption can and should be used

with data about medical treatment to infer that a patient is not on a medication unless

otherwise stated. The work of [Patel et al., 2007] applies only open world reasoning but

claims that the usage of closed world reasoning in data about medical treatment would

be highly desirable and that the combination of OWA and CWA is an open problem in

their work. Similar situations occur, e.g., in matchmaking using Semantic Web Services

(cf. [Grimm and Hitzler, 2008]), and in other scenarios in the medical domain.

In fact, life sciences, including medicine, is a prominently studied application area

for OWL. Several large-scale ontologies have been developed in this area that are being

used in practice, such as GALEN1 and SNOMED.2 These ontologies provide unified

medical terminologies for the management and exchange of clinical information. The

knowledge bases typically consist of information about anatomy, diseases, procedures,

drugs, etc., and their applications range from medical record management to diagnostics

support. SNOMED is used, for example, in the case study on matching patient records

with clinical trials criteria described above. All of these applications use ontology

reasoning based on the OWA. But it is not difficult to foresee situations in these domains

that would benefit from local closed world reasoning. Consider, for example, that such a

1http://www.opengalen.org/
2http://www.ihtsdo.org/snomed-ct/

10

http://www.opengalen.org/
http://www.ihtsdo.org/snomed-ct/

1.3 Open vs. Closed World Reasoning

medical knowledge base is used to decide whether a certain anesthetic should be applied

before surgery, depending on whether the patient is allergic to the anesthetic or not.

This information might not be available, and it should be modeled using the CWA: in

an emergency situation, unless we know explicitly about an allergy, we assume that the

patient is not allergic, and we apply the anesthetic. Other examples can be found if we

were to model exceptions in anatomical terminology; e.g., the existence of persons whose

heart is actually on the right-hand side. Exception modeling is not directly possible in

classical first-order logic (this is a problem usually known in Artificial Intelligence as

the specification problem) and so also not possible in OWL using only the OWA.

Another application area is intelligent decision automation that can be used in

telecommunications, health care, and financial services. One such system is AIDA1

that is, e.g., applied in customer relation management in telecommunications. The

conceptual idea is to store all the events related to customers (owned products, bills,

previous requests, and so on) so that in case of a client’s call the upcoming issue can

literally be anticipated instead of starting the dialog with the client from zero. Events

are stored in an ontology and the decision automation is realized in business rules. As

an example for such a rule, a client who has an open bill payment is likely to phone

to discuss that issue. Another example for such a rule is a client that recently bought

a new device. It can reasonably be assumed that the client is calling because of some

technical problem and the problem could be even more specifically targeted depending

on whether the device is entirely new or just a substitute for one that the client already

was using successfully. In such a scenario, in general the OWA is applied, since a priori

the absence of some information does not allow us to draw any conclusions. But, e.g.,

the history of interactions of one client with the company is fully known, so CWA can

be applied locally when reasoning over client specific information, such as the payment

history or owned products. The system manages billions of events and, in a concrete

example, the call center costs are reducible up to 40 percent. However, since the rules

are incorporated in an ad-hoc manner, as stated in communications, it would be of

importance to establish a formal basis for such systems making the ideas applicable to

other areas as well.

Yet a further application scenario is introduced in more detail in the following since

it is used to illustrate the results presented in this thesis.
1http://www.franz.com/agraph/amdocs/

11

http://www.franz.com/agraph/amdocs/

1. INTRODUCTION

Example 1.1. Consider an online store selling audio CDs. In order to attract more
clients and raise sales, the store manager decided to introduce more sophisticated tools
for recommending and searching CDs.

For that purpose, an ontology is used for structuring and maintaining the database
of CDs. Each CD is associated with a unique identifier, a publisher, a release date,
and the pieces of music the CD contains. Each piece of music has at least one track,
and it is possible that a piece has several tracks (as is common for classical music).
Additionally, each piece has a unique identifier and can be associated with the artist,
composer, genre, origin of the piece.

Moreover, the system should be able to express guidelines for recommendations,
either based on general criteria or based on customer specifications. For example, the
store may want to automatically recommend to all customers CDs that are on offer
or top sellers. Or some customer may want to get recommendations for CDs that he
does not already own and that, according to some preference criteria, he probably likes.
Whereas the first guideline can be represented in the ontology, the second one requires
the closed world assumption (e.g., for inferring “by default”, i.e., in the absence of
evidence to the contrary, that the customer does not have the CD) and can be represented
by a non-monotonic rule.

All of these examples demonstrate why application developers frequently voice that

it would be favorable to have local closed world modeling as an additional feature for

ontology-based systems. More precisely, it would be desirable to have a KRR formalism

that allows us to interpret some parts of the knowledge base under the CWA, and

others under the OWA. Such capabilities would also considerably enhance the usability

of OWL.

1.4 The Problem: Combining Rules and Ontologies effi-

ciently

Ontologies are a standard OWA formalism while non-monotonic rules apply the CWA.

A combination of ontologies and rules1 would clearly yield a combination of the OWA

and the CWA. However, combining rules and ontologies is a non-trivial task, since

even a naive combination of ontologies and OWA-based rules is already undecidable

1Note that ontologies and DLs are used rather synonymously in this context of a combination of

OWA and CWA, while rules applying CWA always refer implicitly to non-monotonic rules.

12

1.4 The Problem: Combining Rules and Ontologies efficiently

[Horrocks and Patel-Schneider, 2004]. In fact, formalisms for rules and formalisms for

ontologies differ substantially on how decidability is achieved. For ontologies, decidabil-

ity is achieved by specific syntactic restrictions on the available first-order predicates,

and by restricting the way these predicates can be related. Rule languages do not have

such syntactic restrictions, but are usually limited in their applicability to the finitely

many different objects explicitly appearing in the knowledge base. An immediate effect

of these differences is that some expressive features of one of the approaches are not

available in the other approach. Namely, rules make it possible to express: non-tree-

shape-like relationships [Vardi, 1996]1, such as “an uncle is the brother of one’s father”;

integrity constraints [Reiter, 1992] to state, e.g., that a certain piece of information

is explicitly present in the database; and closed world reasoning and specification of

exceptions, as discussed in the previous section. Ontologies, on the contrary, make it

possible to express open world reasoning, reason with unbounded or infinite domains,

and they are thus well-suited to represent many types of incomplete information and

schema knowledge. For example, in rule-based formalisms one typically cannot say that

“every person has a father and a mother who are both persons” without listing all the

parents explicitly. In Description Logics, this can be easily expressed by the following

formula:

Person v ∃ HasFather.Person u ∃ HasMother.Person (1.4)

Our stance is that a combination of rules and ontologies is not only of interest for

current applications in the web, but also as a highly sophisticated means of knowl-

edge representation in general. As argued in [Motik and Rosati, 2010], such a hybrid

formalism combining rules and DL ontologies should satisfy certain criteria:

• Faithfulness: The integration of DLs and rules should preserve the semantics of

both formalisms – that is, the semantics of a hybrid knowledge base in which one

component is empty should be the same as the semantics of the other component.

In other words, the addition of rules to a DL should not change the semantics of

the DL and vice versa.

• Tightness: Rules should not be layered on top of a DL or vice versa; rather, the

integration between a DL and rules should be tight in the sense that both the DL
1 The DL SROIQ [Horrocks et al., 2006a] also provides role composition axioms, which can be

used to address some, but by no means all, use cases.

13

1. INTRODUCTION

and the rule component should be able to contribute to the consequences of the

other component.

• Flexibility: The hybrid formalism should be flexible and allow one to view the

same predicate under both open and closed world interpretation. This allows us

to enrich a DL with non-monotonic consequences from rules, and to enrich the

rules with the capabilities of ontology reasoning described by a DL.

• Decidability: To obtain a useful formalism that can be used in applications ,such

as those in the Semantic Web, the hybrid formalism should be at least decidable,

and preferably of low worst-case complexity.

Faithfulness is of clear advantage for augmenting already existing knowledge bases.

E.g., given an ontology, its semantics remains the same in the new formalism unless

we explicitly add rules. The new formalism is thus more compatible with each of its

components and easier to grasp for knowledge base engineers trying to augment an

ontology with rules or vice-versa.

In case of tightness, it is sometimes argued that non-tight combinations are easier

to handle on a technical level and that there are few applications requiring a tight

integration. In fact, applications, such as the one on customer relation management

in Section 1.3, seem to clearly distinguish the ontology as the basis and rules defined

on top of the ontology that do only call for information from the ontology and never

transfer knowledge to it. However, in cases where we want to model exceptions that

have further impact on derivable knowledge, it is clearly preferable to have a tight

combination of rules and ontologies. As an example, consider the example of people

whose heart is on the right hand side. Clearly, this has some further effects on the

anatomy of the body of that person so that this conclusion has to be available in

general to the entire knowledge base.

Flexibility separates approaches based on whether atoms can be interpreted under

both OWA and CWA (or not). This property does trivially not hold for any approach

that does not allow for the usage of the CWA.We have provided arguments for the

usefulness of the CWA in the previous section. Moreover, it is more convenient to have

a flexible formalism for modeling knowledge. Otherwise we would have to somehow

maintain a mapping that relates corresponding predicates and we would have to ensure

that these corresponding predicates are appropriately synchronized.

14

1.5 Existing Combinations of Rules and Ontologies

Finally, decidability has proven to be a useful property and is considered standard

for description logics. Clearly, it is preferable to have a system that always solves the

given reasoning task rather than one that is eventually more efficient but occasionally

does not answer a query like most of the basic PROLOG interpreters that are only

semi-decidable. Given the amount of data on the Web, it is clearly preferable to have

a system that is not only decidable but also computationally as efficient as possible.

Thus, we follow [Motik and Rosati, 2010] and support these four criteria. In the

next section, we review previous proposals for combining ontologies and rules (more

general: open and closed world reasoning) and point out shortcomings w.r.t. these

criteria. For a detailed comparison with our proposal we refer to Chapter 7.

1.5 Existing Combinations of Rules and Ontologies

Several proposals exist for combining rules and ontologies (see, e.g., [Drabent et al.,

2009; Eiter et al., 2008a; Hitzler and Parsia, 2009] for a brief survey). They can be

split into two groups, namely those semantically based on first-order logics solely, such

as description logics alone, and the hybrid approaches providing a semantics combining

elements of first-order logics with non-monotonicity.

The most general approach in the first group is the Semantic Web Rule Language

(SWRL) [Horrocks and Patel-Schneider, 2004], an unrestricted combination of OWL

DL with function-free Horn rules, i.e., rules without negation. The approach is very

expressive but undecidable, yet nevertheless generalizes many approaches in this group.

Applying, e.g., DL-safety to SWRL rules yields DL-safe rules [Motik et al., 2005], a

decidable subset of SWRL. DL-safety ensures that rules are only applied to individuals

that are explicitly present in the knowledge base. AL-log [Donini et al., 1998], a com-

bination of DL-safe positive rules and ALC, and CARIN [Levy and Rousset, 1998] are

also notable formalisms generalized by SWRL. In both cases, the ontology only serves

as input to the rules and not vice versa, i.e., information flow is one way. Description

Logic Programs (DLP) [Grosof et al., 2003] are a fragment of OWL that can be trans-

formed into logic programs of positive rules. In the same spirit, Horn-SHIQ [Hustadt

et al., 2005] is a fragment of OWL that can be translated into Datalog, and (like DLP)

is of tractable data complexity.1 Recently, DLP has been generalized to Description

1Further analyses of Horn description logics are provided in [Krötzsch et al., 2007].

15

1. INTRODUCTION

Logic Rules [Krötzsch, 2010; Krötzsch et al., 2008a], i.e., rules that may contain de-

scription logic expressions. This enriches the DL, on which the description logic rules

are based, with sophisticated constructs normally only available to more expressive

description logics, without increasing the complexity. Similarly, ELP [Krötzsch et al.,

2011; Krötzsch, 2010; Krötzsch et al., 2008b] is a polynomial language covering impor-

tant parts of OWL 2. ELP also allows some axioms that cannot be expressed in OWL

2. All of these approaches have the advantage of fitting semantically into the original

(first-order) OWL semantics, which also means that existing reasoners for ontologies

alone can be used for reasoning in the combined knowledge bases. On the other hand,

none of these approaches can express non-monotonic negation, and as such none cover

the motivating cases discussed in Section 1.3. Therefore, none can satisfy the criterion

of flexibility.

In the second group, the approach in [Eiter et al., 2008b] combines ontologies and

rules in a modular way, i.e., both parts and their semantics are kept separate. The

two reasoning engines nevertheless interact bidirectionally (with some limitations on

the transfer of information) via interfaces, and the dlvhex system [Eiter et al., 2006]

provides an implementation that generalizes the approach by allowing multiple sources

for external knowledge (with differing semantics). This work has been extended in

various ways, e.g., probabilities, uncertainty, and priorities; for references see the related

work section of [Eiter et al., 2008b]. A related well-founded semantics [Eiter et al., 2004,

2011] has also been proposed that maintains the same modular interaction including

the limitations on the transfer of information. Since the interaction between rules and

ontologies is limited, the tightness criterion is not fully satisfied for all these modular

approaches, and they are inflexible since predicates are completely modular even though

it is possible to some extent to link predicates from ontologies to rules.

One of the few other well-founded semantics approach is called hybrid programs

[Drabent and Ma luszyński, 2007, 2010], which permits a form of reasoning by cases.

It is therefore closer to a first-order semantics in some aspects. But this approach

only allows the transfer of information from the ontology to the rules. Thus, hybrid

programs are even less tight than [Eiter et al., 2011].

There are several further approaches related to stable models of logic programs.

Hybrid MKNF knowledge bases [Motik and Rosati, 2010] tightly combine rules and

ontologies in the unifying framework of the logics of Minimal Knowledge and Negation

16

1.5 Existing Combinations of Rules and Ontologies

as Failure (MKNF) [Lifschitz, 1991]. In [de Bruijn et al., 2007a], a variety of embeddings

into auto-epistemic logic is used to tightly combine ontologies and rules. This approach

is quite similar in spirit to hybrid MKNF [Motik and Rosati, 2010]. However, a precise

relation to hybrid MKNF is far from obvious since an autoepistemic interpretation

in [de Bruijn et al., 2007a, 2011] is a pair of a first-order interpretations and a set of

beliefs, and both are not necessarily related. Moreover, DL+log [Rosati, 2006] provides

a combination of rules and ontologies that separates predicates into rule and ontology

predicates and evaluates the former w.r.t. the answer set semantics and the latter

w.r.t. a first-order semantics with weak DL-safety, i.e., each variable in the head of a

rule appears in an arbitrary positive atom in the body of the rule. This separation

of predicates means that the approach is not flexible. Like [Motik and Rosati, 2010],

[de Bruijn et al., 2007b] generalizes [Rosati, 2006] and several earlier related works (e.g.,

[Rosati, 2005]) within the framework of equilibrium logics. Quite similar to [Rosati,

2006] is [Lukasiewicz, 2007, 2010], although this approach does not distinguish between

ontology and rules predicates. In fact, the work originates from [Eiter et al., 2008b],

but it permits a much tighter integration. However, it turns out to be not faithful

w.r.t. the first-order semantics of DLs. A related well-founded semantics is also defined

[Lukasiewicz, 2010]. Open answer set programming [Heymans et al., 2007] extends

rules with open domains and adds some syntactic limitations for ensuring decidability.

Based on that, an algorithm has been provided for f-hybrid knowledge bases [Feier

and Heymans, 2009], i.e., a combination of ontologies and rules without DL-safety but

which limits to predicates that satisfy a tree-shaped property. Thus, relations as the

previously mentioned example of an uncle are not expressible in this approach. A

loose layering of PROLOG on top of DLs, employing four-valued logic, is presented in

[Matzner and Hitzler, 2007]. This approach is of course not tight.

An alternative way of combining open and closed world reasoning is to enrich DLs

with further syntactic constructs representing non-monotonic features. Among these

approaches, Description Logics of MKNF [Donini et al., 2002], which allows two modal

operators in ontology axioms, is quite closely related to [Motik and Rosati, 2010].

An algorithm is provided in [Donini et al., 2002] for ALC with MKNF, and it has

been improved in [Ke and Sattler, 2008]. In [Bonatti et al., 2006, 2009; Grimm and

Hitzler, 2009; Krisnadhi et al., 2011b], circumscription is used for adding non-monotonic

reasoning to DLs, and several other formalisms introducing defaults to ontologies exist

17

1. INTRODUCTION

(e.g., [Baader and Hollunder, 1995]). Since all these approaches are not based on

rules, we do not consider them any further. We justify this decision to focus on rules

with the fact that rules are more commonly used than the previously mentioned non-

monotonic formalisms, and we claim that this increases the support and acceptance

of an approach combining open and closed world reasoning. Additionally, relying on

rules for closed world reasoning might simplify the implementation of the combination.

Whenever reasoning in rules and ontologies is to some extent modular, and for several

of the presented approaches for combining rules and ontologies this is the case, even

for the tightly integrated ones, then previous work on implementations might be (at

least partially) reusable while the approaches enriching DLs require to alter the details

of its implementations.

1.6 A Novel Approach

As shown in [Motik and Rosati, 2010], among the various proposals for combining

rules and ontologies the only one satisfying all four criteria presented in Section 1.4 are

Hybrid MKNF knowledge bases. Hybrid MKNF knowledge bases [Motik and Rosati,

2010] seamlessly integrate arbitrary decidable description logics with (disjunctive) logic

programming rules, making it possible to reason over a combination of monotonic open

world knowledge and non-monotonic closed world knowledge within a single (hybrid)

framework. A detailed discussion about the importance of Hybrid MKNF knowledge

bases for modeling knowledge in the Semantic Web can be found in [Horrocks et al.,

2006b], and [Grimm and Hitzler, 2008; Grimm et al., 2006] provide arguments for the

usefulness of epistemic reasoning in the way it is done in MKNF logics.

Several reasoning algorithms are presented in [Motik and Rosati, 2010] for Hybrid

MKNF knowledge bases, and it is shown that the data complexity of reasoning within

this framework is in many cases not higher than reasoning in the corresponding fragment

of logic programming. Thus, adding an ontology to rules does not in general increase

the data complexity when compared to rules alone. But the same cannot be said

about adding rules to ontologies. E.g., we have at least a data complexity of coNP

for a combination of normal logic programming rules with ontologies even if the data

complexity of the Description Logics fragment is in the complexity class P. Indeed,

although the approach of Hybrid MKNF knowledge bases is powerful, whenever we

18

1.6 A Novel Approach

add rules with arbitrary non-monotonic negation to an ontology, we in general loose

tractability. Only a specific limited use of non-monotonic negation, namely in case of

stratified rules, admits to maintain tractability (see [Motik and Rosati, 2010]). However,

we claim that robustness w.r.t. updates and the combination of different sources of

information is an important property of a combination of rules and ontologies. Since

it cannot be guaranteed that this property is maintained in such cases, we obtain a

higher computational complexity in general.

The reason for that increase in the complexity lies in the fact that, as shown in

[Lifschitz, 1991], rules are interpreted in a similar way as in the Stable Model Semantics

[Gelfond and Lifschitz, 1988] for logic programs, whose reasoning algorithms are NP-

hard. So, if a semantics based on the SMS is adopted, then any improvements on

the complexity of the combination of rules and ontologies are bound by NP-hardness

[Dantsin et al., 2001].

The other major semantics for normal logic programs – the Well-Founded Semantics

[van Gelder et al., 1991] – seems to offer a solution. WFS is a three-valued semantics,

where propositions can be ‘true’, ‘false’ or ‘undefined’ (while in SMS propositions can

only be ‘true’ or ‘false’), and WFS assigns a single model – the well-founded model –

to every non-disjunctive logic program. The WFS is sound with respect to the SMS,

in that whenever a proposition is true (resp. false) under the WFS, then it is also

true (resp. false) in all stable models. Though the WFS is semantically weaker than

SMS (in terms of the derivable true and false consequences), reasoning in the WFS

has a lower computational complexity than in SMS – for normal programs the data

complexity is P for the WFS instead of coNP for SMS [Dantsin et al., 2001]. Our stance

is that the lower complexity bound makes WFS more promising than SMS as a basis

for the semantics of hybrid knowledge bases. This is even more the case in application

areas, such as the ones mentioned above in Section 1.3, where huge amounts of data

are involved.

Additionally, reasoning in SMS requires one to obtain the entire model of a knowl-

edge base (just like [Motik and Rosati, 2010] for combinations of rules and ontologies),

while the WFS is amenable to top-down, query-driven reasoning, in which only the

part of the knowledge base “relevant” to a specific query is accessed [Chen and War-

ren, 1996]. This makes a WFS based approach all the more suitable for large scale

applications.

19

1. INTRODUCTION

1.7 Contributions

In this thesis, we define a new semantics for Hybrid MKNF knowledge bases, restricted

to non-disjunctive rules, that soundly approximates the semantics of [Motik and Rosati,

2010] but is, in some important cases, in a strictly lower complexity class. In partic-

ular, when dealing with a tractable description logic, our combined approach remains

tractable w.r.t. data complexity. We achieve this by extending the two-valued MKNF

semantics from [Motik and Rosati, 2010] to three truth values where each two-valued

model from [Motik and Rosati, 2010] corresponds to a total three-valued model of our

approach (and vice versa) and where the least (w.r.t. derivable knowledge) three-valued

MKNF model is the well-founded MKNF model. Our proposal straightforwardly sat-

isfies the four criteria presented above for the combination of rules and ontologies.

Moreover, the proposed semantics also guarantees the following properties:

• The well-founded MKNF model is sound w.r.t. the two-valued MKNF models of

[Motik and Rosati, 2010], i.e., each query that is true (respectively false) in the

well-founded MKNF model is also true (respectively false), in each two-valued

MKNF model.

• Our proposal coincides with the original DL-semantics when no rules are present,

and the original WFS of logic programs if the DL component is empty.

• If the knowledge base is consistent, then the approach is coherent in the sense of

[Pereira and Alferes, 1992], i.e., if a formula ϕ is first-order false in the ontology,

then the non-monotonic interpretation of ϕ in the rules is enforced to be false as

well.

• If the knowledge base is inconsistent, then our approach allows us to detect in-

consistencies without any substantial additional computational effort.

• The computational data complexity of our approach depends on the computa-

tional complexity of the applied DL, but if the considered DL is of polynomial

data complexity, then the combination with rules remains polynomial.

We present an algorithm based on an adaptation of the alternating fixpoint for logic

programs whose calculated result is a representation of the well-founded MKNF model.

20

1.8 Outline

Additionally, we devise an alternative characterization based on unfounded sets (as

known from logic programs) and show that the calculated result of that characterization

coincides with the one obtained from the alternating fixpoint construction.

We also present a querying mechanism, called SLG(O), that is sound and com-

plete for our proposed semantics and sound for the two-valued semantics of Hybrid

MKNF knowledge bases [Motik and Rosati, 2010]. SLG(O) accepts DL-safe conjunc-

tive queries, i.e., conjunctions of predicates with variables where queries have to be

ground when processed in the ontology, returning all correct answer substitutions for

variables in the query. Queries itself are basically evaluated in a top-down manner

based on SLG resolution. This means that if a queried atom matches the conclusion of

the rule, then we query for the premise. In this way, the search is continued until an

answer has been found. Ontologies are incorporated into this process using so-called

oracles. Whenever the queried atom appears in the ontology, then we may query the

oracle of the ontology whose answer consists of a set of atoms that if proven ensure the

truth of the originally queried atom.

The defined general procedure applies to any DL and under certain conditions

maintains the data complexity of our new proposal. Then, we also provide concrete

oracles for REL, DLP and DL-Lite, i.e., three tractable fragments that are underlying

the OWL 2 profiles that are part of the W3C recommendations [Hitzler et al., 2009a]

for the Semantic Web. We show that the oracles thus defined are correct with respect

to the general procedure and maintain the polynomial data complexity.

1.8 Outline

The thesis is divided into three parts. The first part comprises of four chapters starting

with the current chapter that introduces and motivates our work. In Chapter 2, after

recalling some general notions including a section on computational complexity, we

present the common syntax of logic programs and several different semantics that are

important for our work. In Chapter 3 we present the syntax and the semantics of the

expressive description logic SROIQ. We also present the reasoning tasks and three

tractable fragments of SROIQ. Finally, in Chapter 4, we present the logics of minimal

knowledge and negation as failure and the formalism of hybrid MKNF knowledge bases.

This finishes the part providing an overview of the field in which we present the results

21

1. INTRODUCTION

of our work. Note that readers familiar with Description Logics or Logic Programming

may skip the corresponding chapter, but we want to point out that the notions presented

in the first two sections of Chapter 2 are not limited to this chapter or LP.

In the second part, we present the new well-founded MKNF semantics. In Chap-

ter 5, we introduce a three-valued MKNF semantics. We extend the evaluation of

MKNF formulas and the notion of MKNF model to three truth values. Then, we

determine a unique minimal model among all three-valued MKNF models, the well-

founded MKNF model. In Chapter 6, we provide an algorithm that, as it turns out,

allows us to compute a representation of that unique well-founded MKNF model. This

alternating fixpoint computation also admits the detection of inconsistencies in the

combined knowledge base, and we show that several desired properties, such as faith-

fulness, are satisfied. In Chapter 7, we compare in more detail our new approach with

related work.

The contributions presented in the second part were published in the International

Workshop on Description Logics [Knorr et al., 2007a], in the Portuguese Conference on

Artificial Intelligence [Knorr et al., 2007b], in the European Conference on Artificial

Intelligence [Knorr et al., 2008], and in Artificial Intelligence [Knorr et al., 2011].

In the third part, we present a top-down querying procedure for the newly defined

semantics. In Chapter 8, we present the general framework SLG(O), which extends

SLG resolution with the capability to query ontologies. It is shown that the answers

to queries posed to a consistent MKNF knowledge base correspond to the unique well-

founded MKNF model. Then, in Chapter 9, we also consider specific tractable combina-

tions for that querying mechanism, namely combinations of rules withREL, DL-LiteR,

and DLP.

The work in this part has been published in the International Semantic Web Con-

ference [Alferes et al., 2009] and in the European Conference on Artificial Intelligence

[Knorr and Alferes, 2010].

The subsequent index contains pointers to definitions of notions and notations used

in the thesis to ease the reading.

22

2

Rules in Logic Programming

Sets of rules in Logic Programming are a well-known means for non-monotonic knowl-

edge representation and reasoning. In fact, over the last thirty five years, LP has

been intensively studied and a large body of theoretical results has been presented ac-

companied by a variety of quite different systems aiming to implement the declarative

paradigm underlying LP. In LP, non-monotonic reasoning is achieved by the usage of

default negation (or negation as failure) in rules. The simplicity of this approach and

the fact that LP is widely recognized as one of the most important non-monotonic

reasoning formalisms are the reasons why we consider LP for the CWA in our combi-

nation of open and closed world reasoning. In this chapter, to make the presentation

self-contained, we recall the notation and important definitions of LP with a focus on

the semantics that are important for our work. A full account of semantics of logic pro-

grams is beyond the scope of this thesis, and we refer to the extensive list of references

in, e.g., [Lobo et al., 1992; Minker and Seipel, 2002].

Here, we recall Answer Set Programming [Gelfond and Lifschitz, 1991], which is

relevant for our work since this general approach is the one to which a correspondence

result has been established with hybrid MKNF knowledge bases [Motik and Rosati,

2010] – the approach that forms the starting point of our work for combining non-

monotonic rules and ontologies. Building on the minimal semantics [Minker, 1982],

ASP extends the two-valued Stable Model Semantics [Gelfond and Lifschitz, 1988]

with disjunctions [Przymusinski, 1991], and it allows two kinds of negation (classical

and default) in rules. The SMS itself is only defined for a less expressive class of

logic programs, but the established relation [van Gelder, 1989] to the other standard

23

2. RULES IN LOGIC PROGRAMMING

semantics for normal logic programs, namely the three-valued Well-Founded Semantics

[van Gelder et al., 1991], is of importance.

In our work, which is based on the Well-founded Semantics, we focus exactly on the

class of normal programs, which does not allow for disjunction or classical negation.

There are also well-founded semantics defined for logic programs allowing classical

negation [Pereira and Alferes, 1992] and logic programs allowing disjunctions in the

conclusion of the rules[Alcântara et al., 2005; Baral et al., 1990; Brass and Dix, 1998;

Ross, 1990; Wang, 2001]. However, as we argue in this thesis, there are strong reasons

not to consider disjunction in combination with well-founded semantics in general, and

even more in the context of the hybrid approach based on MKNF. In case of classical

negation, we show why a more complex semantics including classical negation in rules

is not needed in the context of our work on hybrid MKNF. Intuitively, reasoning on

classical negation can be transfered to the ontology. Both these issues are discussed in

Chapter 4.

We start recalling some notions related to fixed point semantics that are used in

this chapter but also in the rest of the thesis (Section 2.1) and some notions on compu-

tational complexity (Section 2.2). Then, we present the syntax and some terminology

of logic programs as used in ASP (Section 2.3). We continue with the semantics of

ASP (Section 2.4) and then we recall SMS, as one concrete subset1 (Section 2.5). We

finish this chapter by recalling the well-founded semantics and the relation to SMS

(Section 2.6).

2.1 Fixed Point Semantics for Logic Programs

Logic programming semantics are quite often based on iterations of some operators,

and the semantics we recall in this chapter are no exception to that. To make the pre-

sentation of these semantics self-contained, we now recall some notions and theoretical

results related to fixed points. We would like to point out that we limit ourselves to the

notions that are going to be used explicitly in this thesis, and we refer to [Hitzler and

Seda, 2010] for a comprehensive book on fixed point approaches in logic programming.

1 We would like to point out that presenting ASP before SMS is rather uncommon. In this aspect,

we follow the idea of presenting first the general and more expressive form, and then restrict to a

concrete subset which usually provides us with some benefit for efficiency of computation.

24

2.1 Fixed Point Semantics for Logic Programs

The basic idea is that operators, i.e., functions, immediately derive information

based on the logic program and the knowledge assumed to be true. One commonly

applied scheme is to start with applying the operator to the empty set, and repeatedly

use the outcome of such a derivation as input for another iteration of the operator.

An important property of such iterations in LP is monotonicity and we recall it and

antitonicity as follows.

Definition 2.1. Let X be the power set of a given set S. A function f is called
monotonic if, for all x, y ∈ X, it holds that x ≤ y implies f(x) ≤ f(y), and f is called
antitonic if , for all x, y ∈ X, it holds that x ≤ y implies f(y) ≤ f(x).

Thus, if an iteration is monotonic, then the sequence of subsequent results is strictly

increasing. An antitonic operator is commonly used in LP to define another operator

that results from applying the original operator itself twice, and it can be shown that

such a doubled operator is again monotonic. Monotonicity of a function is crucial in

the simplified version of the well-known result of fixpoints [Tarski, 1955] that shows

that the sequence eventually reaches a point at which it stops increasing.

Theorem 2.1. Let X be the power set of a given set S, f : X → X monotonic, and
x, y ⊆ S. Then f has a least fixpoint x = f(x) and a greatest fixpoint y = f(y).

This result has been repeatedly applied in logic programming semantics in the sense

that a monotonic operator is defined that can be iterated until a fixpoint is reached that

corresponds to the information derivable from the program. Note that such fixpoints

are not restricted to finite iterations in LP, which means that natural numbers are

not sufficient to represent the number of iterations. Instead ordinals, an extension of

natural numbers, are used. For completeness, we recall that notion, but we refer to

[Hitzler and Seda, 2010] for the details.

Definition 2.2. An ordinal is an equivalence class of a well-ordering under isomor-
phism. A successor ordinal is an ordinal α such that there is a greatest ordinal β with
β < α. In this case α is the successor of β and can be denoted β+1. Any other ordinal
is called limit ordinal.

Intuitively, we may consider ordinals as a way of capturing uncountable sequences.

Natural numbers are ordinals where each n ∈ N with n > 0 represents a successor

ordinal whereas 0 is a limit ordinal. The limit ordinal for natural numbers is ω = {β |

25

2. RULES IN LOGIC PROGRAMMING

β < ω and β ∈ N}. Then, ω + 1, ω + 2, . . . are successor ordinals of ω, and ω ∗ 2 is

the next limit ordinal. There are uncountably many ordinals, but, for our focus on

iterations in LP semantics, the material presented above suffices.

For proving properties of ordinals we recall the principle of transfinite induction

that extends induction on natural numbers.

Definition 2.3. The principle of transfinite induction is given in the following: Sup-
pose we want to prove that a property Q holds for all members of an ordinal α. Then
it suffices to show that the following hold.

(i) Q(0) holds.

(ii) For any ordinal β, if Q(α) holds for all ordinals α < β then Q(β) holds as well.

Often, part (ii) is divided into successor ordinals and limit ordinals.

2.2 Computational Complexity

In this section we briefly recall the relevant notions of computational complexity that are

used in this thesis. We would like to point out that a full introduction to the topic would

exceed the scope of this thesis. Instead, we recall only the notions that are relevant

for our work, and we refer to [Papadimitriou, 1994] for an extensive introduction to

computational complexity.

Intuitively, we may understand computational complexity as measuring the com-

putational effort to solve some problem and relating it to a complexity class of cor-

responding problems. Complexity is usually measured as worst case complexity, even

though, in practice, systems might achieve better results on average. A problem refers

to certain reasoning tasks that either reply only with yes or no (decision problems) or

require a more complex answer (function problems). In both cases, the computational

complexity is measured as a function depending on the input. The input is the size of

the logical theory in consideration (DL knowledge base, a set of rules, or its combina-

tion), and the size itself refers to the minimal number of symbols necessary to write

the theory in the alphabet provided by its signature, including logical operators and

auxiliary symbols, such as parentheses.

It is common to divide a theory into axioms describing the domain and assertions

that describe a concrete problem. In computational complexity, we may measure only

26

2.2 Computational Complexity

the data complexity w.r.t. the assertions or the taxonomic complexity w.r.t. domain

axioms. The combined complexity measures the combination of the two, sometimes

also taking into consideration the size of the queries if these occur in the problem in

consideration.

In our work we encounter the complexity classes LOGSPACE, PTIME, NP, coNP, DP,

NEXPTIME, and N2EXPTIME and we refer to [Papadimitriou, 1994] for their standard

definitions. Here, we simply recall the brief definitions that are mainly taken from

[Motik et al., 2009a].

• LOGSPACE: the class of problems solvable by a deterministic algorithm using space

that is at most logarithmic in the size of the input, i.e., roughly log(n), for n the

size of the input.

• PTIME: the class of problems solvable by a deterministic algorithm using time

that is at most polynomial in the size of the input, i.e., roughly nc, for n the size

of the input and c a constant.

• NP: the class of problems solvable by a nondeterministic algorithm using time

that is at most polynomial in the size of the input, i.e., roughly nc, for n the size

of the input and c a constant.

• coNP: the class of problems whose complements are in NP.

• DP: the class of problems that contain one problem in NP and one in coNP.

• NEXPTIME: the class of problems solvable by a nondeterministic algorithm in

time that is at most exponential in the size of the input, i.e., roughly 2n, for n

the size of the input.

• N2EXPTIME: the class of problems solvable by a nondeterministic algorithm in

time that is at most double exponential in the size of the input, i.e., roughly 22n
,

for n the size of the input.

Most of these complexity classes subsume each other in the order of appearance,

N2EXPTIME being the most complex one, with some notable exceptions such as NP

and coNP. However, it has not been proven in all cases whether the inclusion is strict

or an identity holds. A famous example for this problem are PTIME and NP. The

27

2. RULES IN LOGIC PROGRAMMING

complexity class PTIME (and also each lower class including LOGSPACE) is commonly

called tractable, while all classes above PTIME are considered intractable.

Reductions are used to show that a problem is contained in a certain complexity

class. In this sense, a problem P is called hard for a class C if every problem in C
can be reduced to P . A problem is called complete for some complexity class C if

tight complexity bounds are known – that is, the problem is known to be both in the

complexity class C, i.e., an algorithm is known that only uses time/space in C, and hard

for C. For a class C, we may say that a problem is C-hard or C-complete.

One generalization of complexity classes for the problems that have some polynomial

algorithm is achieved by the polynomial hierarchy. For complexity classes C and E , with

EC we denote the class of decision problems that can be solved by a Turing machine

running in E , using an oracle for decision problems in C. The polynomial hierarchy is

defined inductively as follows:

∆p
0 = Σp

0 = Πp
0 = PTIME, ∆p

k+1 = PTIME
Σp

k , Σp
k+1 = NPΣp

k , Πp
k+1 = coNPΣp

k .

In particular, the classes for k = 0 correspond to PTIME, NP, and coNP.

2.3 Terminology of Logic Programs

Logic programs are based on a signature containing the basic elements to form the

expressions that appear in logic program rules. Such a signature consists of three

disjoint sets, namely the sets of constants, function symbols, and predicate names.

Definition 2.4. A signature Σ = (Σc,Σf ,Σp) consists of three disjoint sets of constants
Σc, function symbols Σf , and predicates Σp.

Given such a signature and a set of variables, we are able to define atoms and the

terms appearing therein.

Definition 2.5. Let Σ = (Σc,Σf ,Σp) be a signature and Σv a disjoint set of variables.
A term is a constant c ∈ Σc, a variable v ∈ Σv, or a compound term f(t1, . . . , tn) where
f is a function symbol of arity n and all ti, 1 ≤ i ≤ n are terms. If n = 0, then the
compound term is equivalent to a constant c ∈ Σc. A (first-order) atom is of the form
p(t1, . . . , tn), where p is an n-nary predicate symbol and the ti, for i = 1, . . . , n and
n ≥ 0, are terms.

28

2.3 Terminology of Logic Programs

Such atoms allow us to express that x is the uncle of y using uncle(x, y). As another

example, we may consider smallerthan(0, s(0)) to express that 0 is smaller than its

successor. If we want to express the opposite of such information, then we may either

use classical negation, e.g., to express that x is not the uncle of y using ¬uncle(x, y) or

default negation to express that x is not the uncle of y unless further information allows

us to derive the opposite using notuncle(x, y). We may even express that, by default,

x is not the uncle of y unless further information allows us to derive the opposite using

not¬uncle(x, y).

Some notions related to the usage of negation in logic programs is presented in the

next definition.

Definition 2.6. Let Σ = (Σc,Σf ,Σp) be a signature and Σv a disjoint set of variables.
A literal, is either a positive literal, i.e., an atom p(t1, . . . , tn) or a classically negated
atom ¬p(t1, . . . , tn), or a negative literal, i.e., a positive literal preceded by not .

Note that ¬p(t1, . . . , tn) is not always considered positive in the literature, but we

follow in that aspect the terminology of ASP.

Logic programs consist of rules that combine (possibly negated) atoms in logic

formulas of a specific form.

Definition 2.7. Let Σ = (Σc,Σf ,Σp) be a signature and Σv a disjoint set of vari-
ables. A generalized disjunctive (logic) program Π consists of finitely many universally
quantified generalized disjunctive rules of the form

H1 ∨ · · · ∨Hl ← A1 ∧ · · · ∧An ∧ notB1 ∧ · · · ∧ notBm (2.1)

usually written as

H1 ∨ · · · ∨Hl ← A1, . . . , An,notB1, . . . ,notBm (2.2)

where Hk, Ai, and Bj, for k = 1, . . . , l, i = 1, . . . , n, and j = 1, . . . ,m, are positive
literals defined over Σ and Σv, and where the symbol not represents default nega-
tion. A rule can be divided into the head H1 ∨ · · · ∨ Hl and the body A1, . . . , An,
notB1, · · · ,notBm. If the body is empty, i.e., n = m = 0, the rule is called a fact.

We also identify the elements in the head and in the body with the sets H =
{H1, . . . ,Hl}, B+ = {A1, . . . , An}, and B− = {not B1, . . . ,not Bm}, where B =
B+ ∪ B−, and we occasionally abbreviate rules with H ← B+ ∧ B− or even H ← B.

29

2. RULES IN LOGIC PROGRAMMING

If, for all rules in program Π, l = 1, m = 0, and only atoms are allowed in Π, then
Π is a definite (logic) program consisting of definite rules. Given a set of definite rules
that additionally allow the appearance of default negation in the body, i.e., m ≥ 0, yields
normal rules and normal (logic) programs. Normal programs with disjunctions, i.e., l ≥
1, are disjunctive (logic) programs consisting of disjunctive rules, and normal programs
admitting also classical negation are called generalized (logic) programs consisting of
generalized rules. A positive program can be any of the previous programs where each
rule is positive, i.e., does not contain default negation. A rule is called safe if each
variable in the rule occurs in an atom Ai for some i, 1 ≤ i ≤ n.

Thus, different kinds of logic programs yield a different expressiveness depending

on how many and which literals are allowed in the head and the body of each rule.

We assume in the following that all rules are safe. Note that the disjunction in the

head and the conjunction in the body are commutative, i.e., the order of the elements

in the head and in the body does not matter.

The variables appearing in rules can be substituted by other terms including the

special case where the result is free of variables. In this case, any expression, i.e., term,

atom, literal, rule, or program, is called ground if it contains no variables. With that

in mind, we can define some standard LP notions.

Definition 2.8. Let Σ = (Σc,Σf ,Σp) be a signature for program Π. The Herbrand
universe HUΠ is the set of all ground terms that can be formed from the constants from
Σc and the function symbols from Σf occurring in Π. If there is no constant in Π then
an arbitrary constant is added. The Herbrand base HBΠ is the set of all ground atoms
that can be formed by using the predicate symbols from Π with terms as arguments from
HUΠ. Finally, the set of all ground instances of the rules of a program Π with respect
to HBΠ is denoted by ground(Π).

The intuitive idea behind the Herbrand base is that it contains all ground atomic

information that is possibly derivable from a given program. As such, it serves as the

basis for the set on which operators are defined as introduced in Section 2.1.

Note that the notions in Definition 2.8 may not be finite because of the possible

occurrence of function symbols with arity greater than 0, even though the program

itself is only a finite set of (non-ground) rules. In practice, it is usual to restrict first-

order atoms to be free of function symbols to achieve decidability, and, unless otherwise

stated, we assume in the rest of this chapter that Σf = ∅.

30

2.4 Answer Set Semantics

2.4 Answer Set Semantics

The semantics of ASP can be obtained from the standard first-order semantics consid-

ering only Herbrand Models [Fitting, 1996]. Herbrand models are essentially interpre-

tations that do interpret all ground terms by themselves. This obviously relates to the

notion of Herbrand base and we can define the notion of interpretation in the context

of ASP.

Definition 2.9. Let Π be a generalized disjunctive logic program. An interpretation I

of Π is a subset of HBΠ ∪ {¬A | A ∈ HBΠ} such that there is no ground atom A with
A ∈ I and ¬A ∈ I.

Interpretations are just subsets of the atoms and classically negated atoms appearing

in the program in consideration. It is common to represent these subsets by mappings

from the Herbrand base HBΠ to the set of truth values {t, f}, representing the two truth

values true and false, hence the name two-valued logics. Those elements appearing in

the interpretation are considered true, all the others false.

Such Interpretations can be used to define answer sets straightforwardly for positive

programs, minimizing the knowledge that is interpreted to true in order to satisfy the

rules of the program.

Definition 2.10. Let Π be a positive generalized disjunctive logic program. An inter-
pretation I satisfies a positive ground rule r in ground(Π) of the form H1 ∨ · · · ∨Hl ←
A1, . . . , An, written I |= r, if Ai ∈ I, for all 1 ≤ i ≤ n, implies, for some 1 ≤ k ≤ l,
Hk ∈ I. I satisfies Π, written I |= Π if and only if I |= r for each r in ground(Π). We
call I an answer set for Π if I |= Π and there is no I ′ (I such that I ′ |= Π.

Thus, an interpretation I is an answer set for a positive generalized disjunctive logic

program Π if all rules of Π are satisfied in I and I is minimal, i.e., there is no subset

of I that also satisfies all the rules in Π.

This notion of an answer set can be generalized to programs that are not restricted

to positive rules.

Definition 2.11. Let Π be a generalized disjunctive logic program. The transform of
Π w.r.t. an interpretation I is the positive ground program Π/I that is obtained from
ground(Π) by deleting each rule of the form 2.2 from ground(Π) such that, for some
1 ≤ j ≤ m, Bj ∈ I, and by deleting all remaining not Bj in the other rules. I is an
answer set of Π if it is an answer set of Π/I.

31

2. RULES IN LOGIC PROGRAMMING

This definition is an extension of the so-called Gelfond-Lifschitz transform [Gelfond

and Lifschitz, 1988]. An interpretation I is guessed and the negative literals are pro-

cessed w.r.t. I, i.e., contradictory information leads to the removal of the entire rule,

while all negative literals that are true in I are simply removed. The resulting program

is positive and if I satisfies all the rules in the reduced program Π/I and is minimal,

then I is an answer set.

Example 2.1. We use the following program Π to exemplify answer sets1.

a←not b (2.3)

b←not a (2.4)

c ∨ ¬c←not a (2.5)

d←b,not¬c (2.6)

The Herbrand base HBΠ is {a, b, c, d}. We obtain three answer sets, namely I1 = {a},
I2 = {b, c, d}, and I3 = {b,¬c}. E.g., I4 = {a, d} also models Π/I4 but it is not
minimal: d is not true since b is not true. The same holds for I5 = {b,¬c, d}: ¬c is
true and the rule 2.6 is removed from the transform Π/I5.

2.5 Stable Model Semantics

The stable model semantics [Gelfond and Lifschitz, 1988] can be straightforwardly

derived from the just presented answer set semantics by appropriately restricting the

definitions in the previous section to normal logic programs. Nevertheless, we recall

the semantics here because the simplifications that can be achieved with the restriction

to normal logic programs are useful for establishing a relation to the three-valued well-

founded semantics for logic programs in Section 2.6.

In analogy to the previous section, we could define how to obtain an answer set

for normal programs that are positive. However, these programs coincide with definite

programs and it turns out that there are not several minimal models but only one least

model that can be computed by means of an operator. We recall that immediate conse-

quence operator from [van Emden and Kowalski, 1976]. Note that interpretations I are

now just subsets of HBΠ since classical negation does not occur in normal programs.
1For simplicity, quite a few of the technical examples are given in propositional logic. However,

we can always embed these examples into first-order logic (or a fragment of it) by considering nullary

predicates.

32

2.5 Stable Model Semantics

Definition 2.12. Let Π be a definite program. The operator TΠ, is defined by setting
TΠ(I) = {H | H ← A1, . . . , An ∈ ground(Π) and Ai ∈ I for all 1 ≤ i ≤ n}.

For definite logic programs, TΠ is ω-continuous [Lloyd, 1987] and allows us to obtain

the least model of a definite logic program by re-iterating the operator. We define

TΠ ↑ 0 = ∅, TΠ ↑ (n+ 1) = TΠ(TΠ ↑ n) and TΠ ↑ ω =
⋃
i≥0 TΠ ↑ i, and the least model

is obtained as the least fixed point of this operator.

Theorem 2.2. Given a definite program Π, the least model is obtained as the least
fixed point of TΠ.

The proof can be found for example in [Lloyd, 1987].

Thus, we can actually compute the least model, while answer sets for positive

generalized disjunctive logic programs have to be guessed and checked.

Example 2.2. Let Π be the given program.

a← (2.7)

b←a (2.8)

c← (2.9)

d←b, c (2.10)

e←e (2.11)

We compute the least model using the operator TΠ.

TΠ ↑ 0 =∅.

TΠ ↑ 1 =TΠ(∅) = {a, c}.

TΠ ↑ 2 =TΠ({a, c}) = {a, b, c}.

TΠ ↑ 3 =TΠ({a, b, c}) = {a, b, c, d}.

TΠ ↑ 4 =TΠ({a, b, c, d}) = {a, b, c, d} = TΠ ↑ 3 = TΠ ↑ ω.

For normal logic programs TΠ is in general not ω-continuous. Nevertheless, the

least model semantics for definite programs can be used to adapt answer sets to normal

programs.

Definition 2.13. Given a normal program Π and an interpretation I, the Gelfond-
Lifschitz operator ΓΠ is defined as follows:

ΓΠ(I) = TΠ/I ↑ ω

33

2. RULES IN LOGIC PROGRAMMING

Stable models can be defined as the fixed points of the Gelfond-Lifschitz operator

ΓΠ.

Definition 2.14. Let Π be a normal logic program. A two-valued interpretation I is a
stable model of Π if and only if ΓΠ(I) = I.

Therefore, we still have to guess the model but, then, a simple computation suffices

to check whether the guess is correct.

Example 2.3. Consider the program Π and the interpretations I1 = {b, c} and I2 =
{a}.

a←c,not b (2.12)

b←c (2.13)

c←not a (2.14)

Π/I1 is obtained by removing the complete first rule, and by removing ¬a from the third
rule.

b←c (2.15)

c← (2.16)

Then TΠ/I1 ↑ ω = {b, c} and I1 is a stable model. Π/I2 is

a←c (2.17)

b←c (2.18)

We obtain TΠ/I2 ↑ ω = ∅, thus I2 is not a stable model.

2.6 Well-founded Semantics

Unlike the answer set and the stable model semantics, the well-founded semantics [van

Gelder et al., 1991] is based on three-valued interpretations for which the set of truth

values is extended by introducing a third truth value u meaning undefined. This change

requires that the notion of interpretation is appropriately adapted.

Definition 2.15. A three-valued interpretation I of a normal program Π is a mapping
from the Herbrand base HBΠ to the set of truth values {t,u, f}, represented, for T, F ⊆

34

2.6 Well-founded Semantics

HBΠ and T ∩F = ∅, by the set (T, F), where elements in T are mapped to t, elements
in F are mapped to f , and the remaining to u. The set of all three-valued interpretations
is denoted by IΠ,3 and each element (A,B) ∈ IΠ,3 can be represented using the signed
set T ∪ notF .

In the signed set notation we simply permit that negative literals are mentioned

explicitly. In this way, any atom that is neither true nor false explicitly in some three-

valued interpretation I is considered undefined.

The interpretation of rules can be extended to three truth values.

Definition 2.16. Let Π be a normal program and I a three-valued interpretation of Π.
The body of a rule H ← L1, . . . , Ln in ground(Π) is true in I if and only if all literals
Li, 1 ≤ i ≤ n, are true in I, or false in I if and only if at least one of that literals is
false in I. Otherwise the body is undefined.

The rule H ← B in ground(Π) is true in I if and only if (at least) one of the
following conditions holds:

• the head H is true in I;

• B is false in I;

• B is undefined and H is not false in I.

Based on this evaluation of rules, three-valued models of normal logic programs can

be defined straightforwardly.

Definition 2.17. Let Π be a normal logic program. A three-valued interpretation I is
a three-valued model of Π if and only if all rules in ground(Π) are true in I.

Note that rules can only be true or false although some literals or even the entire

head or body is undefined.

Stable models and answer sets rely on some minimality condition. Defining a sim-

ilar condition for three-valued models is more difficult since there are two sets to be

considered. There are two well-known orders on three-valued models, and we recall the

knowledge ordering from [Fitting, 2002].

Definition 2.18. Given two three-valued interpretations (A,B) and (C,D), the knowl-
edge ordering ≤k is defined as (A,B) ≤k (C,D) if and only if A ⊆ C and B ⊆ D.

35

2. RULES IN LOGIC PROGRAMMING

Intuitively, this ordering minimizes everything but undefinedness, while the other

ordering minimizes everything but falsity. In other words, the least model in the knowl-

edge ordering is the one that only assigns true or false to the minimally necessary atoms.

Example 2.4. Given I1 = ({a, b}, {c}), I2 = ({a}, {c, d}), and I3 = ({a, b}, {c, d}),
we have I1 ≤k I3 and I2 ≤k I3 but neither I1 ≤k I2 nor I2 ≤k I1. This can easily be
verified in the signed set notation, because {a, b,not c} and {a,not c,not d} are both
subsets of {a, b,not c,not d} but none of them is a subset of the other.

The least three-valued model w.r.t. this order is, in fact, the well-founded model,

and this model can be computed. For that, we recall the notion of an unfounded set[van

Gelder et al., 1991] that is used to derive necessarily false information of a logic program

given some supposed three-valued interpretation.

Definition 2.19. Let Π be a normal logic program and I ∈ IΠ,3. We say that U ⊆ HBΠ

is an unfounded set (of Π) with respect to I if each atom A ∈ U satisfies the following
condition: for each rule A← B in ground(Π) at least one of the following holds:

(Ui) Some (positive or negative) literal in B is false in I.

(Uii) Some (non-negated) atom in B occurs in U .

Given a logic program Π and an interpretation I ∈ IΠ,3, there exists a greatest

unfounded set of Π with respect to I, which is obtained as the union of all unfounded

sets of Π with respect to I. This greatest unfounded set is used derive necessarily false

information, while a generalization of the operator TΠ is used to derive necessarily true

information.

Definition 2.20. Let Π be a normal logic program and I a three-valued interpretation
of Π. The operator T ′Π : IΠ,3 → IΠ,3 is defined by setting

T ′Π(I) = {H | H ← B ∈ ground(Π) and B is true in I}.

The derivation of necessarily true and false information is combined in the definition

of the operator WΠ.

Definition 2.21. Let Π be a normal logic program and UΠ(I) the greatest unfounded
set (of Π) with respect to I. Then for all I ∈ IΠ,3:

WΠ(I) = T ′Π(I) ∪ notUΠ(I).

36

2.6 Well-founded Semantics

It is shown in [van Gelder et al., 1991] that WΠ is a monotonic operator and thus, by

Theorem 2.1, has a least fixed point, which can be computed as usual by WΠ ↑ 0 = ∅,
WΠ ↑ (n+ 1) = WΠ(WΠ ↑ n), and WΠ ↑ α =

⋃
i<αWΠ ↑ i for limit ordinals α.

Definition 2.22. The well-founded model M of a normal logic program Π is obtained
as the least fixed point of the operator WΠ.

Note that WΠ is originally defined for four-valued interpretations, including a truth

value ’both’, which is assigned to an atom that occurs in T ′Π and UΠ. Since it is shown

in [van Gelder et al., 1991] that the iteration always yields three-valued interpretations,

we simplify the presentation here.

Example 2.5. Let Π be a given program.

a← (2.19)

b←not a, c (2.20)

c←not b (2.21)

d←a,not d (2.22)

e←not c, f (2.23)

f←e (2.24)

Now we can calculate the least fixed point of WΠ.

