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Abstract. Evolution and reactivity in the Semantic Web address the
vision and concrete need for an active Web, where data sources evolve
autonomously and perceive and react to events. In 2004, when the Rew-

erse project started, regarding work on Evolution and Reactivity in the
Semantic Web there wasn’t much more than a vision of such an active
Web.
Materialising this vision requires the definition of a model, architecture,
and also prototypical implementations capable of dealing with reactivity
in the Semantic Web, including an ontology-based description of all con-
cepts. This resulted in a general framework for reactive Event-Condition-
Action rules in the Semantic Web over heterogeneous component lan-
guages.
Inasmuch as heterogeneity of languages is, in our view, an important
aspect to take into consideration for dealing with the heterogeneity of
sources and behaviour of the Semantic Web, concrete homogeneous lan-
guages targeting the specificity of reactive rules are of course also needed.
This is especially the case for languages that can cope with the challenges
posed by dealing with composite structures of events, or executing com-
posite actions over Web data.
In this chapter we report on the advances made on this front, namely by
describing the above-mentioned general heterogeneous framework, and
by describing the concrete homogeneous language XChange.

1.1 Introduction

The Web and the Semantic Web, as we see it, can be understood as a “living
organism” combining autonomously evolving data sources, each of them possibly
reacting to events it perceives. The dynamic character of such a Web requires
declarative languages and mechanisms for specifying the evolution of the data,
and for specifying reactive behaviour on the Web.

Rather than a Web of data sources, we envisage a Web of information sys-
tems where each such system, besides being capable of gathering information
(querying, both on persistent data, as well as on volatile data such as occurring
events), can possibly update persistent data, communicate the changes, request



changes of persistent data in other systems, and be able to react to requests from
and changes on other systems. As a practical example, consider a set of data
(re)sources in the Web of travel agencies, airline companies, train companies,
etc. It should be possible to query the resources about timetables, availability of
tickets, etc. But in such an evolving Semantic Web, it should also be possible for
a train company to report on late trains, and travel agencies (and also individual
clients) be able to detect such an event and react upon it, by rescheduling travel
plans, notifying clients that in turn could have to cancel hotel reservations and
book other hotels, or try alternatives to the late trains, etc.

ECA Rules

Some reactive languages have been proposed that allow for updating Web sources
as the above ones, and are also capable of dealing-with/reacting-to some forms of
events, evaluate conditions, and upon that act by updating data [12, 11, 4, 61]
(see Section 1.2). The common aspect of all of these languages is the use of
declarative Event-Condition-Action (ECA) rules for specifying reactivity and
evolution. Such kind of rules (also known as triggers, active rules, or reactive
rules), that have been widely used in other fields (e.g. active databases [62, 70])
have the general form:

on event if condition do action

They are intuitively easy to understand, and provide a well-understood seman-
tics: when an event (atomic or composite) occurs, evaluate a condition, and if the
condition (depending on the event, and possibly requiring further data) is satis-
fied then execute an action (or a sequence of actions, a program, a transaction,
or even start a process).

In fact, we fully agree with the arguments exposed in the field of active
databases for adopting ECA rules for dealing with evolution and reactivity in the
Web (declarativity, modularity, maintainability, etc). Still, the existing languages
fall short in various aspects, when aiming at the general view of an evolving Web
as described above. In these languages, the events and actions are restricted to
updates on the underlying data level; they do not provide for more composite
events and actions. In a Semantic Web environment, actions are more than
just simple updates to Web data (be it XML or RDF data), but application-
level actions. As said above, besides that, actions can be notifications to other
resources, or update requests of other resources, and they can be composed from
simpler actions (like: do this, and then do that).

Moreover, events may in general be more than simple atomic events in Web
data, as in the above languages. First, there are atomic events other than physical
changes in Web data: events may be received messages, or even “happenings”
in the global Web, which may require complex event detection mechanisms (e.g.
(once) any train to Munich is delayed ...). Moreover, as in active databases
[29, 74], there may be composite events. For example, we may want a rule to be
triggered when there is a flight cancellation and then the notification of a new
reservation whose price is much higher than the previous (e.g. to complain to
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the airline company). In our view, a general language for reactivity in the Web
should cater for such richer actions and events.

Such a general ECA language with richer actions and events, adapted to
Web data, is not yet enough for fully materialising our view of an evolving Se-
mantic Web. In fact, a main goal of the Semantic Web since its inception is to
provide means for a unified view on the Web, which obviously includes to deal
with the heterogeneity of data formats and languages. In this scenario, XML
(as a format for exchanging data), RDF (as an abstract data model for states,
sometimes stored natively, sometimes mapped to XML or a relational storage),
OWL (as an additional framework for theory-based knowledge representation)
provide the natural underlying concepts. The Semantic Web does not possess
any central structure, neither topologically nor thematically, but is based on
peer-to-peer communication between autonomous, and autonomously develop-
ing and evolving nodes. This evolution and behaviour depend on the cooperation
of nodes. In the same way as the main driving force for the Semantic Web idea
was the heterogeneity of the underlying data, the heterogeneity of concepts for
expressing behaviour requires an appropriate handling on the semantic level.
When considering evolution, the concepts and languages for describing and im-
plementing behaviour will surely be diverse, albeit due to different needs, and
it is unlikely that there will be a unique language for this throughout the Web.
Since the contributing nodes are prospectively based on different data models
and languages, it is important that frameworks for the Semantic Web are mod-
ular, and that their concepts are independent from the actual data models and
languages, and allow for an integrated handling of these.

Our view is that a general framework for evolution and reactivity in the Se-
mantic Web should be based on a general ECA language that allows for the usage
of different event languages, condition languages, and action languages. Each of
these different (sub)languages should adhere to some minimal requirements (e.g.
dealing with variables), but it should be as free as possible.

Moreover, the ECA rules do not only operate on the Semantic Web, but
are themselves also part of it. For that, the ECA rules themselves must be
represented as data in the Semantic Web, based on an ontology of ECA rules and
(sub)ontologies for events, conditions and actions, with rules specified in RDF.
The ontology does not only cover the rules themselves but, for handling language
heterogeneity, the rule components have to be related to actual languages, which
in turn can be associated with actual processors. Moreover, for exchange of rules
and parts of them, an XML Markup of ECA Rules, that is preferably closely
related to the ontology, is needed.