WΠ ↑ 0 =∅

WΠ ↑ 1 ={a,not e,not f}

WΠ ↑ 2 ={a,not b,not e,not f}

WΠ ↑ 3 ={a, c,not b,not e,not f}

WΠ ↑ 4 ={a, c,not b,not e,not f}

Thus M = {a, c,not b,not e,not f} is the well-founded model where d remains un-
defined. Note that e and f occur in the greatest unfounded set by (Uii) whereas b is
contained in UΠ because of (Ui).

There are several alternative definitions of the well-founded semantics. A partic-

ular one, the alternating fixed point semantics [van Gelder, 1989], establishes a close

relationship with stable models. For that purpose, two sequences are defined.

37

2. RULES IN LOGIC PROGRAMMING

Definition 2.23. Let Π be a normal logic program. We define two sequences Li and
Gi as follows.

L0 = ∅ G0 = HBΠ

Lα+1 = ΓΠ(Lα) Gα+1 = ΓΠ(Gα) for successor ordinal α
Lα =

⋃
Li Gα =

⋂
Gi for limit ordinal α

The sequence of Li is increasing, while the sequence of Gi is decreasing. Since both

sequences are monotonic, we obtain two fixed points by Theorem 2.1, a least one for

the sequence of Li and a greatest one for the sequence of Gi. For these two fixed points,

the following results are shown in [van Gelder, 1989].

Theorem 2.3. Let Π be a normal logic program, LΠ the least fixed point of the sequence
of Li, and GΠ the greatest fixed point of the Then the following hold:

• LΠ = ΓΠ(GΠ) and GΠ = ΓΠ(LΠ).

• For every stable model I for Π we have LΠ ⊆ I ⊆ GΠ.

• M = LΠ ∪ {notH | H ∈ HBΠ \GΠ} is the well-founded model of Π.

This important result shows that we can obtain the well-founded model by means

of the operator ΓΠ. It also shows that the well-founded model approximates all stable

models of a given program Π. Whatever is true in in the well-founded model, i.e., in

LΠ, is also true in each stable model, and whatever is false in the well-founded model,

i.e., not in GΠ, is false in each stable model of Π.

Note that this alternative definition of the well-founded model is beneficial in terms

of computation. In Example 2.5, due to its simplicity, it is still considerably easy to

verify that e and f form in the greatest unfounded set when computing WΠ ↑ 1, while

a (possibly automated) check for larger programs is not trivial. In contrast, computing

ΓΠ(∅) immediately reveals that e and f are necessarily false.

These results are of particular importance for our work, since, in Chapter 6, we

present a similar construction for knowledge bases consisting of a program and an

ontology.

38

3

SROIQ – An Expressive

Description Logic

As already mentioned in the introduction, description logics are fragments of first-order

logics that are usually decidable. DLs adhere to the OWA and are commonly used for

ontology languages, such as OWL, to represent taxonomic knowledge. In this chapter,

we recall the necessary general notions for DLs.

Each DL, i.e., each fragment of first-order logics, can be distinguished by the admit-

ted constructors, by means of which formulas are inductively formed. Every fragment

allows a specific expressiveness, i.e., a variant of the syntax and the semantics of DLs,

and algorithms that are tailored for each such fragment are defined. Here, for reasons

detailed below, we opt to present1 DL notions using the description logic SROIQ
[Horrocks et al., 2006a]. Other description logics with different expressiveness can be

easily adapted from the material shown in this chapter. For further background on De-

scription Logics we refer to [Baader et al., 2007a] for an extensive compendium covering

both introductory and advanced material on Description Logics and to [Hitzler et al.,

2009b] for a book on description logics in the context of Semantic Web technologies.

SROIQ is the result of extending the DL SHOIN , which is underlying the on-

tology language OWL DL, with expressive means that were requested by ontology

developers as useful additions to OWL DL. Here, we use SROIQ to recall DL no-

tions for three reasons. First, SROIQ is a highly expressive description logic. Thus,

SROIQ is a very general DL containing many expressive features available for DLs.

1Our presentation is inspired by [Krötzsch, 2010] and [Horrocks et al., 2006a].

39

3. SROIQ – AN EXPRESSIVE DESCRIPTION LOGIC

Second, and more importantly, SROIQ is the DL underlying OWL 2, the language

that is the recommended standard by the W3C for modeling Semantic Web knowledge

bases. Third, while the main part of our work can be considered to be applicable to

any decidable first-order fragment, in Chapter 9 we study concrete cases of a top-down

procedure for our developed semantics. These concrete cases are a combination of nor-

mal rules with different fragments of SROIQ, namely those that underly the three

tractable profiles of OWL 2 DL.

We present the syntax (Section 3.1) and the semantics of SROIQ together with the

reasoning capabilities available for it (Section 3.2). Then, we also recall three fragments

of SROIQ that underly the three tractable profiles of OWL 2 DL (Section 3.3). More

precisely, we recall REL, also known as EL+, which is a fragment of SROEL that

underlies OWL EL, and its specific reasoning mechanism.Then, we present the DL-

Lite family including DL-LiteR that underlies OWL QL, and we finish with DLP

underlying OWL RL.

3.1 Syntax of SROIQ

Typically, formalisms founded on first-order logics are based on a signature containing

the basic pieces from which the formulas are constructed. In case of description logics,

such a signature consists of three disjoint sets of individual names, concept names and

role names. Each of these three sets corresponds to the set of individuals, classes of

individuals, and relations between classes of individuals, respectively.

Definition 3.1. A DL signature Σ = (NI,NC,NR) consists of three disjoint sets of
individual names NI, concept names NC, and role names NR including the universal
role U .

Example 3.1. We may consider a knowledge base describing knowledge about families,
which is a commonly used example. In this case, the DL signature contains concept
names, i.e., classes, such as Parent, Mother, Father, or Child, role names, such as
hasParent, hasUncle, or IsChildOf, which represent relations, and individuals that
may belong to the classes, such as Mary or John.

The correspondence to signatures as defined in general (Definition 2.4) can easily

be established. In first-order logic, individual names correspond to constants, concepts

to unary predicates, and role names to binary predicates. The latter are of particular

40

3.1 Syntax of SROIQ

interest in SROIQ (compared to SHOIN) since many of the extended expressive

means are related to roles. Consequently, the formalization of roles is more evolved

and we start by recalling role expressions.

Definition 3.2. Let Σ = (NI,NC,NR) be a DL signature. The set of SROIQ role
expressions R is defined as

R = {R | R ∈ NR} ∪ {R− | R ∈ NR}.

The bijective function Inv : R→ R is defined by setting Inv(R) := R− and Inv(R−) :=
R for all R ∈ NR.

Role expressions simply allow us to use inverse roles directly without having to

introduce concrete names for that purpose, and the function Inv simplifies that further

by absorbing double inverses. Note that Inv(U) = U .

More complex roles can be created by concatenating several roles by ◦, and such

complex roles together with the roles in R can be used to define role hierarchies. Role

hierarchies consist of role inclusion axioms that are formed with the help of role expres-

sions. These hierarchies have to be restricted to regular ones to maintain decidability.

Definition 3.3. Let Σ = (NI,NC,NR) be a DL signature. A generalized role inclusion
axiom (RIA) is a statement of the form S1 ◦ . . . ◦ Sn v R, where S1, . . . , Sn, R ∈ R. A
set of RIAs form a generalized role hierarchy Rh. Such a role hierarchy Rh is regular
if there is a strict partial order ≺ (irreflexive, asymmetric, and transitive) on R such
that

• for R 6∈ {S, Inv(S)}, S ≺ R iff Inv(S) ≺ R, and

• every RIA in Rh is of one of the following forms:

– R ◦R v R

– R− v R

– S1 ◦ . . . ◦ Sn v R

– R ◦ S1 ◦ . . . ◦ Sn v R

– S1 ◦ . . . ◦ Sn ◦R v R

such that R,S1, . . . , Sn are pairwise different roles in R, and Si ≺ R for i =
1, . . . , n.

41

3. SROIQ – AN EXPRESSIVE DESCRIPTION LOGIC

The restrictions imposed essentially ensure that there are no cyclic dependencies

for different roles (either directly or by transitivity). In fact, cyclic dependencies are

limited to express transitivity, symmetry, and right and left identity of some role. Other

than that, the roles on the left hand side of every RIA have to be smaller w.r.t. the

order.

Example 3.2. The next two examples have been taken from [Motik et al., 2009b].
Consider at first that the wife of one’s uncle is one’s aunt in law. This relation can be
expressed with the two RIAs.

HasFather ◦ HasBrother v HasUncle (3.1)

HasUncle ◦ HasWife v HasAuntInLaw (3.2)

It is easy to see that these two RIAs form a regular role hierarchy. We can, e.g.,
consider the order of roles as follows:

HasFather ≺ HasBrother ≺ HasUncle ≺ HasWife ≺ HasAuntInLaw

As an example for a hierarchy that is not regular, consider the information that the
uncle of one’s child is one’s brother. This relation can also be expressed with the two
RIAs.

HasFather ◦ HasBrother v HasUncle (3.3)

HasChild ◦ HasUncle v HasBrother (3.4)

In this case it is impossible to obtain a strict order. We always obtain that HasBrother
is below itself.

HasFather ≺ HasBrother ≺ HasUncle ≺ HasChild ≺ HasBrother

We can express additional similar properties, such as reflexivity or role-disjointness,

but, for that purpose, we need to introduce a further syntactic restriction on roles to

maintain decidability, namely simple roles.

Definition 3.4. Let Σ = (NI,NC,NR) be a DL signature and Rh a role hierarchy. The
set of simple roles for Rh is defined inductively as follows:

• If R occurs on the right hand side of an RIA, then R is simple if, for each
w v R ∈ Rh, w = S for a simple role S.

42

3.1 Syntax of SROIQ

• The inverse of a simple role is simple.

The first item includes the special case that R does not appear on the right hand

side of any RIA.

Example 3.3. We add another example taken from [Motik et al., 2009b].

HasFather ◦ HasBrother v HasUncle (3.5)

HasUncle v HasRelative (3.6)

HasBiologicalFather v HasFather (3.7)

HasBiologicalFather does not appear on the right hand side of any RIA. Thus, this
role and HasFather are both simple. In opposite to that, HasUncle appears on the right
hand side of a non-simple RIA, so HasUncle and HasRelative are both not simple
roles.

Now we are able to define the SROIQ RBox as the combination of a regular role

hierarchy and set of role assertions1, which expresses relations on roles.

Definition 3.5. Given a DL signature Σ = (NI,NC,NR), a role assertion is a statement
of the form: Ref(R) (reflexivity), Tra(R) (transitivity), Irr(S) (irreflexivity), Dis(S, T)
(role disjointness), Sym(R) (symmetry), Asy(S) (asymmetry), where R,S, T ∈ R and
S and T are simple. A SROIQ RBox R is the union of a set of role assertions together
with a regular role hierarchy.

It should be pointed out that there is an alternative way of declaring simple and

non-simple role names a priori. This may be advantageous for the investigation of

theoretical properties. But since we are not going to investigate theoretical properties

of description logics alone, we use the definition that is more reasonable in practice

if we consider dynamic ontologies. This also shows that the increased expressiveness

compared, e.g., to SHOIN results in a more costly ontology maintenance.

Given an RBox, we can also define complex concept expressions.

Definition 3.6. Let Σ = (NI,NC,NR) be a DL signature and R a SROIQ RBox. The
set of concept expressions (or simply concepts) C is defined as follows:

• NC ⊆ C, > ∈ C, ⊥ ∈ C
1Some of the role assertions are syntactic sugar since they can be expressed directly with an RIA,

but we present them anyway, for convenience.

43

3. SROIQ – AN EXPRESSIVE DESCRIPTION LOGIC

• if C,D ∈ C, R,S ∈ R, S a simple role, a ∈ NI, and n a non-negative integer,
then ¬C, C u D, C t D, {a}, ∀R.C, ∃R.C, ∃S.Self, 6 nS.C, and > nS.C are
also concept expressions.

The complex expressions in the second item are called, respectively, (classical) nega-

tion, conjunction, disjunction, nominals, universal restriction, existential restriction,

Self concept, and qualified number restrictions, which are divided into at-most and

at-least restrictions.

Example 3.4. These constructors allow us to express, e.g., the set of all individuals
that have at least two children that are female (see (1.1) in Chapter 1):

(> 2 HasChild) u (∀ HasChild.Female) (3.8)

We may also represent the set of all individuals that are grandparents or have no sons.

(∃ HasChild.∃ HasCild.>) t (∀ HasChild.¬Male) (3.9)

The concept Self can be used to express reflexivity in concepts, such as ‘narcist’ using
∃ Likes.Self, while nominals are generalizations of individuals in the sense that we can
express the class of all individuals that have John as a child: ∃ HasChild.{John}.

These concept expressions together with the RBox in consideration enable us to

define the notions of a TBox (to express relations between concepts), an ABox (to

assert properties on individuals), and the combination of all axioms for roles, concepts,

and constants, i.e., a SROIQ knowledge base.

Definition 3.7. Let Σ = (NI,NC,NR) be a DL signature, R a SROIQ RBox, a, b ∈ NI

individual names, C,D ∈ C concept expressions, and R ∈ R a role expression. We
define a SROIQ TBox T for R as a set of general concept inclusion axioms (GCIs)
of the form C v D. A SROIQ ABox A is a set of individual assertions of one of the
following forms: C(a), R(a, b), ¬R(a, b), and a 6≈ b. A SROIQ knowledge base O is
the union of a regular RBox R, a TBox T for R, and an ABox A.

We use the the notation O for any DL knowledge base, even if it does not have the

all the three possible components.

44

3.2 Semantics of SROIQ

3.2 Semantics of SROIQ

Given a SROIQ knowledge base, its semantics is provided in the usual way applied in

Description Logics, i.e., a first-order model theory is used. First, an interpretation is

defined that contains the domain and interprets the elements of the DL signature.

Definition 3.8. Given DL signature Σ = (NI,NC,NR), an interpretation I is a pair
I = (∆I , ·I) consisting of a non-empty set ∆I and a mapping ·I that ensures that

• aI ∈ ∆I for each a ∈ NI;

• AI ⊆ ∆I for each C ∈ NC; and

• RI ⊆ ∆I ×∆I for each R ∈ NR.

This mapping can be extended to arbitrary role and concept expressions as shown

in Fig. 3.1.

Name Syntax Semantics

inverse role R− {(x, y) ∈ ∆I ×∆I | (x, y) ∈ RI}
universal role U ∆I ×∆I

top > ∆I

bottom ⊥ ∅
negation ¬C ∆I \ CI

conjunction C uD CI ∩DI

disjunction C tD CI ∪DI

nominals {a} {aI}
universal restriction ∀R.C {x ∈ ∆I | (x, y) ∈ RI implies y ∈ CI}
existential restriction ∃R.C {x ∈ ∆I | ∃y ∈ ∆I , (x, y) ∈ RI ∧ y ∈ CI}
Self concept ∃S.Self {x ∈ ∆I | (x, x) ∈ SI}
qualified number 6 nS.C {x ∈ ∆I |]{(x, y) ∈ SI and y ∈ CI} ≤ n}
restrictions > nS.C {x ∈ ∆I |]{(x, y) ∈ SI and y ∈ CI} ≥ n}

Figure 3.1: Semantics of role and concept expressions in SROIQ for an interpretation
I with domain ∆I

We note that if the DL signature is clear from the context, then we do not mention

it explicitly.

Next, we define when an interpretation is a model for some DL axiom.

45

3. SROIQ – AN EXPRESSIVE DESCRIPTION LOGIC

Definition 3.9. Given an interpretation I and a SROIQ (RBox, TBox, or ABox)
axiom α, we say that I satisfies α, written I |= α, if the respective conditions of Fig. 3.2
are satisfied. I satisfies a SROIQ knowledge base O, denoted as I |= O, if it satisfies
all of its axioms. We also say that I is a model of a given axiom, and I is a model of
the knowledge base O.

Note, that ◦ on the right hand side of Fig. 3.2 denotes standard composition of

binary relations, i.e., RI ◦ SI = {(x, z) | (x, y) ∈ RI ∧ (y, z) ∈ SI} holds.

Axiom α Condition for I |= α

R1 ◦ . . . ◦Rn v R RI1 ◦ . . . ◦RIn v RI

Tra(R) if RI ◦RI ⊆ RI

Ref(R) (x, x) ∈ RI for all x ∈ ∆I

Irr(S) (x, x) 6∈ SI for all x ∈ ∆I

Dis(S,T) if (x, y) ∈ SI then (x, y) 6∈ T I for all x, y∆I

Sym(R) if (x, y) ∈ RI then (y, x) ∈ RI for all x, y ∈ ∆I

Asy(S) (x, y) ∈ SI then (y, x) 6∈ SI for all x, y ∈ ∆I

C v D CI ⊆ DI

C(a) aI ∈ CI

R(a, b) (aI , bI) ∈ RI

¬R(a, b) (aI , bI) 6∈ RI

a 6≈ b aI 6= bI

Figure 3.2: Semantics of SROIQ axioms for an interpretation I with domain ∆I

We are now able to derive model-theoretic notions for SROIQ.

Definition 3.10. Let O and O′ be SROIQ knowledge bases. We define that

• O is satisfiable (consistent) if it has a model and unsatisfiable (inconsistent)
otherwise,

• O entails O′, written O |= O′, if all models of O are also models of O′.

This terminology is extended to axioms by treating them as singleton knowledge bases.
A knowledge base or axiom that is entailed is also called a logical consequence.

It should be pointed out that various properties of first-order logics hold immediately

also for DLs , SROIQ. For example, DLs are monotonic, i.e., adding information never

46

3.2 Semantics of SROIQ

reduces the amount of logical consequences - the addition of further axioms decreases

the amount models and thus augments the set of logical consequences. Moreover, if a

SROIQ knowledge base is inconsistent, then it allows us to derive all possible logical

consequences.

Next, we recall the reasoning tasks that are considered standard for deriving logical

consequences from DL knowledge bases.

Definition 3.11. Consider a SROIQ knowledge base O. The standard reasoning
tasks of description logics are described as follows.

• Inconsistency checking: Is O inconsistent?

• Concept subsumption: Given concepts C,D, does O |= C v D hold?

• Instance checking: Given a concept C and an individual name a, does O |= C(a)
hold?

• Concept unsatisfiability: Given a concept C, is it the case that there is no model
I |= O such that CI 6= ∅?

It is well known that these standard reasoning tasks can be reduced to each other

in linear time (recalled from [Krötzsch, 2010]).

Proposition 3.1. Let O be a SROIQ knowledge base. The standard reasoning tasks
in SROIQ can be reduced to each other in linear time, and this is possible in any
fragment of SROIQ that includes axioms of the form A(a) and A u C v ⊥.

Proof. We find that O is inconsistent if the concept > is unsatisfiable. C is unsatisfiable
in O if O |= C v ⊥. Given a new individual name a, we obtain O |= C v D if
O ∪ {C(a)} |= D(a). For a new concept name A, |= C(a) if O ∪ {A(a), A u C v ⊥} is
inconsistent. This cyclic reduction shows that all reasoning problems can be reduced
to one another.

There are other reasoning tasks that are sometimes considered as standard as well,

such as instance retrieval, i.e., finding all instances of a concept, or classification, i.e.,

computing all subsumptions between all concept names in the knowledge base. How-

ever, these are no decision problems and, in general, are not of the same worst case

complexity as the reasoning tasks presented in Definition 3.11. This is why we do not

include them in the list of standard reasoning tasks.

47

3. SROIQ – AN EXPRESSIVE DESCRIPTION LOGIC

Besides that, several other reasoning tasks have been studied in Description Log-

ics. Among the examples are the computation of explanations for logical entailments

[Horridge et al., 2008; Kalyanpur, 2006], and least common subsumer concepts that

generalize given concept expressions in description logics where union of concepts is

not available [Baader, 2003; Baader et al., 2007b]. Another relevant inference task is

conjunctive query answering [Calvanese et al., 1998; Glimm et al., 2008; Lutz, 2008].

Definition 3.12. Let ~x and ~y be disjoint vectors of distinguished and non-distinguished
variables, respectively. A conjunctive query Q(~x) is a finite formula of the form
∃~y : A1 ∧ . . . ∧ An where each Ai is a function-free first-order atom over predicates
and constants from Σ and the variables from ~x∪~y. If ~x is empty, the conjunctive query
is called Boolean. Given a vector ~a of as a many constants as there are variables in
~x, the result of replacing in Q(~x) each xi ∈ ~x with the corresponding ai ∈ ~a is de-
noted Q(~a). We say that ~a is an answer to Q(~x) over a DL knowledge base O, written
O |= Q(~a), if Q(~a) is true in every model of O. The problem of checking whether ~a is
a answer to Q(~x) is a called query answering.

As shown in [Kazakov, 2008], standard reasoning in SROIQ is N2EXPTIME com-

plete. This high computational complexity is justified by the expressiveness of the

language in consideration.

We finish this section with a (general) example on DL knowledge bases in the

context of the previously introduced example on recommendations for CDs.

Example 3.5. Consider the online store scenario of Example 1.1. The following ax-
ioms and assertions could be part of the ontology for the store:1

CD v ∃HasPiece.Piece (3.10)

Piece v ∃HasArtist.Artist (3.11)

HasPiece ◦ HasArtist v HasArtist (3.12)

TopSeller t SpecialOffer v Recommend (3.13)

HasPiece(BNAW, BlueTrain) (3.14)

HasArtist(BlueTrain, JohnColtrane) (3.15)

1In these axioms, and throughout the thesis, we adopt the convention that names starting with

a capital letter represent concepts and roles (termed DL-atoms) and objects/individuals, while names

starting with a lower case letter represent variables and predicates not appearing in the ontology (called

non-DL atoms).

48

3.3 Tractable Fragments of SROIQ

Axiom (3.10) states that each CD consists of at least one piece and axiom (3.11)
expresses that each piece of music has an artist. The role composition axiom (3.12)
states that if x is related to y by HasPiece and y is related to z by HasArtist then x is
related to z by HasArtist, i.e., HasArtist is a left-identity role. (3.10) - (3.12) alone
enable us to derive, e.g., that the artist of a piece on a certain CD is an artist of that
CD. Note that this conclusion can be drawn without any present CDs, artists or pieces
of music, as intended when reasoning with schema knowledge in an infinite domain. Of
course, once specific information is available (assertions 3.14 and 3.15), we are able to
derive, e.g., that JohnColtrane is an artist of the album BNAW, and likewise for all the
other artists on that CD that are not explicitly mentioned.

Axiom (3.13) expresses one general guideline for recommendations: CDs that are
special offers or top sellers are automatically recommended to the customers.

3.3 Tractable Fragments of SROIQ

Since in some applications not all the constructors that are available in SROIQ are

actually needed, we can consider fragments of SROIQ and rely on computation-

ally cheaper algorithms. This has been done for OWL 2 DL (and its underlying DL

SROIQ) and three tractable profiles of OWL 2 were introduced [Motik et al., 2009a].

Each of these tractable profiles corresponds to some concrete DL, and, in this section,

we recall briefly the DLs that underly the three tractable profiles of OWL 2.

3.3.1 REL

The first tractable fragment is SROEL, also known as EL++ [Baader et al., 2005,

2008], which underlies OWL 2 EL. Here, we limit ourselves to the fragment REL, also

known as EL+1, i.e., we avoid concrete domains as before in the case of SROIQ and

also nominals and complex role expressions, such as reflexivity.

1 Strictly speaking we present EL+ augmented with ⊥. Note that EL++ and EL+ are historically

the commonly used names. However, the usage of + or ++ is rather imprecise in the sense that it

does not hint on the used constructors, whereas the adaptation of the general nomenclature of DLs in

Section 3.5 of [Krötzsch, 2010] to EL languages more clearly designates the appearing constructors. In

fact, in case of SROEL, O does refer to the occurrence of nominals and S indicates the availability

of, e.g., reflexivity. The language REL lacks these features and this can be witnessed by the absence

of the corresponding letters in the name of the DL. Due to this gain in clarity we also adopt this

nomenclature.

49

3. SROIQ – AN EXPRESSIVE DESCRIPTION LOGIC

Name Syntax Semantics

top > ∆I

bottom ⊥ ∅
conjunction C uD CI ∩DI

existential restr. ∃R.C {x ∈ ∆I | ∃y ∈ ∆I : (x, y) ∈ RI ∧ y ∈ CI}
GCI C v D CI ⊆ DI

RIA R1 ◦ · · · ◦Rk v R RI1 ◦ · · · ◦RIk v RI

individual assertion C(a) aI ∈ CI

individual assertion R(a, b) (aI , bI) ∈ RI

Figure 3.3: Syntax and semantics of REL.

For simplicity we present in Figure 3.3 the syntax and semantics of all construc-

tors/axioms allowed in REL. The remainder can then be straightforwardly adapted

from the material presented on SROIQ. We just like to point out a few things. First,

we can simply ignore simple roles here since none of the axioms involving simple roles

are allowed in REL. This includes role assertions expressing properties, such as role

disjointness or symmetry. Nevertheless, some of these role assertions, such as transitiv-

ity, can be expressed via RIAs directly, i.e., Tra(R) for some role R can be represented

by R ◦ R v R as pointed out in Section 3.1. Likewise, SROEL does not impose any

requirements on the regularity of role hierarchies, which also means that full REL is

strictly speaking not a fragment of SROIQ. However, conjunctive query answering

for unrestricted SROEL becomes undecidable [Rosati, 2007], and only the restriction

to regular role hierarchies ensures decidability [Krötzsch et al., 2007; Mei et al., 2009].

We therefore assume that the role hierarchy is regular even though this is not a re-

quirement of REL in general. Finally, the usage of ⊥ allows us to express disjointness

and unsatisfiability of concepts even though negation is not available in REL.

Standard reasoning in SROEL is PTIME-complete while answering conjunctive

queries (restricted to regular RBoxes) is PSPACE-complete [Krötzsch et al., 2007].

This results carry over to REL.

SROEL and its corresponding OWL 2 Profile OWL 2 EL are mainly used in ap-

plications where there is a large amount of concepts and relations between them, i.e.,

knowledge bases with a large TBoxes and RBoxes. Examples for that are SNOMED

50

3.3 Tractable Fragments of SROIQ

or GALEN.

We would like to point out that Example 3.5 is of course a SROIQ knowledge base.

However, if we split 3.13 into two statements, then the knowledge base is also in REL.

3.3.2 DL-LiteR

While OWL 2 EL is used for applications where reasoning on large TBoxes and RBoxes

is required, another profile, namely OWL 2 QL, is used if we are more interested in

efficient querying.

The description logic underlying OWL 2 QL is DL-LiteR, one language of the DL-

Lite family [Calvanese et al., 2007]. We follow the presentation of [Calvanese et al.,

2007] and recall the DL-LiteR language.

Unlike REL, DL-LiteR not only is limited to certain constructors but also restricts

what kind of constructors may appear on the left and the right hand side of GCIs. The

TBox contains only GCIs whose left and right hand sides (subclass and superclass) are

constructed w.r.t. the restrictions presented in Fig. 3.4. Note that ∃R.> is a limited

form of existential restriction.

subclass expressions superclass expressions

C ∈ NC C ∈ NC

∃R.> ∃R.D
t u
⊥ >

¬

Figure 3.4: Syntactic restrictions on class expressions inDL-LiteR whereD is any allowed
concept expression and R ∈ R.

It is explained in [Calvanese et al., 2007] that t on the left hand side and u on the

right hand are syntactic sugar in the sense that these can alternatively be represented by

two statements (much like the normal form in case of REL). For example, C1tC2 v D
is equivalently to C1 v D and C2 v D. Likewise, ⊥ on the left hand side and > on the

right hand side are superfluous.

ABox statements are limited to A(a) and R(a, b) where A ∈ NC and R ∈ NR.

Assertions C(a) for arbitrary concepts C can be simulated by adding A v C to the

51

3. SROIQ – AN EXPRESSIVE DESCRIPTION LOGIC

TBox and A(a) to the ABox.

The semantics can be derived from the material presented on SROIQ with one

exception: here it is assumed that to each constant a ∈ NI a distinct object aI ∈ ∆I

is assigned. In other words, in DL-LiteR the unique name assumption is applied and

it is shown in [Artale et al., 2009] that dropping the unique name assumption would

increase significantly the computational complexity.

Additionally, DL-LiteR allows us to add an RBox containing one role R ∈ R on

the left hand side and one (possibly negated) role S ∈ R on the right hand side. Such

axioms also permit to express properties, such as symmetry.

Standard reasoning tasks in DL-LiteR are polynomial in the size of the TBox and

the RBox, and in LOGSPACE in the size of the ABox, i.e., in data complexity. The same

holds for answering conjunctive queries, but the if we consider the combined knowledge

base, then answering conjunctive queries is NP-complete.

Note that the knowledge base in Example 3.5 is also in DL-LiteR.

3.3.3 DLP

The third fragment of SROIQ, DLP [Grosof et al., 2003], is quite closely related to rules

as presented in Chapter 2, and it is the DL underlying OWL 2 RL. Essentially, DLP is

the translation of Description Horn Logic (DLH) into rules, where DLH corresponds to

the fragment of SROIQ that is translatable into definite Horn rules, i.e., rules without

negation and without function symbols. The restrictions on GCIs are caused by the

expressive limitations of rules and are specified in Fig. 3.5 for the left and right hand

side of GCIs.

subclass expressions superclass expressions

C ∈ NC C ∈ NC

u u
∃R.C ∀R.C
t

Figure 3.5: Syntactic restrictions on class expressions in DLP where C is any allowed
concept expression and R ∈ R.

52

3.3 Tractable Fragments of SROIQ

Note that t on the left hand side and u on the right hand are, yet again, syntactic

sugar in the sense that these can alternatively be represented by two statements.

DLH also allows the usage of role inclusion axioms and therefore straightforwardly

the role assertions Tra(R) and Sym(R) for a role R ∈ R. Finally, assertions of the

form C(a) for C ∈ NC and R(a, b) for R ∈ R are allowed as axioms in the ABox.

More complex assertions where C is a concept name can be derived by introducing

appropriate GCIs. For example, (∀R.D)(a) can be expressed by C(a) and C v ∀R.D.

Given these restrictions, it can be shown that the standard reasoning tasks are

polynomial in the size of the TBox. It should be noted that satisfiability checking is

irrelevant for DLP due to the absence of negation.

Finally, we want to mention that Example 3.5 is not in DLP due the presence of ∃
on the right hand side of two GCIs.

53

3. SROIQ – AN EXPRESSIVE DESCRIPTION LOGIC

54

4

MKNF Logics and Hybrid

MKNF Knowledge Bases

In Chapter 1, we have shown that there is a large number of different approaches

for combining rules and ontologies as presented in the previous two chapters, and we

pointed out that the approach on which we base our work is hybrid MKNF knowledge

bases [Motik and Rosati, 2010]. This work is based on the logic of minimal knowledge

and negation as failure (MKNF) [Lifschitz, 1991] and is closely related to the logic of

minimal belief and negation as failure (MBNF) [Lifschitz, 1994]. Both were defined

as unifying frameworks for formalisms that are non-monotonic such as rules in logic

programs, default logics [Reiter, 1980] or autoepistemic logics [Moore, 1985].

Here, following the presentation in [Motik and Rosati, 2010], we are going to re-

call the syntax (Section 4.1) and the semantics of MKNF logics (Section 4.2). Then,

we recall an important change to the semantics, i.e. the standard names assumption

(Section 4.3), before we present the most general form of combination of rules and

ontologies in that framework – MKNF+ knowledge bases (Section 4.4). We continue

this chapter with some considerations on semantics of such knowledge bases including

how to transform them into MKNF knowledge bases (Section 4.5), and we present the

restrictions that are applied such that reasoning in hybrid MKNF becomes decidable

(Section 4.6). Moreover, we define specific restrictions for our work and justify them

(Section 4.7).

55

4. MKNF LOGICS AND HYBRID MKNF KNOWLEDGE BASES

4.1 Syntax of MKNF Logics

The logic of minimal knowledge and negation as failure extends first-order logic with

two modal operators K and not that inspect the knowledge base: intuitively, given a

first-order formula ϕ, K ϕ asks whether ϕ is known (or derivable as a logical conse-

quence), while not ϕ is used to check whether ϕ is not known. Thus, the two modal

operators permit local closed world reasoning by inspecting the knowledge base looking

for derivable information. In particular, the operator not allows one to draw conclu-

sions from the absence of information, in a way similar to that of default negation in

Logic Programming. Now, we present the formal syntax of MKNF logics as introduced

in [Motik and Rosati, 2007, 2010].

Definition 4.1. Let Σ = (Σc,Σf ,Σp) be a signature and Σp contain the binary equality
predicate ≈. The syntax of MKNF formulas over Σ is defined by the following grammar,
where ti are first-order terms and P is a predicate.

ϕ← P (t1, . . . , tn) | ¬ϕ | ϕ1 ∧ ϕ2 | ∃x.ϕ | Kϕ | notϕ (4.1)

Moreover, ϕ1∨ϕ2, ϕ1 ⊃ ϕ2, ϕ1 ≡ ϕ2, ∀x : ϕ, t, f , t1 ≈ t2, and t1 6≈ t2 are abbreviations,
respectively, for ¬(¬ϕ1 ∧ ¬ϕ2), ¬ϕ1 ∨ ϕ2, (ϕ1 ⊃ ϕ2) ∧ (ϕ2 ⊃ ϕ1), ¬(∃x : ¬ϕ), a ∨ ¬a,
a ∧ ¬a, ≈ (t1, t2), and ¬(t1 ≈ t2).

First-order atoms of the form t1 ≈ t2 (resp. t1 6≈ t2) are called equalities (resp.
inequalities), and ϕ[t1/x1, . . . , tn/xn] denotes the formula obtained by substituting the
free variables xi in ϕ, i.e., the variables that are not in the scope of any quantifier, by
the terms ti.

Given a (first-order) formula ϕ, K ϕ is called a K-atom and not ϕ a not-atom;
K-atoms and not-atoms are modal atoms.

Given this grammar1, we can form different MKNF formulas:

Definition 4.2. An MKNF formula ϕ is called strict, if there is no modal atom in ϕ

that occurs in the scope of a modal operator. An MKNF formula ϕ without any free
variables is closed, and an MKNF formula ϕ is ground if ϕ does not contain variables
at all. An MKNF formula ϕ is modally closed if all modal operators (K and not) are
applied in ϕ only to closed subformulas, and ϕ is positive if ϕ does not contain the
operator not. An MKNF formula ϕ is subjective if all first-order atoms of ϕ occur
within the scope of a modal operator, and ϕ is flat if ϕ is subjective and all occurrences
of modal atoms in ϕ are strict.

1To be precise, the transitions ϕ1 ← ϕ and ϕ2 ← ϕ are implicitly required.

56

4.2 Semantics of MKNF Logics

4.2 Semantics of MKNF Logics

The semantics of MKNF logics is based on first-order interpretations, though a slightly

different version is used here.

Definition 4.3. Let Σ be a signature and ∆ a universe such that, for each element
α ∈ ∆, Σ is required to contain a special constant nα – called a name – such that
nIα = α. A first-order interpretation I over Σ and ∆ assigns an object aI ∈ ∆ to each
constant a ∈ Σc, a function f I : ∆n → ∆ to each n-ary function symbol f ∈ Σf , and a
relation P I ⊆ ∆n to each n-ary predicate P ∈ Σp. The predicate ≈ is interpreted in I

as equality, i.e., for α, β ∈ ∆, we have (α, β) ∈ ≈I iff α = β.
The interpretation of a variable-free term t = f(s1, . . . , sn) is defined recursively as

tI = f I(sI1, . . . , s
I
n).

The semantics of an MKNF formula over a signature Σ (henceforth considered

implicit in all definitions) is based on a specific structure and defined as follows.

Definition 4.4. An MKNF structure is a triple (I,M,N) where I is a first-order
interpretation over ∆ and Σ, and M and N are nonempty sets of first-order inter-
pretations over ∆ and Σ. Given an MKNF structure (I,M,N), satisfiability of closed
MKNF formulas is defined as follows:

(I,M,N) |= P (t1, . . . , tn) iff (tI1, . . . , t
I
n) ∈ P I

(I,M,N) |= ¬ϕ iff (I,M,N) 6|= ϕ

(I,M,N) |= ϕ1 ∧ ϕ2 iff (I,M,N) |= ϕ1 and (I,M,N) |= ϕ2

(I,M,N) |= ∃x : ϕ iff (I,M,N) |= ϕ[nα/x] for some α ∈ ∆
(I,M,N) |= Kϕ iff (J,M,N) |= ϕ for all J ∈M
(I,M,N) |= notϕ iff (J,M,N) 6|= ϕ for some J ∈ N

Note that the evaluation of K and not are kept separate in this definition of satis-

fiability.

Example 4.1. Consider an MKNF structure ({p}, {{p}, {p, q}}, {{q}, {p, q}}). In this
structure, p is satisfied, but q is not, Kp is satisfied but Kq is not, and notp is satisfied
but not q is not. Hence, K p is known and not known at the same time.

Such problems are resolved by considering only certain structures. In fact, MKNF

interpretations, as defined next, are based on structures where the two sets, M and N

are identical.

57

4. MKNF LOGICS AND HYBRID MKNF KNOWLEDGE BASES

Definition 4.5. An MKNF interpretation M over a universe ∆ is a nonempty set of
first-order interpretations. For a closed MKNF formula ϕ, we say that M satisfies ϕ,
written M |= ϕ, if (I,M,M) |= ϕ for each I ∈M .

In the literature, this notion is also called an S5 model, in which not can be replaced

by ¬K . The notion of a (non-monotonic) two-valued MKNF model of a closed MKNF

formula ϕ is based on a preference relation on MKNF interpretations that satisfy ϕ.

Definition 4.6. Let ϕ be a closed MKNF formula. An MKNF interpretation M over
∆ is a two-valued MKNF model of ϕ if

(1) M satisfies ϕ, and

(2) for each MKNF interpretation M ′ such that M ′ ⊃ M we have (I ′,M ′,M) 6|= ϕ

for some I ′ ∈M ′.

An MKNF formula ϕ is MKNF satisfiable if a two-valued MKNF model of ϕ ex-
ists; otherwise ϕ is MKNF unsatisfiable. Furthermore, ϕ MKNF entails ψ, written
ϕ |=MKNF ψ, if M |= ψ for each two-valued MKNF model M of ϕ.

Note that this definition of model is asymmetric in the treatment of the modal

operators K and not. In fact, the maximization of M in (2) is only done in the

component of the structure used for evaluating the operator K. This results in a

minimization of the derivable K-atoms in any two-valued MKNF model of a given

formula ϕ.

Example 4.2. Though M = {p}} satisfies both K p and ¬not p, M is only a two-
valued MKNF model of the first formula. M is not a two-valued MKNF model of the
second one since (I ′,M ′,M) |= ¬not p holds for any M ′ with M ′ ⊃ M . If we just
consider ϕ = ¬not p, then M1 = {∅, {p}} is a two-valued MKNF model of ϕ.

4.3 Standard Names Assumption

The MKNF semantics, as originally defined in [Lifschitz, 1991], shows certain unde-

sirable properties such as counterintuitive semantics caused by the usage of arbitrary

universes and the differing interpretation of constants in different interpretations. To

overcome these problems, [Motik and Rosati, 2010] additionally applies the standard

name assumption to hybrid MKNF knowledge bases. We briefly recall two such prob-

lems from [Motik and Rosati, 2010] and the notion of standard names assumption

58

4.3 Standard Names Assumption

introduced to overcome them. For the complete discussion of this issue, we refer to

[Motik and Rosati, 2010].

One problem when using MKNF as in [Lifschitz, 1991] for the integration of rules

and ontologies is the usage of arbitrary universes. Consider the MKNF formula ϕ =

ϕ1 ∧ ϕ2, where ϕ1 = K P(a) and ϕ2 = not P(b) ⊃ f . Intuitively, one would not expect

that ϕ is satisfiable since there is no indication that P(b) should be true. However, if

the universe contains only one element, then a and b are interpreted as the same object,

and ϕ is satisfied. In this case one unintendedly derives that ϕ |= a ≈ b holds.

Another problem is caused by constants that are interpreted differently in different

interpretations. Consider ϕ1 = K P(a) and ϕ2 = ∃x : K P(x). In this case one would

expect that ϕ1 |= ϕ2, that is, every two-valued MKNF model of ϕ1 is also a two-valued

MKNF model of ϕ2. However, let M be an MKNF interpretation containing two

elements I1 and I2 where I1 is a first-order interpretation in which a is interpreted as a

name α1 and I1 |= P(α1), and I2 is a first-order interpretation in which a is interpreted

as some other name α2 and I2 |= P(α2). We thus have that M |= ϕ1 but not M |= ϕ2

since this would require to have an x in the domain such that P(x) is true in all I ∈M .

To avoid such unintended behavior, the standard name assumption is imposed on

top of MKNF.

Definition 4.7. (Standard Name Assumption [Motik and Rosati, 2010]). A first-order
interpretation I over a signature Σ employs the standard name assumption if

(1) the universe ∆ of I contains all constants of Σ and a countably infinite number
of additional constants called parameters;

(2) tI = t for each ground term t constructed using the function symbols from Σ and
the constants from ∆; and

(3) the predicate ≈ is interpreted in I as a congruence relation – that is, ≈ is reflexive,
symmetric, transitive, and allows for the replacement of equals by equals [Fitting,
1996].

Consequences of first-order formulas under the standard first-order semantics and

the standard name assumption cannot be distinguished [Motik and Rosati, 2010]. Thus,

we can consider first-order inferences to be based on the standard first-order semantics,

even though technically the standard name assumption is applied.

59

4. MKNF LOGICS AND HYBRID MKNF KNOWLEDGE BASES

4.4 Hybrid MKNF+ Knowledge Bases

Hybrid MKNF knowledge bases, as introduced in [Motik and Rosati, 2010], essentially

consist of two components: a first-order theory, such as a theory in description logics,

and a finite set of rules of modal atoms (similar to rules of ASP) of the following form,

where the symbol ← corresponds to the operator ⊂ in MKNF:

KH1 ∨ . . . ∨KHl ← KA1, . . . ,KAn,notB1, . . . ,notBm (4.2)

However, such knowledge bases are not general enough to capture several related ap-

proaches combining ontologies and rules, so the more general MKNF+ knowledge bases

were defined in [Motik and Rosati, 2010] to allow for the usage of arbitrary first-order

formulas in the modal atoms and a mixture of modal and first-order atoms in rules.

Next, we are going to recall MKNF+ knowledge bases1.

Definition 4.8. A generalized atom is a first-order formula. A generalized atom is
ground if it does not contain free variables. A generalized atom ξG is a grounding of a
generalized atom ξ if ξG is obtained from ξ by replacing its free variables with constants.
A generalized atom base GHB is a set of generalized atoms such that ξ ∈ GHB implies
ξG ∈ GHB for each grounding ξG of ξ.

An MKNF+ atom over GHB is either a nonmodal atom of the form ξ, a K-atom
of the form K ξ or a not-atom of the form not ξ, where ξ ∈ GHB. An MKNF+

rule r over GHB is a formula of the following form, where each Hk and each Ai is a
nonmodal or a K-atom over GHB and each notBj a not-atom over GHB.

H1 ∨ · · · ∨Hl ← A1, . . . , An,notB1, . . . ,notBm (4.3)

The set H = {KHk | 1 ≤ k ≤ l} is called the head of r, and the set B = {Aj | 1 ≤
i ≤ n} ∪ {notBj | 1 ≤ j ≤ m} is called the body of r. We may split the body into its
positive part B+ = {Aj | 1 ≤ i ≤ n} and its negative part B− = {notBj | 1 ≤ j ≤ m}
and abbreviate rules by H ← B or H ← B+∧B− An MKNF+ rule r is non-disjunctive
if l = 1, r is positive if m = 0, and r is a fact if n = m = 0. If l = 0, then we write
the head as f and such a rule is called an integrity constraint. Moreover, an MKNF+

rule is safe if each variable that occurs free in some atom also occurs free in a body
K-atom. A program P is a finite set of MKNF+ rules.

1All definitions in the rest of the thesis are parameterized by a signature containing the equality

predicate ≈.

60

4.5 Semantic Properties of Hybrid MKNF+

Let DL be a description logic and GHB a generalized atom base. A hybrid MKNF+

knowledge base over DL and GHB is a pair K is a pair (O,P) where O ∈ DL is a DL
knowledge base and P is a program over GHB.

From now onwards, we assume that all hybrid MKNF+ knowledge bases are pa-

rameterized by a description logic DL and a generalized atom base GHB.

Hybrid MKNF+ knowledge bases, as defined above, do not coincide syntactically

with any MKNF formula. For interpreting hybrid MKNF knowledge bases in terms

of MKNF logic, the transformation π that transforms a DL ontology into first-order

formulas1 is extended to knowledge bases as follows:

Definition 4.9. Let K = (O,P) be a hybrid MKNF+ knowledge base and π(O) be the
transformation of O into a formula of first-order logic with equality. We extend π to
rules r of the form (4.3), P, and K as follows, where ~x is the vector of the free variables
of r.

π(r) = ∀~x : (A1 ∧ . . . ∧An ∧ notB1 ∧ . . . ∧ notBm ⊃ H1 ∨ . . . ∨Hl)

π(P) =
∧
r∈P

π(r) π(K) = K π(O) ∧ π(P)

Note that the Ai and Hk may be K-atoms. To simplify the presentation, we abuse

notation and, when this does not cause confusion, identify K with π(K). It shall be

obvious from the context when K represents its first-order transformation π(K).

4.5 Semantic Properties of Hybrid MKNF+

Obviously, the formalism just recalled immediately satisfies tightness and flexibility, i.e.,

two of the criteria for a combination of rules and ontologies we want to be satisfied. We

discuss decidability separately in the next section since the approach as such, without

any restrictions, is undecidable. As such, we now focus our attention on faithfulness.

As presented in [Motik and Rosati, 2010], if we consider that K = (O, ∅), i.e., the

rule part is empty, then it is easy to see that K |=MKNF ψ if and only if O |= ψ. The

reason is that logical consequences under O and K O are the same because O itself

does not contain any modal operators.

1See, e.g., [Baader et al., 2007a] for such a transformation.

61

4. MKNF LOGICS AND HYBRID MKNF KNOWLEDGE BASES

For the other case, where K = (∅,P), i.e., the ontology is empty, we can rely on

the results [Lifschitz, 1991, 1994], which can even be simplified since we assume the

standard name assumption [Motik and Rosati, 2010]. A rule r in ASP of the form 2.2

with a vector of the free variables ~x is straightforwardly transformed into an MKNF

formula π(r) as follows.

∀~x : (KA1 ∧ . . . ∧KAn ∧ notB1 ∧ . . . ∧ notBm ⊃ KH1 ∨ . . . ∨KHl) (4.4)

This transformation can be extended to an ASP program in very much the same way

as in Definition 4.9 and, thus, faithfulness holds.

Of course, strictly speaking, this correspondence does not hold for any arbitrary

rule part, since a program in MKNF+ is more general than ASP programs. However,

it was shown in [Motik and Rosati, 2010] that nonmodal atoms can be removed from

hybrid MKNF+ knowledge bases resulting in the notion of hybrid MKNF knowledge

bases.

Definition 4.10. MKNF rules and MKNF knowledge bases are defined as in Definition
4.8 with the difference that each atom Hk, 1 ≤ k ≤ l, and each atom Ai, 1 ≤ i ≤ n, in
each rule must be a modal K-atom.

It was shown in [Motik and Rosati, 2010] that there is a transformation such that the

original hybrid MKNF+ knowledge base K+ has exactly the same two-valued MKNF

models as the resulting hybrid MKNF knowledge base. We do not present the full proof

here, but rather sketch the idea. Essentially we can rewrite MKNF+ rules such that

the nonmodal and the modal K-atoms are separated.∨
Hk1 ∨

∨
KHk2 ←

∧
Ai1 ∧

∧
KAi2 ∧

∧
notBj (4.5)

Given π(r) for such a rule r, we can obtain the transformed formula, where ~(y) is the

list of variables that occur only in Hk1 and Ai1, and ~x is the list of all other variables

in r.

∀~(x) :
(∧

KAi2 ∧
∧

notBj ⊃ K (∀~(y) :
∨
Hk1 ∨

∨
¬Ai1) ∨

∨
KHk2

)
(4.6)

Thus, nonmodal atoms can be encapsulated in one K-atom allowing us to separate

first-order and non-monotonic reasoning. Therefore, we consider only hybrid MKNF

knowledge bases.

62

4.6 Decidability for Hybrid MKNF

We now recall two examples to show semantic differences between first-order and

MKNF logics and we refer for the details to [Motik and Rosati, 2010]. First, let us a

consider an MKNF formula (∃x : A(x)) ∧ (K A(x) ⊃ K p). We may expect that K p

holds. However, x may vary in each interpretation while KA(x) asks whether we know

one x such that KA(x) holds. Thus, in MKNF Kp does not hold. This is a general issue

and one consequence for hybrid MKNF is that MKNF rules can essentially only be used

for derivations in case of names that are present in the knowledge base. The ability to

derive terminological consequences is also affected since, e.g., K B(x) ← K A(x) does

not imply ∀x : (A(x) ⊃ B(x)). We note that this ability is not completely absent, and

given an appropriately expressive DL, certain conclusions can still be drawn.

We finish this section by pointing out that the closely related MBNF logics [Lifschitz,

1994] is not considered for combining rules and ontologies since in the formal definitions

of the semantics the sets I and I ′ do not have to appear in M and M ′ (see Definition

4.6). As a consequence, Kπ(O) and nonmodal atoms would not interact so that first-

order rule extensions of DL would not be captured, and ϕ and K ϕ would not be

equivalent any longer [Motik and Rosati, 2010].

4.6 Decidability for Hybrid MKNF

Hybrid MKNF is in general undecidable, so we recall the restrictions that are necessary

to ensure that a decidable formalism is obtained.

First, the DL has to be decidable. More precisely, the approach of hybrid MKNF

knowledge bases is applicable to any first-order fragment DL satisfying the subsequent

list of conditions:

(i) each knowledge base O ∈ DL can be translated into a formula π(O) of function-

free first-order logic with equality;

(ii) DL supports A-Box -assertions of the form P (a1, . . . , an), where P is a predicate

and each ai a constant of DL;

(iii) satisfiability checking and instance checking, i.e., checking entailments of the form

O |= P (a1, . . . , an), are decidable.

63

4. MKNF LOGICS AND HYBRID MKNF KNOWLEDGE BASES

The limitation to function-free first-order logic is necessary to ensure decidability. Of

course, this applies equally to rules. So, for the rest of the thesis, we only consider

DLs that satisfy the conditions above, and we do not allow function symbols in hybrid

MKNF knowledge bases.

Unfortunately, hybrid MKNF knowledge bases, even with these assumptions, are in

general undecidable, unless they are restricted in some way. In [Motik and Rosati, 2010]

two reasons for that were identified: the appearance of complex first-order formulas,

such as conjunctive queries in the head of the rules; and default negation that allows

the application of rules to the entire domain if these are safe.

We now recall the notions that are defined in [Motik and Rosati, 2010] to overcome

these problems. In the case of the second problem, the usual solution is to restrict

the applicability of rules to those individuals/constants appearing explicitly in the

knowledge base. This restriction is achieved by DL-safety.

Definition 4.11. Let K = (O,P) be a hybrid MKNF knowledge base and the signature
Σ contain a subset ΣDL ⊆ Σ such that ≈∈ ΣDL. The predicates in ΣDL are called
DL-predicates and they have to appear in O. The predicates in Σ \ ΣDL are called
non-DL-predicates and do only appear in P.

A generalized atom ξ is a DL-atom if it contains only predicates of ΣDL, and ξ is
a non-DL-atom if it is of the form (¬)P (t1, . . . , tn) where P is a non-DL-predicate1.

An MKNF rule r is DL-safe if each modal atom in it is of the form KA or notA,
where A is either DL-atom or a non-DL-atom, and if every variable in r occurs in at
least one non-DL-atom KB in the body of r. We say that K is DL-safe if all the rules
in K are DL-safe.

In practice, DL-safety can be achieved by introducing a new (special) non-DL-

predicate, say O, adding an assertion KO(a) for each individual a that appears in the

knowledge base, and adding to each rule r a modal atom KO(x) for each variable x

appearing in r. This transformation and its effects have been discussed in [Motik et al.,

2005], and, as argued in [Motik and Rosati, 2010], it does not affect the semantics of

MKNF rules.

We can thus ground the knowledge base, and we only consider ground knowledge

bases for the definition of the semantics.
1Note that there are atoms that are neither DL-nor non-DL-atoms.

64

4.6 Decidability for Hybrid MKNF

Definition 4.12. Let K = (O,P) be a hybrid MKNF knowledge base. The ground
instantiation of K is the KB KG = (O,PG) where PG is obtained from P by replacing
each rule r of P with a set of rules substituting each variable in r with constants from
K in all possible ways.

It was shown in [Motik and Rosati, 2010] that, for a DL-safe hybrid knowledge base

K, the two-valued MKNF models of K and KG coincide.

The combined conditions for decidability are recalled in Definition 4.13.

Definition 4.13. Let DL be a description logic, GHB a generalized atom base, and
H a subset of GHB. Then, DL, GHB, and H are admissible if, for each O ∈ DL,
each finite set S ⊆ H of ground generalized atoms, each finite set N of assertions of
the form a 6≈ b, each each generalized atom ξ ∈ GHB, checking whether O∪S ∪N |= ξ

is decidable.

An MKNF knowledge K = (O,P) over DL and GHB is admissible if DL, GHB,
and H are admissible, K is DL-safe and finite, and each rule in P contains only gen-
eralized atoms from H in its head.

This complex condition fixes the remaining problem by restricting first-order rea-

soning in the DL together with the first-order formulas possibly appearing in the heads

of the rules to be decidable.

In [Motik and Rosati, 2010], several reasoning algorithms were provided for combi-

nations of arbitrary description logic fragments and rules of differing expressivity, and

their computational complexity was studied. As argued in [Motik and Rosati, 2010],

given that rules are only applicable to known individuals, the principal application of

hybrid MKNF is answering instance queries over individuals. In such cases, it is ex-

pected that the size of the data is much larger than the size of the conceptual knowledge.

Thus, the data complexity provides a much better estimate of the complexity.

Fig. 4.1 presents the data complexity of instance checking for several combinations

of rules (with or without disjunction, and with arbitrary or stratified1 negation or

without not in the rules) with description logics fragments of differing computational

complexity. Note that this complexity of the DL is affected by the notion of admissi-

bility (Definition 4.13).