In this chapter, after a brief overview of the state of the art, we present a gen-
eral framework for evolution and reactivity in the Semantic Web, which caters
for the just exposed requirements. The framework also provides a comprehen-
sive set of concrete languages. We continue the chapter with a description of a
concrete homogeneous language for reactivity and evolution, XChange.

Both the general framework and the XChange language have been developed
(and implemented) in the Rewerse project. This work opened several possi-
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bilities of future applications and research areas, that are sketched in the last
section of this chapter.

1.2 Starting point and related work

As already mentioned before, the issue of reactivity, and even that of reactivity
on the Web, had already been studied before the beginning of this work.

Reactivity in Databases. Reactivity has been extensively studied in the area
of databases, e.g., in [62, 70]. In these, notions of composition of events, as
advocated above, have been proposed based on event algebras with their concise
theory and semantics and well-understood detection mechanisms. A prominent
representative of such approaches is e.g. the SNOOP algebra of the Sentinel
system [28] for transactional rules and rule-driven business workflows. Also more
recent approaches like RuleCore [9] use similar concepts more or less explicitly.
Our work on composite events in the Semantic Web has its roots on this previous
work.

Event Algebra expressions are formed by nesting operators and basic expres-
sions that specify which atomic events are relevant. For this, every event algebra
specifies a set of operators, e.g., “A and B”, “A or B”, “A and then B”, “not
C between A and B”. From a declarative point of view, such an event algebra
expression can be true or false over a given sequence of events. From the pro-
cedural point of view, a composite event is detected at the timepoint where it
becomes true wrt. the sequence of events occurred up to that point. Event al-
gebra terms are usually not evaluated like queries against the history (although
their semantics is defined like that), but are detected incrementally against the
stream of incoming events.

Process Definition Languages. Also for the specification of composite actions,
work already existed on process algebras and other process definition languages.
Well-known process algebras are CCS (Calculus of Communicating Systems) [59]
or CSP (Communicating Sequential Processes) [46]; another prominent recent
process specification language is BPEL (Business Process Execution Language)
[60]. In these approaches, e.g., the following concepts can be specified:

– sequences of actions to be executed (as in simple ECA rules);
– processes that include “receiving” actions, like the corresponding actions a

and ā action in CCS that are used for modeling communication: ā can only be
executed together with a (sending) action a in another process. The semantics
of ā is thus similar to the event part of ECA rules on a if condition do action

where the occurrence of a “wakes the rule up” and starts execution of the
subsequent condition and action;

– guarded (i.e., conditional) execution alternatives;
– families of communicating, concurrent processes, and
– starting an iteration or even infinite processes.
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Reasoning about Actions. Formalisms for representing and reasoning about ac-
tions and effects of actions have also long been studied in Artificial Intelligence.
Action languages have been defined to account for just that [49, 56, 5, 40, 41,
42, 43, 44]. Central to this approach of formalizing actions is the concept of a
transition system: a transition system is simply a labelled graph where the nodes
are states and the arcs are labelled with actions or sets of actions. Usually the
states are first-order structures, where the predicates are divided into static and
dynamic ones, the latter called fluents (cf. [66]). Action programs are sets of sen-
tences that define one such graph by specifing which dynamic predicates change
in the environment after the execution of an action. Usual problems here are to
predict the consequences of the execution of a sequence of (sets of) actions, or to
determine a set of actions implying a desired conclusion in the future (planning).

Most of the above action languages are equipped with appropriate action
query languages, that allow for querying such a transition system, going beyond
the simple queries of knowing what is true after a given sequence of actions has
been executed (allowing e.g. to query about which sets of actions lead to a state
where some goal is true, which involves planning).

Web Update Languages. The above work sets up the foundation on which the
definition of reactivity and evolution in the Semantic Web has been inspired. Fur-
thermore, reasoning about such behaviour has its own specificity that requires a
specific solution after the mechanisms have been defined. To start, there is the
issue of how to update Web data, something that is much more concrete than
e.g. the update of states in action languages. For this, as a starting point we
could rely on a number of proposals such as XUpdate [72], the XQuery update
extension of [69], XML-RL [51], XPathLog [53], and RUL [52].

XUpdate [72] makes use of XPath expressions for selecting nodes to be pro-
cessed afterwards, in a way similar to XSLT. The XSLT-style syntax of the
language makes the programming, and the understanding of complex update
programs, very hard.

A proposal to extend XQuery with update capabilities was presented in
[69]. In it XQuery is extended with a FOR ... LET ... WHERE ... UPDATE

... structure. The new UPDATE part contains specifications of update opera-
tions (i.e. delete, insert, rename, replace) that are to be executed in sequence.
For ordered XML documents, two insertion operations are considered: inser-
tion before a child element, and insertion after a child element. Using a nested
FOR...WHERE clause in the UPDATE part, one might specify an iterative execution
of updates for nodes selected using an XPath expression. Moreover, by nesting
update operations, updates can be expressed at multiple levels within a XML
structure.

The XML-RL Language [51] incorporates features of object-oriented databases
and logic programming. The XML-RL Update Language extends XML-RL
with update capabilities. Five kinds of update operations are supported by the
XML-RL Update Language, viz. insert before, insert after, insert into,
delete, and replace with. Using the built-in position function, new elements
can be inserted at the specified position in the XML document (e.g. insert first,
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insert second). Also, complex updates at multiple levels in the document struc-
ture can be easily expressed.

XPathLog [53] is a rule-based logic-programming style language for querying,
manipulating and integrating XML data. XPathLog can be seen as the migra-
tion from F-Logic [48], as a logic-programming style language, for semistruc-
tured data to XML. It uses XPath as the underlying selection mechanism and
extends it with the Datalog-style variable concept. XPathLog uses rules to spec-
ify the manipulation and integration of data from XML resources. As usual for
logic-programming style languages, the query and construction parts are strictly
separated: XPath expressions in the rule body, extended with variables bind-
ings, serve for selecting nodes of XML documents; the rule head specifies the
desired update operations intensionally by another XPath expression with vari-
ables, using the bindings gathered in the rule body. As a logic-programming style
language, XPathLog updates are insertions.