1Essentially, rules can be separated into strata that can be evaluated separately – see Section 4.4

in [Motik and Rosati, 2010].

65

4. MKNF LOGICS AND HYBRID MKNF KNOWLEDGE BASES

∨ not no DL CDL,B,H = PTIME CDL,B,H = coNP

no no PTIME PTIME coNP/coDP

no stratified PTIME PTIME ∆p
2

no yes coNP coNP Πp
2

yes no coNP/Πp
2 coNP/Πp

2 coNP/Πp
2

yes yes Πp
2 Πp

2 Πp
2

Figure 4.1: Data complexity of instance checking in Admissible MKNF KBs.
The first two columns determine the expressiveness of the rules, and columns three to
five show the data complexity of instance checking when the DL is absent, and when it is
complete for PTIME and coNP, respectively. Entries with two results differ on entailment
of KA and ¬KA.

We point out that if we disallow disjunction, then allowing arbitrary non-monotonic

negation increases the data complexity drastically and in particular beyond tractability.

As already mentioned, this is precisely what we improve in this thesis: non-stratified

rules do not constitute a problem regarding complexity resulting in an approach that

is robust for knowledge base engineering and for evolution of knowledge bases.

4.7 Hybrid MKNF with Normal Rules

Hybrid MKNF knowledge bases (and also the even more general hybrid MKNF+ knowl-

edge bases) are defined in a quite general way, also to capture a large variety of related

approaches. It was pointed out in [Motik and Rosati, 2010] that for practical pur-

poses, generalized atoms should include first-order atoms in rules (as in MKNF+ KBs),

classical negation (to capture ASP) and conjunctive queries.

Even assuming that a concrete combination of a certain DL with some kind of

rules is admissible, the availability of certain constructs in MKNF rules may raise the

computational complexity due to the tight integration of the two components. For

example, in the polynomial DL SROEL, classical negation is not allowed, so if the

operator ¬ appears in the rules, then the first-order-reasoning component is no longer

polynomial. As another example, conjunctive query answering is usually of a higher

computational complexity than standard reasoning tasks, such as instance checking.

Since our objective is to obtain a formalism that is highly efficient, we concentrate

66

4.7 Hybrid MKNF with Normal Rules

here on a fragment of rules that corresponds to normal rules in Logic Programming.

In other words, we do not consider modal atoms that do contain anything but a simple

first-order atom. Of course, certain constructors, such as ¬, may be permitted in case

the DL in consideration allows their usage. In this case, given some modal atom K¬P
we can simply introduce a new predicate Q and substitute K ¬P by K Q and add

Q ≡ ¬P to the ontology (see [Motik and Rosati, 2010]).

Another problem on our quest for an efficient formalism based on Well-Founded

Semantics is disjunction in the head of the rules. The well-founded semantics for logic

programs, originally defined in [van Gelder et al., 1991], only applies to non-disjunctive

logic programs, and there is no established WFS that allows for disjunction in the rule

heads (see, e.g., [Knorr and Hitzler, 2007]). Moreover, disjunctions, such as KH1∨· · ·∨
KHl, in the rule head enforce that one of the KHk is true in interpretations of an MKNF

model. In other words, such disjunctions result in various models, which is conceptually

orthogonal to the idea of WFS that relies on the computation of one unique model.

The proposals for well-founded semantics of logic programs including disjunctions try

to overcome that by applying reasoning techniques that may be considered first-order

to some extend, but, as already pointed out, no convincing solution has been presented

to the problem. To avoid this problem, and to be compatible with the well-founded

semantics of normal programs, we restrict to rules that are non-disjunctive.

Therefore, in the rest of the thesis, which contains our main results, we assume

that all hybrid MKNF knowledge bases contain only non-disjunctive rules, i.e., no

disjunction occurs in the head of any rule, and that modal atoms do only contain first-

order atoms. Now, we present this simplified notion of hybrid MKNF knowledge bases

(and a few related ones) to ease the reading.

Definition 4.14. Let O be a DL knowledge base. A function-free first-order atom
P (t1, . . . , tn) over Σ such that P is ≈ or occurs in O is called a DL-atom; all other
atoms are called non-DL-atoms. An MKNF rule r has the following form where H,
Ai, and Bi are function free first-order atoms:

KH ← KA1, . . . ,KAn,notB1, . . . ,notBm (4.7)

A program is a finite set of MKNF rules, and a hybrid MKNF knowledge base K is a
pair (O,P).

67

4. MKNF LOGICS AND HYBRID MKNF KNOWLEDGE BASES

We finish this section and the chapter by presenting a hybrid MKNF knowledge

base abiding this restrictions in the setting of our example scenario.

Example 4.3. Consider again the scenario of Example 1.1, together with the axioms
and assertions of Example 3.5. These axioms can be part of an ontology O of a hybrid
MKNF knowledge base K = (O,P). In P we can encode further recommendation
guidelines, in particular those that require closed world reasoning. For example, imagine
that we want to give customers recommendations for interesting CDs they do not own
and that do not have a low evaluation. This can be encoded with the rules shown below:1

K Recommend(x)←K CD(x),not owns(x),not LowEval(x), (4.8)

K interesting(x).

K interesting(x)←K CD(x),K CD(y),K owns(y),not owns(x), (4.9)

K similar(x, y).

K similar(x, y)←K CD(x),K CD(y),K Artist(z), (4.10)

K HasArtist(x, z),K HasArtist(y, z).

K owns(EnConcert)← (4.11)

K HasArtist(EnConcert, JackJohnson)← (4.12)

K HasArtist(ToTheSea, JackJohnson)← (4.13)

K OnOffer(BNAW)← (4.14)

Note that closed world reasoning is used for owns and lowEval. In the case of predicate
owns, it is reasonable to assume that the knowledge about owned CDs is fully available.
So, if there is no fact stating that a given CD is owned, one should assume that the CD is
not owned. In the case of predicate lowEval it might happen that there is no evaluation
yet available, and we want the recommendation anyway: a CD is not considered for
recommendation only when there actually is a (known) low evaluation for the CD.
Such an evaluation could be taken from other customers of the store or from a web page
of professional reviews. Here, for simplicity, we keep this part of the reasoning process
implicit.

1In this encoding, for simplicity, we consider that the program part of the knowledge base is specific

to each customer. This avoids an explicit representation of several customers, of the relation stating

which CDs are owned by each customer, etc.

68

4.7 Hybrid MKNF with Normal Rules

Moreover, in the rules above, a CD is interesting if the customer owns another CD
which is similar (4.9), and two CDs are similar if they have a common artist (4.10).
Note that the predicate CD is used to ensure DL-safety, and we assume that the instances
of that predicate relevant to any drawn conclusion are always appropriately defined.

If we now add facts (4.11)–(4.14), then we can derive Recommend(ToTheSea), since
no low evaluation is known for ToTheSea, and Recommend(BNAW) since BNAW is on offer.

This example illustrates that hybrid MKNF knowledge bases allow us to obtain con-
sequences for predicates that are ‘defined’ both in the ontology and in the rules. The
result may then be further applied to derive subsequent consequences either in rules or
in the ontology. Note that the facts (4.12) and (4.13) are here explicitly added, repre-
senting the implicit consequences derivable from the appropriate ontology alone, similar
to HasArtist(BNAW, JohnColtrane) in Example 3.5.

The rules in Example 4.3 are stratified. However, this example contains just an

initial set of rules for our running example, which is further elaborated in the following

chapters and becomes non-stratified, e.g., the addition of rule 6.11 in Example 6.8

renders the set of rules non-stratified.

69

4. MKNF LOGICS AND HYBRID MKNF KNOWLEDGE BASES

70

Part II

A Well-founded Semantics for

Hybrid MKNF Knowledge Bases

71

5

A Three-valued MKNF

Semantics

Hybrid MKNF knowledge bases rely on the MKNF logics defined in [Lifschitz, 1991].

However, MKNF logic is a two-valued logics, and we claim that such a two-valued logic

is not sufficient to provide the necessary means for a semantics that is related to the

well-founded semantics for logic programs.

Therefore, we introduce a three-valued semantics for hybrid MKNF knowledge

bases. The rationale and the main goal behind this three-valued semantics is to define

a semantics that is closely related to the well-founded semantics of logic programs, but

that, at the same time, extends the original (two-valued) MKNF semantics [Lifschitz,

1991] as presented in the previous chapter. This is done in order to take advantage

of the (data) complexity of the WFS that is lower than the (data) complexity of the

corresponding two-valued semantics in Logic Programming. Nevertheless, the DL-part

of a hybrid MKNF knowledge base is still interpreted under the two-valued first-order

semantics. Thus, we achieve a faithful integration, in the sense that without rules the

meaning of the knowledge base exactly coincides with the usual semantics from DLs,

and without DL we are able to establish a relation to the WFS (see Chapter 6).

We want to point out that the definition of the three-valued semantics presented in

this chapter applies equally with or without the standard name assumption. However,

since we want to achieve a semantics that is faithful w.r.t. the two-valued MKNF se-

mantics as presented in Chapter 4, and that avoids counterintuitive results as described

there, we assume standard name assumption.

73

5. A THREE-VALUED MKNF SEMANTICS

We start this chapter by extending the notion of MKNF structures to three truth

values and by defining evaluation in such structures (Section 5.1). Then, we extend the

notion of MKNF interpretation and provide an appropriate model notion (Section 5.2).

We show some general properties of our newly defined semantics (Section 5.3), and

we introduce the notion of one particular three-valued MKNF model, namely the well-

founded MKNF model (Section 5.4). We finish with a detailed discussion on the relation

to the two-valued MKNF semantics (Section 5.5).

5.1 Evaluation in MKNF Structures

The two-valued hybrid MKNF semantics [Motik and Rosati, 2010] is closely related

(cf. [Lifschitz, 1991]) to the stable models semantics [Gelfond and Lifschitz, 1988], the

answer set semantics [Gelfond and Lifschitz, 1991] respectively, as seen in the previous

chapter. In both of them, the meaning of a knowledge base is determined by a set of

models. In fact, MKNF formulas, such as ϕ = ((notp ⊃ Kq)∧(notq ⊃ Kp)) (and the

corresponding set of MKNF rules), have two models – one model in which p is true and

q is false, and another one in which p is false and q is true. Moreover, these two-valued

models are, in general, obtained by a guess and check process, thus having, in general,

a computational complexity of at least NP.

The well-founded semantics of logic programs [van Gelder et al., 1991] generalizes

the two-valued models of the stable model semantics to a three-valued setting. In this

way, it is possible to determine the meaning of a logic program solely on the basis

of a single (minimal) model that is obtained with a lower computational complexity.

Intuitively, a third truth value u, denoting undefined, is introduced as an alternative

to the values t and f , enabling one to delay the evaluation to any of the two latter

values until further information is available. We want to follow this idea when defining

a three-valued MKNF semantics. There is however one more problem to be taken into

account: since we are interested in applying the semantics to hybrid MKNF knowledge

bases containing two-valued ontologies, which we want to integrate faithfully, we are

going to define the semantics in such a way that an MKNF formula corresponding to

a DL fragment is ensured to be just two-valued.

We therefore define a three-valued MKNF semantics that extends the two-valued

semantics of [Motik and Rosati, 2010], but remains two-valued for the case of MKNF

74

5.1 Evaluation in MKNF Structures

formulas without modal operators. We start by defining MKNF structures for this

three-valued setting.

Definition 5.1. A three-valued MKNF structure (I,M,N) consists of a first-order
interpretation I and two pairs M = 〈M,M1〉 and N = 〈N,N1〉 of sets of first-order
interpretations where M1 ⊆ M and N1 ⊆ N . An MKNF structure is called total if
M = 〈M,M〉 and N = 〈N,N〉.

In the two-valued semantics, an MKNF structure (I,M,N) contains sets of interpre-

tations M and N for evaluating a modal atom K ϕ, respectively not ϕ, to t or f ,

depending on whether ϕ is contained in all elements of M , respectively N . This clearly

leaves no space for an extension to a third truth value u. So, we turn sets of interpre-

tations into pairs of sets of interpretations. Then, as we show below, a modal atom

K ϕ is true w.r.t. 〈M,M1〉 if ϕ is true in all elements of M . Alternatively, a modal

atom K ϕ is false if ϕ is not true in all elements of M1, and such a modal atom K ϕ

is undefined otherwise, i.e, if ϕ is true in all elements of M1 but not in all elements

of M . The additional restrictions, saying that M1 ⊆ M and N1 ⊆ N , are needed to

ensure that no modal atom can be both true and false at the same time, and it can

easily be shown via induction that the same holds for any MKNF formula ϕ. In this

way, we guarantee that no fourth truth value ‘both’ is needed. Nevertheless, given an

MKNF formula ϕ, three-valued MKNF structures may evaluate Kϕ and notϕ to true

at the same time, just like in the two-valued case, and we show below how to prevent

this from happening when defining MKNF interpretation pairs.

We now define the evaluation of closed MKNF formulas in such three-valued MKNF

structures.

Definition 5.2. Let (I,M,N) be a three-valued MKNF structure and {t,u, f} the set
of truth values with the order f < u < t, where the operator max (resp. min) chooses
the greatest (resp. least) element with respect to this ordering. We define:

• (I,M,N)(P (t1, . . . , tn)) =

t iff (tI1, . . . , t
I
n) ∈ P I

f iff (tI1, . . . , t
I
n) 6∈ P I

• (I,M,N)(¬ϕ) =


t iff (I,M,N)(ϕ) = f

u iff (I,M,N)(ϕ) = u

f iff (I,M,N)(ϕ) = t

75

5. A THREE-VALUED MKNF SEMANTICS

• (I,M,N)(ϕ1 ∧ ϕ2) = min{(I,M,N)(ϕ1), (I,M,N)(ϕ2)}

• (I,M,N)(ϕ1 ⊃ ϕ2) = t iff (I,M,N)(ϕ2) ≥ (I,M,N)(ϕ1) and f otherwise

• (I,M,N)(∃x : ϕ) = max{(I,M,N)(ϕ[α/x]) | α ∈ ∆}

• (I,M,N)(Kϕ) =


t iff (J, 〈M,M1〉,N)(ϕ) = t for all J ∈M

f iff (J, 〈M,M1〉,N)(ϕ) = f for some J ∈M1

u otherwise

• (I,M,N)(notϕ) =


t iff (J,M, 〈N,N1〉)(ϕ) = f for some J ∈ N1

f iff (J,M, 〈N,N1〉)(ϕ) = t for all J ∈ N

u otherwise

As intended, this evaluation is not a purely three-valued one, since first-order atoms

are evaluated as in the two-valued case. In fact, an MKNF formula ϕ without modal

operators (and thus also a pure description logic knowledge base) is only two-valued. It

can easily be seen that such a ϕ is evaluated in exactly the same way as in the two-valued

case (Definition 4.4). This is desired in particular when the knowledge base consists

just of the DL part. So, the third truth value only affects MKNF formulas containing

modal atoms, which in the case of hybrid MKNF knowledge bases can only occur in

the MKNF rules. These rules, corresponding to implications, are, however, no longer

interpreted in a way one would expect from a boolean perspective: u ⊃ u is true in the

evaluation defined above, while u∨¬u is actually undefined. The reason for this change

is that, in this way rules can only be true or false, similarly to what happens in Logic

Programming, even if they contain undefined modal atoms. Intuitively, the advantage

for hybrid MKNF knowledge bases is that we can leave single modal atoms undefined,

thus not necessarily having to create several models, while the entire knowledge base

is only true or false.

We point out that the evaluation of not w.r.t. 〈N,N1〉 is symmetrical to the eval-

uation of K w.r.t. 〈M,M1〉, only that the conditions are switched. E.g., the condition

for true modal K-atoms w.r.t. M yields false modal not-atoms w.r.t. N . In case of

M = N and M1 = N1 this corresponds to the two-valued (monotonic) evaluation in

Definition 4.4.

76

5.2 Three-valued MKNF Models

Example 5.1. Recall Example 4.1, and consider the three-valued MKNF structure
({p}, < {{p}, {p, q}}, {{p, q}} >,< {∅, {q}, {p, q}}, {{q}, {p, q}} >). Here, we have
that p is true and q is false, just as in the two-valued case of Example 4.1. We also see
that K p and not p are true, but here we obtain that both K q and not q are undefined.

5.2 Three-valued MKNF Models

Given the definition of evaluation of MKNF formulas, we are now able to extend (two-

valued) MKNF interpretations and MKNF models to three truth values. For that

purpose, we have to generalize (two-valued) MKNF interpretationsM to pairs of MKNF

interpretations (M,N), since otherwise no formula could ever be undefined.

Definition 5.3. An MKNF interpretation pair (M,N) consists of two MKNF inter-
pretations M , N with ∅ ⊂ N ⊆ M . An MKNF interpretation pair satisfies a closed
MKNF formula ϕ, written (M,N) |= ϕ, if and only if

(I, 〈M,N〉, 〈M,N〉)(ϕ) = t

for each I ∈M . If M = N , then the MKNF interpretation pair (M,N) is called total.
If there exists an MKNF interpretation pair satisfying ϕ, then ϕ is consistent.

The intuition is that the set M contains all interpretations that model only truth,

while N models everything that is true or undefined. Evidently, just as in the two-

valued case, anything not being modeled in N is false. The subset relation between

M and N ensures that MKNF interpretation pairs are defined in accordance with the

three-valued MKNF structures, so that each formula is evaluated to exactly one truth

value. Note the striking similarity compared to (two-valued) MKNF interpretations in

the two-valued case by using the MKNF interpretation pair (M,N) to evaluate both

K and not simultaneously. This similarity becomes even more apparent if we consider

a total interpretation pair (M,M) and we show in Section 5.5 that a correspondence

to evaluation in the two-valued case holds.

Example 5.2. Consider the formula ϕ = (p∨ q)∧ not q that requires that q must not
be known. Obviously, M1 = ({{p, q}, {q}}, {{q}}) does not satisfy ϕ for that reason.
However, M2 = ({∅, {p}}, {{p}}) does not satisfy ϕ either since, for any interpreta-
tion pair (M,N), each I ∈ M must satisfy (p ∨ q). One such example is, .e.g., the
interpretation pair M3 = ({{p}, {q}}, {{p}}).

77

5. A THREE-VALUED MKNF SEMANTICS

We now define the preference relation on MKNF interpretation pairs that is required

for the notion of (non-monotonic) three-valued MKNF models, following an approach

similar to the one in the two-valued case, i.e., by minimizing non-falsity (truth or

undefinedness, in this case, of formulas w.r.t. K.

Definition 5.4. Any MKNF interpretation pair (M,N) is a three-valued MKNF
model for a given closed MKNF formula ϕ if

(1) (M,N) satisfies ϕ and

(2) for each MKNF interpretation pair (M ′, N ′) with M ⊆ M ′ and N ⊆ N ′, where
at least one of the inclusions is proper and M ′ = N ′ if M = N , there is I ′ ∈M ′

such that (I ′, 〈M ′, N ′〉, 〈M,N〉)(ϕ) 6= t.

Condition (1) checks whether (M,N) evaluates ϕ to t while the second condition

verifies that (M,N) contains only knowledge necessary to obtain this evaluation to t.

This is achieved by generalizing the corresponding notion in the two-valued MKNF

semantics to the three-valued case: for each MKNF interpretation pair (M ′, N ′) that

properly subsumes (M,N), it is checked that ϕ does not evaluate to t for all I ′ ∈M ′,
where (M ′, N ′) is used to evaluate K while (M,N) evaluates not. Intuitively, one

may consider an MKNF interpretation pair as a guess for the true evaluation of the

considered formula, and condition (2) checks, having fixed the evaluation of modal not-

atoms, whether the evaluation of modal K-atoms is actually minimal w.r.t. to the order

f < u < t of truth values. We illustrate in the example below how this minimization

is achieved.

Example 5.3. Consider the MKNF formula ϕ (corresponding to two MKNF rules):

(not p ⊃ K q) ∧ (not q ⊃ K p) (5.1)

Any MKNF interpretation pair (M,N) that satisfies condition (1) of Definition 5.4
has to evaluate both conjuncts to true. For example, the MKNF interpretation pair
(M,N) = ({{p}, {p, q}}, {{p, q}}) that evaluates K p to t and K q to u satisfies the
first condition but is not a three-valued MKNF model of ϕ since, e.g., (M ′, N ′) =
({∅, {p}, {q}, {p, q}}, {{p, q}}) violates condition (2). In fact, this MKNF interpreta-
tion pair (M ′, N ′) is a three-valued MKNF model. The operator not is always evaluated
w.r.t. the MKNF interpretation pair (M,N), even when considering condition (2) of
Definition 5.4, so, for N = {{p, q}}, the two implications are true anyway, and M has

78

5.2 Three-valued MKNF Models

to be the set of all possible interpretations {∅, {p}, {q}, {p, q}} to satisfy condition (2).
Thus, we obtain the MKNF interpretation pair that evaluates K p and K q to u. In
other words, the initial MKNF interpretation pair was not minimal w.r.t. the evalua-
tion of modal K-atoms. Similar to the minimization of the evaluation of K p from t to
u, changes from u to f are possible: maintain the original M = {{p}, {p, q}} and set
N = M . Now the evaluation of K q is minimized from u to f , and it is easy to verify
that the resulting MKNF interpretation pair is in fact a three-valued MKNF model of
ϕ.

It should be pointed out that the larger the set M or N is, the less true or undefined

knowledge is inferred. So, minimization is achieved by increasing the sets in considera-

tion. Note that N ′ ⊆M ′ for MKNF interpretation pairs (M ′, N ′) ensures that we only

check reasonable candidates for augmenting (M,N).1

We finish this section by continuing Example 5.2.

Example 5.4. Consider again the formula ϕ = (p∨q)∧notq, for which we know that
M3 = ({{p}, {q}}, {{p}}) satisfies it. Clearly, no element of ϕ should be undefined,
so any three-valued MKNF model should be total. Consequently, M3 is no three-valued
MKNF model. Instead, we have to find a maximal set M whose elements all model
p∨q such that at least one does not model q. Thus, the only three-valued MKNF model
is M4 = ({{p}, {q}, {p, q}}, {{p}, {q}, {p, q}}).

The notions of consistency and entailment can straightforwardly be adapted.

Definition 5.5. If there is a three-valued MKNF model for a given closed MKNF for-
mula ϕ, then ϕ is called MKNF-consistent, otherwise ϕ is called MKNF-inconsistent.
If (I, 〈M,N〉, 〈M,N〉)(ψ) = t for all three-valued MKNF models (M,N) of ϕ, then ϕ

entails ψ, written ϕ |=3
MKNF ψ.

Note that MKNF-inconsistent MKNF formulas do not necessarily evaluate to f .

For example, ϕ = K u ∧ not u evaluates to u for the MKNF interpretation pair

({{u}, ∅}, {{u}}). In fact, an MKNF-inconsistent formula can even evaluate to t and

that was already the case for the two-valued MKNF semantics of [Motik and Rosati,

1In comparison to [Knorr et al., 2008] the definition has been slightly altered to simplify proofs

and computation: in case of a total MKNF interpretation pair (M, M), it is sufficient to check that no

other total MKNF interpretation pair (M ′, M ′) actually yields a true evaluation for all I ′ ∈M ′. This

simplification is also justified by the intuition of enlarging N ′ separately: there is no undefinedness in

a total MKNF interpretation pair, and minimization of undefinedness is thus not necessary.

79

5. A THREE-VALUED MKNF SEMANTICS

2010]. E.g., ϕ = ¬not p is MKNF-inconsistent, and it evaluates to t in some MKNF

interpretation pairs (and also in some MKNF interpretations of [Motik and Rosati,

2010]). This does not constitute a problem since it does not affect the definitions of

MKNF models or MKNF-consistency.

Though the notions of inconsistency and unsatisfiability are usually applied in the

same technical sense, we want to distinguish between MKNF-satisfiability in the two-

valued case and MKNF-consistency for three-valued MKNF models. Likewise, we dis-

tinguish between the two-valued notion ‘MKNF entails’ and the three-valued ‘entails’.

This avoids cumbersome notions such ‘three-valued MKNF entails’ but overloads the

first-order notion ‘entails’. It shall be obvious from the context, which of the two is

meant.

5.3 General Properties of three-valued MKNF

Even though several notions of (two-valued) MKNF logics were adapted to the three-

valued case, quite a few similarities exist. In particular, the next two properties of

MKNF carry over to the three-valued case, whose original proofs can be found in

[Motik and Rosati, 2006] and are adapted in the following.

The first property states that K can be introduced in front of an arbitrary closed

MKNF formula ϕ without changing the three-valued MKNF models of ϕ.

Proposition 5.1. Let σ be a closed MKNF formula and (M,N) an MKNF interpre-
tation pair. Then, (M,N) is a three-valued MKNF model of σ if and only if (M,N) is
a three-valued MKNF model of K σ.

Proof. Suppose that (M,N) is a three-valued MKNF model of the MKNF formula σ.
We know for all I ∈M that (I, 〈M,N〉, 〈M,N〉)(σ) = t. So (I, 〈M,N〉, 〈M,N〉)(Kσ) =
t holds for all I ∈ M as well. Since for each (M ′, N ′) there is an I ′ ∈ M ′ such that
(I ′, 〈M ′, N ′〉, 〈M,N〉)(σ) 6= t, we also obtain the same for K σ, and (M,N) is a three-
valued MKNF model of Kσ.

The converse direction follows in an analogous fashion.

This allows us to conclude that, e.g., some formula σ can be entailed from some

MKNF formula ϕ if and only if Kσ can be entailed from that MKNF formula ϕ.

The second property we adapt from the two-valued to the three-valued MKNF

semantics is also related to entailment. We show that grounding a hybrid MKNF

80

5.4 A Well-Founded MKNF Model

knowledge base K does not affect the three-valued MKNF models of K. This shows

that K and KG derive exactly the same consequences.

Lemma 5.1. Let K be a hybrid MKNF knowledge base and ψ a ground MKNF formula.
Then K |=3

MKNF ψ if and only if KG |=3
MKNF ψ.

Proof. The argument showing the contrapositive statement K 6|=3
MKNF ψ if and only

if KG 6|=3
MKNF ψ is absolutely identical to the one in [Motik and Rosati, 2006]. So we

simply refer to the proof given there.

This result is of course not restricted to hybrid MKNF knowledge bases, but this

is the only case for which we specifically defined a ground form, and the only kind

of MKNF formula we are interested in Chapter 6. More importantly, hybrid MKNF

knowledge bases are implicitly admissible and therefore also DL-safe. Thus, grounding

and reasoning in rules is restricted to the constants appearing in the knowledge base.

A more general statement of that lemma for arbitrary formulas would not hold since

reasoning would no longer be decidable.

5.4 A Well-Founded MKNF Model

MKNF interpretation pairs, and therefore also three-valued MKNF models, can be

compared by an order that resembles the knowledge order from Logic Programming

(see Definition 2.18). Intuitively, given such an order and two MKNF interpretation

pairs (M1, N1) and (M2, N2), we have that (M1, N1) is greater than (M2, N2) w.r.t. such

an order if (M1, N1) allows us to derive more true and false knowledge than (M2, N2).

Taking into account that a larger set of interpretations derives less true and more false

knowledge, we can define an order on MKNF interpretation pairs.

Definition 5.6. Let (M1, N1) and (M2, N2) be MKNF interpretation pairs. We have
that (M1, N1) �k (M2, N2) iff M1 ⊆M2 and N1 ⊇ N2.

Example 5.5. Consider (M1, N1) = ({{p}, {q}}, {{p}, {q}, {p, q}, ∅}) and (M2, N2) =
({{p}, {q}}, {{p}, {q}}). Then, we have that (M1, N1) �k (M2, N2).

Such an order is of particular interest for comparing models. In Logic Programming

the least model w.r.t. derivable knowledge among all three-valued models for a given

81

5. A THREE-VALUED MKNF SEMANTICS

program is the well-founded model. Here, we want to introduce a similar notion refer-

ring to the minimal three-valued MKNF models, i.e., the ones among all three-valued

MKNF models that leave as much as possible undefined.

Definition 5.7. Let ϕ be a closed MKNF formula and (M,N) a three-valued MKNF
model of ϕ such that (M1, N1) �k (M,N) for all three-valued MKNF models (M1, N1)
of ϕ. Then (M,N) is a well-founded MKNF model of ϕ.

Of course, if ϕ is inconsistent, then there are no three-valued MKNF models and

thus no well-founded MKNF models of ϕ. However, if ϕ is a consistent hybrid MKNF

knowledge base, it is guaranteed that a well-founded MKNF model of ϕ exists. More-

over, this well-founded model is unique. As we shall see, this model is especially

important in that a modal atom KH is true in the well-founded MKNF model iff KH

is true in all three-valued MKNF models. This way, performing skeptical reasoning in

three-valued MKNF models amounts to determining the well-founded MKNF model.

Theorem 5.1. If K is an MKNF-consistent hybrid MKNF KB, then a well-founded
MKNF model exists, and it is unique.

The respective proofs for the uniqueness/existence of the well-founded MKNF model,

and how to calculate this unique model, are presented in Chapter 6 (as a direct conse-

quence of Theorem 6.5).

The following example gives at least an intuitive insight into the correspondence

between two-valued and three-valued MKNF models, and the well-founded MKNF

model.

Example 5.6. Consider the knowledge base K corresponding to the MKNF formula ϕ
from Example 5.3.

K q←not p (5.2)

K p←not q (5.3)

The two-valued MKNF models of K are {{p}, {p, q}} and {{q}, {p, q}}, i.e., K p and
not q are true in the first model, and K q and not p are true in the second one.
Given these two two-valued MKNF models, we can obtain two total three-valued MKNF
models: ({{p}, {p, q}}, {{p}, {p, q}}) and ({{q}, {p, q}}, {{q}, {p, q}}). As we have al-
ready seen in Example 5.3, the only other three-valued MKNF model of K is M =

82

5.5 Relation with the Two-valued MKNF Semantics

({∅, {p}, {q}, {p, q}}, {{p, q}}). This MKNF model satisfies the condition given in Def-
inition 5.7, and M is thus a well-founded MKNF model of K. In fact, M is the only
well-founded MKNF model.

5.5 Relation with the Two-valued MKNF Semantics

As already pointed out, two- and three-valued MKNF models are closely related and

the correspondence in the previous example is no coincidence. We therefore now show

that any two-valued MKNF model M corresponds exactly to a (total) three-valued

MKNF model (M,M) and vice versa.

For that purpose, we first prove that the evaluation in an MKNF structure (I,M,N)

and the evaluation in a total three-valued structure (I, 〈M,M〉, 〈N,N〉) are identical.

Intuitively, this holds because nothing can be undefined in a total three-valued struc-

ture.

Lemma 5.2. Let ϕ be a closed MKNF formula. Then we have (I,M,N) |= ϕ if and
only if (I, 〈M,M〉, 〈N,N〉)(ϕ) = t.

Proof. The proof is done by induction on the formula ϕ.
Let ϕ be P (t1, . . . , tn). We have (I,M,N) |= P (t1, . . . , tn) iff (tI1, . . . , t

I
n) ∈ P I iff

(I, 〈M,M〉, 〈N,N〉)(P (t1, . . . , tn)) = t.
Assume that the lemma holds for ϕ1. We show the induction steps for ¬ and K,

all the other cases follow analogously.
Let ϕ be ¬ϕ1. We have that (I,M,N) |= ¬ϕ1 iff (I,M,N) 6|= ϕ1 iff, by the induction

hypothesis, (I, 〈M,M〉, 〈N,N〉)(ϕ1) = f iff by definition of evaluation in three-valued
MKNF structures (I, 〈M,M〉, 〈N,N〉)(¬ϕ1) = t.

Let ϕ be K ϕ1. We have (I,M,N) |= K ϕ1 iff (I,M,N) |= ϕ1 holds for each
I ∈ M iff (I, 〈M,M〉, 〈N,N〉)(ϕ1) = t for all I ∈ M by the induction hypothesis iff
(I, 〈M,M〉, 〈N,N〉)(Kϕ1) = t.

This lemma can be used to show that every two-valued MKNF modelM corresponds

to a three-valued MKNF model (M,M), and also the converse, i.e., that every three-

valued MKNF model (M,M) corresponds to a two-valued MKNF model in the sense

of [Motik and Rosati, 2010].

Proposition 5.2. Given a closed MKNF formula ϕ, M is a two-valued MKNF model
of ϕ if and only if (M,M) is a three-valued MKNF model of ϕ.

83

5. A THREE-VALUED MKNF SEMANTICS

Proof. Let (M,M) be a three-valued MKNF model of ϕ, i.e., (M,M) satisfies the two
conditions of Definition 5.4. We show that M is a two-valued MKNF model of ϕ. It fol-
lows from the first of the two conditions of Definition 5.4 that (I, 〈M,M〉, 〈M,M〉)(ϕ) =
t for all I ∈M and therefore, by Lemma 5.2, that (I,M,M) |= ϕ for each I ∈M . The
second condition states, for each MKNF interpretation pair (M ′,M ′) with M ⊂ M ′,
that we have (I ′, 〈M ′,M ′〉, 〈M,M〉)(ϕ) 6= t for some I ′ ∈M ′. We conclude from Lemma
5.2 that for any M ′ with M ′ ⊃M there is an I ′ ∈M ′ such that (I ′,M ′,M) 6|= ϕ.

Now, let M be a two-valued MKNF model of ϕ. We show that (M,M) is a three-
valued MKNF model of ϕ. We know that (I,M,M) |= ϕ for each I ∈ M since M
is a two-valued MKNF model of ϕ. As such, (I, 〈M,M〉, 〈M,M〉)(ϕ) = t holds for
all I ∈ M by Lemma 5.2, and so the first of the two conditions of Definition 5.4 is
satisfied. Furthermore, since M is a two-valued MKNF model of ϕ, we know that for
all M ′ with M ′ ⊃ M we have (I ′,M ′,M) 6|= ϕ for some I ′ ∈ M ′. Again, from Lemma
5.2, we know that for any MKNF interpretation pair (M ′,M ′) with M ′ ⊃ M we have
(I ′, 〈M ′,M ′〉, 〈M,M〉)(ϕ) 6= t for some I ′ ∈ M ′. This is sufficient since, according to
Definition 5.4, for (M,M) we only need to consider total MKNF interpretation pairs
(M ′,M ′).

We can conclude that our semantics is an extension of the two-valued MKNF se-

mantics, in the sense that each two-valued model is also a (corresponding) model in

our semantics. Several properties of the original semantics, such as non-monotonicity,

or the properties in Section 5.3, hold as well, and the intuitive ideas based on which

the new semantics is defined follow the intuition of the two-valued case. In particular,

in both cases the semantics is based on a monotonic evaluation and a non-monotonic

semantics is obtained by minimizing true (and undefined) knowledge.

We have thus defined the first three-valued MKNF semantics, which also allows us to

extend the capability of MKNF to be used as a unifying framework for non-monotonic

reasoning formalisms. We discuss this aspect in more detail in Chapter 7.

Finally, we want to point out that our proposal is by no means the only possible one

for a three-valued MKNF semantics. We may alter, e.g., the evaluation of undefinedness

w.r.t. the operator ⊃ and obtain a different semantics. Here, however, since we aim at

a semantics that is faithful w.r.t. the Well-Founded Semantics of LP, we claim that our

choice is the appropriate one for our intentions. This is shown in Chapter 6, where we

define how to compute a well-founded model for hybrid MKNF knowledge bases.

84

6

Alternating Fixpoint for the

Well-founded MKNF Model

In this chapter we prove that the well-founded MKNF model is unique, and we define a

procedure for computing this unique model. For that purpose, the alternating fixpoint

construction of [Hitzler and Wendt, 2005; van Gelder, 1989] for the well-founded seman-

tics of logic programs is adapted to hybrid MKNF knowledge bases, taking into account

possible conflicts resulting from the combination of classical negation in ontologies and

non-monotonic negation in rules.

In more detail, we are going to adapt a finite representation of MKNF interpre-

tations to MKNF interpretation pairs that resembles working with Herbrand bases in

Logic Programming. Then, we take the operator defined for hybrid MKNF knowledge

bases with definite MKNF rules from [Motik and Rosati, 2010] and use it to define a

stable condition for hybrid MKNF knowledge bases with normal rules. Based on this,

we define two interacting operators that provide two fixed points, from which we are

able to derive a representation that corresponds to an MKNF interpretation pair, and

that is precisely the unique well-founded MKNF model of the KB in consideration if it

is MKNF-consistent. MKNF-consistency can be verified in a straightforward way and

several desirable key properties are proven in this chapter.

We start by adapting partitions from [Motik and Rosati, 2010] as the means of

representing MKNF interpretation pairs and show that such a representation, indeed,

does correspond to the respective MKNF interpretation pair or three-valued MKNF

model (Section 6.1). Then, based on that representation, we define operators that allow

85

6. ALTERNATING FIXPOINT FOR THE WELL-FOUNDED MKNF
MODEL

us to compute the representation of a unique model for hybrid MKNF knowledge bases

(Section 6.2). We devise an alternative characterization based on unfounded sets (as

known from logic programs) and show that the calculated result of that characterization

coincides with that representation of the unique model (Section 6.3). We show that

this model is indeed the (unique) well-founded MKNF model, and we present several

important properties including the computational complexity, faithfulness w.r.t. the

well-founded semantics of logic programs, and discovery of inconsistencies (Section 6.4).

6.1 Partitions of Modal Atoms

As argued in [Motik and Rosati, 2010], since there are infinitely many two-valued

MKNF models of an arbitrary hybrid MKNF knowledge base with a countably infi-

nite domain, working directly with two-valued MKNF models is cumbersome. In fact,

even in case of simple finite two-valued MKNF models, the representation is rather

space-consuming already and this holds all the more for MKNF interpretation pairs

in the three-valued MKNF semantics presented in Chapter 5 (see, e.g. Example 5.4).

So, some finite, compact representation is required. The solution, applied in [Motik

and Rosati, 2010] and originally from [Donini et al., 2002], is to represent a two-valued

MKNF model by a finite first-order formula whose set of (first-order) models corre-

sponds to the two-valued MKNF model itself. Intuitively, such a first-order formula is

obtained in [Motik and Rosati, 2010] by first dividing the modal atoms occurring in

the ground hybrid MKNF knowledge base into true and false (modal) K-atoms, and

then constructing the first-order formula from the true K-atoms and the ontology. We

extend this construction, and the related notions from [Motik and Rosati, 2010], to

three truth values by partitioning atoms into three sets.

Definition 6.1. Let KG = (O,PG) be a ground hybrid MKNF knowledge base. The
set of K-atoms of KG, written KA(KG), is the smallest set that contains (i) all ground
K-atoms occurring in PG, and (ii) a K-atom K ξ for each ground not-atom not ξ
occurring in PG. A partial partition (T, F) of KA(KG) consists of two sets, where
T, F ⊆ KA(KG) and T ∩F = ∅. A third set U is implicitly defined as KA(KG)\ (T ∪F).

The set KA(KG) contains all modal atoms occurring in KG, only with not-atoms

substituted by corresponding modal K-atoms. This set is partitioned into three sets T ,

F , and U where, intuitively, T contains true K-atoms, F contains false K-atoms, and

86

6.1 Partitions of Modal Atoms

U contains all the remaining that are considered to be undefined. Clearly, a not-atom

notA is intended to be true if KA is false, it is intended to be false if KA is true, and

undefined in the remaining cases.

Example 6.1. Consider the simple, already ground hybrid MKNF knowledge base KG.

Q vR (6.1)

K p←not p (6.2)

K Q(a)←K R(a) (6.3)

K s←not Q(a) (6.4)

We have that KA(KG) = {K p,K Q(a),K R(a),K s}. One possible partial partition for
that set of K-atoms is (T, F) = ({K s}, {K Q(a),K R(a)}) with the intention that K s

is true, that K p is undefined, and that the other two K-atoms are false.

In [Motik and Rosati, 2010], given a knowledge base KG, a set of first-order formulas

is defined with the aim of using the models of this set of formulas to represent the models

of both the ontology and a set of true modal atoms. If this set of true modal atoms is

properly chosen, then the set of first-order interpretations satisfying that set of formulas

corresponds to one two-valued MKNF model of KG.

Here, this construction does not suffice, and we show how to adapt the idea to a

three-valued setting. For that, the definition of the set of first-order formulas that is

intended to represent the KB can be recalled from [Motik and Rosati, 2010].

Definition 6.2. Let KG = (O,PG) be a ground hybrid MKNF knowledge base. For a
subset S of KA(KG), the objective knowledge of S w.r.t. KG is the set of first-order
formulas OBO,S = {π(O)} ∪ {ξ | K ξ ∈ S}.

This notion is used below to establish a link between three-valued MKNF models

and partial partitions. In fact, in the two-valued case, S is simply the set of true

K-atoms.

Example 6.2. Recall Example 6.1. The objective knowledge for the partial partition
(T, F) presented could be defined using the true K-atoms just as in the two-valued case.
Then, OBO,T = {π({Q v R})}∪{s}. Clearly, in this representation, the fact that Kp is
supposed to be undefined is lost, which is no surprise given that undefined modal atoms
do not occur in the two-valued case.

87

6. ALTERNATING FIXPOINT FOR THE WELL-FOUNDED MKNF
MODEL

We obtain from that example that we need to define the correspondence in a dif-

ferent manner. But for this purpose, we need to adapt one more notion from [Motik

and Rosati, 2010].

Definition 6.3. Let S be a set of ground K-atoms. The partial partition (T, F) of S
is induced by an MKNF interpretation pair (M,N) as follows:

(1) K ξ ∈ T implies ∀I ∈M : (I, 〈M,N〉, 〈M,N〉)(K ξ) = t,

(2) K ξ ∈ F implies ∀I ∈M : (I, 〈M,N〉, 〈M,N〉)(K ξ) = f , and

(3) K ξ 6∈ T and K ξ 6∈ F implies ∀I ∈M : (I, 〈M,N〉, 〈M,N〉)(K ξ) = u.

This relation formally establishes the ‘intended semantics’ of partial partitions. Any

given MKNF interpretation pair (M,N), and in particular also a three-valued MKNF

model, induces a partition (T, F) such that all elements of T are true in (M,N), all

elements of F are false in (M,N), and the remaining are undefined.

Example 6.3. Recall Example 6.1 and consider the three-valued MKNF model (M,N) =
({{s}, {s, p}, {s, p, Q(a), R(a)}}, {{s, p}, {s, p, Q(a), R(a)}}). Then (M,N) does precisely
induce the partition (T, F) given in Example 6.1. Of course, (M,N) is not the only
MKNF interpretation pair that induces that partition, but it is in fact a three-valued
MKNF model of KG. Intuitively, that model can also be obtained by setting M to model
π(O) and T and N to model π(O) and everything that is not contained in F . Formally,
we would obtain M = {I | I |= ((∀x : Q(x) ⊃ R(x))∧s)} and N = {I | I |= ((∀x : Q(x) ⊃
R(x)) ∧ (s ∧ p))}.

Based on this relation between partial partitions and MKNF interpretation pairs, we

can show that the objective knowledge derived from the partial partition that is induced

by a three-valued MKNF model is identical to that model, following the construction

sketched in the example above. This result is used in Section 6.4 to show that the

specific partition we compute produces a three-valued MKNF model (Theorem 6.4).

Proposition 6.1. Let (M,N) be a three-valued MKNF model of a ground hybrid
MKNF knowledge base KG = (O,PG), and (T, F) the partition of KA(KG) induced
by (M,N). Then (M,N) = ({I | I |= OBO,T }, {I | I |= OBO,KA(KG)\F }).

Proof. For KG = (O,PG) a ground hybrid MKNF knowledge base, let (M,N) be a
three-valued MKNF model of KG, (T, F) the partition of KA(KG) induced by (M,N),

88

6.1 Partitions of Modal Atoms

and (M ′, N ′) = ({I | I |= OBO,T }, {I | I |= OBO,KA(KG)\F }). We show that (M,N) =
(M ′, N ′).

First, we show that M ⊆ M ′. Let I be an interpretation in M . We show that
I ∈ M ′ = {I | I |= OBO,T }, i.e., that I |= {π(O)} ∪ {ξ | K ξ ∈ T}. Since (M,N)
is a three-valued MKNF model of KG, we know that (M,N) |= K π(O). Thus, we
have I |= π(O). Consider each K ξ ∈ T . Since (M,N) induces the partition (T, F) we
have (I, 〈M,N〉, 〈M,N〉)(K ξ) = t and thus I |= ξ. Hence, I |= OBO,T . Consequently,
I ∈M ′ holds and therefore M ⊆M ′.

Next, we show that N ⊆ N ′. Let I be an interpretation in N . We show that
I ∈ N ′ = {I | I |= OBO,KA(KG)\F }, i.e., that I |= {π(O)} ∪ {ξ | K ξ ∈ KA(KG) \ F}.
We already know that, for each I ∈ M , I |= π(O). Since N ⊆ M , we also have that
I |= π(O) for each I ∈ N . Consider each K ξ 6∈ F . The premise of condition (2) in
Definition 6.3 is false, but the premises of conditions (1) and (3) in that definition are
true. We show for both cases that I |= ξ. This suffices to show that I ∈ N ′, i.e., that
I |= OBO,KA(KG)\F , which shows N ⊆ N ′. In the case of (1), we already know that
I |= ξ for each I ∈ M , and, since N ⊆ M holds, we also have I |= ξ for each I ∈ N .
In the case of (3), we know that (I, 〈M,N〉, 〈M,N〉)(K ξ) = u for each I ∈ M . Thus,
I |= ξ holds for each I ∈ N .

We now show that each of the two sets are in fact identical, i.e., M = M ′ and N =
N ′. Note first that T ⊆ KA(KG)\F . Thus, for any I ∈ N ′, we have I ∈ {I | I |= OBO,T }
and therefore N ′ ⊆M ′, i.e., (M ′, N ′) is an MKNF interpretation pair. So assume that
(M ′, N ′) is an MKNF interpretation pair with M ⊆M ′ and N ⊆ N ′, where at least one
of the inclusions is proper. We show that (I ′, 〈M ′, N ′〉, 〈M,N〉)(KG) = t for all I ′ ∈M ′,
and we thus derive a contradiction to (M,N) being a three-valued MKNF model of
KG. For the former, it suffices to prove that (I ′, 〈M ′, N ′〉, 〈M,N〉)(Kπ(O)∧π(PG)) = t
for all I ′ ∈ M ′. By definition of M ′ we know that (I ′, 〈M ′, N ′〉, 〈M,N〉)(K π(O)) = t
for all I ′ ∈ M ′. We only have to show the same for π(PG). We achieve that by
showing that, for each case of Definition 6.3, the modal atoms appearing in π(PG)
are evaluated to identical truth values in (M,N) and (M ′, N ′). This suffices to show
that (I ′, 〈M ′, N ′〉, 〈M,N〉)(π(PG)) = t for all I ′ ∈ M ′ since (M,N), as a three-valued
MKNF model of KG, ensures that (I ′, 〈M,N〉, 〈M,N〉)(π(PG)) = t. We thus obtain a
contradiction to (M,N) being a three-valued MKNF model.

• Consider each K ξ ∈ T . We obtain (I ′, 〈M ′, N ′〉, 〈M,N〉)(K ξ) = t for all I ′ ∈M ′

by definition of M ′ just as we have (I, 〈M,N〉, 〈M,N〉)(K ξ) = t for all I ∈ M
by Definition 6.3.

89

6. ALTERNATING FIXPOINT FOR THE WELL-FOUNDED MKNF
MODEL

• Consider each K ξ ∈ F . We obtain (I, 〈M,N〉, 〈M,N〉)(K ξ) = f , by Definition
6.3. We derive that, by Definition 5.2, (I, 〈M,N〉, 〈M,N〉)(K ξ) = f for some I ∈
N . Because of that, and since N ⊆ N ′, we also have (I ′, 〈M ′, N ′〉, 〈M,N〉)(Kξ) =
f for some I ′ ∈ N ′. Thus, by Definition 5.2, (I, 〈M ′, N ′〉, 〈M,N〉)(K ξ) = f .

• Consider each K ξ with K ξ 6∈ F and K ξ 6∈ T . By Definition 6.3, we obtain
(I, 〈M,N〉, 〈M,N〉)(K ξ) = u. By definition of N ′, (I ′, 〈M ′, N ′〉, 〈M,N〉)(K ξ) 6=
f holds. From (I, 〈M,N〉, 〈M,N〉)(K ξ) = u and M ⊆M ′ we conclude that only
(I ′, 〈M ′, N ′〉, 〈M,N〉)(K ξ) = u is possible.

• Consider any modal not-atom appearing in π(PG). Since the evaluation of these
is done in both cases w.r.t. (M,N), we straightforwardly obtain the identical
evaluation.

This finishes the proof.

The next example illustrates the previously introduced notions using the knowledge

base for recommending CDs.

Example 6.4. Consider K consisting only of rule (4.8) from Example 4.3 and an
ontology containing just one assertion:

K Recommend(x)←K CD(x),not owns(x),not LowEval(x), (6.5)

K interesting(x).

CD(BNAW) (6.6)

The ground KB KG contains one rule that results from (6.5) by substituting x with
BNAW. We thus obtain

KA(KG) ={K Recommend(BNAW),K CD(BNAW),K owns(BNAW),

K lowEval(BNAW),K interesting(BNAW)}.

One can easily check that there is only one three-valued MKNF model (M,N) of KG,
namely the one in which each I ∈ M,N satisfies I |= CD(BNAW). This three-valued
MKNF model induces the partition in which CD(BNAW) appears in T and all other modal
K-atoms in F . The related set of first-order formulas just contains CD(BNAW). This is
reasonable since the ground version of (6.5) does not allow us to derive anything, and
so we can ignore (6.5) when considering three-valued MKNF models of KG.

90

6.2 Computation of the Alternating Fixpoint

Thus, we can guess the three-valued MKNF model and induce a partition or, alter-

natively, obtain the appropriate partial partition and the corresponding three-valued

MKNF model from it. Now, we show how to compute a partial partition of a hybrid

MKNF knowledge base.

6.2 Computation of the Alternating Fixpoint

As we have seen in Chapter 5, a knowledge base may in general have several three-

valued MKNF models. But we have a special interest in the least one w.r.t. derivable

knowledge – the well-founded MKNF model – and the computation of that model. In

order to obtain the well-founded MKNF model and the corresponding partial partition,

we resort to several existing relations and correspondences with semantics from Logic

Programming.

The stable models of a normal logic program Π are the fixpoints of the Gelfond-

Lifschitz operator ΓΠ [Gelfond and Lifschitz, 1988]. The same operator can be used

to compute the (three-valued) well-founded model of Π by the so-called alternating

fixpoint computation (cf. [van Gelder, 1989], see also Theorem 2.3). Intuitively, an

operator, which results from applying ΓΠ twice, is used to compute a least and a greatest

fixpoint, which correspond, respectively, to the true and non-false knowledge. The term

“alternating” stems from the fact that ΓΠ is antitonic, and so successive applications, in

turn, overestimate and underestimate derivable knowledge in the well-founded model,

ultimately alternating between the two fixpoints. More precisely, by iteratively applying

ΓΠ starting with an empty set of atoms, we first obtain a set of atoms that includes all

the true atoms in the well-founded model of Π, i.e., an overestimate of the true atoms

in the well-founded model (in other words, a set whose complement is an underestimate

of the set of all false atoms). If we apply ΓΠ again to that result, then we obtain a

set of atoms that are true for sure, i.e., an underestimate of the set of all true atoms.

If we continue the iteration, we obtain alternating smaller overestimates and larger

underestimates until eventually the iteration alternates between two fixpoints – one

with all true atoms, and the other one with all atoms that are true or undefined in the

well-founded model of Π.

Since stable models of logic programs and two-valued MKNF models are closely

related, we adapt this scheme to hybrid MKNF knowledge bases. We define operators

91

6. ALTERNATING FIXPOINT FOR THE WELL-FOUNDED MKNF
MODEL

that provide a stable condition for hybrid MKNF knowledge bases, and we use these

operators to obtain an alternating fixpoint that corresponds to the well-founded MKNF

model.

We start by defining an operator TKG
that, given a set of K-atoms, draws conclu-

sions from a positive ground hybrid MKNF knowledge base KG, i.e., a ground hybrid

MKNF knowledge base where rules are of the form:

KH ← KA1, . . . ,KAn (6.7)

Definition 6.4. Let KG = (O,PG) be a positive, ground hybrid MKNF knowledge base.
The operators RKG

, DKG
, and TKG

are defined on subsets of KA(KG) as follows:

RKG
(S) ={KH | PG contains a rule of the form (6.7)

such that, for all i, 1 ≤ i ≤ n,KAi ∈ S}

DKG
(S) ={K ξ | K ξ ∈ KA(KG) and OBO,S |= ξ}

TKG
(S) =RKG

(S) ∪DKG
(S)

Note that this operator is a slight variation of the one from [Motik and Rosati,

2010]. There it is verified in case of RKG
whether all Ai follow from OBO,S , while

we rely on the set S. Thus intermediate results slightly differ, but we resort to the

definition presented here, because it allows us to define reasoning in rules in terms of

rules alone (admitting derivations from the O only indirectly via S). This is also of

advantage in Chapter 8 when defining a procedure that reverts the computation, i.e.,

one that allows queries instead of computing the whole model.

Example 6.5. The knowledge base below exemplifies the difference of the two defini-
tions.

P v Q (6.8)

K r←K Q(x) (6.9)

K P(a)← (6.10)

Given S = {K P(a)}, we derive that TKG
(S) = {K P(a),K Q(a)} while the respective

operator T ′KG
in [Motik and Rosati, 2010] derives that T ′KG

(S) = {KP(a),KQ(a),Kr}.
This does not constitute a problem since taking the result TKG

(S) and applying it again
to TKG

allows us to derive K r as well.

92

6.2 Computation of the Alternating Fixpoint

The operator RKG
derives immediate consequences from the rules in KG while DKG

yields consequences from the ontology combined with the already known information

in S. The operator TKG
, which combines the other two, is monotonic:

Proposition 6.2. Let KG = (O,PG) be a positive ground hybrid MKNF knowledge
base, and S ⊆ S′ ⊆ KA(KG). Then TKG

(S) ⊆ TKG
(S′).