Reactive Web Languages. Also some reactive languages have been proposed,
that do not only allow for updating Web data as the above ones, but are also
capable of dealing-with/reacting-to some forms of events, evaluate conditions,
and act by updating data. These are e.g. Active XQuery [11], the XML active
rules of [12], the Event-Condition-Action (ECA) language for XML defined in
[4], and the ECA reactive language RDFTL [61] for RDF data.

Active XQuery [11] expands XQuery with a trigger definition and the exe-
cution model of the SQL3 standard that specifies a syntax and execution model
for ECA rules in relational databases (and using the same syntax for CREATE

TRIGGER). It adapts the SQL3 notions of BEFORE vs. AFTER triggers and, more-
over, the ROW vs. STATEMENT granularity levels to the hierarchical nature of XML
data. The core issue here is to extend the notions from “flat” relational tuples
to hierarchical XML data.

Another approach to ECA rules reacting on updates of standard XML doc-
uments, in the style of SQL3 triggers, is the one of [4]. It defines ECA rules, of
the usual form on ... if ... do, where events can be of the form INSERT e

or DELETE e, where e is an XPath expression that evaluates to a set of nodes;
the nodes where the event occurs are bound to a system-defined variable $delta

where they are available for use in condition and action parts. An extension for
a replace operation is sketched. The condition part consists of a boolean combi-
nation of XPath expressions. The action part consists of a sequence of actions,
where each action represents an insertion or a deletion in XML. For insertion op-
erations, one can specify the position where the new elements are to be inserted
using the BELOW, BEFORE, and AFTER constructors. This work has been extended
to RDF data (serialised as XML data) in [61].

These approaches are “local”, in that, as in SQL3, work on a local database,
are defined inside the database by the database owner, and only consider local
events and actions. On the contrary, the XML active rules of [12] establishes
an infrastructure for user-defined ECA rules on XML data, where rules to be
applied to one given repository can be defined by arbitrary users (using a prede-
fined XML ECA rule markup), and can be submitted to that repository where
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they are then executed. The definition of events and conditions is up to the user
(in terms of changes and a query to an XML instance). The actions are restricted
to sending messages. This approach further implements a subscription system
that enables users to be notified upon changes on a specified XML document
somewhere on the Web. For this, the approach extends the server where the doc-
ument is located by a rule processing engine. Users that are interested in being
notified upon changes in the document submit suitable rules to this engine that
manages all rules corresponding to documents on this server. Thus, evaluation
of events and rules is local to the server, and notifications are “pushed” to the
remote users. Note that the actions of the rules do not modify the information,
but simply send a message.

None of these languages considers composite events in general. There is some
preliminary work on composite events in the Web [8], but it only considers
composition of events of modification of XML-data in a single document.

Besides being mostly limited to updates, and reaction on updates, on XML
(or RDF) data, and with mostly no support for composite events or actions, none
of these proposals tackles the issues of heterogeneity of behaviour and languages
in the Semantic Web, of dealing with composite events in the Web, and dealing
with composite actions, required for materialising our initial vision of an active
Semantic Web, where reactivity, evolution and propagation of changes play a
central role. Having all of these aspects combined in a single framework is the
goal of the work presented in this chapter.

1.3 Conceptualization of ECA Rules and their

Components: A General Framework for ECA Rules

The idea of a General Framework for ECA Rules aims at covering (i) active con-
cepts w.r.t. the domain ontologies and (ii) heterogeneity of domain-independent
conceptualization of activity in a comprehensive way [55].

Active Concepts of Domain Ontologies. The general framework assumes actions
and events to be first-class citizens of the domain ontologies. While static notions
like classes, properties, and their instances are represented in the state of one or
more nodes, events and actions are present as volatile entities. Events and actions
are represented by XML (including RDF/XML) fragments that are exchanged
(e.g., by HTTP) between nodes. For instance,

<travel:CanceledFlight travel:code=“LH1234”>

<travel:reason>bad weather</travel:reason>

</travel:CanceledFlight>

is the representation of an event (raised e.g. by an airport).
Every domain ontology – e.g. for banking or traveling – defines static notions

(classes, relationships) and dynamic notions, i.e., the types of possible events and
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actions as classes of the respec-
tive domain ontologies as shown
in UML notation in Fig. 1.

Next, we identify the types of
languages used in the rules to
deal with state, events, and ac-
tions.

Application-Domain Ontology travel

Events

CanceledFlight

Literals

Flight
operatedBy

Actions

CancelFlight

♦ ♦ ♦
Fig. 1. Components of Domain Ontologies

Domain-Independent Conceptualization of Activity. This aspect deals with the
modeling and specification of active rules and rule components, i.e., the descrip-
tion of relevant events, including composite events, conditions, including queries
against the state of domain nodes, and actions, including the specification of
composite actions up to (even infinite) processes. While the atomic constituents
are provided by the domain ontology, any kind of composition requires domain-
independent notions. As mentioned above, multiple formalisms and languages
for composite events, queries, and actions have been proposed. Each of them
can be seen as an ontology of composite events, processes, etc.

The general framework covers this matter by following a modular approach
for rule markup that considers the markup and ontology on the generic rule level
separately from the markup and ontologies of the components.
Two different variants of the general idea have been implemented:

MARS – Modular Active Rules for the Semantic Web is an open architecture
that allows for combining nearly arbitrary existing languages and services.
For this, MARS includes a meta-level ontology of languages and services in
general.

r3 – Resourceful Reactive Rules follows an integrated design that is based on a
toolbox for defining and implementing heterogeneous languages in a homo-
geneous programming environment.

In the following, we first present the common ideas underlying the general frame-
work, and then point out the different design decisions in MARS and r3. Services
from both approaches can also interoperate.

1.3.1 The Rule Level

The core of the general framework is a model and architecture for ECA rules
that use heterogeneous event, query, and action languages. The condition com-
ponent is divided into queries to obtain additional information (from potentially
different sources; the queries can be expressed in different languages) and a test
component (that consists only of a boolean combination of generic comparison
operators e.g., from XPath):

ON event AND additional knowledge IF condition THEN DO something.
The approach is parametric regarding the component languages. Users write
their rules by using component languages of their choice. While the semantics
of the ECA rules provides the global semantics, the components are handled by
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specific services that implement the respective languages. Fig. 1.2 (from [54])
illustrates the structure of the rules and the corresponding types of languages.