Proof. Suppose that K H ∈ TKG
(S). By Definition 6.4, K H ∈ RKG

(S) ∪ DKG
(S)

holds. If KH ∈ RKG
(S), then PG contains a rule of the form (6.7) such that KAi ∈ S

for each 1 ≤ i ≤ n. Since S ⊆ S′, we also have that KAi ∈ S′ for each 1 ≤ i ≤ n and
KH ∈ TKG

(S′). If KH ∈ DKG
(S), then KH ∈M and OBO,S |= H. By monotonicity

of first-order logic and since S ⊆ S′, we also have OBO,S′ |= H. We conclude that
KH ∈ TKG

(S′).

Since TKG
is monotonic, it has a unique least fixpoint (by the Knaster-Tarski Theo-

rem – see Theorem 2.1) which we denote using TKG
↑ ω in reference to the limit ordinal

of natural numbers ω. It is important to note that the Knaster-Tarski Theorem in

general only says that this fixpoint is reached for some ordinal that might easily be

greater than ω. However, in MKNF knowledge bases, since we do not allow function

symbols or infinite sets of rules, the iteration is performed over a finite knowledge base

(with finitely many ground rules). As such, the iteration of TKG
terminates for some

finite ordinal below ω. The least fixpoint is obtained as follows:

TKG
↑ 0 = ∅

TKG
↑ (n+ 1) =TKG

(TKG
↑ n)

TKG
↑ ω =

⋃
i≥0

TKG
↑ i

Example 6.6. Consider again the hybrid MKNF knowledge base of Example 6.5. We
have TKG

↑ 0 = ∅ and we compute TKG
↑ 1 = {K P(a)}, TKG

↑ 2 = {K P(a),K Q(a)},
and obtain TKG

↑ 3 = {K P(a),K Q(a),K r} as the fixpoint.

Similarly to stable models of normal logic programs a fixpoint operator can be

defined that performs a Gelfond-Lifschitz-like transformation [Gelfond and Lifschitz,

1988] (see also Definition 2.11) that turns hybrid MKNF knowledge bases into positive

ones, and that then applies the operator TKG
to the resulting knowledge base.

93

6. ALTERNATING FIXPOINT FOR THE WELL-FOUNDED MKNF
MODEL

Definition 6.5. Let KG = (O,PG) be a ground hybrid MKNF knowledge base and
S ⊆ KA(KG). The MKNF transform KG/S is defined as KG/S = (O,PG/S), where
PG/S contains all rules

KH ← KA1, . . . ,KAn

for which there exists a rule

KH ← KA1, . . . ,KAn,notB1, . . . ,notBm

in PG with KBj 6∈ S for all 1 ≤ j ≤ m.

This definition indeed resembles the transformation used to compute stable models

[Gelfond and Lifschitz, 1988] of logic programs. I.e., we remove all rules that contain

negated atoms contradicting the given set S, and we remove all remaining negated

atoms from the other rules. Following [Gelfond and Lifschitz, 1988] (see also Defi-

nition 2.13), we define an operator that computes the least fixpoint of the resulting

knowledge base.

Definition 6.6. Let KG = (O,PG) be a ground hybrid MKNF knowledge base and
S ⊆ KA(KG). We define

ΓKG
(S) = TKG/S ↑ ω.

Example 6.7. Consider again the ground hybrid MKNF knowledge base KG from
Example 6.1.

Q v R

K p ← not p

K Q(a) ← K R(a)

K s ← not Q(a)

Given S = {K s}, we have TKG/S ↑ ω = {K s,K p}. If we apply ΓKG
to that result

then we obtain again S = {K s}.

Inspired by the similarities between the definition of ΓKG
and Γ in [Gelfond and

Lifschitz, 1988], the correspondence of stable models for logic programs and two-valued

MKNF models for knowledge bases without ontology axioms, and the results in alter-

nating fixpoints of normal logic programs [van Gelder, 1989], one might wonder whether

94

6.2 Computation of the Alternating Fixpoint

iteratively applying the operator ΓKG
would yield the least three-valued MKNF model

and Example 6.7 seems to imply that. In fact, as shown below in Lemma 6.1, the

operator ΓKG
is antitonic. Thus, Γ2

KG
is monotonic and guaranteed to have a least

fixpoint, which can be obtained by iteratively applying Γ2
KG

starting from the empty

set. One may then ask whether this least fixpoint corresponds to the well-founded

MKNF model. However, as shown in the example below, this is not the case, and,

thus, an adaptation of alternating fixpoints to hybrid MKNF knowledge bases cannot

be as straightforward.

Example 6.8. Consider the hybrid MKNF knowledge base presented in Examples 3.5
and 4.3 for recommending CDs, and suppose now that the user wants to stall recom-
mendations until an evaluation is available. This can be achieved, e.g., by adding the
rule (6.11).

K LowEval(x)← not Recommend(x) (6.11)

With this rule, together with (4.8), a CD is not recommended unless one adds explicit
information that the CD has no low evaluation. To ease the reading, we recall here rule
(4.8):

K Recommend(x)←K CD(x),not owns(x),not LowEval(x), (6.12)

K interesting(x).

In fact, if one adds, e.g.,

¬LowEval(ToTheSea) (6.13)

then all three-valued MKNF models contain K Recommend(ToTheSea). However, as
shown next, K Recommend(ToTheSea) is not contained in the least fixpoint of Γ2

KG
.

To simplify the computation and presentation of this least fixpoint, we ground all
the rules only with ToTheSea (thus ignoring any other CDs), and we add explicitly that
ToTheSea is a CD (6.14).

CD(ToTheSea) (6.14)

We also limit ourselves to the following set of modal atoms (using appropriate abbrevi-
ations):

KA(KG) = {K Rec(Tts),K LowEv(Tts),K CD(Tts),K owns(Tts),K int(Tts)}

95

6. ALTERNATING FIXPOINT FOR THE WELL-FOUNDED MKNF
MODEL

We start with S0 = ∅, so we compute ΓKG
(S0) and S1 = ΓKG

(ΓKG
(S0)):

ΓKG
(S0) = KA(KG)

S1 = {K CD(Tts),K int(Tts)}

Note that, since K LowEv(Tts) ∈ TKG/S0
(∅), then, by (6.13), OBO,TKG/S0

(∅) is incon-
sistent. So, the subsequent application of DKG

allows us to derive everything, and thus
ΓKG

(S0) = KA(KG).
We continue with ΓKG

(S1) and S2 = ΓKG
(ΓKG

(S1)) and obtain:

ΓKG
(S1) = KA(KG)

S2 = {K CD(Tts),K int(Tts)}

Now, since S1 = S2, the fixpoint is reached, and, indeed, does not contain K Rec(Tts).
This is so because, since K LowEv(Tts) ∈ ΓKG

(S1), rule (4.8) grounded with Tts is
removed in PG/ΓKG

(S1).
Note that K LowEv(Tts) ∈ ΓKG

(S1) because rule (6.11) is not removed in PG/S1,
given that K Rec(Tts) 6∈ S1. In an analogy with [van Gelder, 1989], K LowEv(Tts)
is thus either true or undefined , since it belongs to the overestimate in the alter-
nating fixpoint. This shows that, in opposite to the three-valued MKNF semantics,
¬LowEv(Tts) does not imply not LowEv(Tts).1 In fact, for any three-valued MKNF
model (M,N) of the restricted knowledge base, if ¬LowEv(Tts) holds, then, for all
I ∈ M , LowEv(Tts) 6∈ I. Thus, since N ⊆ M , we also have, for all I ∈ N ,
LowEv(Tts) 6∈ I, i.e., not LowEv(Tts) should be true in any three-valued MKNF model
of the knowledge base.

One way of guaranteeing that the classical negation of some DL-atom H in the

ontology imposes the truth of notH (despite the existence of rules with head KH)

is to change the MKNF transform defined above, so that rules with head K H are

removed whenever ¬H holds:

Definition 6.7. Let KG = (O,PG) be a ground hybrid MKNF knowledge base and S ⊆
KA(KG). The MKNF-coherent transform KG//S is defined as KG//S = (O,PG//S),
where PG//S contains all rules

KH ← KA1, . . . ,KAn

1This problem is akin to the coherence problem [Pereira and Alferes, 1992] in extended logic pro-

grams, where a (classical false) formula ¬ϕ has to impose notϕ explicitly.

96

6.2 Computation of the Alternating Fixpoint

for which there exists a rule

KH ← KA1, . . . ,KAn,notB1, . . . ,notBm

in PG with KBj 6∈ S for all 1 ≤ j ≤ m and OBO,S 6|= ¬H.

Note the difference between this definition and Definition 6.5: we also remove a

rule from the MKNF-coherent transform, in case the classical negation of the head is

derivable from the ontology augmented by S.

Similarly to Definition 6.6, we can define an operator based on that notion of MKNF-

coherent transform.

Definition 6.8. Let KG = (O,PG) be a ground hybrid MKNF knowledge base and
S ⊆ KA(KG). We define Γ′KG

(S) = TKG//S ↑ ω.

The operator Γ′KG
is also antitonic (cf. Lemma 6.1), and so applying Γ′KG

twice

is guaranteed to have a least fixpoint. Clearly, in the case of the knowledge base of

Example 6.8, this least fixpoint includes K Rec(Tts). The reason is that the new

MKNF-coherent transform does not contain any rule with head K LowEval(Tts) once

¬LowEval(Tts) is derived, and so rule (4.8) instantiated with Tts is not removed at

some step of the iteration. However, the next example shows that the operator Γ′KG

literally hides inconsistencies from the iteration. A modal atom KH may be simply

considered false, even though there is a rule with head KH such that the body is true

in all three-valued MKNF models of the respective knowledge base.

Example 6.9. Consider again only the hybrid MKNF knowledge base presented in
Example 3.5 and 4.3 for recommending CDs. Now suppose that the user wants to
ensure that only inexpensive CDs are to be recommended. Note that this is different from
recommending CDs that have a discount. The ontology axiom (6.15) states that any
expensive CD must never be recommended. In general, comparing prices requires some
predicates from the numerical domain, such as concrete domains for the DL SROEL
[Baader et al., 2008]. For simplicity, we assume here that this is handled internally,
so we simply add a fact (6.16) saying that ToTheSea is expensive.

Expensive v ¬Recommend (6.15)

K Expensive(ToTheSea)← (6.16)

97

6. ALTERNATING FIXPOINT FOR THE WELL-FOUNDED MKNF
MODEL

This knowledge base is clearly MKNF-inconsistent: simply note that we can conclude
that ToTheSea is recommended (from (4.8) instantiated by ToTheSea) and not recom-
mended at the same time (by (6.15)–(6.16)). However, it is easy to check that the least
fixpoint of applying Γ′KG

twice does not include KRec(Tts), simply because the MKNF-
coherent transform removes the rule (4.8) instantiated with Tts once ¬Recommend(Tts)
is true, even though the rule body is true.

This example shows that Γ′KG
cannot be applied always in the alternating fixpoint.

Examining again the computation of Example 6.8, we may see that the application of

Γ′KG
would only be required when we compute overestimates of the true knowledge.

In this case, it would suffice to apply Γ′KG
for computing Γ′KG

(S1). Then, S2 could

be obtained by simply applying ΓKG
to the previous result, thus computing S2 now

by ΓKG
(Γ′KG

(S1)). At the same time, in case of Example 6.9, the partial usage of

ΓKG
would ensure that Recommend(Tts) is kept in one part of the iteration so that

inconsistencies may still be detectable.

This suggests that the computation of the well-founded MKNF model could be

obtained by alternating the application of the operators Γ′KG
and ΓKG

. In fact, this

interaction of the two operators yields the well-founded MKNF model. But before

we formally define this interaction and prove its correspondence to the well-founded

MKNF model, we show that both operators are indeed antitonic.

Lemma 6.1. If KG is a ground hybrid MKNF knowledge base and S ⊆ S′ ⊆ KA(KG),
then ΓKG

(S′) ⊆ ΓKG
(S) and Γ′KG

(S′) ⊆ Γ′KG
(S).

Proof. We show the argument for ΓKG
. The proof for Γ′KG

is identical.

By Definition 6.6, we have to show that TKG/S′ ↑ ω ⊆ TKG/S ↑ ω. We prove by
induction on n that TKG/S′ ↑ n ⊆ TKG/S ↑ n holds. The base case for n = 0 is trivial
since ∅ ⊆ ∅. Assume that TKG/S′ ↑ n ⊆ TKG/S ↑ n holds and consider KH ∈ TKG/S′ ↑
(n + 1). Then KH ∈ TKG/S′(TKG/S′ ↑ n) and there are two cases to consider. First,
KG/S′ contains a rule of the form KH ← KA1, . . . ,KAn such that KAi ∈ TKG/S′ ↑ n
for each 1 ≤ i ≤ n. Since S ⊆ S′, we also have KH ← KA1, . . . ,KAn in KG/S and, by
the induction hypothesis, KAi ∈ TKG/S ↑ n for each 1 ≤ i ≤ n. Hence, KH ∈ TKG/S ↑
(n + 1). Alternatively, KH is a consequence obtained from DKG/S′(TKG/S′ ↑ n). By
the induction hypothesis, TKG/S′ ↑ n ⊆ TKG/S ↑ n holds, and we conclude from the
monotonicity of first-order logic that KH ∈ DKG/S(TKG/S ↑ n).

98

6.2 Computation of the Alternating Fixpoint

Since both operators are antitonic, we can define an alternating iteration for the

two operators as motivated above:

Definition 6.9. Let KG be a ground hybrid MKNF knowledge base. We define two
sequences Pi and Ni as follows.

P0 = ∅ N0 = KA(KG)

Pn+1 = ΓKG
(Nn) Nn+1 = Γ′KG

(Pn)

Pω =
⋃

Pi Nω =
⋂

Ni

The sequence of Pi is intended to compute modal atoms that are true, while the

sequence Ni computes modal atoms that are not false. The former is an increasing

sequence, while the latter is decreasing:

Lemma 6.2. Let KG be a ground hybrid MKNF knowledge base. Then Pα ⊆ Pβ and
Nβ ⊆ Nα for all ordinals α, β with α ≤ β ≤ ω.

Proof. Whenever α = β, the statement holds automatically. It thus suffices to consider
α < ω and to show via induction over α that the statement holds. If β is a successor
ordinal, then it is sufficient to show the property for β = α+ 1, all the other successor
cases follow by transitivity of ⊆.

If α = 0, then P0 = ∅ and P0 ⊆ Pβ holds for any β. Equivalently, N0 = KA(KG),
thus Nβ ⊆ N0 also holds for any β.

Suppose the property holds for all α ≤ n. We must show that Pn+1 ⊆ Pn+2 and
Nn+2 ⊆ Nn+1. We have Pn+1 = Γ(Nn) and Pn+2 = Γ(Nn+1). Since Nn+1 ⊆ Nn by
the induction hypothesis, Pn+1 ⊆ Pn+2 holds in virtue of the anti-monotonicity of Γ′.
Likewise, we know that Nn+1 = Γ′(Pn) and Nn+2 = Γ′(Pn+1). Since Pn ⊆ Pn+1 by
the induction hypothesis, we obtain by anti-monotonicity of Γ′ that Nn+2 ⊆ Nn+1.

The only case left is the one where β = ω. But this case holds by definition.

Like the iteration of TK, and for the very same reasons, these iterations are finite

and reach a fixpoint before ω – in the case of Pi a least fixpoint, and in the case of Ni

a greatest fixpoint:

Proposition 6.3. Let KG be a ground hybrid MKNF knowledge base. Then Pω is the
least fixpoint of the sequence of Pi and Nω is the greatest fixpoint of the sequence of
Pi.

99

6. ALTERNATING FIXPOINT FOR THE WELL-FOUNDED MKNF
MODEL

Proof. We show the argument for Pω. The argument for Nω is analogous.
We define an operator Φ(S) = ΓKG

(Γ′KG
(S)) on subsets S of KA(KG), iterated as

usual. It is easy to see that Φ ↑ i = P2i and, thus, that Φ is monotonic. By the
Knaster-Tarski Theorem 2.1, we conclude that Pω is equal to the least fixpoint of the
sequence of Pi.

This proposition also allows us to show that the least fixpoint can be directly com-

puted from the greatest one and vice versa.

Proposition 6.4. Let KG be a ground hybrid MKNF knowledge base. Then Pω =
ΓKG

(Nω) and Nω = Γ′KG
(Pω).

Proof. We show the case of Nω = Γ′(Pω); the other case proceeds identically. By
Proposition 6.3, we know that Pω is the least fixpoint of the sequence of Pi. Since the
ground knowledge base is finite, there is an n such that Pn = Pω, and so Pn = Pm

for any m ≥ n. Subsequently, we have Nn+1 = Nm for any m with m ≥ n + 1,
i.e., Nn+1 = Γ′KG

(Pω) is a fixpoint of the sequence Ni. Assume that Nn+1 is not the
greatest fixpoint. Then there is an Nl, l < n+1, with Nl = Nl+2 and Nl ⊃ Nn+1. Then
Pl+1 also equals a fixpoint in the sequence Pi with Pl+1 being necessarily smaller than
Pn. This contradicts the initial assumption that Pn is the least fixpoint and finishes
the proof.

Thus, we can either compute the two sequences Pi and Ni in parallel until we reach

an n such that Pn = Pn+1 and Nn = Nn+1 or we compute just one of the two fixpoints

in the manner sketched in the proof of Proposition 6.3 (alternating between ΓKG
and

Γ′KG
) and let the other one follow by one application of either ΓKG

or Γ′KG
.

The two fixpoints can be used to define the well-founded partition which is, as we

show in Section 6.4, the partition inducing the well-founded MKNF model.

Definition 6.10. The well-founded partition of an MKNF-consistent ground hybrid
MKNF knowledge base KG = (O,PG) is defined by:

(TW , FW) = (Pω,KA(KG) \Nω)

Note that we restrict the definition to MKNF-consistent hybrid MKNF knowledge

bases. This is reasonable since in many cases the pair (TW , FW) obtained for an MKNF-

inconsistent knowledge base would not satisfy the conditions imposed in the definition

of a partition (cf. Definition 6.1). Therefore, in Section 6.4, we show that all K-atoms

100

6.2 Computation of the Alternating Fixpoint

derived in Pω, KA(KG)\Nω respectively, are true, false respectively, in all three-valued

MKNF models of KG (see Proposition 6.6), including the special case, in which KG is

MKNF-inconsistent. This can be used to present necessary and sufficient conditions to

check for MKNF-consistency (see Theorem 6.2), which are based on two comparisons,

each of which compares a further iteration of the operators ΓKG
and Γ′KG

w.r.t. one

of the fixpoints. Given an established check for MKNF-consistency, we can show that

the well-founded partition is in fact a partial partition (see Proposition 6.7), if the

considered knowledge base KG is consistent. In this case, we can also show that a

corresponding MKNF interpretation pair exists that satisfies KG (see Theorem 6.3), and

that this interpretation pair is a three-valued MKNF model of KG (see Theorem 6.4).

This allows us to conclude that this specific MKNF interpretation pair corresponding

to the well-founded partition is the well-founded MKNF model (see Theorem 6.5).

We can then show that, given KG with empty O, the well-founded partition and the

well-founded model for logic programs coincide (see Theorem 6.6) and finish with the

results for data complexity (see Theorem 6.7). But before we come to that (in Section

6.4), we illustrate the alternating fixpoint construction in the two motivating examples

(Examples 6.8, 6.9) presented before.

Example 6.10. Consider the hybrid MKNF knowledge base presented in Example 6.8,
with the same limitation on the set of modal atoms.

For similarity with the computation presented in Example 6.8, we compute the fix-
points as sketched in the proof of Proposition 6.3. We start with P0 = ∅ and compute
N1 = Γ′KG

(P0) and P2 = ΓKG
(N1):

N1 = {K CD(Tts),K int(Tts),K Rec(Tts)}

P2 = {K CD(Tts),K int(Tts),K Rec(Tts)}

It is easy to check that P2 is already the least fixpoint. Note the difference to the
iteration in Example 6.8. Now, K LowEv(Tts) does not occur in N1, since OBO,P0 |=
¬LowEv(Tts). So rule (6.11) instantiated with Tts is removed in the MKNF coherent-
transform, and thus KLowEv(Tts) 6∈ Γ′KG

(P0). As a consequence, we obtain KRec(Tts)
in P2. We can compute the greatest fixpoint Nω = Γ′KG

(Pω), and we obtain that
Nω equals N1. Note that if axiom (6.13) is omitted, then both K LowEv(Tts) and
K Rec(Tts) remain undefined. Thus, operator Γ′KG

, in combination with (6.13), shows
how the formula ¬LowEv(Tts) imposes that not LowEv(Tts) holds, ensuring in this
example the derivability of K Rec(Tts).

101

6. ALTERNATING FIXPOINT FOR THE WELL-FOUNDED MKNF
MODEL

The knowledge base in Example 6.9 is MKNF-inconsistent. Thus, there cannot be

a well-founded partition as in Definition 6.10. Nevertheless, we present the computa-

tion of the alternating fixpoint, in order to show the difference to the computation in

Example 6.9, and to hint on how to detect inconsistencies, a topic that is detailed in

the next chapter.

Example 6.11. Consider the ground hybrid MKNF knowledge base KG presented in
Example 6.9, where all rules are only grounded with Tts, and the subsequent restricted
set of modal atoms is used:

KA(KG) = {K Rec(Tts),K CD(Tts),K LowEv(Tts),K owns(Tts),

K int(Tts),K Exp(Tts)}

To further simplify the presentation, we only consider rule (4.8), axioms (6.14)–
(6.16), and we simplify (4.9) to the fact (6.21). To ease the reading we repeat here the
complete knowledge base obtained after all simplifications:

Exp v¬Rec (6.17)

CD(Tts) (6.18)

K Exp(Tts)← (6.19)

K Rec(Tts)←K CD(Tts),not owns(Tts),not LowEval(Tts),

K int(Tts). (6.20)

K int(Tts)← (6.21)

For computing the two fixpoints, we start with P0 = ∅ and N0 = KA(KG). We
continue with P1 = ΓKG

(N0) and N1 = Γ′KG
(P0):

P1 = {K CD(Tts),K int(Tts),K Exp(Tts)}

N1 = KA(KG)

Note that once K Rec(Tts) is derived in the computation of N1 and added to the set
S of derived knowledge of TKG/∅, then DKG/∅ allows us to derive everything, simply
because OBO,S with {K Exp(Tts),K Rec(Tts)} ⊆ S is inconsistent.

We continue with P2 = ΓKG
(N1) and N2 = Γ′KG

(P1), and obtain:

P2 = {K CD(Tts),K int(Tts),K Exp(Tts)}

N2 = {K CD(Tts),K int(Tts),K Exp(Tts)}

102

6.3 An Alternative Characterization based on Unfounded Sets

Since OBO,P1 |= ¬Rec(Tts), the rule (6.20) no longer appears in the transform used
for computing N2, and the explosive behavior of DKG/∅ disappears as well. As a con-
sequence, in the next iteration we obtain K Rec(Tts) ∈ P3, which again yields the
explosive inconsistency and the derivation of KA(KG).

P3 = KA(KG)

N3 = {K CD(Tts),K int(Tts),K Exp(Tts)}

It is easy to check that these are the fixpoints. We obtain that K Rec(Tts) ∈ P3 but
KRec(Tts) 6∈ N3. Intuitively, this means that KRec(Tts) is true and false at the same
time, something that is already a clear indication for the inconsistency of the considered
knowledge base.

6.3 An Alternative Characterization based on Unfounded

Sets

As outlined at the end of the previous section, we are going to show several important

properties of our newly defined three-valued MKNF semantics, the unique well-founded

MKNF model, and the just defined procedure. However, the alternating fixpoint con-

struction is sometimes difficult to use in proofs since it is not really obvious in each

situation why a certain modal atom is derived to be false. For logic programs, the no-

tion of unfounded sets (Definition 2.19 in Chapter 2) provides a much more declarative

way than the alternating fixpoint. This is why we also provide an alternative definition

of the iteration based on unfounded sets.

For that purpose we need to define a notion of dependency that captures more

precisely the derivations from OBO,S , for some S, by the operator DKG
.

Definition 6.11. Let KG be a ground hybrid MKNF knowledge base, K H a modal
K-atom with K H ∈ KA(KG), and S a (possibly empty) set of modal K-atoms with
S ⊆ KA(KG). We say that KH depends on S if and only if

(i) OBO,S |= H and

(ii) there is no S′ with S′ ⊂ S such that OBO,S′ |= H.

Intuitively, S is a minimal set that, in combination with O, allows us to derive KH.

Note that there may exist several such minimal sets.

103

6. ALTERNATING FIXPOINT FOR THE WELL-FOUNDED MKNF
MODEL

Example 6.12. Consider the hybrid MKNF knowledge base K = (O,P) with O given
as follows.

P u Q v R (6.22)

R t S v T (6.23)

¬R(b) (6.24)

Now, let KA(KG) = {KP(a),KQ(a),KR(a),KR(b),KS(a),KT(a)}. Clearly, KT(a) de-
pends on {KS(a)}, but also on {KR(a)}. Of course, it also depends on {KP(a),KQ(a)}.
We can see that this notion captures which minimal set of atoms has to be added to
derive a certain K-atom. In the computation in the previous section, we do not care
about minimality, since also the union of the three sets on which K T(a) depends allow
us to derive KT(a) together with O. However, in the forthcoming alternative definition
based on unfounded sets we exactly want to pinpoint which atoms have to be false to
ensure that some modal atom can never be derived. Note that K T(a) also depends on
{K R(b)}, i.e., we may add some atoms such that the combined O is inconsistent. This
is usually not intended, so we have to restrict the usage of the notion of dependency
appropriately.

We can use this notion of dependency to introduce unfounded sets for hybrid MKNF

knowledge bases.

Definition 6.12. Let KG be a ground hybrid MKNF knowledge base and (T, F) a pair
of sets of K-atoms with T, F ∈ KA(KG). We say that U ⊆ KA(KG) is an unfounded set
(of KG) with respect to (T, F) if, for each K-atom KH ∈ U , the following conditions
are satisfied:

(Ui) for each rule KH ← B in PG at least one of the following holds.

(Uia) Some K-atom KA appears in B and in U ∪ F .

(Uib) Some not-atom notB appears in B and in T .

(Uic) OBO,T |= ¬H

(Uii) for each (possibly empty) S on which KH depends, with S ⊆ KA(KG) and OBO,S

consistent, there is at least one modal K-atom KA such that OBO,S\{K A} 6|= H

and KA in U ∪ F .

The union of all unfounded sets of KG w.r.t. (T, F) is called the greatest unfounded
set of KG w.r.t. (T, F).

104

6.3 An Alternative Characterization based on Unfounded Sets

The cases of (Uia) and (Uib) are variations of the cases (Ui) and (Uii) of Defini-

tion 2.19 dealing with rules that contain some (other) false modal atom. The case of

(Uic) corresponds to the removal of rules performed for the MKNF-coherent transform

due to the derivability of the classical negation of the rule head (cf. Definition 6.7).

The remaining condition (Uii) checks that the each K-atom in U is no longer derivable

from O.

Example 6.13. Consider again the KB KG from Example 6.12. Assume that it also
contains the following MKNF rules.

K P(a)← (6.25)

K Q(a)← K R(a) (6.26)

K R(a)← K S(a) (6.27)

K S(a)← K T(a) (6.28)

K T(a)← not P(a) (6.29)

K R(b)← not R(b) (6.30)

For ({K P(a)}, {K R(b)}), we obtain that U = {K Q(a),K R(a),K S(a),K T(a)}. In
rule 6.29, the body is false by (Uib) and all the other rules whose heads appear in U

have a false body by (Uia). Consequently, none of the elements is derivable from O
either, due to (Uii). Note that R(b) can be obtained as an unfounded set w.r.t. (∅, ∅).

Similar to logic programs, we can define the computation of the well-founded MKNF

model based on unfounded sets. For that purpose, we only have to adapt the operators

from Definition 6.4 to rules that are not necessarily positive (cf. Definition 2.20).

Definition 6.13. Let KG = (O,PG) be a ground hybrid MKNF knowledge base and
(T, F) a pair of sets of K-atoms with T, F ∈ KA(KG). The operators RuKG

, Du
KG

, and
T uKG

are defined on (T, F):

RuKG
(T, F) ={KH | PG contains a rule of the form H ← B+ ∧ B− such that,

for all KAi ∈ B+,KAi ∈ T and, for all notBj ∈ B−,KBj ∈ F}

Du
KG

(T, F) ={K ξ | K ξ ∈ KA(KG) and OBO,T |= ξ}

T uKG
(T, F) =RuKG

(T, F) ∪Du
KG

(T, F)

105

6. ALTERNATING FIXPOINT FOR THE WELL-FOUNDED MKNF
MODEL

The only important differences to Definition 6.4 are that all operators are defined

for pairs of K-atoms and that RuKG
is taking not-atoms into account. Together with the

previously defined notion of greatest unfounded set, we obtain the complete operator

that derives information from hybrid MKNF knowledge bases.

Definition 6.14. Let KG = (O,PG) be a ground hybrid MKNF knowledge base and
UKG

(T, F) the greatest unfounded set (of KG) with respect to (T, F). Then for all pairs
of sets of K-atoms (T, F) with T, F ∈ KA(KG):

WKG
(T, F) = (T uKG

(T, F), UKG
(T, F)).

We define the partial order ⊆ on pairs of K-atoms (T1, F1) and (T2, F2):

(T1, F1) ⊆ (T2, F2) iff T1 ⊆ T2 and F1 ⊆ F2.

Using this order, we can show that this operator is monotonic on T and F .

Proposition 6.5. Let KG = (O,PG) be a ground hybrid MKNF knowledge base and
(T1, F1) and (T2, F2) pairs of sets of K-atoms (T, F) with T, F ∈ KA(KG) and (T1, F1) ⊆
(T2, F2). Then WKG

is monotonic, i.e., WKG
(T1, F1) ⊆WKG

(T2, F2).

Proof. Consider (T1, F1) and (T2, F2) with (T1, F1) ⊆ (T2, F2). We have to show that
T uKG

(T1, F1) ⊆ T uKG
(T2, F2) and UKG

(T1, F1) ⊆ UKG
(T2, F2) holds.

If KH ∈ T uKG
(T1, F1), then KH ∈ RuKG

(T1, F1)∪Du
KG

(T1, F1). If KH ∈ RuKG
(T1, F1),

then PG contains a rule of the formH ← B+∧B− such that, for all KAi ∈ B+, KAi ∈ T1

and, for all notBj ∈ B−, KBj ∈ F1. It follows immediately that KH ∈ RuKG
(T2, F2). If

KH ∈ Du
KG

(T1, F1), then OBO,T1 |= H. We derive KH ∈ Du
KG

(T2, F2), and, therefore,
KH ∈ T uKG

(T2, F2).
Now, consider KH ∈ UKG

(T1, F1). By Definition 6.12, we derive KH ∈ UKG
(T2, F2).

Thus, by Theorem 2.1, WKG
has a least fixed point, which can be computed as usual

by WKG
↑ 0 = (∅, ∅), WKG

↑ (n+ 1) = WKG
(WKG

↑ n), and WKG
↑ α =

⋃
i<αWKG

↑ i
for limit ordinals α.

Now, we can show that this least fixed point coincides with the two fixpoints of the

sequences Pi and Ni (see Definition 6.9).

Theorem 6.1. Let KG = (O,PG) be a ground hybrid MKNF knowledge base and (T, F)
the least fixed point of WKG

. Then, (T, F) coincides with Pω and Nω as follows:

(T, F) = (Pω,KA(KG) \Nω).

106

6.3 An Alternative Characterization based on Unfounded Sets

Proof. We show that (Pω,KA(KG)\Nω) is a fixpoint of WKG
. This proves that T ⊆ Pω

and F ⊆ KA(KG) \Nω since (T, F) is the least fixpoint of WKG
.

Let KH ∈ Pω. Then KH ∈ ΓKG
(Nω), i.e., KH ∈ TKG/Nω

↑ ω. Thus, there either
is a rule of the form H ← B+ ∧ B− in PG such that, for all KAi ∈ B+, KAi ∈ Pω,
and, for all not Bj ∈ B−, K Bj ∈ KA(KG) \ Nω, or OBO,S |= H with S ⊆ Pω. By
Definition 6.13, we obtain that KH ∈ T uKG

(Pω,KA(KG) \Nω).

Let KH ∈ KA(KG) \Nω, that is KH 6∈ Nω. Then KH 6∈ Γ′KG
(Pω), i.e., KH 6∈

TKG//Pω
↑ ω. Thus, two conditions hold. First, for all rules of the form H ← B+∧B− in

PG, there is at least one KAi ∈ B+ with KAi ∈ KA(KG)\Nω or at least one notBj ∈
B− with K Bj ∈ Pω, or OBO,Pω |= ¬H. Second, OBO,Nω 6|= H. The first condition
corresponds exactly to (Ui) of Definition 6.12 w.r.t. (Pω,KA(KG) \ Nω). We derive
from the second condition that, for all S with S ⊆ KA(KG) on which KH depends,
there is at least one modal K-atom K A such that OBO,S\{K A} 6|= H and K A in
KA(KG)\Nω. This matches condition (Uii) of Definition 6.12 w.r.t. (Pω,KA(KG)\Nω)
and we conclude that KH ∈ UKG

(Pω,KA(KG) \Nω).

We have shown that (Pω,KA(KG) \Nω) ⊆ WKG
(Pω,KA(KG) \Nω). Assume that

(Pω,KA(KG)\Nω) is not a fixpoint of WKG
. Then, WKG

(Pω,KA(KG)\Nω) = (T1, F1)
such that Pω ⊂ T1 or KA(KG)\Nω ⊂ F1. In the first case, Pω ⊂ T uKG

(Pω,KA(KG)\Nω)
and there is K H ∈ T uKG

(Pω,KA(KG) \ Nω) \ Pω. Thus, there is a rule of the form
H ← B+ ∧ B− such that, for all K Ai ∈ B+, K Ai ∈ Pω, and, for all not Bj ∈ B−,
KBj ∈ KA(KG) \Nω, or OBO,Pω |= H. But then we also have that KH ∈ ΓKG

(Nω),
i.e., KH ∈ TKG/Nω

↑ n for some n, contradicting the assumption that Pω is a fixpoint.
In the second case, KA(KG) \ Nω ⊂ UKG

(Pω,KA(KG) \ Nω) and there is K H ∈
UKG

(Pω,KA(KG)\Nω)\ (KA(KG)\Nω). Thus, there is a greatest unfounded set w.r.t.
(KA(KG) \Nω) that includes KH. But then, by Definition 6.12, we also must have
KH 6∈ Γ′KG

(Pω), contradicting the assumption that Nω is a fixpoint.

For the converse, we show that (T, F) is a fixpoint of the operator W ′KG
that is

obtained byW ′KG
(T ′, F ′) = (ΓKG

(KA(KG)\F ′),KA(KG)\Γ′KG
(T ′)) for any pair of sets of

K-atoms (T ′, F ′) with T ′, F ′ ∈ KA(KG). This proves that Pω ⊆ T and KA(KG)\Nω ⊆
F since (Pω,KA(KG) \Nω) is the least fixpoint of W ′KG

.

We have (T, F) = WKG
↑ n for some n. We show by induction on n that, for

WKG
↑ n = (Tn, Fn), KH ∈ Tn implies KH ∈ ΓKG

(KA(KG)\F) and KH ∈ Fn implies
KH ∈ KA(KG) \ Γ′KG

(T). This shows that (T, F) ⊆W ′KG
(T, F).

The base case for n = 0 holds trivially. We suppose that the induction is shown for
n and we consider two cases for n+ 1.

Let K H ∈ Tn+1. Then K H ∈ T uKG
(Tn, Fn). Thus, there either is a rule of the

107

6. ALTERNATING FIXPOINT FOR THE WELL-FOUNDED MKNF
MODEL

form H ← B+ ∧ B− in PG such that, for all K Ai ∈ B+, K Ai ∈ Tn, and, for all
notBj ∈ B−, KBj ∈ Fn, or OBO,S |= H with S ⊆ Tn. By the induction hypothesis
and by Definition 6.6, we obtain that KH ∈ ΓKG

(KA(KG) \ F).

Let K H ∈ Fn+1. Then K H ∈ UKG
(Tn, Fn). Thus, K U occurs in the greatest

unfounded set w.r.t. (Tn, Fn). By the induction hypothesis and by Definition 6.8, we
obtain that KH ∈ KA(KG) \ Γ′KG

(T).

Finally, we show that (T, F) is in fact a fixpoint of W ′KG
. The argument is identical

to showing that (Pω,KA(KG) \Nω) is a fixpoint of WKG
from the other direction in

this proof: we assume the contrary and derive for both sets T and F a contradiction
to the assumption that (T, F) is a fixpoint of WKG

.

Note that even though the two (combined) fixpoints are identical, their intermediate

iterations are not:

Example 6.14. Consider KG.

R v S (6.31)

K R(a)← (6.32)

K p(a)← not S(a) (6.33)

We compute the two fixpoints (and we leave K implicit in this presentation).

WKG
↑ 0 = (∅, ∅) P0 = ∅ N0 = KA(KG)

WKG
↑ 1 = ({R(a)}, ∅) P1 = {R(a), S(a)} N1 = N0

WKG
↑ 2 = ({R(a), S(a)}, ∅) P2 = P1 N1 = {R(a), S(a)}

WKG
↑ 3 = ({R(a), S(a)}, {p(a)}) P3 = P2 N3 = N2

WKG
↑ 4 = WKG

↑ 3

Intuitively, the difference is that derivations that do not involve not, such as deriving
K S(a) from K R(a), are obtained immediately in the same iteration step, i.e., once
K R(a) is derived, for the alternating fixpoint, but only in the subsequent iteration for
WKG

.

Thus, the two iterations are not identical in general, but the computation of the

information that is derived to be false is actually identical if we consider a corresponding

pair of sets of K-atoms.

108

6.4 The Well-Founded MKNF Model and Related Properties

Lemma 6.3. Let KG = (O,PG) be a ground hybrid MKNF knowledge base and (Pi,Ni)
a pair of sets of K-atoms with T, F ∈ KA(KG) in the computation of the alternating
fixpoint of KG. Then the following holds:

KA(KG) \Ni+1 = UKG
(Pi,KA(KG) \Ni)

Proof. We show both inclusions from which the equality follows.
KA(KG) \ Ni+1 ⊆ UKG

(Pi,KA(KG) \ Ni): Let K H ∈ KA(KG) \ Ni+1. Then
K H 6∈ Ni+1, i.e., K H 6∈ Γ′KG

(Pi) and K H 6∈ TKG//Pi
↑ ω. Thus, two conditions

hold. First, for all rules of the form H ← B+ ∧ B− in PG, there is at least one
KAi ∈ B+ with KAi ∈ KA(KG) \Ni+1 or at least one notBj ∈ B− with KBj ∈ Pi,
or OBO,Pi |= ¬H. Second, OBO,Ni+1 6|= H. The first condition corresponds exactly to
(Ui) of Definition 6.12 w.r.t. (Pi,KA(KG) \Ni). We derive from the second condition
that, for all S with S ⊆ KA(KG) on which KH depends, there is at least one modal
K-atom KA such that OBO,S\{K A} 6|= H and KA in KA(KG) \Ni+1. This matches
condition (Uii) of Definition 6.12 w.r.t. (Pi,KA(KG)\Ni) and we conclude that KH ∈
UKG

(Pi,KA(KG) \Ni).
UKG

(Pi,KA(KG) \Ni) ⊆ KA(KG) \Ni+1: Let KH ∈ UKG
(Pi,KA(KG) \Ni). Then

K H occurs in the greatest unfounded set w.r.t. (Pi,KA(KG) \ Ni). It follows from
Definition 6.12 that KH 6∈ Ni+1. Consequently, KH ∈ KA(KG) \Ni+1.

We use the lemma in the next section to simplify some proofs of the properties of

the alternating fixpoint and the well-founded MKNF model.

6.4 The Well-Founded MKNF Model and Related Prop-

erties

In this section, we prove the properties of the alternating fixpoint construction and the

well-founded MKNF model as outlined in Section 6.2. The first such property relates

the computed partial partition to truth values in three-valued MKNF models.

The well-founded partition (TW , FW) consists of modal atoms that are intended to

be true (TW), false (FW), or undefined (those modal atoms neither occurring in TW

nor in FW). But this is not merely an intention. The two sequences of Pi and Ni

allow us to show that any modal atom that is added to an element of the sequence of

Pi, removed from an element of the sequence of Ni respectively, must be true in all

three-valued MKNF models of KG (resp. false).

109

6. ALTERNATING FIXPOINT FOR THE WELL-FOUNDED MKNF
MODEL

The first proposition of this section indeed establishes that the computed partial

partition corresponds to the intended truth values in all three-valued MKNF models

of the considered knowledge base K. Note that this result also holds for MKNF-

inconsistent knowledge bases.

Proposition 6.6. Let KG be a ground hybrid MKNF knowledge base and (T, F) the
pair (Pω,KA(KG) \Nω). Then KH ∈ T implies that KH is true (and notH is false)
in all three-valued MKNF models (M,N) of KG, and K H ∈ F implies that K H is
false (and notH is true) in all three-valued MKNF models (M,N) of KG.

Proof. According to Proposition 6.3, we have to show that, for all i, KH ∈ Pi implies
that KH is true (and notH is false) in all three-valued MKNF models (M,N) of KG,
and KH 6∈ Ni implies that KH is false (and notH is true) in all three-valued MKNF
models (M,N) of KG. We show the argument for KH by an induction on i. This also
shows the argument for notH since, for all three-valued MKNF models (M,N) of any
given K, we have that (I, 〈M,N〉, 〈M,N〉)(KH) = ¬(I, 〈M,N〉, 〈M,N〉)(notH).

The base case i = 0 trivially holds, since P0 is empty and N0 is equal to KA(KG).
(i) Suppose that the property holds for all i ≤ n. We consider i = n + 1 for two

cases, namely KH ∈ Pn+1 and KH 6∈ Nn+1.
Let K H ∈ Pn+1. If K H already occurs in Pn, then K H is true in all three-

valued MKNF models (M,N) of KG, by the induction hypothesis (i). Otherwise,
KH ∈ ΓKG

(Nn), i.e., KH ∈ TKG/Nn
↑ ω but KH 6∈ Pn. Since KH is introduced by

TKG/Nn
↑ ω, we know that KH ∈ TKG/Nn

↑ j for some j, and we show by induction
on j that KH is true in all three-valued MKNF models (M,N) of KG.

The base case holds trivially, since TKG/Nn
↑ 0 is empty.

(ii) Suppose that the claim holds for all j ≤ m, and consider KH ∈ TKG/Nn
↑ m+1.

If KH already occurs in TKG/Nn
↑ m, then the claim holds automatically by the

induction hypothesis (ii). Otherwise, there are two cases to consider. Either there
is a positive rule K H ← K A1, . . .K An in KG/Nn with K Ai ∈ TKG/Nn

↑ m, or
KH is the consequence of DKG/Nn

(TKG/Nn
↑ m). In the first case, by the induction

hypothesis (ii), all K Ai are true in all three-valued MKNF models (M,N) of KG.
Additionally, there is a rule KH ← K A1, . . .K An,not B1, . . . ,not Bm in KG, and
since the positive version of this rule occurs in KG/Nn, no KBj occurs in Nn, and thus
(by the induction hypothesis (i)), all KBj are false in all three-valued MKNF models
(M,N) of KG. Consequently, KH has to be true in all three-valued MKNF models
(M,N) of KG. In the second case, OBO,S |= H with S = TKG/Nn

↑ m holds. Since
O and all modal atoms occurring in TKG/Nn

↑ m are true in all three-valued MKNF

110

6.4 The Well-Founded MKNF Model and Related Properties

models of KG (by the induction hypothesis (ii)), we can immediately conclude that
KH also has to be true in all three-valued MKNF models (M,N) of KG.

Alternatively, consider all KH 6∈ Nn+1, i.e., all KH 6∈ Γ′KG
(Pn). By Lemma 6.3,

KH ∈ UKG
(Pi,KA(KG) \Ni). By the induction hypothesis (i), we know that, for all

K B ∈ Pn, K B is true for all three-valued MKNF models of KG. Thus, in case of
(Uib), B− is false in all three-valued MKNF models of KG, and, in case of (Uic), ¬H is
true in all three-valued MKNF models of KG. In case of (Uia), the corresponding rule
with head KH still appears in the MKNF-coherent transform but some K-atom KA

appears in Ni (and is false in all three-valued MKNF models of KG by the induction
hypothesis (i)) or part of the greatest unfounded set w.r.t. (Pi,KA(KG)\Ni). Likewise,
in case of (Uii), some modal K-atom KA occurs in Ni or part of the greatest unfounded
set w.r.t. (Pi,KA(KG) \Ni). Each such K-atom is no longer derivable and thus false
in all three-valued MKNF models of KG since three-valued MKNF models minimize
derivable knowledge in the order t > u > f .

For an MKNF-consistent knowledge base KG, the pair (T, F) in Proposition 6.6 is

defined exactly in the same way as the well-founded partition, and we show below that

this correspondence indeed holds. Of course, there is still the issue of determining, based

on the iterations and the consistency of O alone, whether or not the knowledge base is

MKNF-consistent. The next theorem presents the necessary and sufficient conditions

for MKNF-inconsistency:

Theorem 6.2. Let KG = (O,PG) be a ground hybrid MKNF knowledge base, Pω the
fixpoint of the sequence Pi, and Nω the fixpoint of the sequence Ni. KG is MKNF-
inconsistent iff Γ′KG

(Pω) ⊂ ΓKG
(Pω) or Γ′KG

(Nω) ⊂ ΓKG
(Nω) or O is inconsistent.

Proof. First, we show that if any of the three conditions holds, then KG is MKNF-
inconsistent. For the two cases w.r.t. Nω and Pω, we present the proof for Nω. The
other case can be proven analogously.

From Proposition 6.4 we know that ΓKG
(Nω) = Pω. Furthermore, by Proposition

6.6, we have that all K-atoms KH ∈ Pω are true in all three-valued MKNF models
(M,N) of KG. If Γ′KG

(Nω) ⊂ ΓKG
(Nω), then there is at least one K H such that

K H ∈ ΓKG
(Nω) \ Γ′KG

(Nω). The only reason for K H not to occur in Γ′KG
(Nω) is

that there is a K-atom KA such that KA ∈ ΓKG
(Nω) \ Γ′KG

(Nω) and OBO,Nω |= ¬A.
Either KH = KA or KH and KA appear in a set U that is constructed as in the
proof of Proposition 6.6, e.g., for each rule KH ← B in KG//Nω, we have KA in B.

111

6. ALTERNATING FIXPOINT FOR THE WELL-FOUNDED MKNF
MODEL

In both cases, KA is true in all three-valued MKNF models of KG, but the addition
of all K-atoms that are not false in all three-valued MKNF models of KG (including
KA) to O derives ¬A. We conclude that KG is MKNF-inconsistent.

The third case is a direct consequence of the way evaluation of MKNF formulas
is defined: if O is inconsistent, then there is no first-order model of O. Assume that
(M,N) is a three-valued MKNF model of KG. Then, (M,N) satisfies KG and thus also
O, i.e., for each I ∈M , we have (I, 〈M,N〉, 〈M,N〉)(π(O)) = t. Since M must not be
empty, we derive a contradiction.

For the other direction, we have to show that any possibly occurring MKNF-
inconsistency is detected. So, suppose that KG is MKNF-inconsistent. If O is in-
consistent, then we are done immediately. Otherwise, the rules in PG alone cannot be
MKNF-inconsistent, since they only consist of modal atoms without any appearance of
classical negation. Likewise, rules without DL-atoms or rules without DL-atoms in at
least some head cannot be inconsistent since the derivation from the ontology O never
conflicts with any rule. Consider thus such an arbitrary DL-atom K H with a rule
KH ← KA1, . . . ,KAn,notB1, . . . ,notBm in PG. If H is true as a consequence of O,
then the operator DKG

ensures that KH is true as well, and no inconsistency occurs.

So, let H be first-order false and KH ∈ Pω, i.e., KH is true in all three-valued
MKNF models of KG. But then Γ′KG

(Nω) ⊂ ΓKG
(Nω) and the inconsistency is de-

tected. Alternatively, KH could be undefined but then KH ∈ Nω, and this is not
possible since H is first-order false and Γ′KG

suppresses KH. So the only case missing
is the one where K H is false in all three-valued MKNF models (as enforced by the
operator Γ′KG

) but the body of at least one rule with head KH is undefined. Thus
Γ′KG

(Pω) ⊂ ΓKG
(Pω).

We apply this check for consistency to our previous examples:

Example 6.15. Consider again KG from Example 6.11. We have Pω = P3 and Nω =
N3. We check for inconsistency (assuming O is consistent) and obtain Γ′KG

(Pω) =
ΓKG

(Pω) and Γ′KG
(Nω) ⊂ ΓKG

(Nω). So we (rightly) conclude that KG is inconsistent.

Now reconsider KG from Example 6.10. We have Pω = P2 and Nω = N1. We
check for consistency and obtain Γ′KG

(Pω) = ΓKG
(Pω) and Γ′KG

(Nω) = ΓKG
(Nω).

Hence, the knowledge base is consistent, and we obtain the well-founded partition

(TW , FW) = ({K CD(Tts),K int(Tts),K Rec(Tts)},

{K owns(Tts),K LowEv(Tts)}).

112

6.4 The Well-Founded MKNF Model and Related Properties

The next example shows that we in fact need both the calculations w.r.t. the two

fixpoints.

Example 6.16. Consider the MKNF-inconsistent knowledge base KG.

R v¬P (6.34)

R(a) (6.35)

K P(a)←not P(a) (6.36)

P(a) must be false from the ontology alone, and so not P(a) must hold, which immedi-
ately causes an inconsistency.

Only the test using Nω is able to detect this inconsistency. For KA(KG) = {KP(a)},
we obtain Pω = {K P(a)} and Nω = ∅ and thus Γ′KG

(Pω) = ΓKG
(Pω) = ∅ and

Γ′KG
(Nω) = ∅ ⊂ ΓKG

(Nω) = {K P(a)}.
On the other hand, the following knowledge base is also MKNF-inconsistent, but

only the test with Pω allows us to discover this.

R v¬P (6.37)

R(a) (6.38)

K P(a)←not u (6.39)

K u←not u (6.40)

For KA(KG) = {K P(a),K u} we obtain Pω = ∅ and Nω = {K u} and thus Γ′KG
(Pω) =

Nω ⊂ ΓKG
(Pω) = KA(KG) and Γ′KG

(Nω) = ΓKG
(Nω) = Pω.

The difference between the two examples is that in the first example there is a rule
with true body and false head, while in the second example there is a rule with undefined
body and false head. Each of the two conditions captures one of the cases, which explains
why two conditions need to be checked.

As already said, normal rules alone cannot be inconsistent, unless integrity con-

straints, i.e., rules whose head is Kf (cf. [Motik and Rosati, 2010]), are allowed. In this

simpler case, inconsistencies are easily detected since Kf must occur in KA(KG) \Nω.

Having established the conditions for checking MKNF-consistency, we can show

that the well-founded partition is in fact a partial partition if KG is MKNF-consistent.

Proposition 6.7. Let KG be an MKNF-consistent ground hybrid MKNF knowledge
base and (TW , FW) = (PKG

,KA(KG)\NKG
) the well-founded partition. Then (TW , FW)

is a partial partition.

113

6. ALTERNATING FIXPOINT FOR THE WELL-FOUNDED MKNF
MODEL

Proof. From Theorem 6.2 and sinceKG is MKNF-consistent, we obtain that Γ′KG
(Pω) =

ΓKG
(Pω) and Γ′KG

(Nω) = ΓKG
(Nω). Those two equalities also yield that TW ∩FW = ∅,

which shows that (TW , FW) is a partition (since TW and FW are subsets of KA(KG)).

Not only is the well-founded partition a partition, it can also be shown that the

well-founded partition yields an MKNF interpretation pair that satisfies KG.

Theorem 6.3. Let KG be an MKNF-consistent ground hybrid MKNF knowledge base
and (TW , FW) = (PKG

,KA(KG)\NKG
) the well-founded partition of KG. We have that

(IP , IN) |= KG where IP = {I | I |= OBO,PKG
} and IN = {I | I |= OBO,NKG

}.

Proof. First of all, (IP , IN) is a proper MKNF interpretation pair, i.e., since any I ∈ IN
also satisfies OBO,PKG

we obtain IN ⊆ IP . By Definition 4.9, we know that KG =
K π(O) ∧ π(PG). Since π(O) occurs in OBO,PKG

and all I ∈ IP satisfy OBO,PKG
, we

have (I, 〈IP , IN 〉, 〈IP , IN 〉)(Kπ(O)) = t for all I ∈ IP . Thus, we only have to consider
the evaluation of (I, 〈IP , IN 〉, 〈IP , IN 〉)(π(PG)).

We start by evaluating the modal atoms occurring in π(PG). Let KH ∈ π(PG).
Suppose at first that K H ∈ TW . As such (I, 〈IP , IN 〉, 〈IP , IN 〉)(K H) = t. Al-
ternatively, suppose K H ∈ FW and assume that OBO,NKG

|= H. In this case,
K H ∈ NKG

by means of DKG
, and we conclude that OBO,NKG

6|= H. Therefore,
we have (I, 〈IP , IN 〉, 〈IP , IN 〉)(KH) = f . Finally, let KH occur in NKG

but not in
TW or in FW . We know that OBO,NKG

|= H. Assume OBO,PKG
|= H. In this case,

KH ∈ PKG
by means of DKG

, and we conclude that OBO,PKG
6|= H. Therefore, we

have (I, 〈IP , IN 〉, 〈IP , IN 〉)(KH) = u.

The cases for notH ∈ π(P) proceed analogously. Indeed, if KH ∈ TW , then we have
(I, 〈IP , IN 〉, 〈IP , IN 〉)(notH) = f ; if KH ∈ TW , then (I, 〈IP , IN 〉, 〈IP , IN 〉)(notH) = t
holds; and otherwise (I, 〈IP , IN 〉, 〈IP , IN 〉)(notH) = u holds.