Rule Model ECARule ECAEngine

EventComponent ConditionComponent ActionComponent

Query Test

Event
Language

Query
Language

Test
Language

Action
Language

Languages Model
Language

Name, URI
Processor

♦1

♦

0..1

♦

1..*

♦*

♦

0..1

�

�

�

�

uses uses uses uses

impl by

impl by

Fig. 1.2. ECA Rule Components and Corresponding Languages (from [54])

Markup. The markup of the rule level, i.e., the ECA-ML markup language,
mirrors this structure as shown in Figure 1.3. It allows to embed the components
as nested subexpressions in their own markup (using their own namespaces). The
conceptual border between the ECA rule level and the particular concepts of the
E, C and A components is manifested in language borders between the ECA level
language and the languages of the nested components. The language borders
are used at execution time to organize the cooperation between appropriate
processors. The components are specified as nested subexpressions of the form

<eca:Component-Type xmlns:lang=“embedded-lang-ns”>

embedded fragment in the embedded language’s markup and namespace
</eca:Component-Type>

in arbitrary formalisms or languages.
As we shall see, analogous conceptual borders are found between the level of

composite expressions and their atomic subexpressions.

Communication and Data Flow Between Components. The data flow through-
out the rules, and between the ECA engine and the event, query, test, and action
components is provided by logical variables in the style of deductive rules, or of
production rules. The state of a rule evaluation, and the information sent and
returned by service calls is always a set of tuples of variable bindings. Thus, all
paradigms of query languages, following a functional style (such as XPath/X-
Query), a logic style (such as Datalog or SPARQL [64]), or both (F-Logic [48])
can be used. The semantics of the event part (that is actually a “query” against
an event stream that is evaluated incrementally) is –from that point of view–
very similar to that of queries, and the action part takes variable bindings as
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<eca:Rule xmlns:eca=“http://www.semwebtech.org/languages/2006/eca-ml#”>

<eca:Event>

<ns1:el1>nested expression in event specification language markup </ns1:el1>

</eca:Event>

<eca:Query”>

<ns2:el2>nested expression in query language markup </ns2:el2>

</eca:Query>

:
<eca:Query > . . . </eca:Query>

<eca:Test>

<ns3:el3>test expression over obtained information </ns3:el3>

</eca:Test>

<eca:Action>

<ns4:el4>nested expression in action language markup </ns4:el4>

</eca:Action>

</eca:Rule>

Fig. 1.3. ECA-ML Markup Pattern

input. Given this semantics, the ECA rule combines the evaluation of the com-
ponents in the style of production rules (evaluated in forward-chaining mode “if
body then head”, cf. Figure 1.4):

action(X1, . . . , Xn, . . . , Xk)←
event(X1, . . . , Xn), query(X1, . . . , Xn, . . . , Xk), test(X1, . . . , Xn, . . . , Xk) .

The evaluation of the event component (i.e., the successful detection of a, pos-
sibly composite, event) binds variables to values that are then extended in the
query component, possibly constrained in the test component, and propagated
to the action component.

For the actual data exchange, an XML format has been defined. Alternatively,
for local services, internal data structures can be exchanged as references, and
also a shared database storage is provided.

<eca:Event>

event component
binds X1, . . . , Xn

</eca:Event>

⇒

<eca:Query>

query component
over X1, . . . , Xn, . . . , Xk

join vars: X1, . . . , Xn

binds Xn+1, . . . , Xk

</eca:Query>

⇒
<eca:Test>

over X1, . . . , Xk

</eca:Test>

⇒

<eca:Action>

action component
uses X1, . . . , Xk

</eca:Action>

(Composite) Event
Detection Engine Query Engine Action/Process

Engine

register
event

component

upon
detection:
result
variables

send
query

receive
result

send
action
+vars

Fig. 1.4. Use of Variables in an ECA Rule

1.3.2 The Event Component

For the event component, two levels of specifications are combined (cf. Fig-
ure 1.5): The specification of the (algebraic) structure of the composite event is
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given as a temporal combination of atomic events, and the specification of the
contributing atomic events as the leaf expressions is given by small “queries”
against the actual events that check if an event matches the specification.

Atomic Event Specifications. As shown at the beginning of this section, actual
events are volatile items, considered to be represented as XML fragments. Atomic
event specifications (AESs) are used in the rules’ event components for specifying
which atomic events are relevant; they form the leaves of the event component
tree. Their specification needs to consider the type and contents of atomic events,
e.g. reacting to an event “if a flight is canceled due to bad weather conditions then
...”. In case of detecting the composite event “if a flight is first delayed and later
canceled then ...”, the flight number must be extracted from the event to use it in
a join condition between different atomic events. The following fragment shows
an atomic event specification in an XML-QL-style [32] matching formalism, that
extracts the flight number and the reason from such an event:

<xmq:AtomicEvent
xmlns:xmq=“http://www.semwebtech.org/languages/2006/xmlql#”>

<travel:CanceledFlight xmlns:travel=“. . . ” travel:flight=“{$flightno}”>

<travel:reason>{$reason}</travel:reason>

</travel:CanceledFlight>

</xmq:AtomicEvent>

In an atomic event specification, there are always two languages involved as
shown in Figure 1.5: (i) a domain language (associated with the namespace of
the event; above: travel), and (ii) an atomic event description/matching/query
language (above: xmq) for describing what events should actually be matched.

ECA Rule

EventExpression
Query
Expr.

Action
Expr.

Atomic
Event

Matcher

Atomic
Event

Specification

Composite
Event

Specification

Composite
Event

Detector

Domain
Event

Domain
Ontology

Atomic
Event

Specification
Formalism

EventComposer

cardinality

EventAlgebra

♦ ♦ ♦

�

�

♦

k

1

♦
1..*

describes

from

uses

Fig. 1.5. Event Component: Languages (from [7])

Composite Event Specifications. Given an event algebra, the markup of event al-
gebra expressions is straightforward, forming a tree term structure over atomic
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event specifications. As a sample composite event language, a variant of the
SNOOP event algebra [29] extended with relational data flow has been devel-
oped [7].

1.3.3 The Condition Component

The condition component consists of one or more queries to obtain additional
information from domain nodes, and a test that is evaluated over the obtained
variable bindings.