Now consider π(PG) which consists of a set of implications, each corresponding to
one rule in PG. To show (I, 〈IP , IN 〉, 〈IP , IN 〉)(π(PG)) = t, we only have to guarantee
that the three cases that map an implication ⊃ to false do not occur, i.e., the cases
where the body of the original rule is true but the head is not (respectively, the body is
undefined and the head is false). Assume that any of the three cases holds. If the body
of such a rule is true, then by the alternating fixpoint construction we have that the
head is true as well, contradicting these two cases. If the rule body is undefined, then
(by NKG

and the alternating fixpoint) we obtain that the head has to be undefined
or true, again contradicting our assumption. Thus, (I, 〈IP , IN 〉, 〈IP , IN 〉)(π(PG)) = t
holds.

114

6.4 The Well-Founded MKNF Model and Related Properties

This result can be combined with Proposition 6.1 to show that the well-founded

partition results in a three-valued MKNF model.

Theorem 6.4. Let KG be an MKNF-consistent ground hybrid MKNF knowledge base
and (TW , FW) = (PKG

,KA(KG)\NKG
) the well-founded partition of KG. Then (IP , IN)

is a three-valued MKNF model of KG, where IP = {I | I |= OBO,PKG
} and IN = {I |

I |= OBO,NKG
}.

Proof. We know from Theorem 6.3 that (IP , IN) satisfies KG. By Proposition 6.1, this
MKNF interpretation pair exactly corresponds to the one that equals to a three-valued
MKNF model inducing that partition. Thus (IP , IN) is a three-valued MKNF model
of KG.

In fact, (IP , IN) is the unique well-founded MKNF model, i.e., the least three-valued

MKNF model w.r.t. derivable knowledge.

Theorem 6.5. Let KG be an MKNF-consistent ground hybrid MKNF KB and (IP , IN)
the three-valued MKNF model of KG induced by the well-founded partition (TW , FW).
For any three-valued MKNF model (M,N) of KG we have (M,N) �k (IP , IN). Indeed,
(IP , IN) is the well-founded MKNF model of KG.

Proof. We have shown in Proposition 6.1 that any three-valued MKNF model (M,N)
of KG induces a partition (T, F) which in turn gives rise to the same three-valued
MKNF model (via the objective knowledge). By Proposition 6.6, KH ∈ TW implies
that KH is true (and notH is false) in all three-valued MKNF models (M,N) of KG,
and KH ∈ FW implies that KH is false (and notH is true) in all three-valued MKNF
models (M,N) of KG. We conclude that TW ⊆ T and FW ⊆ F . Furthermore, we
know that IP = {I | I |= OBO,TW

} and IN = {I | I |= OBO,KA(KG)\FW
}, and also that

M = {I | I |= OBO,T } and N = {I | I |= OBO,KA(KG)\F }. It is straightforward to see
that M ⊆ IP and IN ⊆ N , which by Definition 5.6 finishes the proof.

This central theorem not only shows that the well-founded MKNF model is unique

and well-defined, since the well-founded MKNF model is exactly the three-valued

MKNF model that is least w.r.t. �k, but also that the well-founded MKNF model

is a sound approximation of any total three-valued MKNF model and therefore of any

two-valued MKNF model. Thus, the well-founded partition can also be used in the

algorithms presented in [Motik and Rosati, 2010] for computing a subset of the knowl-

edge that holds in all partitions corresponding to a two-valued MKNF model, i.e., for

preprocessing the knowledge base in a skeptical way.

115

6. ALTERNATING FIXPOINT FOR THE WELL-FOUNDED MKNF
MODEL

Example 6.17. Consider the simple knowledge base KG.

P v Q (6.41)

K P(a)← K Q(a) (6.42)

K s← not t,not P(a) (6.43)

K t← not s (6.44)

It is easy to see (and guess and check properly) that there are two two-valued MKNF
models: one in which K s is true and all other K-atoms are false, and one in which
K t is true and all other K-atoms are false. We may also compute the well-founded
partition and obtain that K s and K t are both undefined while the other two K-atoms
are false. We can thus simplify the KB KG to the KB K′G.

P v Q (6.45)

K s← not t (6.46)

K t← not s (6.47)

In this concrete example, we reduced the search space for K-atoms, and even though
the example is simple, this kind of preprocessing can be beneficial in general.

We can also show that the well-founded partition of knowledge bases consisting of

only rules, coincides with the well-founded model of the corresponding (normal) logic

program as recalled in Chapter 2.

Theorem 6.6. Let KG be a ground program of MKNF rules, Π a normal logic program
obtained from PG by transforming each MKNF rule

KH ← KA1, . . . ,KAn,notB1, . . . ,notBm

into a rule

H ← A1, . . . , An,notB1, . . . ,notBm

of Π, (TW , FW) the well-founded partition of KG, and WΠ the well-founded model of Π.
Then KH ∈ TW if and only if H ∈WΠ, and KH ∈ FW if and only if notH ∈WΠ.

Finally, the next theorem is obtained from the data complexity results for posi-

tive non-disjunctive MKNF knowledge bases in [Motik and Rosati, 2010], where data

complexity is measured in terms of A-Box assertions and rule facts.

116

6.4 The Well-Founded MKNF Model and Related Properties

Theorem 6.7. Let K be a hybrid MKNF KB. Assuming that entailment of ground
DL-atoms in DL is decidable with data complexity C, the data complexity of computing
the well-founded partition is in PTIMEC.

For comparison, the data complexity for reasoning with two-valued MKNF models

in non-disjunctive programs is shown to be EPTIMEC where E = NP if C ⊆ NP, and

E = C otherwise. Thus, computing the well-founded partition ends up in a strictly

smaller complexity class than deriving the two-valued MKNF models. In fact, if the

description logic fragment is tractable, then we obtain a formalism whose model is

computed with a data complexity in PTIME. This is remarkable, since to the best of

our knowledge this is the only tractable local closed world extension for DLs that does

not restrict the interaction between the rules and the DL, and that is not limited to

stratified rules.

117

6. ALTERNATING FIXPOINT FOR THE WELL-FOUNDED MKNF
MODEL

118

7

Comparison to Related

Approaches

As stated in Section 1.5, there are many different approaches for combining rules and

ontologies, and many of them are based on completely different ideas. Depending on the

applications in mind, the differences may be syntactic, in the sense that they vary on

which kinds of rules are used (first-order, non-monotonic, with or without disjunctions

in the head, and so on) or on whether the flow of information between the ontology

and the rules is bidirectional or not. This defines which predicates are allowed to ap-

pear where, and differences in both these syntactic criteria may have an impact on the

semantics. But even if two approaches syntactically coincide, the semantics may differ.

It may be defined in a modular fashion in which a model consists of two components,

one component for the rules and another one for the ontology. Alternatively, a unified

semantics may be used interpreting both parts of the combination. Even within each

of these two ways of defining a semantics for rules and ontologies, there are differences,

which, intuitively, often result from different levels of caution in reasoning. E.g., ap-

proaches that are based on the well-founded semantics are usually more skeptical w.r.t.

logical consequences than approaches based on stable models.

In this chapter, we compare our semantics to the related work, considering in par-

ticular whether the four criteria for a combination of rules and ontologies spelled out in

Section 1.4 are satisfied. To make this comparison more easy to read, we add a table to

each section summarizing the results. Each table contains, for each approach presented

in the section, whether the four criteria are satisfied and, additionally, whether the

119

7. COMPARISON TO RELATED APPROACHES

semantics of the ontology is used model-wise or in terms of logical consequences.

First, our comparison presents the relation to the two-valued MKNF semantics

based on the results obtained in Chapter 6, according to which our semantics can be

considered a sound approximation of the two-valued MKNF semantics (Section 7.1).

Here, we do not present a table, since both approaches concur on all criteria anyway.

The difference is that our semantics is more skeptical in terms of derivable consequences

but has a lower computational complexity in general.

Then, several other approaches are presented, which can be divided into approaches

that are monotonic (Section 7.2) and those that are non-monotonic and mostly related

to the answer set semantics (Section 7.3). For the comparison of these with our work

we often rely on the results presented in [Motik and Rosati, 2010] and on the fact that

our work is a sound approximation of the two-valued MKNF semantics. In fact, in

[Motik and Rosati, 2010] it is shown that hybrid MKNF can capture most of the other

major approaches, in the sense that encodings can be provided such that the original

knowledge base in the respective approach is satisfiable if and only if the encoding in

hybrid MKNF is MKNF satisfiable. Usually, these encodings are based on the more

general hybrid MKNF+ knowledge bases that allow us to express first-order knowledge

in rules and admit more general modal atoms (see Section 4.4).

Apart from that, there are a few semantics that are not captured by the work in

[Motik and Rosati, 2010] but that are of major interest for our work because they are

based on the Well-Founded Semantics, namely hybrid rules [Drabent and Ma luszyński,

2007, 2010], the well-founded semantics for dl-programs [Eiter et al., 2004, 2011], and

the well-founded semantics for normal dl-programs [Lukasiewicz, 2010]. Since our ap-

proach is not defined for MKNF+ knowledge bases, we are not able to provide similar

technical results showing that our approach captures the former three, but we never-

theless provide a correspondence based on the results presented in [Motik and Rosati,

2010] (Section 7.4).

There are further approaches that extend DL with non-monotonic reasoning, but

that do not rely on rules. For that reason and since most of them are incomparable

to our approach in terms of expressiveness, we only mention these here and do not

compare them in more detail.

Default Logic [Reiter, 1980] is used in [Baader and Hollunder, 1995] to extend DLs

with default rules. It is shown that open defaults (default rules with free variables)

120

7.1 Two-valued MKNF semantics

lead to undecidability of the standard reasoning problems, and an restriction of the ap-

plication of defaults to known individuals is introduced (thus following the same idea

that is used for DL-safety) to regain decidability. MKNF logics can also be used to

represent the embedding of modal operators into DLs directly. In [Donini et al., 2002],

ALCKNF is presented that extends the DL ALC with the operators K and A, where A

can be considered semantically equivalent to ¬not. Defaults, exceptions, and integrity

constraints can be expressed directly in the DL and this is used, e.g., in [Grimm and

Hitzler, 2008] for semantic matchmaking of Web resources. As spelled out in [Motik

and Rosati, 2010], even though hybrid MKNF and ALCKNF are both based on MKNF

logics, their expressiveness is not compatible. Circumscription [McCarthy, 1980] as for-

malized in second-order logic can be used as a framework for non-monotonic reasoning

[Ferraris et al., 2011]. In [Bonatti et al., 2006, 2009], the computational complexity of

reasoning in DLs with circumscription is studied, and several undecidability results are

presented together with the restrictions to regain decidability. In [Grimm and Hitzler,

2009], a preferential tableau calculus for ALCO with circumscription is presented. An

extension of [Bonatti et al., 2006, 2009] is provided in [Krisnadhi et al., 2011b], which,

in contrast to previous proposals, is applicable to SROIQ without rendering reasoning

over the resulting language undecidable.

7.1 Two-valued MKNF semantics

As already stated, the two-valued MKNF semantics satisfies the four criteria for a

combination of rules and ontologies, i.e., it is faithful, tight, flexible, and decidable.

The same criteria hold for our approach, but there are two differences in the details

w.r.t. these criteria.

First, as already pointed out, the two-valued MKNF semantics is defined for a

more expressive combination of rules and ontologies, i.e., MKNF+ KBs and general

MKNF KBs are considered that only under certain conditions are decidable (see Defi-

nition 4.13). Our semantics is only defined for a specific decidable subset of the general

MKNF KBs that suits our adaptation of the Well-Founded Semantics. One conse-

quence is that the two-valued MKNF semantics is more expressive and more general.

Our semantics can, in principle, be extended to incorporate some of the expressive

121

7. COMPARISON TO RELATED APPROACHES

features of general hybrid MKNF KBs, such as classical negation in modal atoms oc-

curring in MKNF rules, but then the corresponding constructors have to be available

in the considered DL and decidability must not be affected.

Second, by construction, the faithfulness is satisfied for different semantics. Both

approaches are faithful to the two-valued first-order semantics of DL languages, but

the two-valued MKNF semantics is faithful w.r.t ASP while our approach is faithful

w.r.t. the Well-Founded Semantics (Theorem 6.6).

The different underlying LP semantics is also the cause for several further differences

between the two MKNF semantics. Just as in the case of SMS and WFS of normal

logic programs, there usually exist several two-valued MKNF models that have to be

guessed, but there is only one well-founded MKNF model that can be computed. This

is the main reason that, in general, our well-founded MKNF semantics has a better

data complexity than the two-valued MKNF semantics.

Furthermore, even though there are MKNF-inconsistent KBs, whereas every normal

logic program has a well-founded model, there are still KBs for which there exists the

well-founded MKNF model but no two-valued MKNF model. This carries over from

LP and one simple example is the single MKNF rule K p ← not p with the unique

well-founded MKNF model in which p is undefined, but without any two-valued MKNF

models.

Moreover, in LP, the WFS is more skeptical than SMS and the same holds for

hybrid MKNF knowledge bases. Consider a KB K consisting of a set of MKNF rules.

K p← not q (7.1)

K q← not p (7.2)

K r← K q (7.3)

K r← K p (7.4)

In the well-founded MKNF model of K all modal atoms appearing in them are unde-

fined, but there are two two-valued MKNF models of K, one in which Kp and Kr are

true, and one in which Kq and Kr are true. Thus, Kr is a logical consequence of the

two-valued MKNF semantics but not of our well-founded MKNF semantics.

This is intended since the well-founded MKNF model is the least three-valued

MKNF model among all three-valued MKNF models, and these include the total three-

valued MKNF models corresponding to the two-valued MKNF models. In other words,

122

7.2 Combinations with First-Order Rules

Approach Faithful Tight Flexible Decidable DL Reasoning

AL-log yes no no yes on models
CARIN yes no no yes on models
SWRL yes yes no no on models
DL-safe Rules yes yes no yes on models
DLP yes yes no yes on models
DL Rules yes yes no yes on models
ELP yes yes no yes on models
Nom. Schema yes yes no yes on models

Figure 7.1: Comparison of combinations of ontologies with monotonic rules.

the well-founded MKNF semantics is sound w.r.t. the two-valued MKNF semantics (see

Theorem 6.5).

7.2 Combinations with First-Order Rules

There exists a large amount of approaches that combine ontologies with first-order rules.

Such combinations, by definition, do not allow any non-monotonic reasoning capabilities

and are, therefore, not closely related to our work. In fact, none of them satisfies

the criterion of flexibility (Section 1.4) and expressing defaults and exceptions is not

possible. It is shown in [Motik and Rosati, 2010], that all such first-order combinations

of rules and DLs can be captured by special MKNF+ knowledge bases that do not

contain any modal atoms in the MKNF+ rules. Such a representation in MKNF+

can then be translated into a hybrid MKNF knowledge base to which the standard

reasoning algorithms can be applied [Motik and Rosati, 2010]. We can conjecture that

this correspondence carries over to our three-valued semantics since there exists only

one two-valued MKNF model for such knowledge bases without modal atoms. For

each such model we obtain a corresponding total three-valued MKNF model – the well-

founded MKNF model – provided that shifting the respective first-order constructs

from rules to the DL is syntactically possible and decidable.

Next, we briefly recall the most important such combinations of ontologies and first-

order rules because some of the ideas have been reused for non-monotonic combinations

and because some recent work extends the expressiveness of DLs with constructs that

123

7. COMPARISON TO RELATED APPROACHES

can be translated into rules. Fig. 7.1 summarizes the obtained results. We note that,

due to the limitation to monotonic rules, all approaches are faithful, not flexible, and

reason on models.

7.2.1 AL-log

One of the first systems combining rules and ontologies is AL-log [Donini et al., 1991,

1998]. In this approach, a knowledge base K = (O,P) consists of an ontology in

the DL ALC, also called the structural subsystem, and a constrained Datalog pro-

gram P, also called the relational subsystem. Rules r in P are function-free, defi-

nite rules γ = H ← A1, . . . , An together with a (possibly empty) set of constraints

C1(t1), . . . , Cm(tm), where each Cj is an ALC concept description and each tj is a con-

stant or a variable. Constraints on variables v are intended to restrict the possible

values of v, while constraints on constants a impose a condition on a.

Such a knowledge base must also guarantee the following conditions: First, the

predicate symbols in the relational and in the structural subsystem must be disjoint;

second, the set of used constants must be identical in both, and each constant appearing

in P must appear in O (if necessary, appropriate assertions may be added); and third,

for each constrained rule r of the form γ&C1(t1), . . . , Cm(tm), if tj is a variable then tj

appears in γ. By the first condition, it is immediately clear that rules are defined on

top of the ontology. In other words AL-log is not a tight approach. The third condition

can be interpreted as DL-safety – if there is variable appearing in a construct (normally

a DL-atom, here a constraint), then this variable has to appear also in a non-DL atom.

The semantics is defined based on pairs (I,H) where the first-order interpretation I
interprets O and the Herbrand interpretation H handles the (unconstrained) Datalog

rules P. Such a pair (I,H) is a model of K = (O,P) if I is a model for O and,

for each ground γ&C1(t1), . . . , Cm(tm), either there is Cj(tj) such that Cj(tj) is not

satisfied by I or else γ is satisfied by H. Based on this semantics, queries, which

are sets containing atoms and constraints, can be answered in AL-log returning a

set of variable substitutions. We note that the system does not work simply on logical

consequences of the DL but reasons by cases, thus allowing the derivation of information

from incomplete knowledge, such as disjunctions. It is shown that query-answering is

decidable in AL-log, and a procedure based on resolution is defined [Donini et al., 1998].

124

7.2 Combinations with First-Order Rules

7.2.2 CARIN

Another system, CARIN [Levy and Rousset, 1996, 1998], is rather similar to AL-log in

the sense that it also combines Datalog rules with an ontology (in the more expressive

DL ALCNR) where rules are defined on top of the ontology. Thus, CARIN is not tight

either, but this approach is nevertheless closer to a tight integration. Instead of using

constraints to include information from the ontology in the rules, ontology predicates

are allowed to appear in the body of the Datalog rules, and the semantics is defined

using one first-order interpretation that interprets both the ontology and the rules.

Such an interpretation is a model of a given combined knowledge base if it satisfies

both its components.

For reasoning, the unique name assumption is applied, and the reasoning problem

considered is called existential entailment and can be understood as answering (con-

junctive) queries. The algorithm itself builds an initial constraint system, and applies

propagation rules in a tableau style to obtain one or several non-clashing completions.

Then, each such completion can be used to evaluate the Datalog rules for deriving more

ground facts. One of the benefits is that the resulting system may be able to derive

information from a rule even though none of its instantiated rule bodies is true.

For general recursive rules, reasoning is undecidable, but without recursion decid-

ability is obtained. Decidability can also be obtained in case of recursive rules, if either

certain combinations of DL constructors are not allowed, or by employing role-safe

rules. Rules are role-safe if, in every role atom, at least one variable that appears in

the role atom also appears in an atom that appears neither in a rule head nor is it

constructed using a concept or a role name.

7.2.3 SWRL

Probably the most expressive approach among those that combine ontologies and

first-order rules is the Semantic Web Rule Language (SWRL) [Horrocks and Patel-

Schneider, 2004; Horrocks et al., 2004]. It combines the ontology language OWL DL

with first-order rules in which atoms may be of the form C(x), P (x, y), sameAs(x, y),

differentFrom(x, y), or builtIn(r, x, ...) where C is an OWL description or data

range, P is an OWL property, r is a built-in relation, x and y are either variables,

OWL individuals or OWL data values, as appropriate. The built-in predicates may be

125

7. COMPARISON TO RELATED APPROACHES

used to permit arithmetic operations. C may in fact be any complex class description

in OWL DL but this can be avoided by introducing new concept names and adding an

appropriate equivalence axiom to the ontology. Likewise, sameAs and differentFrom

atoms can be considered syntactic sugar given the expressiveness of the DL. In terms of

semantics, the standard first-order semantics of OWL DL is simply extended to rules,

which requires adding a specification on variable bindings.

There is no division on the admissible predicates defined in rules, i.e., the approach

is a tight combination. Rules have to be safe, which means that variables appearing

in the head of the rule have to appear in the body of it, but it is also stated, e.g., in

[Horrocks et al., 2004] that, given the expressive power of OWL DL, this is no real

limitation of the expressiveness on this tight combination of rules and ontologies. In

fact, SWRL is undecidable.

7.2.4 DL-safe Rules

To overcome the problem of undecidability for SWRL, in [Motik et al., 2005], DL-

safety is introduced. This is the very same restriction used to maintain decidability for

hybrid MKNF knowledge bases. The notion results from a generalization of one of the

restrictions on AL-log knowledge bases and, as pointed out in [Motik et al., 2005], it

does not restrict the language of each of its two components but merely restricts the

interface between them.

DL-safety is obtained by splitting the predicates into DL and non-DL atoms (in the

same way as in Definition 4.8) and ensuring that each variable that occurs in a rule

also occurs in a non-DL atom in that rule. This guarantees that rules are only applied

to individuals appearing explicitly in the knowledge base. The approach remains tight,

since DL atoms may appear in the rule head. In practice, DL-safety can be achieved

by adding, for each variable x appearing in a rule, a special non-DL atom O(x) to the

body of the rule and by adding, for all individuals a that appear in the knowledge base,

O(a) to the KB. Alternatively, it can be required that each variable assignment binds

all variables only to individuals appearing in the knowledge base.

In [Motik et al., 2005], an algorithm for query answering is defined for a combination

of the DL SHIQ and DL-safe rules, which is based on a reduction of the DL knowledge

base to disjunctive logic programs.

126

7.2 Combinations with First-Order Rules

7.2.5 DLP

While the reasoning algorithm devised in [Motik et al., 2005] is novel, the idea of

translating or reducing a DL fragment into rules is not. In fact, the language DLP

[Grosof et al., 2003] (see Section 3.3), which corresponds to the OWL 2 profile OWL

RL, is a DL fragment with precise restrictions on the admitted constructors such that

it can be translated directly into rules. This obviously reduces the expressiveness but

no further restriction to obtain decidability is required. The resulting language is also

called def-Horn and it corresponds to function-free Horn logic, which can be considered

a generalization of the previously mentioned Datalog programs that not only allows to

derive atomic information but also more complex expressions.

Such an approach is, strictly speaking, not a combination of ontologies and rules but

a DL fragment that is translatable into rules making it difficult to verify the criteria

presented in Section 1.4 as such. However, we may combine a DLP ontology with

another DLP ontology already translated into rules and the result is still DLP and a

faithful, tight, and decidable combination of ontologies and rules. Thus, the approach

satisfies the same criteria as DL-safe rules but the expressiveness is reduced while

computational complexity is favorable in comparison.

7.2.6 DL Rules

Given the idea of DLP, one may ask whether it is possible to generalize the idea to

more expressive rules. DL Rules [Krötzsch, 2010; Krötzsch et al., 2008a,b] tackles

exactly the problem of finding SWRL fragments that are expressible in a certain DL

fragment. Each description logic leads to a different set of DL rules, and it is shown that

reasoning in the resulting set of rules is in general of the same computational complexity

as the corresponding DL fragment. The key idea of DL rules is that the connections

of variables in rule bodies are restricted to certain tree-shaped structures. For each

binary predicate, the first and the second variable are connected with a directed edge,

where each variable corresponds to one vertice in the graph. As an example consider

the rule r(x, y)← s(x, y), p(y), t(x, z) in which variables form the tree y← x→ z. For

a rule that is not tree-shaped, consider r(x, y)← s(x, y), p(y, z), t(x, z) in which there

exist two paths from x to z.

127

7. COMPARISON TO RELATED APPROACHES

It turns out that allowing role constructors in the DL is very useful to capture frag-

ments of SWRL and, if done carefully, computational complexity is not affected. Im-

portant role constructors are concept products (C×D), where C and D are concept ex-

pressions, to create roles from concepts directly, or role conjunctions RuS, where R and

S are simple roles, that can be used to express rules, such as T(x, y)← R(x, y), S(x, y),

straightforwardly. DL rules, as presented in [Krötzsch, 2010], range from the highly ex-

pressive general SROIQ(Bs,×) to the tractable SROEL(us,×) for which a reasoning

algorithm is provided.

Due to the argument presented for DLP, DL rules are also faithful, tight, and

decidable.

7.2.7 ELP

Given that DL rules extend the expressiveness of the corresponding fragment, one may

consider combining DL rules with DL-safe rules. The result is DL+safe rules [Krötzsch,

2010] and it is shown that, e.g., satisfiability checking in SROIQ+rules is not harder

than in SROIQ itself. So DL+safe rules do not necessarily increase the computational

complexity of reasoning but for certain concrete cases, such as tractable DLs, this is no

longer the case. In fact, satisfiability checking in DL-safe rules is already NP-complete

(see [Krötzsch, 2010]).

A tractable combination of SROEL(us,×) with DL-safe rules is obtained by ELP

[Krötzsch, 2010; Krötzsch et al., 2008b]. Tractability is achieved by limiting the other-

wise arbitrary combinations of atoms in the bodies of DL-safe rules. This can be done

by limiting the number of variables occurring in each rule. DL-safety is built directly

into the semantics by defining a set of variables that can only be mapped to known

individuals, which allows us to regain a tree-shaped structure in the rule body.

ELP is of particular interest since it subsumes both of SROEL and DLP thus

providing a restricted interface between a tractable DL and a tractable DL that can

be interpreted as rules, even though the naive combination of these two approaches is

intractable. ELP also satisfies all criteria apart from flexibility.

7.2.8 Nominal Schema

ELP is a hybrid approach which means that it is not possible to integrate it directly into

existing frameworks defined only for ontology languages. To overcome this problem,

128

7.3 Ontologies and Non-Monotonic Rules

nominal schemas [Krötzsch et al., 2011] have recently been defined. The idea behind

nominal schemas is to introduce variables explicitly into DL syntax but restrict their

appearance to the syntactic construct of nominals. Then, nominal schemas can be

grounded only to individuals occurring in the DL, i.e., such nominal schemas can be

considered as nominal variables to which only known individuals can be bound where all

occurrences of a nominal schema in one axiom are bound to the same individual. This

is quite similar to DL-safe variables only that a nominal schema is a new constructor

that seamlessly integrates with DL notation.

For example, a rule such as C← hasParent(x, y), hasParent(x, z), isMarried(y, z)

that defines the class C of persons whose parents are married can now be expressed in

DLs with nominal schema (and boolean constructors) as follows.

∃hasParent.{z} u ∃hasParent.∃isMarried.{z} v C (7.5)

A general language SROIQV(Bs,×) is defined that extends the expressiveness of

SROIQ, i.e., OWL 2, and the computational complexity of SROIQ is maintained.

Additionally a tractable language SROELVn(u,×) is defined where n is the bounded

number of unsafe occurrences of nominal schemas in each axiom and a safe occur-

rence is of a specific syntactic form (see [Krötzsch et al., 2011]). It is also shown that

SROELV3(u,×) suffices to incorporate SROEL and DLP , i.e., two of the tractable

profiles of OWL 2.

7.3 Ontologies and Non-Monotonic Rules

The approaches in the previous section already require sophisticated restrictions to

achieve decidability even though only first-order rules are considered, which by defi-

nition are more closely related to DLs than non-monotonic rules. In this section, we

are recall the most important semantics for combining non-monotonic rules and DLs,

which are mostly based on the stable model semantics of LP. Many of these approaches

are captured by two-valued hybrid MKNF+ knowledges and we point out in each case

the correspondence.

129

7. COMPARISON TO RELATED APPROACHES

Approach Faithful Tight Flexible Decidable DL Reasoning

DL+log yes yes no yes on models
G-hybrid yes yes no yes on models
QEL yes yes no no on models
Dl-programs yes limited limited yes log. conseq.
Disjunctive dl-programs limited yes yes yes on models
Embeddings in AEL yes yes yes no log. conseq.
Hybrid MKNF yes yes yes yes log. conseq.

Figure 7.2: Comparison of combinations of ontologies with non-monotonic rules based
on stable models.

7.3.1 DL+log

One of the first combinations of non-monotonic rules and ontologies is called r-hybrid

knowledge bases [Rosati, 2005], which is extended to DL+log [Rosati, 2006]. DL+log

combines disjunctive Datalog that also admits the usage of default but not classical

negation in rules with an arbitrary (decidable) DL. A knowledge base K consists of an

ontology O and a set of rules P, where each rule r is of the following form1:

p1(~x1)∨. . .∨pn(~xn)← r1(~y1), . . . , rm(~ym), s1(~z1), . . . , sk(~zk),notu1(~w1), . . . ,notuh(~wh)

such that n ≥ 0, m ≥ 0, k ≥ 0, and h ≥ 0, the ~xi, ~yi, ~zi, and ~wi are tuples of variables

and constants, each pi a DL or a non-DL predicate, each si a DL predicate, and each

ui and si a non-DL predicate. Additionally, each variable must appear in some ~yi or ~zi
(rule safety) and every variable appearing in some ~xi of r must appear in at least one

of the ~yi (weak safety). The latter notion is weaker than DL-safety, since there may

exist variables that only appear in a DL-atom in the body of a rule. The standard rule

safety ensures nevertheless that there is no variable only appearing in a default negated

atom.

The semantics defined in [Rosati, 2006] for DL+log applies the standard name

assumption. The non-monotonic semantics2 considers interpretations, and it is based
1We overload the meaning of not – here and in the sequel the symbol is used synonymously as

default negation and the modal operator in MKNF.
2There is also a monotonic semantics defined in [Rosati, 2006], which, due to its monotonic nature

is of no interest here.

130

7.3 Ontologies and Non-Monotonic Rules

on the definition of a projection, which intuitively simplifies the program by evaluating

the DL-atoms. Given a ground program PG and an interpretation I, the projection of

PG with respect to I, denoted Π(PG, I), is the ground program obtained from PG as

follows. For each rule r ∈ PG:

• delete r if there exists a DL-atom p(~t) in the head of r such that ~t ∈ rI ;

• delete each DL-atom p(~t) in the head of r such that ~t 6∈ rI ;

• delete r if there exists a DL-atom s(~t) in the body of r such that ~t 6∈ sI ;

• delete each DL-atom s(~t) in the body of r such that ~t ∈ sI ;

The resulting program is free of DL-atoms, and I is a model of K if I is a model of O
and I restricted to the non-DL predicates is an answer set (see Section 2.4) of Π(PG, I).

The semantics is faithful, tight, and decidable (due to the safety restrictions) but it is

not flexible, even though, unlike the approaches in the previous section, non-monotonic

default negation is allowed. However, non-monotonic reasoning is by definition re-

stricted to non-DL atoms, i.e., no default reasoning over information appearing in the

DL is possible.

In [Motik and Rosati, 2010], it is shown that hybrid MKNF+ knowledge bases can

capture DL+log by transforming each rule into an MKNF+ rule substituting non-DL

atoms by modal atoms (atoms A are replaced by KA and atoms with default negation

simply maintain the not) while DL atoms are transformed into first-order atoms. The

MKNF+ KB obtained from such a transformation is satisfiable if and only if the original

DL+log KB is satisfiable. It should be noted that this correspondence does not mean

that DL+log and hybrid MKNF are equivalent.

Example 7.1. Consider the knowledge base K, from which, in case of DL+log, we can
derive p.

R v S t T (7.6)

R(a)← (7.7)

p← S(a) (7.8)

p← T(a) (7.9)

If we consider the KB as a hybrid MKNF KB and simply substitute all atoms in the
rules by modal atoms, then p is not derivable since neither S(a) nor T(a) are logical

131

7. COMPARISON TO RELATED APPROACHES

consequences of K. Only if we follow the outlined transformation and keep S(a) and T(a)
as first-order atoms, then p is derivable. Of course, the result of such a transformation
is an MKNF+ knowledge base.

The problem pointed out here is that some approaches, such as our semantics for

hybrid MKNF knowledge bases, considers only logical consequences of the DL part,

while other semantics, such as DL+log, do consider just any possible model of the DL

part.

7.3.2 Guarded Hybrid Knowledge Bases

For r-hybrid knowledge bases and DL+log knowledge bases, decidability is achieved by

restricting to, respectively, DL-safety and weak DL-safety, and by further restricting

non-monotonic reasoning to non-DL atoms. The work on guarded hybrid knowledge

bases (g-hybrid knowledge bases) [Heymans et al., 2008a] loosens this restrictions, and

is based on open answer set programming [Heymans et al., 2008b].

A g-hybrid knowledge base K = (O,P) consists of a DL knowledge base O and a

guarded program P of rules of the form:

H1 ∨ notH2 ∨ . . . ∨ notHl ← A1, . . . , An,notB1, . . . ,notBm

where all Hk, Ai, and Bj are first-order atoms, and each (positive or negative) part of

the rules may be empty. The restriction to one unique positive literal in the head ensures

that the adaptation of the GL-transformation results in a non-disjunctive program,

while the presence of default negation in the head is required to integrate first-order

reasoning into the framework. Decidability is achieved by having one atom Ai (DL or

non-DL) function as a guard, i.e., all variables occurring in the rule also occur in the

guard. The only exception to that are choice rules of the form H ∨ notH ←.

The semantics is based on the open answer set semantics, i.e., Herbrand interpre-

tations with an open domain are considered and the semantics is defined by applying

the usual GL-transformation. DL atoms in the rules are preprocessed in the very same

way as in the case of DL+log, using the projection. Here, this projection also has to

handle the DL atoms with default negation, but it does that by interpreting the default

negation classically. A model of the combined KB K is again a model of O, and an

answer set of the result of the (extended) projection. Thus, this approach is also not

flexible.

132

7.3 Ontologies and Non-Monotonic Rules

An algorithm is provided that translates the DL language into a guarded program,

and in [Heymans et al., 2008a] the non-standard language DLRO−{≤}, which allows

n-ary roles and role conjunctions but no number restrictions, is used as a show case.

The approach is less restrictive on the rules but requires the DL to be translatable into

guarded programs.

Closely related to g-hybrid KBs is a variant based on forest logic programs [Heymans

et al., 2007] that is called f-hybrid knowledge bases [Feier and Heymans, 2009]. In forest

logic programs, rules are syntactically restricted to a form that is tree-shaped and as a

result the guard can be dropped from the rules without affecting decidability. F-hybrid

knowledge bases combine a SHOQ knowledge base and a forest logic program. The

semantics is based on the same first-order projection and open answer sets, and for

reasoning the SHOQ is translated into a forest logic program.

7.3.3 Quantified Equilibrium Logics

The approaches presented so far in this section are all variants of the same main idea for

combining non-monotonic rules and ontologies, only varying on the restrictions applied

to ensure decidability and the domain used. In [de Bruijn et al., 2007b], quantified

equilibrium logics (QEL) [Pearce and Valverde, 2005] is adapted to incorporate r-hybrid

and g-hybrid knowledge bases and DL+log into one unifying framework.

Knowledge bases K consist of an ontology O and a program of rules of the form

H1 ∨ . . . ∨Hk ∨ ¬Hk+1 ∨ . . . ∨ ¬Hl ← A1, . . . , An,¬B1, . . . ,¬Bm

where all Hi, Ai, and Bi are function-free, first-order atoms. The negation in the head

is interpreted classically if the negated atom is a DL atom, and non-monotonically

otherwise. To obtain the semantics, the stable closure of K is defined by adding, for

all DL predicates P , ∀~x.(P (~x)∨¬P (~x)) to K, and each of the semantics is obtained by

varying the notion of a model in QEL.

As such, the approach is not flexible either, but, in general, it is also undecidable

since decidability is not a primary concern in [de Bruijn et al., 2007b]. Instead, the

unifying framework is provided, and for decidability the solutions applied in each of

the captured approaches are referenced.

133

7. COMPARISON TO RELATED APPROACHES

7.3.4 dl-programs

An entirely different approach is called dl-programs [Eiter et al., 2008b]. In this ap-

proach, a knowledge base K consists again of a DL knowledge base O and a program

P containing (non-disjunctive) dl-rules of the form

H ← A1,← An,notB1, . . . ,notBm

where H is a first-order atom or a classically negated atom, and all Ai and Bj are

first-order atoms, classically negated atoms, or special dl-atoms to query the ontology.

Note that the sets of predicates is divided into disjoint sets of DL predicates, which

only appear in dl-atoms and in O, and non-DL predicates, so that dl-atoms are the only

means of transferring information between the ontology and the rules. Such dl-atoms

are of the form

DL[S1 op1 p1, . . . , Sl opl pl;Q](~t)

where Si are DL predicates, pi are non-DL predicates, opi ∈ {],∪- ,∩-}, Q is an n-ary DL

predicate, and ~t a vector of n terms. The intuitive idea is that we query the ontology

for Q(~t) where certain ontology predicates Si are altered by information derived in

the rules. Intuitively,] is used to augment Si with the derived knowledge from pi; ∪-
augments ¬Si with the derived knowledge from pi and ∩- augments ¬S with what is

not derived in pi.

The semantics of dl-programs is based on the answer set semantics using Herbrand

interpretations. To apply the answer set semantics to dl-programs the only open prob-

lem is the interpretation of the dl-atoms. For that, a dl-query Q(t) is defined to be

either (a) a GCI F or its negation ¬F ; (b) of the forms C(t) or ¬C(t), where C is

a concept, and t is a term; (c) of the forms R(t1, t2) or ¬R(t1, t2), where R is a role,

and t1 and t2 are terms; or (d) of the forms = (t1, t2) and 6= (t1, t2), where t1 and t2

are terms. Note that, in the case of (a), t is empty. Given an Herbrand interpretation

I, a ground dl-atom DL[λ;Q](~c) with λ = S1 op1 p1, . . . , Sl opl pl is satisfied in I iff

O(I;λ) = O ∪
⋃m
i=1Ai(I) |= Q(~c), and, for 1 ≤ i ≤ m,

Ai(I) =


{Si(~e) | pi(~e) ∈ I}, if opi =];
{¬Si(~e) | pi(~e) ∈ I}, if opi = ∪- ;
{¬Si(~e) | pi(~e) 6∈ I}, if opi = ∩- .

134

7.3 Ontologies and Non-Monotonic Rules

As a simple example consider that the rules contain a fact p(a) and the DL an axiom

C v D. Then, a dl-atom DL[C] p;D](a) can be derived to be true. Thus, dl-atoms

are used as interfaces between the ontology and rules: information derivable in the DL

can be queried for in the rules, while information in the rules can be passed to the DL

via λ. However, this transfer is limited in the sense that it is not stored. This means

that if a certain piece of information from the rules is to be used for each dl-query, then

it has to be added explicitly each time in the corresponding dl-atom.

DL-atoms can be split into monotonic ones – those containing only] and ∪- – and

non-monotonic ones – those containing at least one occurrence of ∩- since an increasing

set pi would decrease derivable consequences on ¬Si. Two different answer set seman-

tics are defined depending on whether all dl-atoms or only the non-monotonic ones are

treated by the GL-transformation. In the strong answer set semantics the transforma-

tion is only extended to reduce non-monotonic dl-atoms, while in the weak answer set

semantics all dl-atoms are removed from the transform.

It is also shown that weak answer sets are not minimal due to possibly occurring

loops in the monotonic dl-atoms, and it is argued in [Eiter et al., 2008b] that weak

answer sets are less preferable but may still be a reasonable choice if no information

about the monotonicity of dl-atoms is available. Moreover, in [Wang et al., 2010] it is

shown that this problem carries over to strong answer sets of dl-programs. Consider a

knowledge base K = (∅,P) where P contains the rule:

p(a)← DL[c] p, b ∩- q; c u ¬b](a). (7.10)

Then, both ∅ and {p(a)} are strong (and weak) answer sets where the latter is not

intended. This is the result of the fact that the circular dependency between c and p

is removed in the transform. The solution to that problem is either using canonical

answer sets based on loop formulas [Wang et al., 2010] or not to use the operator ∩- at

all.

In [Eiter et al., 2008b], dl-programs are defined for the DLs underlying OWL DL

and OWL Lite. But the approach is applicable to any decidable DL. The approach

itself is faithful and decidable, but only to some extent tight and flexible. As argued in

[Motik and Rosati, 2010], rules cannot derive new facts about DL predicates. They can

only pose conditional queries to the DL. Moreover, we can never derive non-monotonic

consequences for DL predicates directly. Instead, we have to use the interfaces, which

135

7. COMPARISON TO RELATED APPROACHES

may appear under default negation. Additionally, there are indirect effects of using the

non-monotonic operator ∩- , but only if we do not disallow it to avoid the problems just

described. Thus, the approach is only flexible with some limitations. Nevertheless, the

work is of considerable importance, also due to the fact that it has been generalized in

hex-programs [Eiter et al., 2006] where interfaces can be created to arbitrary external

sources.

Finally, in [Motik and Rosati, 2010], a transformation from dl-programs K to MKNF

knowledge bases K′ allowing for arbitrary modal atoms is defined, and it is shown that

K has a strong answer set if and only if K′ has a two-valued MKNF model. The

transformation is restricted to knowledge bases without ∩- , and it transforms all rule

atoms into modal atoms using K and not, where dl-atoms A are transformed as follows:

τ(A) =
(
π(O) ∧

∧
τ(Siopipi)

)
⊃ Q(~t) where

τ(Si, opi, pi) =

{
∀~x : pi(~x) ⊃ Si(~x) if opi =]
∀~x : pi(~x) ⊃ ¬Si(~x) if opi = ∪-

Since O is included in the translation of each dl-atom, we obtain that K′ = (∅,P ′).

7.3.5 Disjunctive dl-Programs

Though similar in name, disjunctive dl-programs [Lukasiewicz, 2007, 2010] and their

rationale are completely different from dl-programs. In fact, the work aims at using

vocabulary from formal ontologies in rule-based systems without any restrictions, and

the idea to achieve this is to view the integration from the perspective of rules rather

than from DLs as it is usually done.

In this approach, a knowledge base K = (O,P) consists of an ontology O and a

disjunctive program without classical negation as before but, in particular, without any

DL-atoms. There is no separation of the predicates, i.e., one alphabet is used for the

entire KB.

The semantics is straightforwardly defined, following the idea of viewing the integra-

tion from the perspective of the rules. Only Herbrand interpretations are considered.1

Such an Herbrand interpretation I is a model of a DL knowledge base O if and only if
1To be precise, the approach considers finite domains that may contain more elements than those

appearing in K but without loss of generality, we can assume that the domain is exactly the set of all

constants appearing in K.

136

7.3 Ontologies and Non-Monotonic Rules

O ∪ I ∪ {¬a | a ∈ HBPG
\ I} is satisfiable. This means that the ontology is not used

to derive arbitrary knowledge, but that it is precisely defined to verify only atoms and

their default negations w.r.t. the ontology. Given a disjunctive dl-program K = (O,P),

I is a model of K if and only if I is a model of O and P, and I is an answer set if I is

a minimal model of the usual GL-like transform.

The approach does, indeed, not consider any restrictions such as DL-safety or forest-

structures on the considered KBs. But for decidability in rules, it requires that the

set of considered constants is finite, i.e., in the algorithm a finite subset I of HBPG
is

considered, and it is verified whether I is a minimal model. Consequently, the approach

is tight, flexible, and decidable, but only faithful to some extent [Motik and Rosati,

2010]. The entailment relation is only defined for atoms, but not, e.g., for classically

negated atoms. This is not really surprising given that I is not used for derivations

apart from atoms.

A technically advanced encoding of disjunctive dl-programs in MKNF is given (see

Definition 7.3 in [Motik and Rosati, 2010]) showing that a disjunctive dl-program K
has an answer set if and only if its MKNF encoding is MKNF satisfiable.

7.3.6 Embeddings in Autoepistemic Logic

Another approach related to hybrid MKNF is based on first-order autoepistemic logic

(AEL) [Konolige, 1991; Moore, 1985]. Several embeddings of non-ground logic pro-

grams into first-order AEL are defined and the results are lifted from logic programs to

combinations of first-order theories, such as DLs, and logic programs [de Bruijn et al.,

2007a, 2011].

No computational properties are known, and, in [Motik and Rosati, 2010], it is

conjectured that the encoding of propositional AEL into MBNF logics [Rosati, 1999]

can be easily adapted to MKNF and that it might be possible to establish a similar

encoding for first-order AEL and use it to provide an algorithm in MKNF for these

embeddings. However, no concrete result has been established yet. It seems that the

embedding τ∨EH with epistemic rule bodies and epistemic rule heads and, additionally

without unique name assumption, is the one most closely related to hybrid MKNF, not

only syntactically but also with respect to the semantic consequences, but even that is

not a precise correspondence (see [de Bruijn et al., 2011]).

137

7. COMPARISON TO RELATED APPROACHES

Approach Faithful Tight Flexible Decidable DL Reasoning

Hybrid Rules yes no no yes on models
Dl-programs yes limited limited yes log. conseq.
Normal dl-programs limited yes yes yes log. conseq.
Hybrid MKNF yes yes yes yes log. conseq.

Figure 7.3: Comparison of combinations of ontologies with non-monotonic rules based
on well-founded semantics.

7.4 Combinations based on the Well-Founded Semantics

There are only a few approaches combining rules and ontologies and we recall them in

this section. Just like our semantics, each of the three approaches is based on some work

we already presented in this chapter, and, in all but one case, this related approach is

based on stable models. We also verify whether the four criteria on combinations of

rules and ontologies hold to compare the three semantics in particular to our semantics.

7.4.1 Hybrid Rules with Well-founded Semantics

The approach of hybrid rules with well-founded semantics [Drabent and Ma luszyński,

2007, 2010] is motivated by AL-log of [Donini et al., 1998] (see Section 7.2) and can

be considered as an extension of that work. The approach of hybrid rules generalizes

AL-log to normal rules with constraints and arbitrary function symbols and considers

more general theories than just DLs, but the decidable fragment focuses again on DLs

and function-free atoms in rules. Next, we recall the technical details from [Drabent

and Ma luszyński, 2010] concentrating on the decidable fragment.

Predicates are divided into two disjoint sets of non-DL predicates and DL predicates,

while the same set of constants is used for both the DL and the rules. A Knowledge

base K consists of an ontology O in some DL and a program P containing rules of the

form

H ← C,A1, . . . , An,notB1, . . . ,notBm

where H, Ai, and Bj are atoms (over non-DL predicates) and C is a constraint (over

DL-predicates). Constraints are conjunctive queries to the DL.

138

7.4 Combinations based on the Well-Founded Semantics

For the semantics, Herbrand interpretations are considered. More precisely, it con-

siders signed sets, i.e., interpretations do not only contain the atoms that are true, but

also explicitly those that are false. Given (O,P), let M be a model of O.1 Let P/M
be the normal program obtained from PG by

• removing each rule constraint C which is true in M ;

• removing each rule whose rule constraint is not true in M .

The well-founded model of P/M is called the well-founded model of P based on M .

Intuitively, the constraints are evaluated w.r.t. some first-order model M and for the

resulting normal program the well-founded semantics of LP is applied. Thus, there is

not one unique well-founded model but, depending on the chosen M , several models for

each K giving this semantics a distinct flavor that is somewhat closer to a stable model

semantics approach. One result of that is that the logical consequence relation allows

for four truth values, t, u, f , and a forth one for conflicting truth values as the result of

different first-order models M of the constraints. E.g., a DL assertion (Ct D)(a) and a

constrained rule p(a)← C(a) yield that p(a) is true or false depending on whether C(a)

is modeled in the considered first-order model M . In such cases, the provided top-down

procedure returns a set of cases each with its associated constraints. This top-down

procedure is based on a generalization of SLS-resolution [Przymusinski, 1989] and uses

XSB in its realization [Drabent et al., 2007]. It is shown that the procedure is sound

and complete, and decidability is achieved by a notion similar to DL-safety taking into

account that constraints may contain equality. No complexity results are provided.

Constraints are used as interfaces to the ontology, and since these do only appear

in the body of rules, it is immediately obvious, that hybrid rules with well-founded

semantics is not a tight approach. Moreover, since default negation is not allowed in

constraints, the approach is not flexible either. Nevertheless, the combination is faithful

to the first-order semantics of DLs and the WFS of logic programs.

Finally, the approach is capable of deriving p in Example 7.1 where S(a) and T(a)

are constraints to the ontology. There is a model M1 of O such that S(a) is true in M1

and a model M2 of O such that T(a) is true in M2 and in both normal programs P/M1

and P/M2, p is true.
1In [Drabent and Ma luszyński, 2010], it is referred to the usual first-order semantics for models of

a DL.

139

7. COMPARISON TO RELATED APPROACHES

7.4.2 Well-founded semantics for dl-programs

In [Eiter et al., 2004, 2011] a well-founded semantics for dl-programs is provided. The

work considers precisely the setting of dl-programs [Eiter et al., 2008b] as presented in

Section 7.3.4, but without classical negation and the non-monotonic operator ∩- , which,

as we have seen, causes some problems in the case of the answer set semantics. The

justification is that ∩- can be rewritten using ∪- and the complement of the considered

predicate (see [Eiter et al., 2011]).

The semantics is defined using an extension of the unfounded sets construction (cf.

Definition 2.19). The notion defined for the approach in [Eiter et al., 2011] keeps the

conditions known from LP and it adds two conditions dealing with dl-atoms. One

condition says that a dl-atom Ai is never true if we expand I in such a way that all

unfounded atoms are kept false. The other condition says, for a dl-atom Bj , that notBj

is definitely false, regardless of how I is expanded. Now, if we compare this unfounded

set notion to the unfounded set style presentation of three-valued MKNF (shown in the

proof of Proposition 6.6), then it is apparent, due to the tighter integration of DLs and

rules in our work, that the conditions for three-valued MKNF are considerably more

complicated. For dl-programs, the well-founded model is defined based on iterations

and unfounded sets, very much in the same way as in Definition 2.21 for LP.

It is shown that the semantics is faithful w.r.t. WFS of LP and w.r.t. the first-order

semantics, but limited for the latter to the consequence relation used in the interfaces

to the DL. A corresponding alternating fixpoint is defined, and it is shown that the

semantics approximates the strong answer set semantics for dl-programs (without ∩-).

Combined complexity and data complexity results are presented for SHIF(D) and

SHOIN (D), the DL languages corresponding to OWL DL and OWL Lite. A more

general data complexity result corresponds exactly to our Theorem 6.7. This means that

for a tractable DL fragment, dl-programs also maintain a polynomial data complexity.

An implementation is devised based on the alternating fixpoint using DLV and RACER

and details can, e.g., be found in [Eiter et al., 2008b].

The classification w.r.t. the four criteria on combinations of rules and ontologies

carry over from Section 7.3.4, i.e., the approach is faithful and decidable but only to

a limited extend tight and flexible. However, it is pointed out in [Eiter et al., 2011]

that these limitations may be beneficial when extending the approach to more general

140

7.4 Combinations based on the Well-Founded Semantics

variants of entailment, and when considering inconsistency which is limited here to

inconsistency of O.

With respect to Example 7.1, we obtain a corresponding dl-program where the

atoms S(a) and T(a) are turned into dl-atoms. This semantics does not derive p since

the interfaces in dl-programs operate on logical consequences of the DL. In other words,

only logical consequences of the DL considered.

7.4.3 Well-founded semantics for normal dl-programs

The only other well-founded semantics [Lukasiewicz, 2010] is defined for normal dl-

programs, which form a subclass of disjunctive dl-programs [Lukasiewicz, 2007, 2010]

(see Section 7.3.5). The syntax is exactly the same as for disjunctive dl-programs with

the only difference that disjunctions in the heads of the rules are not allowed.

The semantics uses a similar notion of unfounded sets as dl-programs, even though

the two approaches are considerably different. In fact, the unfounded set condition of

[Eiter et al., 2011] regarding (positive) dl-atoms is quite similar to the one used for

normal dl-programs. The main difference is that, in [Lukasiewicz, 2010], only the pos-

itive part O+ of the ontology is considered for reasoning. For that, it is required that

the ontology is decomposable into a positive and a negative part (cf. the notions w.r.t.

Datalog± [Cal̀ı et al., 2009]). This severely restricts the approach, but in [Lukasiewicz,

2010] the DL-Lite family is presented as an example of DL languages that are decom-

posable in that way. The well-founded model is again obtained from operators similar

to Definition 2.21 where the operator T also derives information from O+.

It is shown in [Lukasiewicz, 2010] that the defined semantics is faithful to the WFS

of LP, and an algorithm based on a corresponding alternating fixpoint operator is

defined. It is also shown that the semantics is a sound approximation of the answer set

semantics of normal dl-programs. Complexity results for DL-LiteA1 [Poggi et al., 2008]

are provided stating that the combined complexity is EXP and the data complexity is

P. So, this is another semantics that for a (at least one) tractable DL language yields

a polynomial data complexity for the combination of the DL with normal rules.

1DL-LiteA combines DL-LiteR with functionality statements from DL-LiteF but limits some

interaction of these since otherwise the computational complexity of DL-LiteR is lost (see Section 3.3.2).

141

7. COMPARISON TO RELATED APPROACHES

Just like disjunctive dl-rules, the approach is tight, flexible, and decidable but only

faithful to the WFS of LP and to the DL w.r.t. positive atoms (as presented in Sec-

tion 7.3.5).

Interestingly, while the answer set semantics for disjunctive dl-programs allows us

to derive p in Example 7.1, the same does not hold for the well-founded semantics

for normal dl-programs. This means that the interaction with the DL changes from a

model-based view to one of logical consequences (but limited to positive atoms), while

dl-programs and hybrid MKNF (not considering MKNF+ KBs) both follow the view

of logical consequences in both approaches (WFS and answer sets).

7.4.4 Comparison

Summing up the collected information, we have identified approaches that combine non-

monotonic rules and ontologies based on the well-founded semantics as the preferable

ones. Combinations of ontologies and monotonic rules do not allow to express defaults

and exceptions, and approaches based on stable models are slightly more expressive in

terms of derivable information, but have, in general, a worse computational complexity.

Among all combinations of ontologies and rules based on the well-founded semantics,

our work is the only one that satisfies the four criteria we presented in Section 1.4 and

the most expressive combination of ontologies and rules. Normal dl-programs only allow

reasoning on atomic information in the DL, while dl-programs limit the interaction

between the rules and the ontology to special interfaces that do not allow to transfer

information from the rules to the ontology permanently. The approach of hybrid rules

is even less tight, since rules are simply defined on top of a DL.

The limitations in expressiveness, and the fact that the semantics of hybrid rules

relies on several well-founded models, makes this approach the weakest one from our

point of view. Not only is its idea to have several well-founded models counterintuitive,

it also makes it more difficult to actually compute answers in terms of complexity, since

it is not enough to consider one computation but all w.r.t. the possible models of the

DL.

The approach for normal dl-programs is probably the most straightforward integra-

tion if we consider DL such as DL-Lite that are decomposable. However, due to this

particular restriction, the approach is not applicable to a large number of DL, making

142

7.4 Combinations based on the Well-Founded Semantics

it only a good choice if the desired knowledge representation and reasoning capabilities

fit with decomposable languages, such as DL-LiteA.