As query languages, opaque components play an important role: most domain
nodes are assumed to provide an existing query language according to their
data model, e.g., SQL, XPath/XQuery, or SPARQL. While all these languages
support variables, they are not in any XML markup1, but queries are given as
strings that have to be parsed at the respective nodes. For the ECA rules, these
strings are opaque. Opaque embedded fragments are of the form

<eca:Opaque eca:language=“lang-id” eca:uri=“uri”>

query string
</eca:Opaque>

which indicates the language and the URI where the query has to be sent for
being answered. Opaque code fragments can also be used in the action part.

Additionally, a query language for RDF and OWL data that has an RDF
syntax (whose XML markup is its RDF/XML serialization), called OWLQ, has
been developed in the MARS project.

1.3.4 The Action Component

The action component specifies the actual reaction to be taken. This again can be
an atomic action, or a composite action, often called process. For its specification,
process languages or process algebras can be used. Given a process language, the
markup on the process level is again straightforward, forming a tree expression
structure (note that BPEL [60] is originally defined as an XML language).

Atomic actions are those of the application domains, again represented as
XML fragments, belonging to some domain namespace. Such atomic actions are
then sent to the appropriate nodes to be executed. The specification of an action
to be executed thus consists of the specification to generate an XML fragment
which is then submitted to the corresponding domain nodes, or to a domain
broker [6] that will in turn submit it to appropriate domain nodes (using the
namespace identification). For that, also multiple languages exist.

Conditions, Queries and Events inside Process Specifications. The specification
of a process, which e.g. includes branching or waiting for a response, can also
require the specification of queries to be executed, and of events to be waited
for. For that, we allow event specifications, queries and conditions as regular,
executable components of a process:

1 With exceptions, such as XQueryX as an XML markup for XPath/Query
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– “executing” a query means to evaluate the query, to extend the variable bind-
ings, and to continue.

– “executing” a condition means to evaluate it, and to continue for all tuples of
variable bindings where the condition evaluates to “true”. For instance, for a
conditional alternative process ((c : a1) + (¬c : a2)), all variable bindings that
satisfy c will be continued in the first branch with action a1, and the others
are continued with the second branch.

– “executing” an event specification means to wait for an occurrence of the
respective event.

Figure 1.6 shows the relationship between the process algebra language and
the contributions of the event and test component languages, and those of the
domain languages. As a sample process language, an enriched variant of CCS
[59] has been defined [7, 47] that works on relational states (i.e., a set of tuples
of variable bindings) that are manipulated by the atomic actions.

Process
Engine

Action Component/
Process Language

Composer

name

Atomic Action
Invoker

Atomic Action
Spec. Formalism

Event
Processor

Query
Processor

Domain
Nodes,
Domain
Brokers

DomainLanguage

uri
Event

Language

Query/
Condition
Language

Atomic Events Literals Atomic Actions

1..*
embeds

*
*

impl by

impl by

impl by

♦

*

impl by

♦ ♦ ♦

uses uses

Fig. 1.6. Structure of the Action Component as an Algebraic Language (from [7])

1.3.5 Languages and Language Borders

In the above design, rules and (sub)expressions are represented by XML trees.
Nested fragments correspond to subtrees in different languages, corresponding
to XML namespaces, as illustrated in Figure 1.7: the rule reacts on a composite
event (specified in the extended SNOOP [29, 7] event algebra as a sequence) “if
a flight is first delayed and later cancelled”, and binds the flight number and
the reason of the cancellation. Two expressions in an XML-QL-style matching
formalism contribute the atomic event specifications. Note the occurrence of the
travel domain namespace inside the atomic event specification.

Processing of an XML fragment in a given language, or more abstractly, ex-
ecuting some task for a fragment, is organized by using the namespace URI of
the fragment’s outermost element. Every processor (e.g., the one responsible for
the crosshatched event part in the snoopy namespace) controls the processing
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of “his” level (the SNOOP event algebra), and whenever an embedded frag-
ment (e.g., an atomic event specification) has to be processed, the appropriate
processor (here, for XML-QL) is invoked.

<eca:Rule xmlns:eca=“http://www.semwebtech.org/languages/2006/eca-ml#”>

<eca:Event>

<snoopy:Sequence xmlns:snoopy=“http://.../languages/2006/snoopy#”
xmlns:travel=“http://.../domains/2006/travel#”>

<xmq:Event xmlns:xmq=“http://.../domains/2006/xmlql#”>

<travel:DelayedFlight travel:code=“{$flight}”/>

</xmq:Event>

<xmq:Event xmlns:xmq=“http://.../domains/2006/xmlql#”>

<travel:CanceledFlight travel:code=“{$flight}”>

<travel:reason>{$reason}</travel:reason>

</travel:CanceledFlight>

</xmq:Event>

</snoopy:Sequence>

</eca:Event>

<eca:Query>

query spec

</eca:Query>

<eca:Action>

action spec

</eca:Action>

</eca:Rule>

xmlns:eca•– rule level

•

action spec◦
query◦

xmlns:snoop – event spec•

• •
atomic event specs

+ occurrences of
domain namespaces

Fig. 1.7. Nesting of Language Subtrees

The aim of the General Framework idea is to allow to embed arbitrary lan-
guages of appropriate types by only minimal restrictions on the languages. The
cornerstones of the framework w.r.t. this issue are the following:

– the approach does only minimally constrain the component languages: the
information flow between the ECA engine and the event, query, test, and
action components is provided by (i) XML language fragments, and (ii) current
variable bindings (cf. Fig. 1.4),

– a comprehensive ontology of language types, service types and tasks (as de-
scribed below),

– an open, service-oriented architecture,
– a Language and Service Registry (LSR) that holds information about actual

services and how to do the actual communication with them.

The XML and RDF concept of namespaces provides a powerful and built-in
mechanism to identify the language of an XML fragment: namespaces are the
languages’ URIs. The concrete languages are related to actual services, and the
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namespace information of a fragment to be processed is used to select and address
an appropriate processor.

With that, all necessary information what to do with an embedded fragment
of a “foreign language” is contained in (i) the language fragment (via the name-
space of its root element), (ii) the local knowledge of the currently processing
service (i.e., what it expects the fragment to be, and what it wants do to with
it), and (iii) the LSR information.

1.3.6 Languages Types, Service Types, and Tasks

For every kind of language there is a specific type of service that provides a
specific set of tasks – these are independent from the concrete language; only
the actual implementation by a service is language-dependent.

The Languages and Services Ontology is shown in Figure 1.8; sample in-
stances are denoted by dashed boxes. The ontology contains two levels: the level
of language types and corresponding service types, and the concrete languages
and services.
There are the following language types, with the corresponding service types :

Rule Languages, e.g. the ECA rule language, are handled by rule engines. There,
e.g., rules can be registered.

Event Specification Languages (specifications of composite or atomic events):
composite event specifications are processed by Composite Event Detection
Engines (CEDs); atomic event specifications are processed by Atomic Event
Matchers (AEMs). In both cases, event specifications can be registered at
such services. Upon occurrence/detection of the event, the registrant will be
notified (asynchronously).

Query Languages are handled by query engines. Queries can be sent there, and
they are answered (synchronously or asynchronously).

Test Languages: tests (i.e., boolean queries) are also handled by query engines,
or locally (as they involve rather simple comparisons). Tests can be submit-
ted, and they are answered (synchronously or asynchronously).

Action Languages: Composite and atomic actions are processed by action ser-
vices. Action specifications can be submitted there for execution (either pro-
cesses, or atomic actions).

Domain Languages: Every domain defines a language that consists of the names
of actions (understood to be executed), classes/properties/predicates (de-
pending on the respective data model), and events (emitted by the domain
services) as shown in Figure 1. Domain services support these names and
carry out the real “businesses”, e.g., airlines (in the travel domain) or uni-
versities. They are able to answer queries, to execute (atomic) actions of
the domain, and they emit (atomic) events of the domain. Domain Brokers
implement a portal functionality for a given domain.

For every kind of language there is intuitively a typical set of tasks (e.g., given
a query language QL, one expects that a service that implements QL provides
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the task “answer-query”). In the Languages and Services Ontology, the tasks
are not associated with the language, but with the corresponding service type
(in programming languages terminology, a service type is an interface that is
implemented by the concrete services; thus the provided tasks can be seen as
(part of) its signature).

For a concrete language, e.g., SNOOP, there are one or more concrete services
(of the appropriate service type) that implement it (here: snoopy). Each such
service has a URI, and has to provide the characteristic tasks of the service
type (in programming languages terminology: implement the signature of the
interface). For each provided task, there is a task description that contains the
information how to establish communication (described in detail at the end of
this section).

The relationships on the meta level are called meta-implemented-by and
meta-provides-task, while on the concrete level, they are called implemented-by
and provides-task. The reason for not just overloading names is that the RDFS
description then allows to distinguish domains and ranges.

Figure 1.9 shows the most important tasks for each service type; addition-
ally, the actual communication flow is indicated: e.g., rule engines provide the
task “register-rule”, which in turn calls the task “register-event-pattern” that is
provided by event detectors. When the task “register-event-pattern” of a CED
is called, it will in turn call the task “register-event-pattern” for the embedded
(atomic) subevents at some AEMs (for the respective AESLs). Domain nodes
emit events that end up at the task “receive-event” that is provided by AEMs. If
such an event matches a registered pattern, the AEM will call the task “receive-
detected-event” that is provided by the registrant (which is a CED or a rule
engine). A more concrete example using the sample rule from Figure 1.7 will be
given in Section 1.3.7.

Information about Concrete Services. The concrete information about available
services for the concrete languages is managed by the Language and Service
Registry (LSR). For every such service, the LSR contains the URI, and for each
provided task, there is a task description that contains information for estab-
lishing communication (cf. Figure 1.10 for a sample in RDF/XML markup):

– the actual URL (as a service supports multiple tasks, each of them may have
an own URL, which is not necessarily related to the service’s URI),

– whether it supports to submit a set of tuples of variables, or only a single
tuple at each time,

– information about the required message format:
– send reply-to address and subject in the message header or in the body,
– whether it requires a certain wrapper element for the message body,

– whether it will answer synchronously or asynchronously.

All MARS ontologies and an LSR snapshot in XML/RDF syntax can be found at
http://www.dbis.informatik.uni-goettingen.de/MARS/#mars-ontologies.

For processing a component or subexpression, a language processor for the
indicated specification language is determined by asking an LSR for a processor
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Fig. 1.8. Ontology of Languages and Services

Language Rule Composite Atomic Query/Test Process AtomicAct. Domain
Type: Languages Event Languages Languages Languages Languages

Service Type: Rule Composite Atomic Query/Test Composite Atomic Domain
Task: Engines Event Detectors Services Action Services Brokers Nodes

register-rule P

reg.-event-pattern C P/C P/C C P
rec-detected-ev. P C/P C P
receive-event P C/P
(SendEvent) C

evaluate-query C P/C C P/C P
(answer-query) C
rec-query-answer P C/P P C/P

evaluate-test C P/C C
rec-test-answer P C/P P

execute-action C P/C P/C P/C P

P: Provides task ; C: Calls task – asynchronous answers will be sent to another task
Arrows from C to P of the same service type represent communication between different
services of the same type (e.g., nesting of different event algebras).
The rightmost dashed arrows represents the domain-specific behavior of domain nodes:
from executing actions, occurrences of events may be raised.

Fig. 1.9. Services and Tasks

17



<mars:EventAlgebra rdf:about=“http://.../languages/2006/snoop#”>

<mars:is-implemented-by>

<mars:CompositeEventDetectionEngine xml:base=“http://.../services/2007/snoopy/”
rdf:about=“http://www.semwebtech.org/services/2007/snoopy”>

<has-task-description> <TaskDescription>

<describes-task rdf:resource=“&mars;/ced#register-event-pattern”/>

<provided-at rdf:resource=“register”/> <input>element register</input>

<Reply-To>body</Reply-To> <Subject>body</Subject>

<variables>*</variables>

</TaskDescription> </has-task-description>

:
</mars:CompositeEventDetectionEngine>

<mars:is-implemented-by>

</mars:EventAlgebra>

Fig. 1.10. MARS LSR: LSR entry with Service Description Fragment for SNOOP

for the embedded-lang-ns namespace and the task is submitted to that node
according to the information given in the respective task description. The actual
process of determining an appropriate service and organizing the communication
is operationally performed by a Generic Request Handler (GRH), that is used
by all sample services. Details about the actual handling are described in [37].