Just like our semantics, the well-founded semantics for dl-programs is applicable to

any arbitrary decidable DL and the interaction with the DL is based on logical con-

sequences from the DL interacting with the rules. The difference lies in the definition

of the interaction between the rules and the ontology. In the case of dl-programs, it

is limited to specific interfaces. This has some technical benefits since actual imple-

mentations are easier to realize and to generalize to a wider set of external sources

of information. However, the interaction is cumbersome on a syntactical level. No

predicate can appear in the rules and in the ontology simultaneously. To ensure a

correspondence, additional rules have to be added and in each dl-atom the informa-

tion of the rules has to be added to the ontology. This is particularly impractical for

modeling large knowledge bases: each dl-atom may contain a long list of transfers. In

our approach, we simply allow atoms to appear everywhere, so that we do not require

special interfaces to transfer information from the rules to the ontology and vice versa.

Thus, we achieve an approach that is more expressive, flexible, and tight, yet easier to

use for modeling information.

143

7. COMPARISON TO RELATED APPROACHES

144

Part III

Querying Hybrid MKNF

Knowledge Bases

145

8

SLG(O)– A General Querying

Procedure

The alternating fixpoint in Chapter 6 provides a way to compute, in a naive bottom-up

fashion, a representation of all the consequences of a knowledge base. However, such

an approach is impractical for large knowledge bases especially if we are only interested

in certain parts of the information. Consider, e.g., the medical case study [Patel et al.,

2007] (as presented in Chapter 1): knowledge of whether a specific patient is using

a certain medication does not require knowledge of the medications of thousands of

other patients. In general, despite its polynomial complexity, bottom-up computation

of the well-founded MKNF model does not scale to enterprise applications, much less

to those of the Semantic Web. A query-driven procedure corresponding to our new

semantics, which only consults information relevant for a specific patient, would clearly

be preferable in this case.

In this chapter, we present such a querying mechanism, called SLG(O), that is

sound and complete for the well-founded MKNF model, and sound for MKNF knowl-

edge bases w.r.t. the semantics of Motik and Rosati [2010]. SLG(O) accepts DL-safe

conjunctive queries, i.e., conjunctions of atoms with variables, where queries have to

be ground when processed in the ontology, returning all correct answer substitutions

for variables in the query.

To ease the definition of such a querying mechanism, we start by presenting an

alternative way for the bottom-up computation that doubles the knowledge base by

creating a slightly modified variant of the original knowledge base, so that only one

147

8. SLG(O)– A GENERAL QUERYING PROCEDURE

operator is used for the alternating fixpoint construction (Section 8.1). This complicates

the presentation on the syntactic level but the top-down computation becomes easier

in the sense that we do not have to decide when to use which of the two alternating

operators. We could alternatively use the computation based on unfounded sets so

that we avoid this decision. But that computation does not admit the detection of

inconsistencies which is why we rely on this transformation that doubles the knowledge

base.

Then, we extend SLG resolution with tabling [Chen and Warren, 1996] with the

possiblity to query an accompanying ontology (Section 8.2). We show that the new

procedure is sound and complete w.r.t. the well-founded MKNF model and that the

procedure terminates and, under certain conditions, maintains the favorable computa-

tional complexity of that model (Section 8.3).

8.1 Alternative Bottom-Up Iteration

As presented in Chapter 6, the bottom-up computation of the well-founded MKNF

model, more precisely the well-founded partition, requires two operators. The differ-

ence between these two operators is on whether or not the derivability of the classical

negation of the rule head is used to eliminate a rule from the respective transform. Us-

ing both operators directly would complicate the top-down procedure, since we would

have to use them alternately in different parts of the procedure. Limiting the computa-

tion to only one of the two operators is not an option either, given that ΓK sometimes

yields counterintuitive results, while ΓK alone would hide possible inconsistencies (see

Section 6.2).

Thus, in this section we define that computation in a different way. Instead of

computing the two separate sequences Pi and Ni based on different operators we pro-

vide a transformation of K that allows us to compute the two sequences using only

one operator. Intuitively, we provide a knowledge base that allows us to separate the

contexts of true and non-false derivations on a syntactic level. Then, we define one

operator that can be used to compute both Pi and Ni while still being able to ensure

coherence and detecting possible inconsistencies. Concretely, we transform the original

knowledge base K, by doubling the rules and the ontology in K using new predicates.

The resulting knowledge base can be used for computing both sequences. We only have

148

8.1 Alternative Bottom-Up Iteration

to keep two separate renamings of the ontology to ensure that a possible inconsistency

in one sequence (see, e.g., the computation of N1 in Example 6.11) does not affect

the consistency of the other. This does not cause any problems in the forthcoming

top-down procedure, since the transformation will be defined such that we know which

renaming of the ontology we have to query.

The following definition introduces two new special predicates for each predicate

appearing in K based on which the transformation that doubles a knowledge base K is

defined.

Definition 8.1. Let K = (O,P) be a hybrid MKNF knowledge base. We introduce
new predicates Ad and NA for each predicate A appearing in K, and define Od from
O by substituting each predicate A in O by Ad, and Pd by transforming each rule
K H(ti) ← K A1, . . . ,K An,notB1, . . . ,notBm occurring in P, ti representing the
arguments of H, into two rules:

(1) KH(ti)← KA1, . . . ,KAn,notBd
1 , . . . ,notBd

m and either

(2a) KHd(ti)← KAd1, . . . ,KAdn,notB1, . . . ,notBm,notNH(ti) if H is a DL-atom;
or

(2b) KHd(ti)← KAd1, . . . ,KAdn,notB1, . . . ,notBm otherwise

We define the doubled hybrid MKNF knowledge base Kd = (O,Od,Pd).

Intuitively, the atoms based on the original predicates A represent truth while the

atoms based on the newly introduced predicates Ad represent non-falsity, i.e., we use,

e.g., Ad(a) to represent the non-falsity of A(a). The new atoms NH(ti) appearing in

(2a), are used as a marker to distinguish between rules that may be affected by the

derivability of the classical negation of its head (as in Γ′K) and the others (as in ΓK).

This marker has to be referenced in the modified transform, but before that, we define

a slightly different operator for doubled positive hybrid MKNF knowledge bases that

takes into account the parallel computations on the two renamings of the ontology.

Definition 8.2. Let KdG = (O,Od,PdG) be a doubled positive, ground hybrid MKNF
knowledge base. The operators RKd

G
, DKd

G
, and TKd

G
are defined on subsets of KA(KdG)

149

8. SLG(O)– A GENERAL QUERYING PROCEDURE

as follows:

RKd
G

(S) = {KH | PdG contains a rule of the form (6.7)

such that, for all i, 1 ≤ i ≤ n,KAi ∈ S}

DKd
G

(S) = {K ξ | K ξ ∈ KA(KG) and OBO,S |= ξ}∪

{K ξ | K ξ ∈ KA(KdG) \ KA(KG) and OBOd,S |= ξ}

TKd
G

(S) =RKd
G

(S) ∪DKd
G

(S)

This definition is the same as Definition 6.4 apart from two differences. First, the

doubled knowledge base KdG is considered and, consequently, K-atoms from KA(KdG)

appear. Second, the operator DKd
G

calculates consequences from O and Od in parallel

but limited to the corresponding set of atoms appearing in each of the two renamings,

thus preventing any unintended interaction due to possible inconsistencies. This could

be further refined by stating that only an appropriate part of the set S is added toO and

Od, namely the part that can appear in O and Od respectively. In terms of derivable

consequences, adding, e.g., S containing Ad to O is the same as adding S \ {Ad} to O
since atoms based on doubled predicates never have any impact on O, and the same

holds for the atoms based on original predicates and Od. We avoid formalizing this to

keep the notation simple. As already pointed out before, in practice only one ontology

O can be used for the computation of DKd
G

(S) if we calculate the two parts one after

the other and keep the appropriate contexts, i.e., we may take all atoms from S that

are based on doubled predicates, add only these to O using the original predicates, and

return all derivable K-atoms using the doubled predicates.

Next, we present a slightly altered version of the MKNF-coherent transform (cf.

Definition 6.7) taking the special doubled hybrid MKNF knowledge base and the new

not-atoms that serve as markers into account.

Definition 8.3. Let KdG = (O,Od,PdG) be a doubled, ground hybrid MKNF knowl-
edge base and S ⊆ KA(KdG). The MKNFd-coherent transform KdG//′S is defined as
KdG//′S = (O,Od,PdG//′S), where PdG//′S contains all rules

KH ← KA1, . . . ,KAn

150

8.1 Alternative Bottom-Up Iteration

for which there exists a rule

KH ← KA1, . . . ,KAn,notB1, . . . ,notBm

in PdG with KBj 6∈ S for all 1 ≤ j ≤ m and OBO,S 6|= ¬H ′ if notNH ′ appears in the
body.

This definition is almost identical to Definition 6.7 with the only difference that

the removal of a rule with head KH due to the derivation of ¬H ′ is only possible in

marked rules. Given Definition 8.1, this means that only rules with head KHd may

be eleminated if ¬H can be derived from O and S. In a top-down system the marker

itself can be used to actually trigger a query to the ontology for ¬H ′ or to introduce

appropriate correspondences to the ontology that link ¬H ′ with NH ′.

We can now define a new operator ΓdKG
for ground knowledge bases KG similar to

ΓKG
in Definition 6.6 and Γ′KG

in Definition 6.8, which operates on K-atoms of KA(KdG).

Definition 8.4. Let KdG = (O,Od,PdG) be a doubled, ground hybrid MKNF knowledge
base and S ⊆ KA(KdG). We define:

ΓKd
G

(S) = TKd
G//

′S ↑ ω.

We can show that this operator is antitonic just as its two predecessors.

Lemma 8.1. Let KdG be a doubled, ground hybrid MKNF knowledge base and S1 ⊆
S2 ⊆ KA(KdG). Then ΓKd

G
(S2) ⊆ ΓKd

G
(S1).

Proof. We have to show that TKd
G//

′S2
↑ ω ⊆ TKd

G//
′S1
↑ ω. Since KG is finite, KdG is also

finite, and we prove by induction on n that, for all n < ω, TKd
G//

′S2
↑ n ⊆ TKd

G//
′S1
↑ n

holds.
The base case for n = 0 is trivial since ∅ ⊆ ∅.
Assume that TKd

G//
′S2
↑ n ⊆ TKd

G//
′S1
↑ n holds, consider KH ∈ TKd

G//
′S2
↑ (n+ 1).

Then KH ∈ TKd
G//

′S2
(TKd

G//
′S2
↑ n) and there are two cases to consider:

1. KdG//′S2 contains a rule of the form KH ← KA1, . . . ,KAn such that KAi ∈
TKd

G//
′S2
↑ n for each 1 ≤ i ≤ n. In this case, since S1 ⊆ S2 holds, we also

have K H ← K A1, . . . ,K An in KdG//′S1 and, by the induction hypothesis,
KAi ∈ TKd

G//
′S1
↑ n holds for each 1 ≤ i ≤ n. Hence, KH ∈ TKd

G//
′S1
↑ (n+ 1).

2. KH is a consequence obtained from DKd
G

. But DKd
G

derives only consequences
from the unchanged DL renamings O and Od together with TKd

G//
′S2
↑ n. By the

induction hypothesis, we conclude that KH ∈ TKd
G//

′S1
↑ (n+ 1).

151

8. SLG(O)– A GENERAL QUERYING PROCEDURE

Since this new operator is antitonic, we can define its iteration similar to Definition

6.9, only now we have just one operator.

Definition 8.5. Let KdG be a doubled, ground hybrid MKNF knowledge base. We define:

Pd
0 = ∅ Nd

0 = KA(KdG)

Pd
n+1 = ΓKd

G
(Nd

n) Nd
n+1 = ΓKd

G
(Pd

n)

Pd
ω =

⋃
Pd
n Nd

ω =
⋂

Nd
n

The correspondence between Definitions 6.9 and 8.5 can be established with a pre-

cise relation between the atoms in the doubled knowledge base KdG and those in KG.

To ease the proof of the corresponding property, we adapt the notion of unfounded sets

(Definition 6.12) to provide a result similar to Lemma 6.3, which relates unfounded sets

and the sequence Nd
i .

Definition 8.6. Let KdG = (O,Od,PdG) be a doubled ground hybrid MKNF knowledge
base and (T, F) a pair of sets of K-atoms with T, F ∈ KA(KdG). We say that U ⊆
KA(KdG) is an unfounded set (of KdG) with respect to (T, F) if, for each K-atom KH ∈
U , the following conditions are satisfied:

(Ui) for each rule KH ← B in PG at least one of the following holds.

(Uia) Some K-atom KA appears in B and in U ∪ F .

(Uib) Some not-atom notB appears in B and in T .

(Uic) OBO,T |= ¬H1(ti) and notH1(ti) ∈ B, where H = Hd
1 (ti)

(Uii) for each (possibly empty) S on which KH depends, with S ⊆ KA(KG) and OBO,S

consistent, there is at least one modal K-atom KA such that OBO,S\{K A} 6|= H

and KA in U ∪ F .

(Uii’) for each (possibly empty) S on which KH depends, with S ⊆ KA(KG) and OBOd,S

consistent, there is at least one modal K-atom KA such that OBOd,S\{K A} 6|= H

and KA in U ∪ F .

The union of all unfounded sets of KdG w.r.t. (T, F) is called the greatest unfounded
set of KdG w.r.t. (T, F) and denoted UKd

G
(T, F).

The only differences in comparison to Definition 6.12 is that (Uic) is adapted to KdG
and that a variant of (Uii) is introduced to handle derivations w.r.t. Od.

The correspondence to the sequence Nd
i is established as in Lemma 6.3.

152

8.1 Alternative Bottom-Up Iteration

Lemma 8.2. Let KdG = (O,Od,PdG) be a doubled ground hybrid MKNF knowledge base
and (Pd

i ,N
d
i) a pair of sets of K-atoms with T, F ∈ KA(KdG) in the computation of the

alternating fixpoint of KdG. Then the following holds:

KA(KdG) \Nd
i+1 = UKd

G
(Pd

i ,KA(KdG) \Nd
i)

Proof. We show both inclusions from which the equality follows.
KA(KdG) \ Nd

i+1 ⊆ UKd
G

(Pd
i ,KA(KdG) \ Nd

i): Let K H ∈ KA(KdG) \ Nd
i+1. Then

KH 6∈ Nd
i+1, i.e., KH 6∈ ΓKd

G
(Pd

i) and KH 6∈ TKd
G//

′Pd
i
↑ ω. Thus, two conditions

hold. First, for all rules of the form H ← B+ ∧ B− in PdG, there is at least one
KAi ∈ B+ with KAi ∈ KA(KdG) \Nd

i+1 or at least one notBj ∈ B− with KBj ∈ Pd
i ,

or OBO,Pi |= ¬H1(ti) and not H1(ti) ∈ B−, where H = H1(ti). Second, neither
OBO,Nd

i+1
|= H nor OBOd,Nd

i+1
|= H holds. The first condition corresponds exactly to

(Ui) of Definition 8.6 w.r.t. (Pd
i ,KA(KdG) \Nd

i). We derive from the second condition
that, for all S with S ⊆ KA(KdG) on which KH depends, there is at least one modal
K-atom K A such that OBO,S\{K A} 6|= H as well as OBOd,S\{K A} 6|= H and K A in
KA(KdG)\Nd

i+1. This matches condition (Uii) of Definition 8.6 w.r.t. (Pd
i ,KA(KdG)\Nd

i)
and we conclude that KH ∈ UKd

G
(Pd

i ,KA(KdG) \Nd
i).

UKd
G

(Pd
i ,KA(KdG)\Nd

i) ⊆ KA(KdG)\Nd
i+1: Let KH ∈ UKd

G
(Pd

i ,KA(KdG)\Nd
i). Then

KH occurs in the greatest unfounded set w.r.t. (Pd
i ,KA(KdG) \Nd

i). It follows from
Definition 8.6 that KH 6∈ Nd

i+1. Consequently, KH ∈ KA(KdG) \Nd
i+1.

We can now show the correspondence between modal atoms of KG and KdG.

Proposition 8.1. Let KG = (O,PG) be a ground hybrid MKNF knowledge base. Then
the following holds:

• KA ∈ Pω if and only if KA ∈ Pd
ω.

• KB 6∈ Nω if and only if KBd 6∈ Nd
ω.

Proof. We show by induction on n that two conditions hold.

(i) KA ∈ Pn if and only if KA ∈ Pd
n

(ii) KB 6∈ Nn if and only if KBd 6∈ Nd
n

This is sufficient since the grounded knowledge base is finite, which means that the
iteration is finite and stops for some natural number n, i.e., the two fixpoints coincide
on the relevant atoms as in (i) and (ii).

153

8. SLG(O)– A GENERAL QUERYING PROCEDURE

The base case for n = 0 is straightforward since P0 and Pd
0 are empty while N0

and Nd
0 both contain their entire Herbrand base.

(1) So, suppose that (i) and (ii) hold for n and let KA ∈ Pn+1 and KB 6∈ Nn+1.
We show that KA ∈ Pd

n+1 and KBd 6∈ Nd
n+1. The other direction of the equivalence

follows from an identical argument.

(i) First, suppose that KA ∈ Pn+1 but KA 6∈ Pn (otherwise we obtain the result by
the induction hypothesis (1) immediately). We show that KA ∈ Pd

n+1. If KA ∈
Pn+1, then KA ∈ ΓK(Nn), by Definition 6.9, and, thus, KA ∈ TKG/Nn

↑ ω by
Definition 6.6. So KA ∈ TKG/Nn

↑ m for some m and we show by induction on m
that KA ∈ TKd

G//
′Nn
↑ m (2), which implies that KA ∈ Pd

n+1. The base case for
m = 0 holds immediately. Assume the claim (2) holds for m, we show it for m+1.
Suppose that KA ∈ TKG/Nn

↑ (m+ 1) then KA ∈ TKG/Nn
(TKG/Nn

↑ m). Then
either KA ∈ RKG/Nn

(TKG/Nn
↑ m) or KA ∈ DKG/Nn

(TKG/Nn
↑ m). We start

with the first case, i.e., there is a rule KA← KA1, . . . ,KAn,notB1, . . . ,notBm
with K Ai ∈ TKG/Nn

↑ m and not Bj 6∈ Nn for all i and j. For each such
rule K A ← K A1, . . . ,K An,not B1, . . . ,not Bm in KG there is, according to
Definition 8.1, a rule KA ← KA1, . . . ,KAn,notBd

1 , . . . ,notBd
m in PdG. Since,

by the induction hypothesis (1), we have that KBi 6∈ Nn if and only if KBd
i 6∈ Nd

n

we obtain that each rule in KG/Nn has its correspondent in KdG//′Nd
n. Then we

obtain by the nested induction hypothesis of (2) that KA ∈ TKd
G//

′Nn
↑ (m+ 1).

Otherwise, KA ∈ DKG/Nn
(TKG/Nn

↑ m) holds, and KA ∈ DKd
G//

′Nn
(TKd

G//
′Nn
↑

m) is obtained immediately by the induction hypothesis (2) and the identical
ontologies O contained in KdG and KG.

(ii) To prove (ii) we suppose as well that K B 6∈ Nn+1 but K B ∈ Nn. We show
that K Bd 6∈ Nd

n+1. If K B 6∈ Nn+1, then K B ∈ UKG
(Pn,KA(KG) \Nn). By

Definitions 6.12, 8.6, and 8.1, we obtain that K B ∈ UKd
G

(Pd
n,KA(KdG) \ Nd

n).
Hence, by Lemma 8.2, KB 6∈ Nd

n+1.

It follows immediately from this proposition that we can use this alternative compu-

tation to compute the well-founded MKNF model. Formally, we obtain a theorem that

shows the adapted well-founded partition from which the well-founded MKNF model

can be obtained.

Theorem 8.1. Let KG = (O,PG) be a ground consistent hybrid MKNF knowledge base
and let Pd

KG
,Nd
KG
⊆ KA(KdG) with Pd

KG
= {KA | KA ∈ Pd

ω and KA ∈ KA(KG)} and

154

8.1 Alternative Bottom-Up Iteration

Nd
KG

= {KAd | KAd ∈ Nd
ω and KA ∈ KA(KG)}. Then

MWF = ({KA | KA ∈ Pd
KG
} ∪ {K π(O)}, {KA | KAd ∈ KA(KdG) \Nd

KG
})

is the well-founded partition of KG.

Proof. The result is an immediate consequence of Proposition 8.1 and Definition 6.10.

The sets Pd
KG
,Nd
KG

are only used to remove modal atoms that are not of interest for

the two contexts. We note that for practical purposes we also derive from this theorem

and Proposition 8.1 that we have to use the new predicates Ad if we query for negative

literals.

We finish the section with a technical example showing the computation and its

impact on inconsistency detection.

Example 8.1. The subsequent example illustrates the explosive behavior of the iteration
in the case of an MKNF-inconsistency and that the sets of computed literals for both
computations indeed coincide (as proven in Proposition 8.1). Consider the knowledge
base KG1.

Q v ¬R (8.1)

p(a)← not p(a) (8.2)

Q(a)← (8.3)

R(a)← not R(a) (8.4)

We can compute the two sequences Pi and Ni and obtain:

P0 = ∅ N0 = {p(a), Q(a), R(a)}

P1 = {Q(a)} N1 = N0

P2 = P1 N2 = {p(a), Q(a)}

P3 = {p(a), Q(a), R(a)} N3 = N2

P4 = P3 N4 = ∅

The knowledge base is obviously inconsistent since we derive that everything is true and
false at the same time.

1Note that the modal operator K does not appear in the example. To simplify notation here and

in the remaining chapters, we assume that the modal operator K is implicit in rules of hybrid MKNF

knowledge bases, while not is maintained to represent default negation.

155

8. SLG(O)– A GENERAL QUERYING PROCEDURE

Now we apply the alternative computation using the doubled set of rules PdG and the
ontology O and its renaming Od including the special marker predicates NR and NQ.

Q v ¬R Qd v ¬Rd

p(a)← not pd(a) pd(a)← not p(a)

Q(a)← Qd(a)← not NQ(a)

R(a)← not Rd(a) Rd(a)← not R(a),not NR(a)

We compute the two sequences for the transformed knowledge base KdG and obtain:

Pd
0 = ∅ Nd

0 = {p(a), pd(a), Q(a), Qd(a), R(a), Rd(a), NQ(a), NR(a)}

Pd
1 = {Q(a), Qd(a)} Nd

1 = Nd
0

Pd
2 = Pd

1 Nd
2 = {p(a), pd(a), Q(a), Qd(a), R(a)}

Pd
3 = {p(a), Q(a), R(a)} Nd

3 = Nd
2

Pd
4 = Pd

3 Nd
4 = {p(a), Q(a), R(a)}

All atoms based on original predicates are true while all doubled atoms are false.
This indicates again that the knowledge base is MKNF-inconsistent. In both sequences,
the doubled predicates appear along with the original ones; only the inconsistent case
of R(a) is different. In the increasing sequence Pi, only R(a) is added, while in the
decreasing sequence Ni only Rd(a) is removed. The detection of inconsistencies is thus
straightforward by means of the alternative computation.

Note that the inconsistency in R ensures that everything in the knowledge base is

considered inconsistent. This does not always hold (consider adding a fact p(a) ←
to the rules, then pd(a) is not false but true). However, whenever we encounter an

atom such that P is true while Pd is false then we know that the KB is inconsistent.

This is not a sufficient condition but we do not consider that a problem. We want to

query a knowledge base and only consider the information relevant for the query and

not the whole knowledge base. So, we cannot always detect such possibly occurring

inconsistencies.

8.2 Top-Down Queries with SLGO

Now, we present the new top-down procedure SLG(O) for Hybrid MKNF knowledge

bases, which extends SLG resolution from [Chen and Warren, 1996] with an oracle to

156

8.2 Top-Down Queries with SLGO

capture first-order deduction using a description logic. SLG is a form of tabled resolu-

tion that handles loops within the program, and does not change the data complexity

of WFS. It does that by resorting to already computed results in a forest of derivation

trees, a technique also known as tabling . If SLG is extended with an oracle, then many

of the definitions of SLG are affected; in this section we recall the definitions of SLG,

and at the same time show how the definitions are extended to communicate with an

oracle, as well as defining when an oracle is suitable for use in an evaluation.

SLG evaluations are sequences of forests (sets) of program trees 1. Program trees

themselves correspond to subgoals2 that have been encountered in an evaluation. The

nodes in these trees contain sets of literals divided into those literals that have not been

examined, and others that have been examined, but their resolution delayed (cf. Defini-

tion 8.8). The need to delay some literals arises for the following reason. Modern Prolog

engines rely on a fixed order for selecting literals in a rule, e.g., always left-to-right.

However, well-founded computations cannot be performed using a fixed-order literal

selection function.3 Hence, in SLG some literals may be delayed and later resolved

through an operation called simplification. In addition to modeling the operational

behavior of Prolog, the use of delay and simplification supports the termination and

complexity results that are discussed in Section 8.3.

Example 8.2. We present SLG resolution on an intuitive level using logic program P

from Example 2.5.

a← (8.5)

b← not a, c (8.6)

c← not b (8.7)

d← a,not d (8.8)

e← not c, f (8.9)

f← e (8.10)

1Here, we model SLG derivations using the forest of trees model of [Swift, 1999].
2Here and in the rest of the thesis, the term subgoal is used in a broad sense that may refer to one

element of a conjunctive query, but also to a subsequent goal in a derivation process.
3A literal selection function is employed to choose the next literal to resolve in set of goals/body

of a rule. In SLG(O), the only requirement for a selection function is that DL-atoms are not selected

until they are ground, which is always possible given DL-safety of conjunctive queries and the rules

appearing in the knowledge base.

157

8. SLG(O)– A GENERAL QUERYING PROCEDURE

Consider that we query for d. We start with a tree with root d and check for rules
whose heads are unifiable (here simply identical) with the root. The forth rule matches
and we may add a child a,notd corresponding to the body of the rule to the root d. We
continue evaluating that child and encounter a. We create a new tree with root a that
can be immediately resolved with the first rule upon which we obtain an empty child.
Thus, a is true and we can create a child not d for a,not d. In general, we may now
create a new tree with root d but since that tree is already existing we are not allowed
to proceed like that. Instead, we can only delay not d creating the conditional answer
d : −notd | that corresponds to the expectation that d should be undefined. Maintaining
all the already obtained trees, we may query for b. We create a new tree with root b

and a child not a, c according to the second rule. Then, we can use that a is already
evaluated to true and evaluate that child with nota to false. Since it is the only possible
child for b, b must be false as expected.

Next, we formalize this intuitive presentation from the example and extend it with

an oracle to the DL starting with the definition of delay literals.

Definition 8.7. A negative delay literal has the form not A, where A is a ground
atom. Positive delay literals have the form ACallAnswer, where A is an atom whose truth
value depends on the truth value of some literal Answer for the literal Call. If θ is a
substitution, then (ACallAnswer)θ = (Aθ)CallAnswer.

Positive delay literals can only appear as a result of resolution (see Definition 8.9

below). Their special form, as indicated by the indices, is meant to keep track of the

answer and call used for that resolution, and possible substitutions are thus only applied

to A itself.

A derivation proceeds by constructing a forest according to the set of operations

in Definition 8.14 based on the rules and the ontology of the knowledge base. Such a

forest, and the trees and nodes it contains are defined as follows.

Definition 8.8. A node has the form

AnswerTemplate :- Delays|Goals or fail.

In the first form, AnswerTemplate is an atom or a classically negated atom, Delays is
a sequence of (positive and negative) delay literals and Goals is a sequence of literals.
The second form is called a failure node. A program tree T is a tree of nodes whose
root is of the form S :- |S for some atom S: we call S the root node for T and T the

158

8.2 Top-Down Queries with SLGO

tree for S. An SLG forest F is a set of program trees. A node N is an answer when it
is a leaf node for which Goals is empty. If Delays of an answer is empty it is termed
an unconditional answer, otherwise, it is a conditional answer. Program trees T may
be marked as complete.

This definition is almost identical to SLG resolution. The only difference is that

we also allow for the appearance of classically negated atoms as roots to incorporate

possible calls for the classical negation as required by the bottom-up computation in

Definition 8.3. Such a literal ¬A does only appear in AnswerTemplate and as the only

goal in the root node, and may only be used to query O.

The definition of answer resolution in SLG(O) is slightly different from the usual

one to take into account delay literals in conditional answers.

Definition 8.9. Let N be a node A :- D|L1, ..., Ln, where n > 0. Let Ans = A′ :- D′|
be an answer whose variables are disjoint from N . N is SLG resolvable with Ans if
∃i, 1 ≤ i ≤ n, such that Li and A′ are unifiable with an mgu1 θ. The SLG resolvent of
N and Ans on Li has the form:

(A :- D|L1, ..., Li−1, Li+1, ..., Ln)θ

if D′ is empty; otherwise the resolvent has the form:

(A :- D,LiLi
A′ |L1, ..., Li−1, Li+1, ..., Ln)θ

Note that we delay Li rather than propagating the answer’s delay list. This is

necessary, as shown in [Chen and Warren, 1996], to ensure polynomial data complexity2.

At certain points in SLG(O) resolution, a set of goals may be completely evaluated,

i.e., they are either already proven true, or no further expansion by means of the

knowledge base is possible. For that purpose also the notion of an underlying subgoal

is necessary.

Definition 8.10. The underlying subgoal of (an extended) literal L is L if L is positive
or L = ¬S, it is S if L = not S (and S is not based on one of the new predicates NH
introduced in Definition 8.3), or it is ¬H(ti) if L = notNH(ti). A set S of literals is
completely evaluated if at least one of the conditions holds for each S ∈ S

1most general unifier
2If delay lists were propagated directly, then delay lists could contain all derivations which could

be exponentially many in bad cases.

159

8. SLG(O)– A GENERAL QUERYING PROCEDURE

1. The tree for S contains an answer S :- |; or

2. For each node N in the tree for S:

(a) The underlying subgoal of the selected literal of N is completed; or

(b) The underlying subgoal of the selected literal of N is in S and there are no
applicable New Subgoal, Program Clause Resolution, Oracle Res-

olution, Positive Return, Negative Return or Delaying operations
(Definition 8.14) for N .

Once a set of literals is determined to be completely evaluated, the Completion

operation marks the trees for each literal (Definition 8.8). If a subgoal S is completed

due to condition 1 holding, we say that S is early completed . If condition 1 does not

hold, condition 2 of the above definition prevents the Completion operation from

being applied to a set of trees if certain other operations are still applicable to those

trees1. This notion of completion is incremental in the sense that once a set S of

mutually dependent subgoals is fully evaluated, the derivation does not need to be

concerned with the trees for S apart from any answers they contain. In an actual

implementation resources for such trees can be reclaimed.

In certain cases the propagation of conditional answers through resolution (Defini-

tion 8.9) can lead to a set of unsupported answers — conditional answers that are false

in the well founded model (see, e.g., Example 1 of [Swift et al., 2009])2. Intuitively,

these answers, which are mutually dependent, correspond to an unfounded set, but

their technical definition is based on the form of conditional answers.

Definition 8.11. Let F be an SLG forest, S a root of a tree in F , and Answer be an
atom that occurs in the head of some answer of S. Then Answer is supported by S in
F if and only if:

1. S is not completely evaluated; or

2. there exists an answer node Answer :- Delays| of S such that for every positive
delay literal DCall

Ans , Ans is supported by Call.

1“Completely evaluated” is thus a condition that is used for prioritizing operations, which is why

its definition contains a forward reference to Definition 8.14.
2As an aside, we note that unsupported answers appear to be uncommon in practical evaluations

which minimize the use of delay such as[Sagonas et al., 2000].

160

8.2 Top-Down Queries with SLGO

As mentioned in Definition 8.8, the root of each tree in an SLG forest corresponds

to a subgoal. Expanding on this correspondence, we may associate an SLG forest

with a partial interpretation, taking into consideration that, besides atoms and default

negated atoms as in SLG, we also allow the appearance of classical negated roots. This

interpretation is shown to correspond to MWF (cf. Theorem 8.4 below).

Definition 8.12. Let F be a forest. Then the interpretation induced by F , IF , is the
smallest set such that:

• A (ground) atom A ∈ IF iff A is in the ground instantiation of some unconditional
answer Ans :- | in F .

• A (ground) negated atom ¬A ∈ IF iff ¬A is in the ground instantiation of some
unconditional answer Ans :- | in F .

• A (ground) literal notA ∈ IF iff A is in the ground instantiation of a completely
evaluated literal in F , and A is not in the ground instantiation of any answer in
a tree in F .

An atom S is successful (resp. failed) in IF if S′ (resp. not S′) is in IF for every
S′ in the ground instantiation of S. A negative delay literal notD is successful (resp.
failed) in a forest F if D is failed (resp. successful) in F . Similarly, a positive delay
literal DCall

Ans is successful (failed) in a F if Call has an unconditional answer Ans :- |
in F .

This definition extends the corresponding one from SLG by allowing the occurrence

of classically negated literals in IF .

The next step in describing SLG(O) is to characterize the behavior of an abstract

oracle, O 1, that computes entailment according to the DL knowledge base O. For

that purpose, we define an oracle transition function that in a single step computes all

possible atoms required to prove the goal. In other words, such an oracle, when posed

a query S, non-deterministically returns in one step a set of atoms L defined in the

program, i.e., atoms for which there is at least one rule with it in the head, such that,

if added to the oracle theory, immediately entail S. We only have to take into account

that we query appropriately O or its renaming Od (see Section 8.1), and that we only

add the positive part of IF .
1We overload O syntactically to represent the oracle and the ontology, i.e., its underlying DL

knowledge base, since from the viewpoint of SLGO they are the same.

161

8. SLG(O)– A GENERAL QUERYING PROCEDURE

Definition 8.13. Let Kd = (O,Od,Pd) be a doubled hybrid MKNF knowledge base,
S a goal, L a set of ground atoms which appear in at least one rule head in PdG, and
I+
Fn

= IFn \ {not A | not A ∈ IFn} The complete oracle for O, denoted compTO, is
defined by

compTO(IFn , S, L) iff O ∪ I+
Fn
∪ L |= S or Od ∪ I+

Fn
∪ L |= S

The set O ∪ I+
Fn
∪ L (and likewise Od ∪ I+

Fn
∪ L) may be inconsistent even though

K is MKNF-consistent. Consequently, such a complete oracle potentially allows us to

obtain a large number of entailments that are eventually useless to derive S if K is

MKNF-consistent. Later in this section, we provide a partial oracle that overcomes

this lack of efficiency.

As already pointed out, in a practical system we can avoid maintaining two renam-

ings of the ontology by appropriately transmitting the contents of IdFn
. For example,

when querying for an atom Ad we can simply transmit all atoms based on doubled

predicates in its original form. The set L is then transformed into its doubled corre-

spondent.

We are now able to characterize the SLG(O) operations that build the various trees

of the evaluation forest.

Definition 8.14 (SLG(O) Operations). Let Kd = (O,Od,P) be a doubled hybrid
MKNF knowledge base. Given a forest Fn of an SLG(O) evaluation of Kd, Fn+1

may be produced by one of the following operations.

1. New Subgoal: Let Fn contain a tree with non-root node

N = Ans :- Delays|G,Goals

where G is the selected literal S or not S (and S is not based on one of the new
predicates NH introduced in Definition 8.3). Alternatively, G = notNH(ti) and
S = ¬H(ti). Assume Fn contains no tree with root S. Then add the tree S :- |S
to Fn.

2. Program Clause Resolution: Let Fn contain a tree with root node N =
S :- |S and C be a rule Head :- Body such that Head unifies with S with mgu θ.
Assume that in Fn, N does not have a child Nchild = (S :- |Body)θ. Then add
Nchild as a child of N .

162

8.2 Top-Down Queries with SLGO

3. Oracle Resolution: Let Fn contain a tree with root node N = S :- |S. Assume
that compTO(IFn , S,Goals). If N does not have a child Nchild = S :- |Goals in
Fn then add Nchild as a child of N .

4. Positive Return: Let Fn contain a tree with non-root node N whose selected
literal S is positive. Let Ans be an answer for S in Fn and Nchild be the SLG
resolvent of N and Ans on S. Assume that in Fn, N does not have a child Nchild.
Then add Nchild as a child of N .

5. Negative Return: Let Fn contain a tree with a leaf node, whose selected literal
not S is ground

N = Ans :- Delays|not S,Goals.

(a) Negation Success: If S is failed in F then create a child for N of the
form: Ans :- Delays|Goals.

(b) Negation Failure: If S succeeds in F , then create a child for N of the
form fail.

6. Delaying: Let Fn contain a tree with leaf node N = Ans :- Delays|notS,Goals,
such that S is ground in Fn, but S is neither successful nor failed in Fn. Then
create a child for N of the form Ans :- Delays,not S|Goals.

7. Simplification: Let Fn contain a tree with leaf node N = Ans :- Delays|, and
let L ∈ Delays

(a) If L is failed in F then create a child fail for N .

(b) If L is successful in F , then create a child Ans :- Delays′| for N , where
Delays′ = Delays− L.

8. Completion: Given a completely evaluated set S of literals (Definition 8.10),
mark the trees for all literals in S as completed.

9. Answer Completion: Given a set of unsupported answers UA, create a failure
node as a child for each answer Ans ∈ UA.

The operation New Subgoal creates a new tree in the forest F for a literal ap-

pearing in the set of goals in some (non-root) node in a tree in F , handling also the

case of calls for the classical negation.1 Two different operations apply to the root
1Note that the corresponding tree is always created even if ¬H(ti) is not expressible. In this case

simply no Oracle Resolution is applicable and the tree eventually fails.

163

8. SLG(O)– A GENERAL QUERYING PROCEDURE

node of a tree for a subgoal S. Program Clause Resolution resolves a root node

against rules in the knowledge base, while Oracle Resolution queries the ontology

to obtain atoms that, if added to O, entail S. Of course, for non-DL atoms this latter

operation is limited to derivations based on equality. A third set applies to non-root

nodes. Positive Return resolves positive literals in nodes of trees with answers ac-

cording to Definition 8.9, while Negative Return handles the negative literals: if

the literal itself fails then the negated literal is simply removed (Negation Success),

otherwise if the the literal itself is successful then the whole branch is failed (Negation

Failure). Delaying allows to delay negative literals, while Simplification allows

to simplify positive and negative delay literals. Finally, Completion allows comple-

tion of trees while Answer Completion removes unsupported answers in accordance

with Definition 8.11. The only differences to SLG resolution are the operation Oracle

Resolution and the extension of New Subgoal to incorporate calls for classically

negated atoms. Thus each operation of Definition 8.14 can be seen as a function that

associates a forest with a new forest by adding a new tree, adding a new node to an

existing tree, or marking a set of trees as complete. The only thing missing to complete

the description of the procedure is the formalization of the initialization of an SLG

evaluation, i.e., how the initial (DL-safe) conjunctive query is defined.

Definition 8.15. Let Kd be a doubled hybrid MKNF knowledge base and let q be a
query of the form q(Xi) ← A1, . . . , An,not Bd

1 , . . . ,not Bd
m where Xi is the (possibly

empty) set of requested variables. We set F0 = {q(Xi) : − | q(Xi)} to be the initial
forest of an SLG(O) evaluation of Kd for q.

Of course, if the query is atomic we can simply start with that atomic query, i.e.,

with the root containing the queried literal itself. Since the derivation uses Kd (the

doubled knowledge base), the technically correct way to query negative literals is to use

notBd instead of notB for any atom B which is why we use the doubled predicates

for negative literals in the query.

In the next section, we show that SLG(O) always terminates (Theorem 8.2) and,

even though some orders of application of the possible operations are more efficient

than others, that the procedure is confluent (Theorem 8.3). We also show that the

procedure is sound and complete w.r.t. the well-founded MKNF model (Theorem 8.4)

and that it is sound w.r.t. the semantics of two-valued MKNF (Corollary 8.1). Finally,

164

8.2 Top-Down Queries with SLGO

under some assumptions, we maintain the computational complexity of the bottom-up

procedure (Theorem 8.5), which is actually an improvement since we do not have to

consider the entire knowledge base but only the part relevant for a concrete query.

But before we come to showing these results and the respective proofs, we finish

the presentation of the procedure SLG(O) with an example illustrating its behavior.

Example 8.3. In order to illustrate the actions of SLG(O) we consider a derivation
of an answer to the query ?- discount(Bill) using a KB K from [Motik and Rosati,
2007]1:

NonMarried ≡¬Married (8.11)

¬Married v HighRisk (8.12)

∃Spouse.T v Married (8.13)

(∃Spouse.{Michelle})(Bill) (8.14)

NonMarried(x)←not Married(x) (8.15)

discount(x)←not HighRisk(x) (8.16)

First, note that TBox and ABox information are each distributed over both the de-
scription logic and the rules. Figure 8.1 shows the final forest for this evaluation, where
elements are marked in the order they are created. The initial forest for the evaluation
consists of node 0 only. Since the selected literal of node 0, discount(Bill) is a non-
DL-atom and there are no equalities in the KB, we can only apply Program Clause

Resolution with (8.16), which produces node 1, followed by New Subgoal to pro-
duce node 2. Node 2 is a DL-atom with no rules applicable for HighRisk(Bill), but an
Oracle Resolution operation can be applied to derive from (8.11) and (8.12) that if
NonMarried(Bill) can be proven (node 3), then this suffices to prove HighRisk(Bill).
Then, via a New Subgoal operation, node 4 is obtained. The selected literal for node
4, NonMarried(Bill), is a DL-atom that also is the head of a rule, so the oracle and the
program evaluation are both applicable to derive the atom. On the program side, Pro-

gram Clause Resolution produces node 5 from (8.15) and New Subgoal produces
node 6. The selected literal of node 6, Married(Bill), is a DL-atom that is not the head
of a program rule, so once again the only possibility is to use Oracle Resolution,
and the answer Married(Bill) is derived from (8.13) and (8.14). Using this answer,

1For ease of reading and since neither an MKNF-inconsistency nor an issue related to coherence

occurs, we operate on K directly instead of on Kd
G.

165

8. SLG(O)– A GENERAL QUERYING PROCEDURE

Figure 8.1: Final Forest for the query discount(Bill) to K

the tree for Married(Bill) can be early completed and a Negative Return operation
produces node 8. The tree for NonMarried(Bill), which does not have an answer, must
be completed (step 10), and the same holds for HighRisk(Bill) (step 11). Once this
occurs, a Negative Return operation is enabled to produce node 12.

The evaluation illustrates several points. First, the evaluation makes use of clas-
sical negation in the ontology along with closed world negation in the rules. From an
operational perspective, the actions of the description logic prover and the program are
interleaved, with the program “calling” the oracle by creating new trees for DL-atoms,
and the oracle “calling” the rule system through Oracle Resolution operations. As
a result, trees for DL-atoms must either be early-completed, or explicitly completed by
the tabulation system.

8.3 Properties of SLG(O)

We now present and prove several important properties of SLG(O)-resolution. The

first property we can ensure is that our extension of SLG resolution terminates for the

evaluation of any query, generating a final forest.

Theorem 8.2. Let q = L be a query to a doubled, hybrid MKNF knowledge base Kd.
Then any SLG(O) evaluation of q terminates after finitely many steps, producing a
finite final forest.

Proof. The proof is straightforward since we know already that SLG, i.e., SLG(O)
without Oracle Resolution and the extended New Subgoal operation, termi-
nates finitely for programs with bounded term-depth, and transfinitely otherwise (cf.
Theorem 5.10 of [Chen and Warren, 1996]). Since Definition 4.14 ensures that hybrid

166

8.3 Properties of SLG(O)

MKNF kowledge bases do not contain recursive terms, i.e., non-nullary functors, they
have bounded term depth, and so does the doubled knowledge base Kd. Accordingly,
we only have to ensure that the new operation Oracle Resolution and the extension
of New Subgoal do not invalidate finite termination.

The operation Oracle Resolution can be applied in the same situation as Pro-

gram Clause Resolution, namely when creating a new child for a root of a tree, so
that each operation can be applied only once to a given node (for each of the finitely
many rules, respectively for each of the finitely many possible answers of the complete
oracle), and this creates one child per successful application. Now, since the knowledge
base Kd is finite, the number of (ground) rule heads is finite. Thus, 1) the number of
children possibly created with Oracle Resolution for any arbitrary root is finite;
and 2) the size of the nodes created is also finite.

The extension of the operation New Subgoal creates even in the worst case finitely
many more trees with roots to which only Oracle Resolution is applicable, which
does only create finitely many nodes.

We conclude that termination holds for SLG(O).

In the way SLG(O) is defined, there is no prescribed order in which to apply the

operations possible in a forest Fi. For SLG some orders of application are in general

more efficient than others but, as shown in [Chen and Warren, 1996], any order yields

the same outcome for any query. The same sort of confluence also holds for SLG(O):

Theorem 8.3. Let E1 and E2 be two SLG(O) evaluations of a query q = L to a
doubled, hybrid knowledge base KdG, F1 the final forest of E1, and F2 the final forest of
E2. Then, IF1 = IF2.

Proof. This is a well-known property for SLG as defined using the operations of Def-
inition 8.14 excluding Oracle Resolution and the extension of New Subgoal to
classical negation (cf. Theorem 5.7 of [Chen and Warren, 1996]). Accordingly, we
consider cases in which E1 and E2 make use of the operations that have been intro-
duced/extended in SLG(O). However, Program Clause Resolution is used in
SLG, and if we just consider the created children, then Program Clause Resolu-

tion and Oracle Resolution are not distinguishable. Thus, we can consider that
Oracle Resolution is a syntactic variant of Program Clause Resolution The
same holds for New Subgoal and the treatment of default negated atoms notS that
create a tree with root S and those special literals notNH(ti) that may allow us to
create a tree with root ¬H(ti): both its children are not distinguishable and only one

167

8. SLG(O)– A GENERAL QUERYING PROCEDURE

of the two is applicable in each case. Thus, confluence of SLG(O) follows directly from
confluence of SLG (see Theorem 5.7 of [Chen and Warren, 1996]).

The above theorem is also helpful to prove that SLG(O) is a correct query proce-

dure for the well-founded MKNF model and that it terminates within the same com-

plexity bounds. First, we show that SLG(O) coincides with the well-founded MKNF

model, more precisely with the well-founded partition, from which the well-founded

MKNF model is obtained. Intuitively, we have to show that the well-founded MKNF

model as presented in Part II and based on the computation presented in Section 8.1,

coincides with the interpretation IF induced by Fn for some query q to Kd in all the

ground literals involved in the query. We can simplify that by showing, for each literal

L appearing in KdG, that L ∈ MWF
1 if and only if L ∈ IF with query q = L and Fn

for some n. Note that this correspondence also holds for atoms and classically negated

atoms only appearing in the ontology.

Theorem 8.4. Let KdG be a doubled, ground hybrid MKNF knowledge base, and IF the
interpretation induced by the forest F of an SLG(O) evaluation of KdG for query q = L

where L is a literal or a classically negated atom. SLG(O) resolution is sound and
complete w.r.t. the well-founded partition MWF = (TW , FW), which is obtained from
Pd
ω and Nd

ω.

• for L ∈ KA(KdG):

– L ∈ Pd
ω if and only if L ∈ IF and

– Ld1 6∈ Nd
ω if and only if L = notLd1 ∈ IF .

• for L 6∈ KA(KdG): O ∪Pd
ω |= L or Od ∪Pd

ω |= L if and only if L ∈ IF .

Proof. (Completeness): We show by induction on n that, for L ∈ KA(KdG), if L is
a positive literal, then L ∈ Pd

n implies that L ∈ IF , and if L = not Ld1 is a negative
literal, then Ld1 6∈ Nd

n implies that notLd1 ∈ IF , and, for L 6∈ KA(KdG), if O ∪ Pd
n |= L

or Od ∪Pd
n |= L then L ∈ IF .

The induction base holds immediately, for L ∈ KA(KdG), since Pd
0 is empty and Nd

0

contains all literals appearing in KA(KdG). For L 6∈ KA(KdG), we obtain that O |= L or
Od |= L, so we can create a tree L : − | L and with Oracle Resolution an answer
L : − |, which shows L ∈ IF .

1Note that MWF strictly speaking contains K-atoms, but we continue to keep the K implicit.

168

8.3 Properties of SLG(O)

(1) Now suppose the claim holds for n. We have to show the induction step for
n + 1. For L ∈ KA(KdG), let L be a positive literal, and suppose that L ∈ Pd

n+1 but
L 6∈ Pd

n (otherwise the claim would immediately follow by the induction hypothesis).
Therefore, L ∈ ΓKd

G
(Nd

n) and so L ∈ TKd
G//

′Nd
n
↑ ω. We show by induction on m that

L ∈ TKd
G//

′Nd
n
↑ m implies that L ∈ IF .

The base case is void since TKd
G//

′Nd
n
↑ 0 is empty. (2) Suppose the property

holds for m, we show it for m + 1. So, assume that L ∈ TKd
G//

′Nd
n
↑ (m + 1) but

L 6∈ TKd
G//

′Nd
n
↑ m (otherwise the property would immediately follow by the induction

hypothesis (2)). Then L ∈ TKd
G//

′Nd
n
(TKd

G//
′Nd

n
↑ m) and either L ∈ RKd

G//
′Nd

n
(TKd

G/N
d
n
↑

m) or L ∈ DKd
G//

′Nd
n
(TKd

G//
′Nd

n
↑ m). In the first case, KdG//′Nd

n contains a rule of the
form L ← A1, . . . , An such that all K Ai ∈ TKd

G/N
d
n
↑ m. Additionally, there is a

rule L ← A1, . . . , An,notB1, . . . ,notBm in KdG and all Bj 6∈ Nd
n. We thus know by

the two induction hypotheses that all Ai and all notBj appear in IF . From that we
can construct a tree with root L : − | L and a child obtained by applying Program

Clause Resolution with the rule considered. In the resulting child the set of goals
contains exactly all Ai which can be removed by Positive Return and all not Bj
which can be removed by Negative Return. The result is a leaf node L : − | and we
obtain that L ∈ IF for this order of application. Since Theorem 8.3 ensures that we
achieve the same result if we alter the order of applications, we know that the statement
holds in general. In the second case, i.e., for L ∈ DKd

G/N
d
n
(TKd

G/N
d
n
↑ m), we construct

a tree L : − | L and apply Oracle Resolution as (finitely) many times as necessary.
One of those children is the one actually allowing to derive L by means of the ontology,
i.e., all goals in this child are positive literals that are true in TKd

G/N
d
n
↑ m. We apply

Positive Return to these literals, and this, by the induction hypothesis (2), results
in a leaf node L : − |. As before, Theorem 8.3 ensures that a different application order
again yields eventually the same result.

Now, let L be a negative literal notLd1, and suppose that Ld1 6∈ Nd
n+1 but Ld1 ∈ Nd

n

(otherwise the claim would follow immediately by the induction hypothesis (1)). Then,
Ld1 ∈ UKd

G
(Pd

n,KA(KdG) \Nd
n) by Lemma 8.2, i.e., Ld1 occurs in the greatest unfounded

set w.r.t. (Pd
n,KA(KdG) \Nd

n). We construct a tree with root Ld1 : − | Ld1. We proceed
by creating all children of that root, applying Program Clause Resolution and
Oracle Resolution as (finitely) many times as possible. By Definition 8.6, each such
child (after finitely many subsequent operations) is either false or completely evaluated
as in 2.(b) of Definition 8.10, which means that another element of UKd

G
(Pd

n,KA(KdG) \
Nd
n) has been encountered in the list of goals. Note that SLG(O) selects literals in

some order, while the greatest unfounded set U just refers to some other element in

169

8. SLG(O)– A GENERAL QUERYING PROCEDURE

U . Consequently, it may happen that we have to evaluate some literals first whose
evaluation is only known in an iteration step m with m > n. But this does not cause
any problem. Negative literals are simply delayed(Delaying), while positive literals
are processed (New Subgoal and so on): if a positive literal can eventually be resolved,
then it is removed from the list of goals of a child. Otherwise, we obtain an even larger
unfounded set. In both cases, once no further operation can be applied, the set U can
be completed, and, by Definition 8.12, we derive notLd1 ∈ IF .

Now, suppose that L 6∈ KA(KdG) and O ∪ Pd
n |= L or Od ∪ Pd

n |= L. We can can
construct a tree starting with L : − | L and apply Oracle Resolution until we get
a child L : − | Goals such that Goals ⊆ Pd

n, which has to exist. We apply Positive

Return to all positive literals in Goals, which is possible by the induction hypothesis
(1) thus deriving the answer L : − |, from which we concludeL ∈ IF .

(Soundness): We show by induction on n that, for L ∈ KA(KdG), if L is a positive
literal, then L ∈ IFn implies that L ∈ Pd

ω, and if L = notLd1 is a negative literal, then
L ∈ IFn implies that Ld1 6∈ Nd

ω, and, for L 6∈ KA(KdG), if L ∈ IF , then O ∪ Pd
ω |= L or

Od ∪Pd
ω |= L.

The induction base holds trivially, since F0 is empty. So assume the property holds
for n. We show, for Fn+1, that the property holds by a case distinction on the operation
applied on (cf. Definition 8.14).

1. New Subgoal: This operation creates a new tree and does alone not alter F , i.e.,
if L ∈ Fn+1, then L ∈ Fn, and the property holds by the induction hypothesis.

2. Program Clause Resolution: A new child is created for the root S : − | S.
If this child has an empty list of goals, then a rule with empty body was used to
create this child. Now, if L is a positive literal with L = S, then L ∈ Fn+1. But
then, L ∈ Pd

ω since there is a fact L in KdG. Alternatively, if the list of children
is not empty, then L ∈ Fn+1 implies L ∈ Fn, and the property holds by the
induction hypothesis.

3. Oracle Resolution: A new child is created for the root S : − | S by means
of the oracle. If the returned list of goals is empty, then the oracle allows us to
derive the root directly, and O ∪ IFn |= L or Od ∪ IFn |= L. In this case, if L
is a positive literal with L = S, then L ∈ Fn+1. If L ∈ KA(KdG), then L ∈ Pd

ω,
since the operator DKd

G
together with all L′ ∈ Fn, for which L′ ∈ Pd

ω holds by the
induction hypothesis, allows us to derive L. If L 6∈ KA(KdG), then O ∪ Pd

ω |= L

or Od ∪ Pd
ω |= L holds since we have that, for all L′ ∈ Fn, L′ ∈ Pd

ω holds by

170

8.3 Properties of SLG(O)

the induction hypothesis. Alternatively, if the list of goals is not empty, then
L ∈ Fn+1 implies L ∈ Fn, and the property holds by the induction hypothesis.