In the current prototype, the LSR is implemented by a central RDF/XML
file. In a fully operational MARS environment, the LSR would be realized as one
or more LSR services where language services can register and deregister, and
that are connected e.g. in a peer-to-peer way. By that, e.g., different LSRs can
list their “friend” services, and only fall back to remote services if no local ones
are available.

1.3.7 Architecture and Processing: Cooperation between Resources

Imposed by the structure of the rule and the type of languages, each service
plays a certain role when processing the parts it is responsible for. The basic
pattern, according to the ECA structure is always the same, as illustrated in
Figures 1.11 (global interaction) and 1.12 (more detailed view of the services
and tasks that are involved in composite event detection including the prior
registration of event specifications).

Consider again the example rule from Figure 1.7:
A client registers the rule (which deals with the travel domain) at the ECA en-

gine (Step 1.1). Event processing is done in cooperation of an ECA engine, one or
more Composite Event Detection Engines (CEDs) that implement the event alge-
bras (in the example: SNOOP), and one or more Atomic Event Matchers (AEMs)
that implement the Atomic Event Specification Languages (AESLs) (in the ex-
ample: XML-QL). For this, the ECA engine submits the event component to the
appropriate CED service (1.2), here, a SNOOP service. The SNOOP service in-
spects the namespaces of the embedded atomic event specifications and registers
the atomic event specifications (for travel:DelayedFlight and travel:CanceledFlight)
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at the XML-QL AEM service (1.3). The AEM inspects the namespaces of the
used domains, where in this case the travel ontology is relevant. It contacts a
travel domain broker (1.4) to be informed about the relevant events (i.e., De-
layedFlight and CanceledFlight).

The domain broker forwards relevant atomic events to the AEM (2.2;
e.g., happening at Lufthansa (e.g., 2.1a: DelayedFlight(LH123), 2.1c: Canceled-
Flight(LH123)) and Air France (2.1b: DelayedFlight(AF456))). The AEM matches
them against the specifications and in case of a success reports the matched
events and the extracted variable bindings to the SNOOP service (3). Only after
detection of the registered composite event (after events 2.1a and 2.1c), SNOOP
submits the result to the ECA engine (4).

This means the actual “firing” of the rule which then evaluates additional
queries and tests (assumed to be empty here). Then, the action component is ex-
ecuted. Assume an action component (which is not given explicitly in Figure 1.7)
that uses CCS and contains an atomic action concerning the corresponding air-
line node and an atomic action that sends a mail (using an SMTP action). The
ECA engine inspects the used language namespace (ccs:) and forwards it to a
CCS service (5.1). The CCS node forwards the action to the Lufthansa node via
the domain broker (5.2a,b) and sends a mail (5.3a,b) via an SMTP service.
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Fig. 1.11. Communication: Event Processing

Embedding of Domain Languages. Domain languages and services are completely
compatible with this approach (cf. Figure 1.9). For domain nodes, the tasks are
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Fig. 1.12. Processing Event Components and Events

register-for-event and execute-action. Domain brokers provide a portal function-
ality between language services and domain services.

1.3.8 The RDF Level: Language Elements and their Instances as
Resources

Rules on the semantic level, i.e., RDF or OWL, lift ECA functionality w.r.t.
two (independent) aspects: first, the events, conditions and actions refer to the
domain ontology level as described above. On an even higher level, the above
rule ontology and event, condition, and action subontologies regard rules them-
selves as objects of the Semantic Web. Together with the languages and their
processors, this leads directly to a resource-based approach: every rule, rule com-
ponent, event, subevent etc. becomes a resource, which is related to a language
which in turn is related to other resources.
Describing rules in RDF provides an important base to be able to reason about
rules. This will support several things:

– validation and support for execution,
– actual reasoning about the behaviour of a node, including correctness issues,
– expressing rules in abstract terms instead of w.r.t. concrete languages. The ser-

vices can then e.g. choose which concrete languages support the expressiveness
required by the rule’s components.

For the RDF/OWL level, we assume that not only the data itself is in RDF, but
also events and actions are given as XML/RDF fragments (using the same URIs
for entities and properties as in the static data).
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Based on the semantics of the component languages as algebraic structures,
a representation in RDF is straightforward for each language. Actually, when
designing a language having an RDF and an XML variant (such as developed
for SNOOP and CCS), the XML markup is a stripped variant of a certain RD-
F/XML serialization according to a target DTD of the RDF graph of the rule.
The processing of rules given in RDF is actually done via transforming them to
the XML syntax which is then executed as described above.

Figures 1.13 and 1.14 show an excerpt of the rule given in Figure 1.7 as RDF:
“If a flight is first delayed and then canceled (note: use of a join variable), then
...”. For atomic event matching, it uses the RDF-based OWLQ language.

#rule-df-cf eca:Rule
rdf:type

condition action

#df-cf snoop:Sequence eca:EventSpec

eca:has-event eca:has-condition
eca:has-action

rdf:type rdfs:subClassOf

#ev-df owlq:EventSpec #ev-cf

first
second

rdf:type rdf:type

rdf:type

rdf:type
rdfs:subClassOf

travel:DelayedFlight owlq:Class travel:CanceledFlight

owlq:baseEvent owlq:baseEvent
rdf:type rdf:type

travel:Eventrdf:type rdf:type

mars:Event

rdfs:subClassOf

df eca:Variable cf

owlq:scopesVariable owlq:scopesVariable

rdf:type rdf:type

vardef vcf

owlq:hasVarDef owlq:hasVarDef

#flight

owlq:toVariable owlq:toVariable

travel:flight

onProperty onProperty

rdf:type

Fig. 1.13. Example Rule and Event Component as Resources

1.3.9 MARS implementation

Modular Active Rules for the Semantic Web – MARS – implements an open,
service-oriented architecture exactly as described above. In MARS, every con-
tributing service is completely autonomous. Making a language and a service
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<!DOCTYPE rdf:RDF [

<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<!ENTITY owlq "http://www.semwebtech.org/languages/2006/owlq#">