4. Positive Return: If the resolved goal is the last remaining, then the outcome
of the operation is an unconditional answer. Suppose the answer template is
equal to L. We can trace back this child to the immediate child of the root. All
goals in this particular child have already been resolved, so that, by the induction
hypothesis, all positive literals L appear in Pd

ω and all negative literals notLd1 do
not appear in Nd

ω. But then the property holds, no matter whether L ∈ KA(KdG)
or not. Alternatively, if the list of goals (including delayed ones) is not empty, then
L ∈ Fn+1 implies L ∈ Fn, and the property holds by the induction hypothesis.

5. Negative Return

(a) Negation Success: The argument is exactly the same as for Positive

Return, only now the last goal is a negative literal.

(b) Negation Failure: This operation fails one child. However, it does alone
not contribute to F , i.e., if L ∈ Fn+1, then L ∈ Fn, and the property holds
by the induction hypothesis.

6. Delaying: This operation does at best provide a conditional answer. As such it
does not affect F alone. Therefore, if L ∈ Fn+1, then L ∈ Fn, and the property
holds by the induction hypothesis.

7. Simplification:

(a) The first simplification case corresponds exactly to Negation Failure,
only here the failure occurs in the delay list.

(b) The second simplification case corresponds exactly to Negation Success,
only now the success occurs in the delay list.

8. Completion: This operation only affects F if some A is in the ground instantia-
tion of a completely evaluated literal in F and A is not in the ground instantiation
of any answer in a tree in F . In other words, this operation introduces notL′ to
F . In particular, consider L = notLd1 as a negative literal and L ∈ IFn+1 . Thus,
the tree for Ld1 does not contain any answer but also no further operation can be
applied, i.e., in each child, there is (at least) one literal that can not be resolved
or it is failed. This matches the condition of the greatest unfounded set and we
obtain that Ld1 6∈ Nd

ω. For all other cases, if L ∈ Fn+1, then L ∈ Fn, and the
property holds by the induction hypothesis.

171

8. SLG(O)– A GENERAL QUERYING PROCEDURE

9. Answer Completion: This operation does not affect F . It only creates failure
nodes for unsupported answers, which may be evaluated in a subsequent Com-

pletion operation. Consequently, if L ∈ Fn+1, then L ∈ Fn, and the property
holds by the induction hypothesis.

Given the soundness of our procedure w.r.t. Pdω and N d
ω , and thus w.r.t. the well-

founded partition, from which we obtain the well-founded MKNF model, we can show

that soundness carries over to the semantics of MKNF knowledge bases of [Motik and

Rosati, 2010].

Corollary 8.1. Let K be a consistent hybrid MKNF knowledge base and L be a literal
which appears in KdG. If L ∈ IF (L = not Ld1 ∈ IF respectively), where IF is induced
by the forest F of an SLG(O) evaluation of KdG for query q = L, then L (not L1

respectively) is derivable from all two-valued MKNF models of K.

In addition to the interpretation of the final forest IF being sound with respect

to the two-valued MKNF models of a given K, the conditional answers in F can be

seen as a well-founded reduct of the rules in K, augmented with conditional answers

derived by Oracle Resolution operations. As a result, the final forest can be seen

as a residual program: a sound transformation not only of the rules, but of information

from the oracle, and can be used to construct a partial two-valued MKNF model 1.

Regarding complexity, it is clear that the complexity of the whole procedure SLG(O)

depends on the complexity of the oracle, and also on the number of results returned by

each call to the oracle. Clearly, the complexity associated to the computation of one

result of the oracle function is a lower-bound of the complexity of SLG(O). Moreover,

even if the computation of one result of the oracle is tractable, the (data) complexity

of SLG(O) may still be exponential if exponentially many solutions are generated by

the oracle ,e.g., returning all supersets of a solution. This is so, because our definition

of the oracle is quite general, and in order to prove interesting complexity results some

assumptions must be made about the oracle. We start by defining a correct partial

oracle:
1[Chen and Warren, 1996] discusses these transformational aspects of SLG resolution, which are

preserved in SLG(O), while the XSB manual (http://xsb.sourceforge.net/) discusses how the

residual program can serve as input to an ASP solver.

172

http://xsb.sourceforge.net/

8.3 Properties of SLG(O)

Definition 8.16. Let KdG = (O,Od,PdG) be a doubled, hybrid MKNF knowledge base, S
a goal, and L a set of ground atoms which appear in at least one rule head in PG (called
program atoms). A partial oracle for KdG, denoted pTO, is a relation pTO(IFn , S, L) such
that if pTO(IFn , S, L), then

O ∪ I+
Fn
∪ L |= S and O ∪ I+

Fn
∪ L consistent; or

Od ∪ I+
Fn
∪ L |= S and Od ∪ I+

Fn
∪ L consistent.

A partial oracle pTO is correct w.r.t. compTO iff, for all MKNF-consistent KdG, replac-
ing compTO in SLG(O) with pTO succeeds for exactly the same set of queries.

Note that the complete oracle is indeed generating unnecessarily many answers,

and it can be replaced by a partial one that assures correctness. E.g., consider a

partial oracle that does not return supersets of other results. Such a partial oracle is

obviously correct. A further improvement on efficiency is the restriction to consistent

setsO∪I+
Fn
∪L andOd∪I+

Fn
∪L. If the knowledge base is MKNF-consistent, then looking

for derivations based on inconsistencies is pointless anyway: we would just create a

potentially large number of children none of which would result in an unconditional

answer. In this sense, partial oracles are limited to meaningful derivations. In the case

of an MKNF-inconsistent knowledge base, things get a bit more complicated.

Example 8.4. Consider again the already doubled knowledge base from Example 8.1.

Q v ¬R Qd v ¬Rd

p(a)← not pd(a) pd(a)← not p(a)

Q(a)← Qd(a)← not NQ(a)

R(a)← not Rd(a) Rd(a)← not R(a),not NR(a)

Cf. the computation in Example 8.1, p(a), Q(a), and R(a) are true in the sequence
Pd
ω while pd(a), Qd(a), and Rd(a) are false in the sequence Nd

ω. The same results are
derivable with a complete oracle. Q(a) is derivable from the corresponding fact. From
that ¬R(a) is derivable and therefore not Rd(a) as well. This allows us to obtain R(a).
Now, Q(a) and R(a) together with O are inconsistent from which we can derive p(a),
but also ¬Q(a) and ¬p(a). Consequently, not pd(a) and not Qd(a) hold as well, i.e.,
everything is supposedly true and false at the same time.

If we limit ourselves to the partial (consistent) oracle, then we no longer derive
p(a), not Q(a), or not p(a). In this case, R(a) is still true and false (inconsistent), but
Q(a) is true, and p(a) is undefined.

173

8. SLG(O)– A GENERAL QUERYING PROCEDURE

Thus, the usage of such a partial oracle hides more any occurring MKNF-inconsistency
and demonstrates a somewhat paraconsistent behavior instead.

This example also shows why correctness of a partial oracle is only checked w.r.t.

MKNF-consistent knowledge bases. For MKNF-inconsistent knowledge bases the deriva-

tion relation is not identical in general.

By making assumptions on the complexity and number of results of an oracle,

complexity results of SLG(O) are obtained.

Theorem 8.5. Let pTO be a correct partial oracle for the hybrid MKNF knowledge
base KdG, such that for every goal S, the cardinality of pTO(IFn , S, L) is bound by a
polynomial on the number of program atoms. Moreover, assume that computing each
element of pTO is decidable with data complexity C. Then, the SLG(O) evaluation of
a query in KdG is decidable with data complexity PTIMEC.

Proof. Decidability is guaranteed by Theorem 8.2. As for complexity, first note that,
given the polynomial data complexity of SLG [Chen and Warren, 1996], only a poly-
nomial number of calls is made to the oracle. Moreover, since the cardinality of
pTO(IFn , S, L) is bound by a polynomial, and each of the calls to the oracle can be
seen as adding a new program rule (the result of Oracle Resolution operation),
only polynomially many such rules are added. Now, computing each such rule amounts
to a call to the oracle, which by hypothesis is decidable and with data complexity C.
So, the overall data complexity is PTIMEC .

In particular, this means that if the partial oracle is tractable, and only with poly-

nomial many results, then SLG(O) is also tractable.

We have thus defined a general procedure to query hybrid MKNF knowledge bases.

This procedure builds on SLG resolution with tabling for rules and extends it with

an oracle to any arbitrary decidable DL. Under certain conditions, the computational

complexity carries over from the bottom-up computation. These conditions can be

achieved with an appropriately chosen partial oracle. Such oracles are defined in the

next chapter, thus arguing in favor of the efficiency of our presented querying mecha-

nism.

174

9

Querying Tractable Hybrid

MKNF Knowledge Bases

Clearly, for a hybrid MKNF knowledge base whose ontology part is a tractable frag-

ment, it is possible to come up with a correct partial oracle. Basically, all that needs

to be done is to proceed with the usual entailment method, assuming that all program

atoms hold, and collecting them for the oracle result. To guarantee that the number of

solutions of the oracle is bound by a polynomial, and still maintaining correctness, is a

bit more difficult. It amounts to finding a procedure that returns less results, and at the

same time does not damage the completeness proof (similar to that of Theorem 8.4).

At least for the tractable case this is possible, albeit the oracle being the (polyno-

mial complexity) bottom-up procedure that calculates the well-founded partition. This

approach is, however, somewhat counterproductive to the whole idea of a top-down

querying mechanism: we could simply use the bottom-up procedure in the first place

to compute the model and store the results in a database which we then query on

demand. In this chapter, we show that these conditions are indeed realistic. We pro-

vide concrete procedures, with practical usage, by defining oracles for REL, DLP and

DL-LiteR, i.e., the three tractable DL fragments, which we presented in Section 3.3,

that are underlying the OWL 2 profiles that are part of the W3C recommendations

[Hitzler et al., 2009a] for the Semantic Web. We show that the oracles thus defined are

correct w.r.t. the general procedure and maintain the polynomial data complexity.

We follow the structure in Section 3.3 and present at first an oracle for REL (Sec-

tion 9.1). We continue with an oracle for DLP (Section 9.3), and finish the chapter

175

9. QUERYING TRACTABLE HYBRID MKNF KNOWLEDGE BASES

with an oracle for DL-LiteR (Section 9.2).

9.1 An Oracle for REL

When defining an oracle for REL we could simply try to use the algorithm for sub-

sumption presented in [Baader et al., 2005]: reduce instance checking to subsumption

and return the desired set of atoms which, when proven, would ensure the derivability

of the initial query. However, apart from the technical problems we would have to face,

such as how to obtain these sets of atoms whose truth allows us to prove the initial

query, this would mean that we would have to run the entire subsumption algorithm

for each query posed to the oracle in REL.

We therefore proceed differently. We still use the algorithm for subsumption from

[Baader et al., 2005] to compute the complete class hierarchy of the REL knowledge

base, but we use it only once, as a preprocessing step for the derivable information

of the ontology. Then we take the obtained results together with the REL KB and

simplify them by removing all statements that are redundant when looking for instances

of classes in a top-down manner. The result, including the ABox, is then turned into

a set of rules which can be used in a top-down manner, using SLG alone to yield the

desired oracle. Moreover, this way we can straightforwardly combine these transformed

rules with the ones in the knowledge base and, using SLG(O) as defined in Chapter 8,

obtain a single top-down procedure querying a doubled MKNF knowledge base where

the ontology is described in REL.

To achieve an appropriate oracle, we first recall the (simplified) subsumption al-

gorithm for REL. Then, using this algorithm, we devise a simplification of the REL
knowledge base, which is translated into rules.

9.1.1 Deciding Subsumption in REL

The main inference problem considered in [Baader et al., 2005] for SROEL (also called

EL++) is concept subsumption, and, here, we recall the algorithm presented in [Baader

et al., 2005], restricted to REL. For that, we start by recalling a normal form for REL
knowledge bases.

Definition 9.1. An REL knowledge base is in normal form if

176

9.1 An Oracle for REL

1. all GCIs have one of the following forms, where C1, C2 ∈ NC ∪ {>} and D ∈
NC ∪ {⊥,>}:

(1) C1 v D (3) ∃R.C1 v D

(2) C1 u C2 v D (4) C1 v ∃R.C2

2. all RIAs are of the form R v S or R1 ◦R2 v S.

By appropriately introducing new concept and role names, any REL knowledge

base can be turned into normal form and, as shown in [Baader et al., 2005], this

transformation can be done in linear time. So, from now on, we assume that any REL
knowledge base is in normal form.

The subsumption algorithm for REL ([Baader et al., 2005]) applies a set of com-

pletion rules to compute the entire class hierarchy, i.e., all subsumption relationships

between all pairs of concept names occurring in the knowledge base. In detail, given a

normalized REL knowledge base, the algorithm computes:

• a mapping S from NC ∪ {>} to a subset of NC ∪ {⊥,>}; and

• a mapping T from NR to a binary relation on NC ∪ {>}.

These mappings materialize implicit relations as follows:

(I1) D ∈ S(C) implies that C v D,

(I2) (C,D) ∈ T (R) implies that C v ∃R.D.

These mappings are appropriately initialized:

• S(C) := {C,>} for each C ∈ NC ∪ {>}

• T (R) := ∅ for each R ∈ NR

Then the completion rules are applied to extend S(C) and T (R) until no more rule

applies.

CR1 If C ′ ∈ S(C), C ′ v D ∈ C, and D 6∈ S(C)

then S(C) := S(C) ∪ {D}

CR2 If C1, C2 ∈ S(C), C1 u C2 v D ∈ C, and D 6∈ S(C)

then S(C) := S(C) ∪ {D}

177

9. QUERYING TRACTABLE HYBRID MKNF KNOWLEDGE BASES

CR3 If C ′ ∈ S(C), C ′ v ∃R.D ∈ C, and (C,D) 6∈ T (R)

then T (R) := T (R) ∪ {(C,D)}

CR4 If (C,D) ∈ T (R), D′ ∈ S(D), ∃R.D′ v E ∈ C, and E 6∈ S(C)

then S(C) := S(C) ∪ {E}

CR5 If (C,D) ∈ T (R) ⊥ ∈ S(D), and ⊥ 6∈ S(C)

then S(C) := S(C) ∪ {⊥}

CR6 If (C,D) ∈ T (R), R v S ∈ C, and (C,D) 6∈ T (S)

then T (S) := T (S) ∪ {(C,D)}

CR7 If (C,D) ∈ T (R1), (D,E) ∈ T (R2), R1 ◦R2 v R3 ∈ C, and (C,E) 6∈ T (R3)

then T (R3) := T (R3) ∪ {(C,E)}

Compared to the completion rules in [Baader et al., 2005], we omitted the four comple-

tion rules related to nominals and concrete domains, since REL does not include these

constructors.

It was shown in [Baader et al., 2005] that this algorithm terminates in polynomial

time and that it is correct.

Lemma 9.1. Let S be the mapping obtained after the subsumption algorithm for the
normalized REL knowledge base KB has terminated, and A and B concept names
occurring in KB. Then A v B iff the following condition holds:

• S(A) ∩ {B,⊥} 6= ∅.

This means that either A is an unsatisfiable concept or the subsumption relationship

is explicitly present in the mapping S. Note that the restriction to REL simplifies the

condition in Lemma 9.1 of [Baader et al., 2005]1.

9.1.2 Simplifying the Ontology

Given a normalized REL KB O (Definition 9.1), the first transformation step is to

apply the subsumption algorithm to O and obtain the mappings S and R computed it.

In particular, we obtain via S all the subsumption relationships implicitly or explicitly

present in O. In fact, it is easy to see that the initialization of C ∈ S(C) for each

1There, another condition related to nominals appears.

178

9.1 An Oracle for REL

C ∈ NC∪{>} ensures that each GCI of the form (1) of the normal form of Definition 9.1

(C1 v D) is also obtained by D ∈ S(C1), and each GCI of the form (4) (C1 v ∃r.C2)

is obtained by (C1, C2) ∈ R(r)1.

It follows immediately, that we can ignore all GCIs of the form (1) and (4) as long

as we have the complete mappings S and R of the subsumption algorithm available.

But we can simplify even more.

Example 9.1. Consider the hybrid MKNF knowledge base with O in REL, containing
one rule, and some facts.

C v ∃r.D G(x)← D(x)
∃r.C v D C(a). C(b).

C1 u C2 v D r(a, b).

Now consider that we want to know whether G(a) holds. There is only one rule that
allows us to derive G(a), and this requires that D(a) is derivable. Obviously, if we have
C1(a) and C2(a) then D(a) holds as well. But this information is currently not present
in the knowledge base. If we check the second GCI then obtaining D(a) requires finding
r(a, x) and C(x) which appear as facts in the rule part, for x = b. Intuitively, we want
the oracle to transform the query D(a) into an SLG(O) node D(a) : − | r(a, x), C(x),
the goals of which can then be resolved, leading to a derivation of D(a).

Next, suppose we alternatively query for G(b), and subsequently query the oracle
for D(b). Then the second GCI does not allow us to derive D(b) because there is no
r(b, x) for some x derivable; the third does not allow us to derive D(b) because there
are no individuals known to hold in C1 or C2. But even using the first GCI does not
allow us to derive D(b): while C(a) holds and we know that there is an explicit relation
r(a, b) in the knowledge base, the semantics of O (and descriptive first-order semantics
in general) does not allow to derive D(b), since D(b) does not hold in all models of O
- there are models where r(a, i) and D(i) hold for some individual i not appearing in
the knowledge base.

Clearly in a normalized O, GCIs of the form (3) (∃r.C1 v D) and (2) (C1uC2 v D)

– and therefore also of the form (1) – can be used to derive information when answering

an (instance) query. On the other hand, the example implies that GCIs of the form (4)

(C1 v ∃r.C2) do not contribute to drawing this kind of conclusions. We now formalize

this observation.
1Cf. the completion rules CR1 and CR3, which precisely add each such explicit GCIs to the

appropriate mapping.

179

9. QUERYING TRACTABLE HYBRID MKNF KNOWLEDGE BASES

For simplicity of notation, we start by transforming all the mappings obtained from

the algorithm into GCIs, and then we remove all GCIs of the form (4).

Definition 9.2. Let O be in REL and S and R the mappings obtained from the sub-
sumption algorithm. We obtain the completed REL KB O′ from O by adding for each
D ∈ S(C) a GCI C v D to O′ and for each (C,D) ∈ R(r) a GCI C v ∃r.D to O′.

Let O be a completed REL KB. We define the reduced REL KB O′, which is
obtained from the completed REL KB O by removing all GCIs of form (4).

It is straightforward to see that the transformation from O to the completed REL
KB O′ simply allows us to disregard the mappings S and R obtained by the algorithm of

subsumption without losing any of the subset relationships contained in these mappings.

Now we have to show that a reduced REL KB O, which in general does not preserve

the semantics of O, is still suitable for answering queries of the form a ∈ C or (a, b) ∈ R.

Proposition 9.1. Let O be a completed REL KB, and O′ the reduced REL KB obtained
from O. Then the two conditions hold.

(i) a is an instance of concept C in O iff a is an instance of concept C in O′.

(ii) (a, b) is an instance of role r in O iff (a, b) is an instance of role r in O′.

Proof. For (i) we have to show that aI ∈ CI for every model I of O iff aI
′ ∈ CI′ for

every model I ′ of O′; for (ii) we have to show that (aI , bI) ∈ rI for every model I of
O iff (aI

′
, bI

′
) ∈ rI′ for every model I ′ of O′. We are going to show the argument for

(i); the case of (ii) follows analogously.
′ ⇐′: follows directly from monotonicity: adding GCIs of the form (4) does not inval-
idate any drawn conclusions, i.e., if aI

′ ∈ CI
′

for every model I ′ of O′ then adding
GCIs of the form (4) can only reduce the models of O and never increase. We conclude
aI ∈ CI for every model I of O.
′ ⇒′: Suppose that aI ∈ CI for every model I of O. If none of the GCIs of the form
(4) contains the concept name C then we can remove them all and aI

′ ∈ CI′ for every
model I ′ of C′. The same argument applies if C appears only on the left hand side
of such GCIs. So assume C appears on the right hand side of at least one such GCI
C1 v ∃r.C. However, even if there is an individual i such that iI ∈ CI1 and (iI , aI) ∈ rI

for every model I of O, then the removal of GCIs of the form (4) is not relevant for
that since C1 v ∃r.C does not allow us to derive that the unknown individual is a fixed
one. We can thus conclude that aI

′ ∈ CI′ for every common model I ′ of O′.

180

9.1 An Oracle for REL

Having proven that completion and reduction of REL KBs does not alter the deriv-

ability of instance queries, we can take a short cut: instead of completing the REL KB

O we can directly remove all GCIs of the form (4) and discard the mapping R. We

then complete the REL KB O only w.r.t. the mapping S and obtain the reduced REL
KB O′.

Corollary 9.1. Let O be a REL KB and S and R the mappings obtained from the
subsumption algorithm. We obtain the reduced REL KB O′ from O by removing all
GCIs of the form (4) from O and by adding for each D ∈ S(C) a GCI C v D.

9.1.3 Transformation into Rules

Now, we show how to transform the reduced REL KB into rules in such a way that

running the SLG procedure on the obtained set of rules yields an oracle that can be used

in SLG(O). Special care must be taken with inconsistencies and with the fact that if

an atom is proven false in the ontology, then its negation also holds in the rules. Note

that this is achieved in Chapter 8 by querying for classically negated atoms, but these

are outside the syntax of REL even though a restricted form of negation is achievable

via ⊥.

Regarding inconsistencies, there are two kinds which can appear in the three-valued

hybrid MKNF semantics: either the ontology alone is inconsistent, or there is an in-

consistency resulting from the interaction of the rules and the ontology. In the first

case, there is not much to be done. An inconsistent ontology has no models and we can

simply derive anything from it. We therefore admit an a-priori consistency check of the

ontology alone, and proceed only if it succeeds, i.e., we limit ourselves to a consistent

ontology1. For the second case, the bottom-up computation allows us to detect such

problems, but in SLG(O) we are limited to finding atoms that are true and false at

the same time, i.e., if for some C(a) both queries C(a) and notCd(a)2 are answered with

’yes’, then the combined KB is inconsistent. This can, of course, not be complete for

a partial oracle as shown in Example 8.4, so that we obtain a paraconsistent behavior.

To carry over this behavior to a transformation into rules, we have to take into con-

1Note that ontologies in REL can in fact be inconsistent: consider a GCI C v⊥ and an assertion

C(a) in the ABox.
2Recall that we use the doubled predicate for determining falsity.

181

9. QUERYING TRACTABLE HYBRID MKNF KNOWLEDGE BASES

sideration the transformation presented in Definition 8.3 and their effect on the REL

KB.

Regarding classical negation, we solve the problem in a specific way. In SLG(O),

the special negative literals not NH(ti) are used to call ¬H(ti). Since this is not

expressible in REL we simply consider not NH(ti) as normal negative literals, and

transform O into rules such that if ¬H(ti) holds. More precisely, if H v ⊥, then

NH(ti) holds.

We are now ready to define the transformation of the reduced REL KB O into a

set of already doubled rules (see Definition 8.1).

Definition 9.3. Let K = (O,P) be a hybrid MKNF knowledge base with a consistent,
reduced REL KB O. We define PdO from O, where C,D, C1 and C2 are concept names,
R, S, T are role names, and a, b are individual names, as the smallest set containing:

(a1) for each C(a) ∈ A: C(a)← and Cd(a)← notNC(a).

(a2) for each R(a, b) ∈ A: R(a, b)← and Rd(a, b)← notNR(a, b).

(c1) for each GCI C v D: D(x)← C(x) and
Dd(x)← Cd(x),notND(x).

(c2) for each C1 u C2 v D: D(x)← C1(x), C2(x) and
Dd(x)← Cd1 (x), Cd2 (x),notND(x).

(c3) for each ∃R.C v D: D(x)← R(x, y), C(y) and
Dd(x)← Rd(x, y), Cd(y),notND(x).

(r1) for each RIA R v S: S(x, y)← R(x, y) and
Sd(x, y)← Rd(x, y),notNS(x, y).

(r2) for each RIA R ◦ S v T : T (x, z)← R(z, y), S(y, z) and
T d(x, z)← Rd(x, y), Sd(y, z),notNT (x, z).

(i1) for each C v⊥: NC(x)←.

(i2) for each C1 u C2 v⊥: NC2(x)← C1(x) and NC1(x)← C2(x).

(i3) for each ∃R.C v⊥: NC(y)← R(x, y) and NR(x, y)← C(y) .

182

9.1 An Oracle for REL

Note that the cases (i1) to (i3) are used to introduce truth of some NH(ti). Fur-

thermore, these three cases only produce one rule, since atoms based on predicates of

the forms NCd or NRd are not required anywhere.

Program PdO can be used as the basis for obtaining a correct partial oracle for REL
knowledge bases, to be integrated in the general procedure of SLG(O). Recall that

an oracle receives a query S and the already derived (positive) information I+
Fn

, and

returns a set of atoms L, which if proven, ensure that S is derivable. The general idea

of such an oracle for REL would be to use SLG to query S in the program consisting of

PdO and facts for all the atoms in I+
Fn

in such a way that any time an atom also defined

in the rules is queried, the atom can succeed, i.e., is removed from the resolvent, and

is collected in a set associated to the respective derivation branch1. Upon success, the

so modified SLG procedure would return the set of collected atoms. The partial oracle

would be defined by the relation with the query, the running forest, and the returned

set. However, since both the rule part and the oracle itself would be evaluated by an

SLG procedure, they can be combined: instead of collecting the atoms in the set, and

then calling them in SLG(O) after the oracle returns a result, one can immediately

call the otherwise collected atoms, i.e., the atoms defined in the program. This way,

correctness of the so defined partial oracle is equivalent to the correctness of the above

transformation. We prove this for MKNF-consistent knowledge bases:

Theorem 9.1. Let K = (O,P) be an MKNF-consistent hybrid MKNF knowledge base
with O in REL. Then KREL = (∅, (Pd ∪ PdO)) is semantically equivalent to Kd =
(O,Od,Pd).

Proof. We have to show that PdO is equivalent to O and Od.
The transformations on ABox assertions, (a1) and (a2), on GCIs in C, (c1), (c2),

and (c3), and on role inclusions, (r1) and (r2), are semantically equivalent and can be
found, e.g., in [Grosof et al., 2003]. Since O contains the original GCIs and Od the
doubled ones with new predicate names, we also create two rules, one for each of the
two DL knowledge bases in Kd. Note that the addition of predicates, such as NC(x),
to the body of a rule with head Cd(x) is just done to enforce that whenever NC(x)
holds, i.e., ¬C(x), then Cd(x) cannot become true, which is used in the consistent case
to enforce coherence. We only have to consider the transformations (i1) to (i3).

1An alternative way of viewing this, would be to add to Pd
O facts for all the atoms defined in the

rules, run SLG as usual, but collecting all those facts that were used in the derivation.

183

9. QUERYING TRACTABLE HYBRID MKNF KNOWLEDGE BASES

(i1) C v⊥: C is unsatisfiable, i.e., ¬C(x) for all x; O contains a statement that allows
us to infer ¬C(x) which corresponds exactly to the fact NC(x)←.

(i2) C1 u C2 v⊥: the statement expresses disjointness of C1 and C2, i.e., ¬(C1(x) ∧
C2(x)) for all x which is equivalent to C1(x) → ¬C2(x) and C2(x) → ¬C1(x);
using the correspondences ¬C1(x)→ NC1(x) and ¬C2(x)→ NC2(x).

(i3) ∃R.C v⊥ follows the same argument as (i2).

For the MKNF-inconsistent case, we should point out that one result of the trans-

formation into rules is that we obtain a somewhat paraconsistent approach: while an

inconsistent ontology allows us to derive anything from it, the process of doubling the

rules enables us to derive those consequences which do not depend on inconsistent in-

formation contained in the KB as presented in Example 8.4. We leave the details of

that to future studies.

Finally, we have to show that the process of translating the ontology into rules and

reasoning over the combined set of rules with SLG(O) also preserves the polynomial

data complexity.

Theorem 9.2. Let K = (O,P) be a hybrid MKNF knowledge base with O in REL.
An SLG(O) evaluation of a query in KREL = (∅, (Pd ∪ PdO)) is decidable with data
complexity PTIME.

Proof. In Theorem 8.5, the general complexity result is given for a correct partial oracle.
Since evaluation is done with respect to a combined set of rules, i.e., we integrate the
rules, the whole process of querying the oracle and returning a limited amount of
answers is ensured by the evaluation of rules with tabling which is known to have a
data complexity PTIME. Together with the polynomial subsumption algorithm for REL
and the linear transformations to obtain KREL we prove the claim.

9.2 An Oracle for DL-LiteR

For defining an oracle for DL-LiteR we rely on the reasoning algorithms provided for

DL-LiteR in [Calvanese et al., 2007]. The basic reasoning service to which all others

are reduced is satisfiability. Satisfiability of a DL-LiteR KB is checked by evaluating a

suitable Boolean first-order logic query w.r.t. a canonical model of its ABox. We recall

the construction and evaluation of such a formula, and we note that, for simplicity,

184

9.2 An Oracle for DL-LiteR

we limit ourselves to basic constructs only, i.e., all constructors that can be considered

syntactic sugar in Section 3.3.2, are not mentioned explicitly. This means, that we limit

ourselves to concept names, and ∃R.> on both sides of a GCI, which we simplify to

∃R, role names and inverse roles names in RIA and GCI, ¬ on the right hand side of

GCI and RIA, and, in the ABox, to simple assertions for concept and role names only.

9.2.1 Satisfiability in DL-LiteR

First, we recall the definition of a canonical interpretation of the ABox from [Calvanese

et al., 2007].

Definition 9.4. Let A be a DL-LiteR ABox. We denote by db(A) = (∆db(A), ·db(A))
the interpretation defined as follows:

• ∆db(A) is the nonempty set consisting of all constants occurring in A;

• adb(A) = a for each constant a;

• Adb(A) = {a | A(a) ∈ A} for each atomic concept A; and

• Rdb(A) = {(a, b) | R(a, b) ∈ A} for each atomic role R.

It is easy to see that db(A) is in fact a model of A and a minimal one [Calvanese

et al., 2007].

This forms the basis for checking satisfiability in DL-LiteR as recalled next.

Definition 9.5. Satisfiability in DL-LiteR is FOL-reducible if, for every TBox T and
RBox R expressed in DL-LiteR, there exists a Boolean FOL query q, over the alphabet
of T , such that for every nonempty ABox A, 〈T ,R,A〉 is satisfiable if and only if q
evaluates to false in db(A).

Now, a query is constructed, by first splitting all GCI into those with ¬ on the right

hand side (called negative inclusions (NI)) and those without (called positive inclusions

(PI)) and by considering the NI as a starting point to compute all derivable NI.

Definition 9.6. Let T be a DL-LiteR TBox and R a DL-LiteR RBox. We call
NI-closure of T and R, denoted by cln(T ,R), the set defined inductively as follows:

1. All negative inclusion assertions in T and R are also in cln(T ,R).

2. If B1 v B2 is in O and B2 v ¬B3 or B3 v ¬B2 is in cln(T ,R), then also
B1 v ¬B3 is in cln(T ,R).

185

9. QUERYING TRACTABLE HYBRID MKNF KNOWLEDGE BASES

Input: DL-LiteR KB O = 〈T ,R,A〉
Output: true if O is satisfiable, false otherwise
qunsat = ⊥
for all α ∈ cln(T ,R) do
qunsat = qunsat ∨ δ(α)

end for
if qdb(A)

unsat = ∅ then
return true

else
return false

end if

Figure 9.1: Algorithm Consistent

3. If R1 v R2 is in O and ∃R2 v ¬B or B v ¬∃R2 is in cln(T ,R), then also
∃R1 v ¬B is in cln(T ,R).

4. If R1 v R2 is in O and ∃R−2 v ¬B or B v ¬∃R−2 is in cln(T ,R), then also
∃R−1 v ¬B is in cln(T ,R).

5. If R1 v R2 is in O and R2 v ¬B or B v ¬R2 is in cln(T ,R), then also R1 v ¬B
is in cln(T ,R).

6. If one of the assertions ∃R v ¬∃R, ∃R− v ¬∃R−, or R v ¬R is in cln(T ,R),
then all three such assertions are in cln(T ,R).

Given the NI-closure of T and R we can translate each axiom into a first-order

formula.

Definition 9.7. Let O be a DL-LiteR KB and cln(T ,R) the NI-closure of T and R.
The translation function δ from axioms in cln(T ,R) to first-order formulas is:

δ(B1 v ¬B2) = ∃x.γ1(x) ∧ γ2(x)

δ(R1 v ¬R2) = ∃x, y.ρ1(x, y) ∧ ρ2(x, y)

where γi(x) = Ai(x) if Bi = Ai, γi(x) = ∃yi.Ri(x, yi) if Bi = ∃Ri, and γi(x) =
∃yi.Ri(yi, x) if Bi = ∃R−; and ρi(x, y) = Pi(x, y) if Ri = Pi, and ρi(x, y) = Pi(y, x) if
Ri = P−i .

The algorithm in Fig. 9.1 checks satisfiability of a DL-LiteR knowledge base O. Of

course, if O is free of NI, then the algorithm succeeds automatically.

186

9.2 An Oracle for DL-LiteR

With this, instance checking is straightforwardly obtained in [Calvanese et al., 2007].

Theorem 9.3. Let O be DL-LiteR KB, and either H a general concept (with ground
argument ti) appearing in O and Â an atomic concept not appearing in O or H a role
name or its inverse (with ground arguments ti) appearing in O and Â an atomic role
not appearing in O. Then O |= H(ti) iff O ∪ {Â v ¬H, Â(ti)} is unsatisfiable.

Note that this theorem is a generalization of two separate theorems for concepts

and roles.

9.2.2 Defining the Oracle for DL-LiteR

The material presented so far suffices to handle the bottom-up computation of the

well-founded partition for hybrid MKNF knowledge bases. In the subsequent example,

which we recall from [Calvanese et al., 2007], we not only present how satisfiability and

instance checking work, but also consider possible solutions for defining an oracle.

Example 9.2. Consider the DL-LiteR KB O consisting of the axioms in the TBox
and the RBox:

Professor v ∃TeachesTo (9.1)

Student v ∃HasTutor (9.2)

∃TeachesTo− v Student (9.3)

∃HasTutor− v Professor (9.4)

Professor v ¬Student (9.5)

HasTutor− v TeachesTo (9.6)

and the simple ABox:

Student(John) HasTutor(John, Mary) TeachesTo(Mary, Bill). (9.7)

For checking satisfiability, we create db(A) with the domain ∆db(A) = {John, Mary, Bill}
whose elements are all mapped to themselves, and the interpretation of all concept and
role names according to A, e.g., Studentdb(A) = {John} and Professordb(A) = ∅.

187

9. QUERYING TRACTABLE HYBRID MKNF KNOWLEDGE BASES

Then, we calculate cln(T ,R) as follows.

Professor v ¬Student (9.8)

∃HasTutor− v ¬Student (9.9)

∃TeachesTo− v ¬Professor (9.10)

∃TeachesTo v ¬Student (9.11)

∃HasTutor v ¬Professor (9.12)

Axiom 9.8 occurs in O, Axiom 9.9 follows from (9.8) and (9.4), Axiom 9.10 follows
from (9.8) and (9.3), and (9.11) and (9.12) follow from (9.6) and (9.9), respectively
(9.10).

The translation function δ can be applied to each NI in cln(T ,R).

δ(Professor v ¬Student) = ∃x.Professor(x) ∧ Student(x) (9.13)

δ(HasTutor− v ¬Student) = ∃x.(∃yHasTutor(y, x)) ∧ Student(x) (9.14)

δ(TeachesTo− v ¬Professor) = ∃x.(∃yTeachesTo(y, x)) ∧ Professor(x) (9.15)

δ(TeachesTo v ¬Student) = ∃x.(∃yTeachesTo(x, y)) ∧ Student(x) (9.16)

δ(HasTutor v ¬Professor) = ∃x.(∃yHasTutor(x, y)) ∧ Professor(x) (9.17)

Considering db(A) and the disjunction of first-order formulas resulting from the
translation yields a successful test for satisfiability.

If we want to verify, e.g., Student(John), then we extend O with Â(John) and
Â v ¬Student resulting in O′, update db(A′) appropriately, and add three more NI to
cln(T ′,R′):

Â v ¬Student (9.18)

∃TeachesTo− v ¬Â (9.19)

∃HasTutor v ¬Â (9.20)

These axioms can again be translated, and it can be easily verified that the resulting
check yields unsatisfiability. From this, we derive that Student(John) holds.

δ(Â v ¬Student) = ∃x.Â(x) ∧ Student(x) (9.21)

δ(TeachesTo− v ¬Â) = ∃x.(∃yTeachesTo(y, x)) ∧ Â(x) (9.22)

δ(HasTutor v ¬Â) = ∃x.(∃yHasTutor(x, y)) ∧ Â(x) (9.23)

If we want to incorporate this into SLG(O), then there are two possible outcomes.
First, we may, e.g., query for Student(John) and the previously presented steps would

188

9.2 An Oracle for DL-LiteR

derive this from O alone, so that we would expect the empty answer for SLG(O).
I.e., nothing needs to be added to O to derive the queried atom from O and a child
Student(John) : − | is created in the tree for Student(John).

Alternatively, consider that the ABox is not present, but that, for simplicity, the
corresponding statements occur as rule facts. In this case, we want the oracle to re-
turn a set of atoms, which if resolved prove the original query. Clearly, we can derive
Student(John) if the satisfiability test for O fails. This is the case if one of the dis-
juncts in qdb(A)

unsat is satisfiable, e.g., if there is an x such that Professor(x)∧Student(x).
Of course, it is counterintuitive to prove that John is a student by showing that there
is some other individual that is a professor and a student, i.e., by deriving some incon-
sistency in the interaction of O and the rules. Thus, all the disjuncts resulting from
(9.13)–(9.17), do not yield meaningful derivations. Instead they yield derivations based
on some general MKNF-inconsistency, which is not possible in a partial oracle (cf.
Definition 8.16).

However, if we resolve the disjuncts resulting from (9.21)–(9.23) with Â(John),
then we obtain meaningful answers that can be used in the tree of Student(John).
Namely, Student(John) itself is obtained, which is then discarded in SLG(O), and
(∃yTeachesTo(y, John)), and (∃yHasTutor(John, y)) are also obtained. In fact, we can
introduce two children:

Student(John) : − | TeachesTo(y, John)

and
Student(John) : − | TeachesTo(John, y)

to the tree with root Student(John) and try to find appropriate proofs in the rules of a
hybrid MKNF knowledge base K consisting of rules and a DL part in DL-LiteR.

The insights gained in this example can be formalized in the algorithm (Fig. 9.2)

that provides an oracle for DL-LiteR. We only have to formalize the resolution step of

the newly introduced query atom with each of the results of applications of δ.

Definition 9.8. Let O be a DL-LiteR KB, α an axiom in cln(T ,R), and δ(α) =
∃~x.C1 ∧ C2 such that H is unifiable with mgu θ with Ci, for some i, in δ(α). Then
res(δ(α), H) is defined as (C2)θ if i = 1, and (C1)θ otherwise.

The algorithm itself proceeds as outlined in the example. It checks first whether O
together with the already proven true knowledge yields a satisfiable knowledge base.

If not, the algorithm stops and returns the empty set. Otherwise, it proceeds with

189

9. QUERYING TRACTABLE HYBRID MKNF KNOWLEDGE BASES

Input: DL-LiteR KB O = 〈T ,R,A〉, I+
Fn

, and a ground atomic query q = H(ti)
Output: a possibly empty set of L such that O ∪ I+

Fn
∪ L |= H(ti)

L = ∅
qunsat = ⊥
for all α ∈ cln(T ,R) do
qunsat = qunsat ∨ δ(α)

end for
if q

db(A∪I+Fn
)

unsat 6= ∅ then
L = ∅

else
T ′ = T ∪ {Â v ¬H}
A′ = A ∪ {Â(ti)}
O′ = 〈T ′,R,A′〉
for all α ∈ cln(T ′,R) \ cln(T ,R) do
qunsat = qunsat ∨ δ(α)

end for
if q

db(A′∪I+Fn
)

unsat 6= ∅ then
L = {∅}

else
for all α ∈ cln(T ′,R) \ cln(T ,R) do
L = L ∪ {res(δ(α), Â(ti))}

end for
end if
return L

end if

Figure 9.2: Algorithm DL-LiteR Oracle

190

9.2 An Oracle for DL-LiteR

an instance check for the query, i.e., by checking for unsatisfiability of the extended

knowledge base, and returns a set containing only the empty answer. If the instance

check fails, it considers all newly introduced axioms in cln(T ′,R), and uses resolution

with the special new atom to obtain possible atoms whose derivation would ensure the

derivability of the original query.

We show that this algorithm provides a correct partial oracle for DL-LiteR w.r.t.

SLG(O).

Theorem 9.4. The algorithm DL-LiteR Oracle is sound and complete, i.e., the re-
turned answers in L correspond to the definition of a partial oracle for DL-LiteR and
the algorithm enables us to compute all the minimal sets L according to the partial
oracle for DL-LiteR.

Proof. We show soundness, i.e., we show that the returned answers in L correspond to
the definition of a partial oracle for DL-LiteR. Without loss of generality, we can limit
ourselves to the original predicates (and the result follows for the doubled predicates
in the very same way), so we have to consider O ∪ I+

Fn
∪ L |= q where O ∪ I+

Fn
∪ L is

consistent (Definition 8.16) and q the queried atom in consideration. Note first that
we ensure that O ∪ I+

Fn
is consistent, and if required, then an additional test for each

L ∈ L can easily be added to ensure that O ∪ I+
Fn
∪ L is consistent.

If the algorithm returns L = ∅, then O ∪ I+
Fn

is not consistent and the oracle
must not return any L ∈ L. If the algorithm returns L = {∅} then the instance
check for the query succeeds and in this case O ∪ I+

Fn
∪ ∅ |= q holds. Finally, if the

algorithm returns L = {L1, . . . , Ln}, then the instance check failed, but O∪I+
Fn
∪Li |= q

because the addition of L to I+
Fn

would exactly enable the instance check to succeed
(see Theorem 9.3).

To show correctness, we have to show that the algorithm enables us to compute all
the minimal sets L according to the partial oracle for DL-LiteR. First, if O ∪ I+

Fn
is

not consistent, then the partial oracle is empty and so is L. Then, if O ∪ I+
Fn
∪ L |= q

holds for empty L, then L contains only the empty set. We only need to show that
for nonempty L the result holds as well. The only possibility to obtain a successful
instance check is the occurrence of some α ∈ cln(T ′,R) such that the evaluation of δ(α)
succeeds in db(A∪I+

Fn
). Note that none of the α ∈ cln(T ,R) can be considered since if

one of these succeeds, the entire knowledge base is inconsistent. Thus, considering only
α ∈ cln(T ′,R) \ cln(T ,R) suffices to find all possible sets L, since res is applicable in
each such case.

191

9. QUERYING TRACTABLE HYBRID MKNF KNOWLEDGE BASES

The computational complexity of the algorithm follows from results in [Calvanese

et al., 2007].

Theorem 9.5. Let K = (O,P) be a hybrid MKNF knowledge base with O in DL-LiteR.
An SLG(O) evaluation of a query q in the algorithm DL-LiteR Oracle is decidable
with combined complexity PTIME.

Proof. We know from the proof of Theorem 43 in [Calvanese et al., 2007] that the
combined complexity for computing the disjunctive formula using δ on α in cln(T ,R) is
polynomial, while the evaluation w.r.t. db(A) is in LOGSPACE. Consequently, instance
checking and checking satisfiability for DL-LiteR is in PTIME. The algorithm DL-LiteR
Oracle uses two such satisfiability checks, and processes conditionally a set of δ(α) in
linear time. We conclude that the combined complexity of DL-LiteR Oracle is in
PTIME.

Intuitively, this result, which is more in the spirit of the approach of SLG(O)than

the procedure devised for REL, is achieved because GCI and RI are of a particular

restricted form that only involves two (possibly negated) atoms each. So the oracle

just needs to find single atoms as replies, and does not need to compute minimal

subsets of arbitrary size in the power set of all atoms. Clearly, a similar approach that

is not based on a translation of the DL into rules is much harder to achieve for REL
simply because ∩ is allowed on the left hand side of GCI.

9.3 An Oracle for DLP

Providing an oracle for DLP is considerably easier than doing so for REL or DL-LiteR
simply because DLP is designed to be translatable into rules. Moreover, no classical

negation occurs in the DL, and so inconsistencies cannot occur. Therefore, in this

section, we limit ourselves to recalling the transformation from [Grosof et al., 2003] that

turns a DLP DL knowledge base into rules. Then, given a hybrid MKNF knowledge

base K = (O,P) we can combine the result of translating O with P and query the

combined set of rules directly in SLG, i.e., SLG(O) without Oracle Resolution,

where we also can avoid the doubling of K since inconsistencies and coherence are not

relevant in this case.

We recall the mapping from [Grosof et al., 2003], starting with the translation of a

GCI. Let A be in NC , and C,D arbitrary concepts restricted as in Section 3.3.3, R in

192

9.3 An Oracle for DLP

NR, and x, y variables, with y being a new variable, i.e., one that has not previously

been used. We define the mapping T for a GCI C v D as follows.

T (C v D): Th(D, y)← Tb(C, y)
Th(A, x): A(x)
Th((C uD), x): Th(C, x) ∧ Th(D,x)
Th((∀R.C), x): Th(C, y)← R(x, y)
Tb(A, x): A(x)←
Tb((C uD), x): Tb(C, x) ∧ Tb(D,x)
Tb((C tD), x): Tb(C, x) ∨ Tb(D,x)
Th((∃R.C), x): R(x, y) ∧ Tb(C, y)

As pointed out in [Grosof et al., 2003], resulting rules of the form H ∧H ′ ← B are

translated into two rules H ← B and H ′ ← B, resulting rules of the form H ← (H ′ ←
B) are translated into H ← H ′ ∧B, and those of the form H ← B ∨B′ into two rules

H ← B and H ← B′.

For complex class expressions C,D that are allowed to appear on the left and the

right hand side of a GCI we define the translation of C ≡ D, i.e., T (C ≡ D), as

T (C v D) and T (D v C).

ABox statements and certain range restrictions are translated as follows.

T (> v ∀R.D): Th(D, y)← R(x, y)
T (> v ∀R−.D): Th(D,x)← R(x, y)
T (D(a)): Th(D, a)
T (R(a, b)): R(a, b)

Finally, axioms on roles are translated.

T (R v S): S(x, y)← R(x, y)

T (R ≡ S):

{
R(x, y)← S(x, y)
S(x, y)← R(x, y)

T (R ≡ S−):

{
R(x, y)← S(y, x)
S(x, y)← R(y, x)

T (Tra(R)): R(x, z)← R(x, y) ∧R(y, z)

It is shown in [Grosof et al., 2003], that the mapping T is equivalence preserving.

This allows us to show that we can use the translated DLP KB for querying.

Theorem 9.6. Let K = (O,P) be a hybrid MKNF knowledge base with O in DLP.
Then KDLP = (∅, T (O) ∪ P) is semantically equivalent to K = (O,P).

193

9. QUERYING TRACTABLE HYBRID MKNF KNOWLEDGE BASES

Proof. This result follows immediately from Theorem 1 of [Grosof et al., 2003], which
shows the equivalence of O and T (O) and the same argument as for REL, i.e., that we
can integrate both rule sets directly to obtain the oracle to the DL part.

The polynomial data complexity is thus also preserved.

Theorem 9.7. Let K = (O,P) be a hybrid MKNF knowledge base with O in DLP.
An SLG(O) evaluation of a query in KDLP = (∅, T (O) ∪ P) is decidable with data
complexity PTIME.

Proof. The result is obtained as a special case from the general result (Theorem 8.5)
because DLP is polynomial and the translation T (O) is linear.

We have thus presented three concrete partial oracles that maintain the polynomial

data complexity and that are based on different algorithmic ideas. For DLP, we simply

take advantage of the existing translation into rules and use SLG alone for querying.

The same is done eventually for REL, but we apply the subsumption algorithm before-

hand, and we remove certain axioms that would not yield any information w.r.t. queries.

in the case of DL-LiteR, we use to slight extension of the algorithm for instance check-

ing in DL-LiteR to obtain an oracle that truly works as defined in Chapter 8. These

three partial oracles serve as show cases that partial oracles as defined in Chapter 8

are, indeed, of practical use and maintain the polynomial data complexity.

194

10

Conclusions

We have investigated tight combinations of open and closed world reasoning in the

setting of combinations of DL and non-monotonic rules. In particular, we have studied

the approach of hybrid MKNF knowledge bases [Motik and Rosati, 2010] and, based on

that work, we have developed a new semantics that soundly approximates the former,

but which provides a lower data complexity in general. We have provided two general

reasoning algorithms – one to compute the entire model and one allowing us to query

the combined knowledge base – and for the latter we provided procedures that are

tailored to knowledge bases in which reasoning remains tractable. Thus, we have shown

that combining open and closed world reasoning efficiently is possible and we have

established that, among the approaches that provide similar computational complexity,

our work is the one with significantly less restrictions on the expressiveness in general,

and on the interaction between the DL and the rules. In particular, our approach is

the only one among these that satisfies the four criteria established in Chapter 1.

In this chapter, we are going to recall the results in more detail (Section 10.1),

before we point out possible lines of future work (Section 10.2).

10.1 Accomplishments

The achievements of this thesis can be split into three parts. Namely, the development

of a new semantics; establishing an algorithm for computing the unique model of that

semantics based on which the majority of the properties of the semantics can be proven;

195

10. CONCLUSIONS

and finally the definition of an accompanying top-down query algorithm, which promises

to be scalable to very large knowledge bases in practice.

Based on the two-valued MKNF logics [Lifschitz, 1991], a three-valued semantics for

MKNF formulas has been defined in Chapter 5, partially tailored (cf. the evaluation

of the operator ⊃) towards an integration of first-order DL and MKNF rules. This

extension is faithful in the sense that any two-valued MKNF model is also a total three-

valued MKNF model. For (non-disjunctive) hybrid MKNF knowledge bases, we have

devised a special minimal model in this semantics, the well-founded MKNF model,

which is the least among all three-valued MKNF models w.r.t. derivable knowledge.

Our proposal straightforwardly satisfies the four criteria presented in Chapter 1 for the

combination of rules and ontologies. Moreover, we have shown that if the knowledge

base is consistent in our semantics,1 then this model is unique and it exists. The proofs

of these and other important properties are obtained based on the definition of the

bottom-up computation of the unique model.

In Chapter 6, based on similar results in LP, we have defined an alternating fixpoint

construction that allows us to compute a representation of the well-founded MKNF

model. This computation ensures that if the knowledge base is consistent, then the

approach is coherent in the sense of [Pereira and Alferes, 1992], i.e., if a formula ϕ is

first-order false in the ontology, then the non-monotonic interpretation of ϕ in the rules

is enforced to be false as well. Furthermore, if the knowledge base is inconsistent, then

the proposed construction allows us to detect this without any substantial additional

computational effort. Additionally, we have devised an alternative characterization

based on unfounded sets (as known from logic programs) and show that the calculated

result of that characterization coincides with the one obtained from the alternating

fixpoint construction.

In the same chapter, the following important properties have been shown to hold

for the proposed semantics.

• The well-founded MKNF model is faithful w.r.t. the two-valued MKNF models

of [Motik and Rosati, 2010], i.e., each query that is true (resp. false) in the

well-founded MKNF model is also true (resp. false), in each two-valued MKNF

model.
1Note that the set of inconsistent hybrid knowledge bases w.r.t. our new semantics is a strict subset

of the hybrid MKNF knowledge bases that are inconsistent w.r.t. the two-valued MKNF semantics.

196

10.2 Future Work

• Our proposal coincides with the original DL-semantics when no rules are present,

and the original WFS of logic programs if the DL component is empty.

• The computational data complexity of our approach depends on the computa-

tional complexity of the applied DL, but it is in general in a strictly lower com-

plexity class than the two-valued MKNF semantics, and if the considered DL is of

polynomial data complexity, then the combination with rules remains tractable.

In Chapter 8, we have presented a general querying mechanism for hybrid MKNF

knowledge bases, called SLG(O), that is sound and complete for our proposed se-

mantics and sound for Hybrid MKNF knowledge bases of [Motik and Rosati, 2010].

SLG(O) is an extension of SLG resolution with an oracle to query an accompanying

first-order theory that accepts DL-safe conjunctive queries, returning all correct answer

substitutions for variables in the query. The defined general procedure applies to any

DL and under certain conditions maintains the data complexity of our new proposal. In

Chapter 9, we also have provided concrete oracles for REL, DLP and DL-Lite, i.e., the

three tractable fragments that are underlying the OWL 2 profiles that are part of the

W3C recommendations [Hitzler et al., 2009a] for the Semantic Web. These oracles are

based on different techniques, either translating the DL fragment into rules (DLP and

REL) and/or manipulating existing reasoning algorithms so that the required infor-

mation is available for SLG(O)(DL-LiteR and REL). We show that the oracles thus

defined are correct with respect to the general procedure and maintain the polynomial

(data) complexity.

10.2 Future Work

Several lines of future research can be considered and these fall into the three parts in

which we achieved our results.

First, the three-valued extension of the two-valued MKNF logics [Lifschitz, 1991] is

defined for arbitrary MKNF formulas, but then we focus on (non-disjunctive) hybrid

MKNF knowledge bases when defining the well-founded MKNF model. One way of

approximating our work with non-monotonic extensions of DL, such as [Donini et al.,

2002], would be to study the well-founded MKNF model for more general MKNF

formulas. However, it is not possible to extend this to arbitrary MKNF formulas

197

10. CONCLUSIONS

since the occurrence of disjunctions of K-atoms would immediately yield two minimal

models, and so no least one among all three-valued MKNF models. Similar results

could be achieved if we extend the recent embedding of monotonic DL-safe rules into

DL using nominal schema [Krötzsch et al., 2011] to non-monotonic rules. In this case,

the semantics of [Donini et al., 2002] might serve as a starting point, which could

be appropriately adapted to embeddings of non-monotonic (MKNF) rules rather than

permitting a more liberate usage of modal operators but then restricting it. This could

then be generalized thus achieving an approximation of MKNF knowledge bases and

the work of [Donini et al., 2002] but from the side of [Donini et al., 2002].

Another possible extension of our work can be achieved by lifting some of the restric-

tions on hybrid MKNF knowledge bases. As discussed before, introducing disjunctions

in rules is not an option since it would in general create various minimal models. Ex-

tending the content of modal atoms to non-atomic formulas seems more viable, and,

even though this can in principle be incorporated into knowledge bases by appropriate

transformations into first-order logic, it would be interesting to provide, e.g., a seman-

tics that allows the usage of classical negation in rules and that handles these directly

without a preceding knowledge base transformation. This seems possible given that

our semantics already deals with the impact of classical negation from the DL anyway,

and further generalizations may follow. This may yield even more expressive combined

languages, and it remains to be seen whether we can benefit from this in terms of

computational complexity.

Instead of extending the syntax, future work may also consider the extension of the

semantics to deal with inconsistencies. More concretely, another topic to be pursued

is the definition of a paraconsistent version of the semantics defined in this thesis. It

is worth noting that when inconsistencies come from the combination of rules and the

DL-part, i.e., for inconsistent KBs with a consistent DL, the construction defined in

this thesis already yields some results, e.g., in Example 6.11 we still derive that the

CD Bts is interesting. This suggests that the method could be further exploited in the

direction of defining a paraconsistent semantics for hybrid KBs, and, in SLG(O), due

to its top-down definition, we also already have some paraconsistent behavior in the

case of partial oracles.

The latter two lines of future work suggest to adapt SLG(O) to the proposed exten-

sions, but there are many more open problems. Among the three tractable fragments

198

10.2 Future Work

considered for concrete oracles, REL is the one that is considerably more restricted

w.r.t. to the admissible language of the corresponding OWL 2 profile. Thus, we may

extend the oracle for REL to SROEL [Baader et al., 2008] or even to its still tractable

extensions ELP [Krötzsch, 2010; Krötzsch et al., 2008b] or even SROELVn [Krötzsch

et al., 2011].

Finally, we may consider implementations of the SLG(O). An implementation of

this procedure that is based on XSB Prolog1 for the tabling resolution is already part

of the CVS version of XSB Prolog, and the description of this implementation can be

found at [Gomes et al., 2010, 2011]. However, the DL considered in that implementation

is the CDF framework already integrated in XSB, so that the approach is not applicable

to arbitrary DL at all. Thus, we may develop an implementation that can be integrated

with an arbitrary DL, e.g., as a plug-in for Protégé. Of special interest should be the

implementation of the procedures tailored to tractable fragments, since this is where

our semantics has its particular benefits in terms of data complexity. Consequently,

we could turn the results of this thesis into practical systems that can be used in real

applications.

1http://xsb.sourceforge.net/

199

Index

ΓKG
, 94

�k, 81

ABox, 44

admissible, DLs, 65

admissible, MKNF KB, 65

AEL, 137

AL-log, 124

answer, 48

Answer Completion, 163

answer set, 31

answer, SLG(O), 159

atom, (first-order), 28

body, MKNF+ rule, 60

body, rule, 29

CARIN, 125

closed, MKNF formula, 56

complete oracle, 162

complete, complexity, 28

completed REL KB, 180

completely evaluated, 159

Completion, 163

complexity, combined, 27

complexity, data, 27

complexity, taxonomic, 27

compTO, 162

concept subsumption, 47

concept unsatisfiability, 47

conditional answer, 159

conjunctive query, 48

conjunctive query, boolean, 48

coNP, 27

consistent, MKNF interpretation pair, 77

correct, partial oracle, 173

CWA, 7

DKd
G

, 150

DKG
, 92

decidable, decidability, 14

default negation, 29

Delaying, 163

depend on, 103

disjunctive dl-programs, 136

distinguished, 48

DL Rules, 127

DL+log, 130

DL-atom, 64

DL-predicate, 64

dl-programs, 134

DL-safe, 64

DL-safe rules, 126

200

INDEX

DLH, 52

DLP, 127

DLs, 5

doubled hybrid MKNF KB, 149

DP, 27

early evaluated, 160

ELP, 128

embeddings into AEL, 137

entailment, DLs, 46

entailment, MKNF, three-valued, 79

entailment, MKNF, two-valued, 58

equality, 56

f-hybrid knowledge bases, 133

fact, MKNF+ rule, 60

fact, rule, 29

fail, child, 163

failed, atom, 161

failure node, 158

faithful, faithfulness, 13

flat, MKNF formula, 56

flexible, flexibility, 14

FOL-reducible, 185

g-hybrid knowledge bases, 132

GALEN, 10

GCI, 44

Gelfond-Lifschitz operator, 33

general concept inclusion axiom, 44

generalized atom, 60

generalized atom base, 60

GHB, 60

greatest fixpoint, 25

greatest unfounded set, 104, 152

ground instantiation, K, 65

ground, MKNF formula, 56

grounding, 60

hard, complexity, 28

HBΠ, 30

head, MKNF+ rule, 60

head, rule, 29

Herbrand base, 30

Herbrand universe, 30

HUΠ, 30

hybrid MKNF knowledge base, 67

hybrid MKNF+ knowledge base, 61

hybrid rules with WFS, 138

inconsistency checking, 47

individual assertion, 44

induced, partial partition, 88

inequality, 56

instance checking, 47

integrity constraint, 60

interpretation induced by F , 161

interpretation, DLs, 45

interpretation, LP, 31

interpretation, three-valued, LP, 34

K-atom, 56

KA(KG), 86

KB, 3

KG//S, MKNF coherent transform, 96

KG/S, MKNF transform, 94

KdG//′S, MKNFd coherent transform, 150

knowledge ordering, 35

201

INDEX

KRR, 3

least fixpoint, 25

least model, 33

limit ordinal, 25

literal, 29

literal, negative, 29

literal, positive, 29

logic, two-valued, 31

logical consequence, 46

LOGSPACE, 27

LP, 7

MBNF, 55

MKNF, 17

MKNF interpretation, 58

MKNF interpretation pair, 77

MKNF knowledge base, 62

MKNF model, three-valued, 78

MKNF model, two-valued, 58

MKNF rule, 62, 67

MKNF satisfiable, 58

MKNF structure, 57

MKNF structure, three-valued, 75

MKNF transform, 94

MKNF unsatisfiable, 58

MKNF+ atom, 60

MKNFd-coherent transform, 150

MKNF-coherent transform, 96

MKNF-consistent, 79

MKNF-inconsistent, 79

modal atom, 56

modally closed, MKNF formula, 56

model, DL, 46

monotonic, 25

N2EXPTIME, 27

name, 57

Negation Failure, 163

Negation Success, 163

negative delay literal, 158

negative inclusion, 185

Negative Return, 163

New Subgoal, 162

NEXPTIME, 27

NI, 185

Ni, 99

NI-closure, 185

node, 158

nominal schema, 129

non-disjunctive, MKNF+ rule, 60

non-distinguished, 48

non-DL-atom, 64

non-DL-predicate, 64

nonmodal atom, 60

normal form, REL, 176

not-atom, 56

NP, 27

OBO,S , 87

objective knowledge, 87

ontology, 5

Oracle Resolution, 163

ordinal, 25

OWA, 4

partial oracle, 173

partial partition, 86

202

INDEX

PI, 185

Pi, 99

polynomial hierarchy, 28

positive delay literal, 158

positive inclusion, 185

Positive Return, 163

positive, MKNF formula, 56

positive, MKNF+ rule, 60

Program Clause Resolution, 162

program tree, 158

program, definite, 30

program, disjunctive, 30

program, generalized, 30

program, generalized disjunctive, 29

program, MKNF+, 60

program, normal, 30

program, positive, 30

pTO, 173

PTIME, 27

QEL, 133

query answering, 48

RKd
G

, 150

RKG
, 92

RBox, 43

reduced REL KB, 180

residual program, 172

RIA, 41

role assertion, 43

role expression, 41

role hierarchy, 41

role hierarchy, regular, 41

role inclusion axiom, 41

root node for T , 158

rule, definite, 30

rule, disjunctive, 30

rule, generalized, 30

rule, normal, 30

rule, positive, 30

rules, generalized disjunctive, 29

safe, MKNF+ rule, 60

safe, rule, 30

satisfiability, DL axioms, 46

satisfiability, DL KB, 46

satisfiability, interpretation pair, 77

satisfiability, LP rule, 31

satisfiability, MKNF, two-valued, 58

satisfiable, 46

set of K-atoms, 86

signature, 28

signature, DL, 40

signed set, 35

simple role, 42

Simplification, 163

SLG forest, 159

SLG resolvable, 159

SLG resolvent, 159

SMS, 8

SNOMED, 10

stable model, 34

standard name assumption, 59

standard reasoning task, 47

strict, MKNF formula, 56

subjective, MKNF formula, 56

successful, atom, 161

203

INDEX

successor ordinal, 25

supported answer, 160

SWRL, 125

TΠ, definite logic program, 33

TKd
G

, 150

TKG
, 92

tabling, 157

TBox, 44

term, 28

three-valued model, LP, 35

tight, tightness, 13

total, MKNF interpretation pair, 77

total, MKNF structure, 75

T ′Π, normal logic program, 36

tractable, 28

transfinite induction, 26

transform, 31

tree for S, 159

underlying subgoal, 159

unfounded set, hybrid MKNF, 104, 152

unfounded set, LP, 36

unsatisfiable, 46

unsupported answer, 160

W3C, 3

well-founded MKNF model, 82

well-founded partition, 100

WFS, 8

WFS for dl-programs, 140

WFS for normal dl-programs, 141

204

References

João Alcântara, Carlos V. Damásio, and Lúıs M. Pereira. A well-founded semantics

with disjunction. In Maurizio Gabbrielli and Gopal Gupta, editors, Logic Program-

ming, 21st International Conference, ICLP 2005, Sitges, Spain, October 2-5, 2005,

Proceedings, pages 341–355. Springer, 2005. 24

José J. Alferes, Matthias Knorr, and Terrance Swift. Queries to hybrid MKNF knowl-

edge bases through oracular tabling. In Abraham Bernstein, David R. Karger,

Tom Heath, Lee Feigenbaum, Diana Maynard, Enrico Motta, and Krishnaprasad

Thirunarayan, editors, The Semantic Web - ISWC 2009, 8th International Semantic

Web Conference, ISWC 2009, Chantilly, VA, USA, October 25-29, 2009. Proceed-

ings, pages 1–16. Springer, 2009. 22

Krzysztof R. Apt and Roland N. Bol. Logic programming and negation: A survey.

Journal of Logic Programming, 19/20:9–71, 1994. 7

Allesandro Artale, Diego Calvanese, Roman Kontchakov, and Michael Zakharyaschev.

The DL-Lite family and relations. Journal of Artificial Intelligence Research, 36:

1–69, 2009. 52

Franz Baader. Least common subsumers and most specific concepts in a description

logic with existential restrictions and terminological cycles. In Georg Gottlob and

Toby Walsh, editors, IJCAI-03, Proceedings of the 18th International Joint Confer-

ence on Artificial Intelligence, pages 319–324. Morgan Kaufman, 2003. 48

Franz Baader and Bernhard Hollunder. KRIS: Knowledge Representation and

Inference System. SIGART Bull., 2(3):8–14, 1991. 6

205

REFERENCES

Franz Baader and Bernhard Hollunder. Embedding defaults into terminological repre-

sentation systems. Journal of Automated Reasoning, 14:149–180, 1995. 18, 120

Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the EL envelope. In

Leslie P. Kaelbing and Alessandro Saffiotti, editors, IJCAI-05, Proceedings of the

19th International Joint Conference on Artificial Intelligence, pages 364–369. Morgan

Kaufmann, 2005. 49, 176, 177, 178

Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter F.

Patel-Schneider, editors. The Description Logic Handbook: Theory, Implementation,

and Applications. Cambridge University Press, 2nd edition, 2007a. 5, 7, 39, 61

Franz Baader, Baris Sertkaya, and Anni-Yasmin Turhan. Computing the least common

subsumer w.r.t. a background terminology. Journal of Applied Logic, 5(3):392–420,

2007b. 48

Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the EL envelope further.

In Kendell G. Clark and Peter F. Patel-Schneider, editors, Proceedings of the OWLED

2008 DC Workshop on OWL: Experiences and Directions, 2008. 49, 97, 199

Chitta Baral and Michael Gelfond. Logic programming and knowledge representation.

Journal of Logic Programming, 19/20:73–148, 1994. 7

Chitta Baral, Jorge Lobo, and Jack Minker. Generalized well-founded semantics for

logic programs. In M. E. Stickel, editor, 10th International Conference on Automated

Deduction (CADE), Kaiserslautern, FRG, July 24-27, 1990, Proceedings, pages 102–

116. Springer, 1990. 24

Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web. Scientific

American, pages 96–101, May 2001. 3

Harold Boley and Michael Kifer, editors. RIF Basic Logic Dialect. W3C Candidate Rec-

ommendation, 22 June 2010, 2010. Available at http://www.w3.org/TR/rif-bld/.

9

Harold Boley, Gary Hallmark, Michael Kifer, Adrian Paschke, Axel Polleres, and Dave

Reynolds, editors. RIF Core Dialect. W3C Candidate Recommendation, 22 June

2010, 2010. Available at http://www.w3.org/TR/rif-core/. 9

206

http://www.w3.org/TR/rif-bld/
http://www.w3.org/TR/rif-core/

REFERENCES

Piero Bonatti, Carsten Lutz, and Frank Wolter. Expressive non-monotonic description

logics based on circumscription. In Patrick Doherty, John Mylopoulos, and Christo-

pher Welty, editors, Proceedings of the Tenth International Conference on Principles

of Knowledge Representation and Reasoning (KR’06), pages 400–410. AAAI Press,

2006. 17, 121

Piero A. Bonatti, Carsten Lutz, and Frank Wolter. The complexity of circumscription

in DLs. Journal of Artificial Intelligence Research (JAIR), 35:717–773, 2009. 17, 121

Ronald J. Brachman and Hector J. Levesque, editors. Readings in Knowledge Repre-

sentation. Morgan Kaufman, Los Altos, 1985. 6, 212

Ronald J. Brachman and James G. Schmolze. An overview of the KL-ONE knowledge

representation system. Cognitive Science, 9(2):171–216, 1985. 6

Ronald J. Brachman, Deborah L. McGuinness, Peter F. Patel-Schneider, Lori A.

Resnick, and Alexander Borgida. Living with CLASSIC: When and how to use

a KL-ONE-like language. In John F. Sowa, editor, Principles of Semantic Networks,

pages 401–456. Morgan Kaufman, Los Altos, 1991. 6

Stefan Brass and Jürgen Dix. Characterizations of the disjunctive well-founded seman-

tics: Confluent calculi and iterated GCWA. Journal of Automated Reasoning, 20(1):

143–165, 1998. 24

Andrea Cal̀ı, Georg Gottlob, and Thomas Lukasiewicz. Datalog±: a unified approach

to ontologies and integrity constraints. In Ronald Fagin, editor, Database Theory

- ICDT 2009, 12th International Conference, St. Petersburg, Russia, March 23-25,

2009, Proceedings, pages 14–30. ACM, 2009. 141

Diego Calvanese, Maurizio Lenzerini, and Daniele Nardi. Description logics for concep-

tual data modeling. In Jan Chomicki and Gunter Saake, editors, Logics for databases

and information systems, chapter 8, pages 229–263. Kluwer Academic Publishers,

1998. 48

Diego Calvanese, Giuseppe de Giacomo, Domenico Lembo, Maurizio Lenzerini, and

Riccardo Rosati. Tractable reasoning and efficient query answering in description

logics: The DL-Lite family. Journal of Automated Reasoning, 39(3):385–429, 2007.

51, 184, 185, 187, 192

207

REFERENCES

Weidong Chen and David S. Warren. Tabled Evaluation with Delaying for General

Logic Programs. Journal of the ACM, 43(1):20–74, 1996. 19, 148, 156, 159, 166, 167,

168, 172, 174

Keith L. Clark. Negation as failure. In Logic and Data Bases, pages 293–322. Plenum

Press, 1978. 8

Alain Colmerauer and Philippe Roussel. History of programming languages—ii. chapter

The birth of Prolog, pages 331–367. ACM, New York, NY, USA, 1996. 8

Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei Voronkov. Complexity and

expressive power of logic programming. ACM Computing Surveys, 33(3):374–425,

2001. 19

Jos de Bruijn, Thomas Eiter, Axel Polleres, and Hans Tompits. Embedding non-

ground logic programs into autoepistemic logic for knowledge-base combination. In

Manuela M. Veloso, editor, Proceedings of the Twentieth International Joint Confer-

ence on Artificial Intelligence (IJCAI-07), pages 304–309, Hyderabad, India, January

6–12 2007a. AAAI Press. 17, 137

Jos de Bruijn, David Pearce, Axel Polleres, and August́ın Valverde. Quantified equi-

librium logic and hybrid rules. In Massimo M. Marchiori, Jeff Z. Pan, and Christian

de Sainte Marie, editors, Proceedings of the First International Conference on Web

Reasoning and Rule Systems. Springer, 2007b. 17, 133

Jos de Bruijn, Thomas Eiter, Axel Polleres, and Hans Tompits. Embedding non-

ground logic programs into autoepistemic logic for knowledge base combination. ACM

Transactions on Computational Logic, 2011. accepted for publication. 17, 137

Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, and Andrea Schaerf. A hybrid

system with datalog and concept languages. In Edoardo Ardizzone, Salvatore Gaglio,

and Filippo Sorbello, editors, 2nd Congress of the Italian Association of Artificial

Intelligence, AI∗IA Palermo, Italy, October, 29–31, pages 88–97. Springer, 1991. 124

Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, and Andrea Schaerf. AL-

log: Integrating datalog and description logics. Journal of Intelligent Information

Systems, 10(3):227–252, 1998. 15, 124, 138

208

REFERENCES

Francesco M. Donini, Daniele Nardi, and Riccardo Rosati. Description logics of minimal

knowledge and negation as failure. ACM Transactions on Computational Logic, 3

(2):177–225, 2002. 17, 86, 121, 197, 198

W lodzimierz Drabent and Jan Ma luszyński. Well-Founded semantics for hybrid rules.

In Massimo M. Marchiori, Jeff Z. Pan, and Christian de Sainte Marie, editors, Pro-

ceedings of the First International Conference on Web Reasoning and Rule Systems

(RR2007), pages 1–15. Springer, 2007. 16, 120, 138

W lodzimierz Drabent and Jan Ma luszyński. Hybrid rules with well-founded semantics.

Knowledge and Information Systems, 25(1):137–168, 2010. 16, 120, 138, 139

W lodzimierz Drabent, Jakob Henriksson, and Jan Ma luszyński. Hybrid reasoning with

rules and constraints under well-founded semantics. In Massimo M. Marchiori, Jeff Z.

Pan, and Christian de Sainte Marie, editors, Proceedings of the First International

Conference on Web Reasoning and Rule Systems (RR2007), pages 348–357. Springer,

2007. 139

W lodzimierz Drabent, Thomas Eiter, Giovambattista Ianni, Thomas Krennwallner,

Thomas Lukasiewicz, and Jan Ma luszyński. Semantic techniques for the web. chapter

Hybrid reasoning with rules and ontologies, pages 1–49. Springer, Berlin, Heidelberg,

2009. 4, 15

Thomas Eiter, Thomas Lukasiewicz, Roman Schindlauer, and Hans Tompits. Well-

Founded semantics for description logic programs in the semantic web. In Grigoris

Antoniou and Harold Boley, editors, Rules and Rule Markup Languages for the Se-

mantic Web, RuleML’04, pages 81–97. Springer, LNCS, 2004. 16, 120, 140

Thomas Eiter, Giovambattista Ianni, Roman Schindlauer, and Hans Tompits. Effective

integration of declarative rules with external evaluations for semantic web reason-

ing. In York Sure and John Domingue, editors, Proceedings of the 3rd European

Conference on Semantic Web (ESWC 2006), pages 273–287. Springer, 2006. 16, 136

Thomas Eiter, Giovambattista Ianni, Thomas Krennwallner, and Axel Polleres. Rules

and ontologies for the Semantic Web. In Cristina Baroglio, Piero A. Bonatti, Jan

Ma luszyński, Massimo Marchiori, Axel Polleres, and Sebastian Schaffert, editors,

209

REFERENCES

Reasoning Web: 4th International Summer School 2008, Venice, Italy, September

7-11, 2008, Tutorial Lectures, pages 1–53. Springer, 2008a. 4, 15

Thomas Eiter, Giovambattista Ianni, Thomas Lukasiewicz, Roman Schindlauer, and

Hans Tompits. Combining answer set programming with description logics for the

Semantic Web. Artificial Intelligence, 172(12–13):1495–1539, August 2008b. 16, 17,

134, 135, 140

Thomas Eiter, Giovambattista Ianni, Thomas Lukasiewicz, and Roman Schindlauer.

Well-founded semantics for description logic programs in the Semantic Web. ACM

Transactions on Computational Logic, 12:11:1–11:41, January 2011. 16, 120, 140,

141

Cristina Feier and Stijn Heymans. Hybrid reasoning with forest logic programs. In

Lora Aroyo, Paolo Traverso, Fabio Ciravegna, Philipp Cimiano, Tom Heath, Eero

Hyvönen, Riichiro Mizoguchi, Eyal Oren, Marta Sabou, and Elena Paslaru Bon-

tas Simperl, editors, 6th Annual European Semantic Web Conference (ESWC2009),

pages 338–352, June 2009. 17, 133

Paolo Ferraris, Joohyung Lee, and Vladimir Lifschitz. Stable models and circumscrip-

tion. Artificial Intelligence, 175:236–263, 2011. 121

Melvin Fitting. A Kripke-Kleene semantics for logic programs. Journal of Logic Pro-

gramming, 4:295–312, 1985. 8

Melvin Fitting. First-order logic and automated theorem proving. Springer, 2nd edition,

1996. 31, 59

Melvin Fitting. Fixpoint semantics for logic programming — A survey. Theoretical

Computer Science, 278(1–2):25–51, 2002. 35

Martin Gebser, Benjamin Kaufmann, André Neumann, and Torsten Schaub. clasp:

A conflict-driven answer set solver. In Chitta Baral, Gerhard Brewka, and John S.

Schlipf, editors, Logic Programming and Nonmonotonic Reasoning, 9th International

Conference, LPNMR 2007, Tempe, AZ, USA, May 15-17, 2007, Proceedings, pages

260–265. Springer, 2007. 9

210

REFERENCES

Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic pro-

gramming. In Robert A. Kowalski and Kenneth A. Bowen, editors, International

Conference on Logic Programming, ICLP, pages 1070–1080. MIT Press, 1988. 8, 19,

23, 32, 74, 91, 93, 94

Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs and

disjunctive databases. New Generation Computing, 9:365–385, 1991. 9, 23, 74

Birte Glimm, Carsten Lutz, Ian Horrocks, and Ulrike Sattler. Answering conjunctive

queries in the SHIQ description logic. Journal of Artificial Intelligence Research,

31:150–197, 2008. 48

Ana S. Gomes, José J. Alferes, and Terrance Swift. Implementing query answering

for hybrid MKNF knowledge bases. In Manuel Carro and Ricardo Peña, editors,

Practical Aspects of Declarative Languages, 12th International Symposium, PADL

2010, Madrid, Spain, January 18-19, 2010. Proceedings, pages 25–39. Springer, 2010.

199

Ana Sofia Gomes, José J. Alferes, and Terrance Swift. A goal-directed implementation

of query answering for hybrid MKNF knowledge bases. Theory and Practice of Logic

Programming, 2011. accepted for publication, available at http://arxiv.org/abs/

1103.3949. 199

Stephan Grimm and Pascal Hitzler. Semantic matchmaking of web resources with local

closed-world reasoning. International Journal of e-Commerce, 12(2–Winter 2007–08):

89–126, 2008. 10, 18, 121

Stephan Grimm and Pascal Hitzler. A preferential tableaux calculus for circumscrip-

tive ALCO. In Axel Polleres and Terrance Swift, editors, Web Reasoning and Rule

Systems, Third International Conference, RR 2009, Chantilly, VA, USA, October

20009, Proceedings, pages 197–211. Springer, 2009. 17, 121

Stephan Grimm, Boris Motik, and Chris Preist. Matching semantic service descriptions

with local closed-world reasoning. In York Sure and John Domingue, editors, The

Semantic Web: Research and Applications, 3rd European Semantic Web Conference,

ESWC 2006, Budva, Montenegro, June 11–14, 2006, Proceedings, pages 575–589.

Springer, 2006. 18

211

http://arxiv.org/abs/1103.3949
http://arxiv.org/abs/1103.3949

REFERENCES

Benjamin N. Grosof, Ian Horrocks, Raphael Volz, and Stefan Decker. Description logic

programs: Combining logic programs with description logics. In Proceedings of the

World Wide Web Conference (WWW2003), Budapest, Hungary, pages 48–57. ACM,

2003. 15, 52, 127, 183, 192, 193, 194

Volker Haarslev, Kay Hidde, Ralf Möller, and Michael Wessel. The RacerPro knowl-

edge representation and reasoning system. Semantic Web journal, 2011. to appear.

Available at http://www.semantic-web-journal.net/issues. 6

Patrick J. Hayes. The logic of frames. In D. Metzing, editor, Frame conceptions and

text understanding, pages 46–61. Walter de Gruyter and Co., 1979. Republished in

Brachman and Levesque [1985]. 3, 5

Stijn Heymans, Davy Van Nieuwenborgh, and Dirk Vermeir. Open answer set pro-

gramming for the Semantic Web. Journal of Applied Logic, 5(1):144–169, 2007. 17,

133

Stijn Heymans, Jos de Bruijn, Livia Predoiu, Cristina Feier, and Davy Van Nieuwen-

borgh. Guarded hybrid knowledge bases. Theory and Practice of Logic Programming

(TPLP), special issue Logic Programming and the Web, 8(3):411–429, 2008a. 132,

133

Stijn Heymans, Davy Van Nieuwenborgh, and Dirk Vermeir. Open answer set pro-

gramming with guarded programs. ACM Transactions on Computational Logic, 9

(4):1–53, 2008b. 132

Pascal Hitzler and Bijan Parsia. Ontologies and rules. In Steffen Staab and Rudi

Studer, editors, Handbook on Ontologies, pages 111–132. Springer, 2 edition, 2009.

4, 15

Pascal Hitzler and Anthony K. Seda. Mathematical Aspects of Logic Programming

Semantics. Studies in Informatics. Chapman and Hall/CRC Press, 2010. 24, 25

Pascal Hitzler and Matthias Wendt. A uniform approach to logic programming seman-

tics. Theory and Practice of Logic Programming, 5(1–2):123–159, 2005. 85

212

http://www.semantic-web-journal.net/issues

REFERENCES

Pascal Hitzler, Markus Krötzsch, Bijan Parsia, Peter F. Patel-Schneider, and Sebastian

Rudolph, editors. OWL 2 Web Ontology Language: Primer. W3C Recommendation

27 October 2009, 2009a. Available at http://www.w3.org/TR/owl2-primer/. 4, 21,

175, 197

Pascal Hitzler, Markus Krötzsch, and Sebastian Rudolph. Foundations of Semantic

Web Technologies. Chapman & Hall/CRC, 2009b. 5, 39

Matthew Horridge, Bijan Parsia, and Ulrike Sattler. Laconic and precise justifica-

tions in OWL. In Amit P. Sheth, Steffen Staab, Mike Dean, Massimo Paolucci,

Diana Maynard, Timothy W. Finin, and Krishnaprasad Thirunarayan, editors, The

Semantic Web - ISWC 2008, 7th International Semantic Web Conference, ISWC

2008, Karlsruhe, Germany, October 26-30, 2008. Proceedings, 2008. 48

Ian Horrocks and Peter F. Patel-Schneider. A proposal for an OWL rules language.

In Stuart I. Feldman, Mike Uretsky, Marc Najork, and Craig E. Wills, editors, Pro-

ceedings of the 13th International World Wide Web Conference (WWW 2004), pages

723–731. ACM, 2004. 13, 15, 125

Ian Horrocks, Peter F. Patel-Schneider, Harold Boley, Said Tabet, Benjamin N. Grosof,

and Mike Dean, editors. SWRL: A Semantic Web Rule Language. W3C Member

Submission, 21 May 2004, 2004. Available at http://www.w3.org/Submission/

SWRL/. 125, 126

Ian Horrocks, Oliver Kutz, and Ulrike Sattler. The even more irresistible SROIQ. In

Patrick Doherty, John Mylopoulos, and Christopher A. Welty, editors, Proceedings

of the 10th International Conference on the Principles of Knowledge Representation

and Reasoning (KR 2006), pages 57–67. AAAI Press, 2006a. 13, 39

Ian Horrocks, Boris Motik, Riccardo Rosati, and Ulrike Sattler. Can OWL and logic

programming live together happily ever after? In Isabel F. Cruz, Stefan Decker,

Dean Allemang, Chris Preist, Daniel Schwabe, Peter Mika, Michael Uschold, and

Lora Aroyo, editors, Proceedings of the 5th International Semantic Web Conference

(ISWC 2006), volume 4273 of LNCS, pages 501–514. Springer, 2006b. 18

Ulrich Hustadt, Boris Motik, and Ulrike Sattler. Data complexity of reasoning in

very expressive description logics. In Leslie P. Kaelbling and Alessandro Saffiotti,

213

http://www.w3.org/TR/owl2-primer/
http://www.w3.org/Submission/SWRL/
http://www.w3.org/Submission/SWRL/

REFERENCES

editors, IJCAI-05, Proceedings of the 19th International Joint Conference on Artifical

Intelligence, pages 466–471. ACM, 2005. 15

Aditya Kalyanpur. Debugging and repair of OWL ontologies, 2006. Ph.D. Dissertation,

University of Maryland College Park. 48

Yevgeny Kazakov. RIQ and SROIQ are harder than SHOIQ. In Gerhard Brewka

and Jérôme Lang, editors, Principles of Knowledge Representation and Reasoning:

Proceedings of the Eleventh International Conference, KR 2008, Sydney, Australia,

September 16-19, 2008. AAAI Press, 2008. 48

Yevgeny Kazakov. Consequence-driven reasoning for Horn SHIQ ontologies. In Craig

Boutilier, editor, IJCAI-09, Proceedings of the 21st International Joint Conference

on Artificial Intelligence, Pasadena, California, USA, July 11-17, 2009, pages 2040–

2045, 2009. 7

Peihong Ke and Ulrike Sattler. Next steps for description logics of minimal knowledge

and negation as failure. In Franz Baader, Carsten Lutz, and Boris Motik, editors,

Proc. of the 2008 Description Logic Workshop (DL 2008), 2008. 17

Michael Kifer, Georg Lausen, and James Wu. Logical foundations of object-oriented

and frame-based languages. Journal of the ACM, 42:741–843, July 1995. 9

Matthias Knorr and José J. Alferes. Querying in EL+ with nonmonotonic rules. In

Helder Coelho, Rudi Studer, and Michael Wooldridge, editors, Proceedings of the

19th European Conference on Artificial Intelligence, ECAI2010, pages 1079–1080.

IOS Press, 2010. 22

Matthias Knorr and Pascal Hitzler. A comparison of disjunctive well-founded semantics.

In Pascal Hitzler, Thomas Roth-Berghofer, and Sebastian Rudolph, editors, FAInt-

07, Foundations of Artificial Intelligence, Workshop at KI 2007. CEUR Workshop

Proceedings, Vol. 277, 2007. 67

Matthias Knorr, José J. Alferes, and Pascal Hitzler. A well-founded semantics for

MKNF knowledge bases. In Diego Calvanese, Enrico Franconi, Volker Haarslev,

Domenico Lembo, Boris Motik, Anni-Yasmin Turhan, and Sergio Tessaris, editors,

Description Logics 2007, pages 417–425. CEUR–WS, 2007a. 22

214

REFERENCES

Matthias Knorr, José J. Alferes, and Pascal Hitzler. Towards tractable local closed

world reasoning for the semantic web. In José Neves, Manuel F. Santos, and José

Machado, editors, Proceedings of the 13th Portuguese Conference on Artificial Intel-

ligence, EPIA 2007, Guimarães, Portugal, December 3-7, 2007, pages 3–14. Springer,

2007b. 22

Matthias Knorr, José J. Alferes, and Pascal Hitzler. A coherent well-founded model

for hybrid MKNF knowledge bases. In Malik Ghallab, Constantine D. Spyropou-

los, Nikos Fakotakis, and Nikos Avouris, editors, Proceedings of the 18th European

Conference on Artificial Intelligence, ECAI2008, pages 99–103. IOS Press, 2008. 22,

79

Matthias Knorr, José J. Alferes, and Pascal Hitzler. Local closed world reasoning

with description logics under the well-founded semantics. Artificial Intelligence, 175

(9–10):1528–1554, June 2011. 22

Kurt Konolige. Quantification in autoepistemic logic. Fundamenta Informaticae, 15:

275–300, 1991. 137

Robert A. Kowalski. The early years of logic programming. Commun. ACM, 31:38–43,

January 1988. 7

Adila Alfa Krisnadhi, Frederick Maier, and Pascal Hitzler. OWL and

rules. In Reasoning Web 2011, Springer Lecture Notes in Computer Science,

2011a. http://knoesis.wright.edu/faculty/pascal/resources/publications/

OWL-Rules-2011.pdf, to appear. 4

Adila Alfa Krisnadhi, Kunal Sengupta, and Pascal Hitzler. Local closed world seman-

tics: Keep it simple, stupid! Technical report, Wright State University, 2011b. avail-

able from http://pascal-hitzler.de/resources/publications/GC-DLs.pdf. 17,

121

M. Krötzsch, Frederick Maier, Adila A. Krisnadhi, and Pascal Hitzler. A better uncle

for OWL: Nominal schemas for integrating rules and ontologies. In Proceedings of

the 20th International World Wide Web Conference, WWW2011, March/April 2011,

pages 645–654. ACM, 2011. 16, 129, 198, 199

215

http://knoesis.wright.edu/faculty/pascal/resources/publications/OWL-Rules-2011.pdf
http://knoesis.wright.edu/faculty/pascal/resources/publications/OWL-Rules-2011.pdf
http://pascal-hitzler.de/resources/publications/GC-DLs.pdf

REFERENCES

Markus Krötzsch. Description Logic Rules, volume 008 of Studies on the Semantic

Web. IOS Press/AKA, 2010. 16, 39, 47, 49, 127, 128, 199

Markus Krötzsch, Sebastian Rudolph, and Pascal Hitzler. Conjunctive queries for

a tractable fragment of OWL 1.1. In Karl Aberer, Key-Sun Choi, Natasha Noy,

Dean Allemang, Kyung-Il Lee, Lyndon Nixon, Jennifer Golbeck, Peter Mika, Diana

Maynard, Riichiro Mizoguchi, Guus Schreiber, and Philippe Cudré-Mauroux, editors,

Proceedings of the 6th International Semantic Web Conference (ISWC’07), volume

4825 of LNCS, pages 310–323. Springer, 2007. 50

Markus Krötzsch, Sebastian Rudolph, and Pascal Hitzler. Complexity boundaries for

Horn description logics. In Proceedings of the 22nd AAAI Conference on Artificial

Intelligence (AAAI’07), pages 452–457. AAAI Press, 2007. 15

Markus Krötzsch, Sebastian Rudolph, and Pascal Hitzler. Description logic rules. In

Malik Ghallab, Constantine D. Spyropoulos, Nikos Fakotakis, and Nikos Avouris,

editors, Proceedings of the 18th European Conference on Artificial Intelligence,

ECAI2008, pages 80–84. IOS Press, 2008a. 16, 127

Markus Krötzsch, Sebastian Rudolph, and Pascal Hitzler. ELP: Tractable rules for

OWL 2. In Amit P. Sheth, Steffen Staab, Mike Dean, Massimo Paolucci, Diana

Maynard, Timothy Finin, and Krishnaprasad Thirunarayan, editors, Proceedings of

the 7th International Semantic Web Conference (ISWC-08), pages 649–664. Springer,

2008b. 16, 127, 128, 199

Fritz Lehmann. Semantic Networks in Artificial Intelligence. Elsevier Science Inc.,

New York, NY, USA, 1992. 5

Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gottlob, Simona

Perri, and Francesco Scarcello. The DLV system for knowledge representation and

reasoning. ACM Transactions on Computational Logic, 7:499–562, July 2006. 9

Hector J. Levesque. Foundations of a functional approach to knowledge representation.

Artificial Intelligence, 23:155–212, July 1984. 3

216

REFERENCES

Alon Y. Levy and Marie-Christine Rousset. CARIN: A representation language com-

bining Horn rules and description logics. In Wolfgang Wahlster, editor, 12th Euro-

pean Conference on Artificial Intelligence, Budapest, Hungary, August 11-16, 1996,

Proceedings, pages 323–327, 1996. 125

Alon Y. Levy and Marie-Christine Rousset. Combining Horn rules and description

logics in CARIN. Artificial Intelligence, 104(1–2):165–209, 1998. 15, 125

Vladimir Lifschitz. Nonmonotonic databases and epistemic queries. In John Mylopoulos

and Raymond Reiter, editors, Proceedings of the 12th International Joint Conferences

on Artifical Intelligence, IJCAI’91, pages 381–386, 1991. 17, 19, 55, 58, 59, 62, 73,

74, 196, 197

Vladimir Lifschitz. Minimal belief and negation as failure. Artificial Intelligence, 70

(1–2):53–72, 1994. 55, 62, 63

John W. Lloyd. Foundations of Logic Programming. Springer, 2nd edition, 1987. 7, 33

Jorge Lobo, Jack Minker, and Arcot Rajasekar. Foundations of disjunctive logic pro-

gramming. MIT Press, Cambridge, MA, USA, 1992. 23

Thomas Lukasiewicz. A novel combination of answer set programming with description

logics for the Semantic Web. In Enrico Franconi, Michael Kifer, and Wolfgang May,

editors, Proceedings of the 4th European Semantic Web Conference (ESWC 2007),

pages 384–398. Springer, 2007. 17, 136, 141

Thomas Lukasiewicz. A novel combination of answer set programming with description

logics for the Semantic Web. IEEE Transactions on Knowledge and Data Engineering

(TKDE), 22(11):1577–1592, November 2010. 17, 120, 136, 141

Carsten Lutz. The complexity of conjunctive query answering in expressive descrip-

tion logics. In Alessandro Armando, Peter Baumgartner, and Gilles Dowek, editors,

Proceedings of the 4th International Joint Conference on Automated Reasoning (IJ-

CAR2008), number 5195 in LNAI, pages 179–193. Springer, 2008. 48

Robert MacGregor and Raymond Bates. The loom knowledge representation language.

Technical Report ISI/RS-87-188, University of Southern California, Information Sci-

ence Institute, Marina de Rey (CA, USA), 1987. 6

217

REFERENCES

Tobias Matzner and Pascal Hitzler. Any-world access to OWL from Prolog. In Joachim

Hertzberg, Michael Beetz, and Roman Englert, editors, KI 2007: Advances in Ar-

tificial Intelligence, 30th Annual German Conference on AI, KI 2007, Osnabrück,

Germany, September 2007, Proceedings, pages 84–98. Springer, 2007. 17

John McCarthy. Circumscription – A form of non-monotonic reasoning. Artificial

Intelligence, 13:27–39, 1980. 7, 121

Jing Mei, Shengping Liu, Guo Tong Xie, Aditya Kalyanpur, and Achille Fokoue. A prac-

tical approach for scalable conjunctive query answering on acyclic EL+ knowledge

base. In Abraham Bernstein, David R. Karger, Tom Heath, Lee Feigenbaum, Diana

Maynard, Enrico Motta, and Krishnaprasad Thirunarayan, editors, The Semantic

Web - ISWC 2009, 8th International Semantic Web Conference, ISWC 2009, Chan-

tilly, VA, USA, October 25-29, 2009. Proceedings, pages 408–423. Springer, 2009.

50

Jack Minker. On indefinite databases and the closed world assumption. In Lecture

Notes in Computer Science 138, pages 292–308. Springer, Berlin, 1982. 23

Jack Minker and Dietmar Seipel. Disjunctive logic programming: A survey and assess-

ment. In Essays in Honour of Robert A. Kowalski, Part I, LNAI 2407. Springer,

2002. 23

Marvin Minsky. A framework for representing knowledge. In John Haugeland, editor,

Mind Design: Philosophy, Psychology, Artificial Intelligence, pages 95–128. MIT

Press, Cambridge, MA, 1981. 5

Robert C. Moore. Semantical considerations on nonmonotonic logic. Artificial Intelli-

gence, 25:75–94, 1985. 55, 137

Boris Motik and Riccardo Rosati. Closing semantic web ontologies. Technical report,

University of Manchester, UK, 2006. URL web.comlab.ox.ac.uk/people/Boris.

Motik/pubs/mr06closing-report.pdf. 80, 81

Boris Motik and Riccardo Rosati. A faithful integration of description logics with

logic programming. In Manuela M. Veloso, editor, Proceedings of the Twentieth

International Joint Conference on Artificial Intelligence (IJCAI-07), pages 477–482,

Hyderabad, India, January 6–12 2007. AAAI Press. 56, 165

218

web.comlab.ox.ac.uk/people/Boris.Motik/pubs/mr06closing-report.pdf
web.comlab.ox.ac.uk/people/Boris.Motik/pubs/mr06closing-report.pdf

REFERENCES

Boris Motik and Riccardo Rosati. Reconciling Description Logics and Rules. Journal

of the ACM, 57(5):93–154, 2010. 13, 15, 16, 17, 18, 19, 20, 21, 23, 55, 56, 58, 59, 60,

61, 62, 63, 64, 65, 66, 67, 74, 79, 80, 83, 85, 86, 87, 88, 92, 113, 115, 116, 120, 121,

123, 131, 135, 136, 137, 147, 172, 195, 196, 197

Boris Motik and Ulrike Sattler. A comparison of reasoning techniques for querying

large description logic aboxes. In Miki Hermann and Andrei Voronkov, editors,

Proceedings of the 13th International Conference on Logic for Programming, Artificial

Intelligencen, and Reasoning (LPAR01), pages 227–241. Springer, 2006. 6

Boris Motik, Ulrike Sattler, and Rudi Studer. Query-answering for OWL-DL with rules.

Journal of Web Semantics, 3(1):41–60, 2005. 15, 64, 126, 127

Boris Motik, Bernardo Cuenca Grau, Ian Horrocks, Zhe Wu, Achille Fokoue, and

Carsten Lutz, editors. Profiles. W3C Recommendation 27 October 2009, 2009a.

Available at http://www.w3.org/TR/owl2-profiles/. 27, 49

Boris Motik, Peter F. Patel-Schneider, and Bijan Parsia, editors. Structural specifica-

tion and functional-style syntax. W3C Recommendation 27 October 2009, 2009b.

Available at http://www.w3.org/TR/owl2-syntax/. 42, 43

Boris Motik, Rob Shearer, and Ian Horrocks. Hypertableau Reasoning for Description

Logics. Journal of Artificial Intelligence Research, 36:165–228, 2009c. 6

Bernhard Nebel and Kai von Luck. Hybrid reasoning in BACK. In Proceedings of the

3rd International Symposium on Methodologies for Intelligent Systems (ISMIS’88),

pages 260–269. North-Holland Publ. Co., Amsterdam, 1988. 6

Ilkka Niemelä and Patrik Simons. Smodels - an implementation of the stable model

and well-founded semantics for normal LP. In Proceedings of the 4th International

Conference on Logic Programming and Nonmonotonic Reasoning, LPNMR ’97, pages

421–430, London, UK, 1997. Springer. 9

Christos H. Papadimitriou. Computational Complexity. Addison Wesley, 1994. 26, 27

Chintan Patel, James J. Cimino, Julian Dolby, Achille Fokoue, Aditya Kalyanpur,

Aaron Kershenbaum, Li Ma, Edith Schonberg, and Kavitha Srinivas. Matching

patient records to clinical trials using ontologies. In Karl Aberer, Key-Sun Choi,

219

REFERENCES

Natasha Fridman Noy, Dean Allemang, Kyung-Il Lee, Lyndon J. B. Nixon, Jen-

nifer Golbeck, Peter Mika, Diana Maynard, Riichiro Mizoguchi, Guus Schreiber, and

Philippe Cudré-Mauroux, editors, The Semantic Web, 6th International Semantic

Web Conference, 2nd Asian Semantic Web Conference, ISWC 2007 + ASWC 2007,

Busan, Korea, November 11-15, 2007, pages 816–829. Springer, 2007. 10, 147

Peter F. Patel-Schneider, Patrick Hayes, and Ian Horrocks, editors. OWL Web Ontology

Language Semantics and Abstract Syntax. W3C Recommendation 10 Februar 2004,

2004. Available at http://www.w3.org/TR/owl-semantics/. 4

David Pearce and August́ın Valverde. A first order nonmonotonic extension of con-

structive logic. Studia Logica, 2–3(80):321–346, 2005. 133

Lúıs M. Pereira and José J. Alferes. Well founded semantics for logic programs with

explicit negation. In Bernd Neumann, editor, 10th European Conference on Artificial

Intelligence, ECAI 92, Vienna, Austria, August 3-7, 1992, pages 102–106. John

Wiley and Sons, Chichester, 1992. 20, 24, 96, 196

Antonella Poggi, Domenico Lembo, Diego Calvanese, Giuseppe De Giacomo, Maur-

izio Lenzerini, and Riccardo Rosati. Linking data to ontologies. Journal on Data

Semantics, X:133–173, 2008. 141

Teodor Przymusinski. On the declarative and procedural semantics of logic programs.

Journal of Automated Reasoning, 5:167–205, 1989. 139

Teodor Przymusinski. Stable semantics for disjunctive programs. New Generation

Computing, 9:401–424, 1991. 23

M. Ross Quillian. Word concepts: A theory and simulation of some basic capabilities.

Behavioral Science, 12:410–430, 1967. 5

Raymond Reiter. On closed-world data bases. In Logic and Data Bases, pages 55–76.

Plenum Press, 1978. 8

Raymond Reiter. A logic for default reasoning. Artificial Intelligence, 13:81–132, 1980.

7, 55, 120

220

REFERENCES

Raymond Reiter. What should a database know? Journal of Logic Programming, 14

(1–2):127–153, 1992. 13

Riccardo Rosati. Reasoning about minimal belief and negation as failure. Journal of

Artificial Intelligence Research, 11:277–300, 1999. 137

Riccardo Rosati. On the decidability and complexity of integrating ontologies and rules.

Journal of Web Semantics, 3(1):41–60, 2005. ISSN 1570-8268. 17, 130

Riccardo Rosati. DL+Log: A tight integration of description logics and disjunctive

datalog. In P. Doherty, J. Mylopoulos, and C. Welty, editors, Tenth International

Conference on the Principles of Knowledge Representation and Reasoning, KR’06,

pages 68–78. AAAI Press, 2006. 17, 130

Riccardo Rosati. On conjunctive query answering in EL. In Diego Calvanese, Enrico

Franconi, Volker Haarslev, Domenico Lembo, Boris Motik, Anni-Yasmin Turhan,

and Sergio Tessaris, editors, Description Logics 2007. CEUR Electronic Workshop

Proceedings, 2007. 50

Kenneth A. Ross. The well founded semantics for disjunctive logic programs. In

W. Kim, J.-M.. Nicolas, and S. Nishio, editors, First International Conference on

Deductive and Object Oriented Databases, pages 385–402. Elsevier Science Publishers

B.V. (North-Holland), 1990. 24

Francesca Rossi, Peter van Beek, and Toby Walsh. Handbook of Constraint Program-

ming (Foundations of Artificial Intelligence). Elsevier, New York, NY, USA, 2006.

9

Sebastian Rudolph, Markus Krötzsch, and Pascal Hitzler. Reasoning in SHIQ with

ordered binary decision diagrams. In Dieter Fox and Carla P. Gomes, editors, Pro-

ceedings of the 23rd AAAI Conference on Artificial Intelligence (AAAI08), pages

529–534. AAAI Press, 2008a. 7

Sebastian Rudolph, Markus Krötzsch, and Pascal Hitzler. Description logic reasoning

with decision diagrams: Compiling SHIQ to disjunctive datalog. In Amit Sheth,

Steffen Staab, Mike Dean, Massimo Paolucci, Diana Maynard, Timothy Finin, and

Krishnaprasad Thirunarayan, editors, Proceedings of the 7th International Semantic

Web Conference (ISWC08), page 435450. Springer, 2008b. 7

221

REFERENCES

Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.

Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 3rd edition, 2010. 3

K. Sagonas, T. Swift, and D. S. Warren. The limits of fixed-order computation. Theo-

retical Computer Science, 254(1-2):465–499, 2000. 160

Nigel Shadbolt, Tim Berners-Lee, and Wendy Hall. The Semantic Web revisited. IEEE

Intelligent Systems, 21:96–101, May 2006. available at http://dx.doi.org/10.

1109/MIS.2006.62. 3

Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and Yarden Katz.

Pellet: A practical OWL-DL reasoner. Web Semantics, 5:51–53, 2007. 6

Terrance Swift. A new formulation of tabled resolution with delay. In Recent Advances

in Artifiial Intelligence, volume 1695 of LNAI, pages 163–177. Springer, 1999. 157

Terrance Swift, Alexandre M. Pinto, and Lúıs M. Pereira. Incremental answer com-

pletion. In Patricia M. Hill and David Scott Warren, editors, Logic Programming,

25th International Conference, ICLP 2009, Pasadena, CA, USA, July 14-17, 2009.

Proceedings, pages 519–524, 2009. 160

Alfred Tarski. Lattice-theoretic fixpoint theorem and its applications. Pacific Journal

of Mathematics, 5(2):285–309, 1955. 25

Dmitry Tsarkov and Ian Horrocks. Fact++ description logic reasoner: System de-

scription. In Ulrich Furbach and Natarajan Shankar, editors, In Proceedings of the

International Joint Conference on Automated Reasoning (IJCAR 2006), pages 292–

297. Springer, 2006. 6

Maarten H. van Emden and Robert A. Kowalski. The semantics of predicate logic as

a programming language. Journal of ACM, 23:733–742, 1976. 8, 32

Allen van Gelder. The alternating fixpoint of logic programs with negation. In Prin-

ciples of Database Systems, pages 1–10. ACM Press, 1989. 9, 23, 37, 38, 85, 91, 94,

96

Allen van Gelder, Kenneth A. Ross, and John S. Schlipf. The well-founded semantics

for general logic programs. Journal of the ACM, 38(3):620–650, 1991. 9, 19, 24, 34,

36, 37, 67, 74

222

http://dx.doi.org/10.1109/MIS.2006.62
http://dx.doi.org/10.1109/MIS.2006.62

REFERENCES

Moshe Y. Vardi. Why is modal logic so robustly decidable? In Neil Immerman and

Phokion G. Kolaitis, editors, Descriptive Complexity and Finite Models, Proceedings

of a DIMACS Workshop, January 14-17, 1996, Princeton University, pages 149–184.

American Mathematical Society, 1996. 13

Kewen Wang. A comparative study of well-founded semantics for disjunctive logic

programs. In Thomas Eiter, Wolfgang Faber, and Miroslaw Truszczynski, editors,

Proceedings of the 6th International Conference on Logic Programming and Non-

monotonic Reasoning, LPNMR ’01, pages 133–146. Springer, 2001. 24

Yisong Wang, Jia-Huai You, Li Yan Yuan, and Yi-Dong Shen. Loop formulas for

description logic programs. Theory and Practice of Logic Programming, 10(4–6):

531–545, 2010. 135

223

	List of Figures
	I Combining Rules and Ontologies
	1 Introduction
	1.1 OWA – Description Logics
	1.2 CWA – Logic Programming Rules
	1.3 Open vs. Closed World Reasoning
	1.4 The Problem: Combining Rules and Ontologies efficiently
	1.5 Existing Combinations of Rules and Ontologies
	1.6 A Novel Approach
	1.7 Contributions
	1.8 Outline

	2 Rules in Logic Programming
	2.1 Fixed Point Semantics for Logic Programs
	2.2 Computational Complexity
	2.3 Terminology of Logic Programs
	2.4 Answer Set Semantics
	2.5 Stable Model Semantics
	2.6 Well-founded Semantics

	3 SROIQ – An Expressive Description Logic
	3.1 Syntax of SROIQ
	3.2 Semantics of SROIQ
	3.3 Tractable Fragments of SROIQ

	4 MKNF Logics and Hybrid MKNF Knowledge Bases
	4.1 Syntax of MKNF Logics
	4.2 Semantics of MKNF Logics
	4.3 Standard Names Assumption
	4.4 Hybrid MKNF+ Knowledge Bases
	4.5 Semantic Properties of Hybrid MKNF+
	4.6 Decidability for Hybrid MKNF
	4.7 Hybrid MKNF with Normal Rules

	II A Well-founded Semantics for Hybrid MKNF Knowledge Bases
	5 A Three-valued MKNF Semantics
	5.1 Evaluation in MKNF Structures
	5.2 Three-valued MKNF Models
	5.3 General Properties of three-valued MKNF
	5.4 A Well-Founded MKNF Model
	5.5 Relation with the Two-valued MKNF Semantics

	6 Alternating Fixpoint for the Well-founded MKNF Model
	6.1 Partitions of Modal Atoms
	6.2 Computation of the Alternating Fixpoint
	6.3 An Alternative Characterization based on Unfounded Sets
	6.4 The Well-Founded MKNF Model and Related Properties

	7 Comparison to Related Approaches
	7.1 Two-valued MKNF semantics
	7.2 Combinations with First-Order Rules
	7.3 Ontologies and Non-Monotonic Rules
	7.4 Combinations based on the Well-Founded Semantics

	III Querying Hybrid MKNF Knowledge Bases
	8 SLG(O)– A General Querying Procedure
	8.1 Alternative Bottom-Up Iteration
	8.2 Top-Down Queries with SLGO
	8.3 Properties of SLG(O)

	9 Querying Tractable Hybrid MKNF Knowledge Bases
	9.1 An Oracle for REL
	9.2 An Oracle for DL-LiteR
	9.3 An Oracle for DLP

	10 Conclusions
	10.1 Accomplishments
	10.2 Future Work

	Index
	References