<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<!ENTITY travel "http://www.semwebtech.org/domains/2006/travel#"> ]>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:eca="http://www.semwebtech.org/languages/2006/eca-ml#"

xmlns:snoop="http://www.semwebtech.org/languages/2006/snoopy#"

xmlns:owlq="http://www.semwebtech.org/languages/2006/owlq#"

xmlns:travel="http://www.semwebtech.org/domains/2006/travel#"

xml:base="foo:rule">

<eca:Rule rdf:ID="rule-df-cf">

<eca:uses-variable rdf:resource="#flight"/>

<eca:has-event>

<snoop:Sequence>

<snoop:first>

<owlq:EventSpec rdf:ID="ev-df">

<owlq:baseEvent rdf:resource="&travel;DelayedFlight"/>

<owlq:scopesVariable>

<owlq:Variable>

<owlq:hasVariableDefinition>

<owlq:VariableDefinition>

<owlq:onProperty rdf:resource="&travel;flight"/>

<owlq:toVariable rdf:resource="#flight"/>

<owlq:VariableDefinition>

</owlq:hasVariableDefinition>

</owlq:Variable>

</owlq:scopesVariable>

</owlq:EventSpec>

</snoop:first>

<snoop:second>

<owlq:EventSpec rdf:ID="ev-cf">

<owlq:baseEvent rdf:resource="&travel;CanceledFlight"/>

<owlq:scopesVariable>

<owlq:Variable>

<owlq:hasVariableDefinition>

<owlq:VariableDefinition>

<owlq:onProperty rdf:resource="&travel;flight"/>

<owlq:toVariable rdf:resource="#flight"/>

<owlq:VariableDefinition>

</owlq:hasVariableDefinition>

</owlq:Variable>

</owlq:scopesVariable>

</owlq:EventSpec>

</snoop:second>

</snoop:Sequence>

</eca:has-event>

<!-- ... query and action ... -->

</eca:Rule>
Fig. 1.14. Sample RDF Rule
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interoperable in MARS just consists of adding an appropriate language entry
with a service description to the Language and Service Registry (LSR) and us-
ing it anywhere in a rule or process. Communication between services is always
done via HTTP and the XML serialization of variable bindings.

In the MARS project, several sample languages on the XML and RDF level
have been implemented.

XML Level. On the XML level, the focus is on having an XML markup for
ECA rules using more or less well-known component languages that have been
adapted to relational dataflow. XML is here just used as a markup format for
rules and their components and subexpressions:

– Atomic Event Specifications: An XML-QL-style [32] pattern-based query
mechanism,

– Composite Event Specifications: the SNOOP event algebra of the Sentinel
system [28, 7],

– Queries: XPath and XQuery as opaque queries (i.e., non-markupped CDATA
contents), XML-QL,

– Atomic Actions: An XML-QL-style pattern-based XML generation mecha-
nism,

– Composite Actions: the CCS – Calculus of Communicating Systems process
algebra [59, 7, 47].
Process specifications (in CCS) as used in the Action part of ECA rules can
also be defined and executed standalone.

RDF Level. On the RDF level, all language fragments are represented in RD-
F/XML. Here, new language proposals are embedded in MARS:

– SNOOP and CCS (in RDF version),
– OWLQ as query language and for atomic event specifications,
– RDF-CL (an OWLQ-style RDF generation language).

Domain Services. There is a prototypical domain broker (cf. [6]) and sample
RDF data for demonstrating the rules; an active domain node with a demon-
strator application is under development.

Openness. The MARS framework is open for foreign component languages and
other sublanguages. Languages that have an XML markup smoothly integrate as
shown above. For existing services, it is an easy task to implement a wrapper Web
service that provides a suitable interface and to add the respective information
to the LSR (the online MARS LSR and the demonstrator contain samples of
foreign languages). Languages that do not have an XML markup but any other
textual syntax can be integrated using the handling of opaque fragments (for
details, see [2]), or also via an XML-based wrapper.

An online demonstrator of MARS is available at http://www.semwebtech.
org/mars/frontend/.
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1.3.10 r
3 implementation

Resourceful Reactive Rules – r3 – is a prototype implementation of the general
framework described above that, unlike MARS, follows an integrated design that
is based on a toolbox for defining and implementing heterogeneous languages in
a homogeneous programming environment.

r3 is based on an OWL-DL foundational ontology [1], describing reactive
rules and their components, and fully relies on the RDF Level. I.e., in r3 rules,
and their components are resources described in RDF according to the OWL-
DL foundational ontology. As such, no concrete markup is expected, though a
compatibility with the ECA-ML markup described above is provided.

The prototype is actually a network of r3 engines that cooperate towards
the evaluation of ECA rules. As in MARS, the communication between the r3

engines is done via HTTP and XML serialization of variable bindings. However,
making languages and services interoperable is not as simple as in MARS. The
entry point is an r3 main agent, providing operation for loading and removing
ECA rules. This main engine then interfaces with r3-aware language specific sub-
engines, e.g. for detecting events, querying, testing conditions and performing
actions. These r3 sub-engines may either be language services or domain services.

For easing the construction of r3 engines the prototype comes together with
a toolbox, including a development library and a corresponding meta-model to
describe component languages. This development library abstracts away com-
munication protocols, bindings of variables, generation of alternative solutions,
dealing with RDF models, etc. With this toolbox, building an r3 engine for a
language amounts to describing the language constructs in the meta-model, and
implementing each of the constructs, or using already existing implementations.
This provides a homogeneous programming environment for building r3 engines.

In fact several r3 engines have been built using this toolbox, for different
languages and services:

– HTTP, providing functors for put, get, post and delete;
– Prova [50], allowing for querying prova (Prolog-like) rules bases, and for per-

forming actions by using prova programs;
– XPath and XQuery for querying data in the Web;
– Xcerpt [63, 30] (see also Chapter ??), allowing for querying Web data using

this language;
– SNOOP for specifying composite events;
– XChange [25] which allows for detecting events with XChange, raising XChange

events, and performing XChange actions;
– Protune [10], allowing for query and acting upon policy knowledge bases, as

defined in Chapter ??;
– Evolp [3] allowing to query and act in an updateable logic programming knowl-

edge base.

Moreover, a broker has been implemented for allowing r3 engines to access
MARS, and an example domain service for the bio-informatics domains. All of
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this, plus the source code of r3 and the toolbox, installation and usage manual, as
well as an online demonstrator, can be found at http://rewerse.net/I5/r3/.

1.4 XChange – A concrete Web-based ECA rule language

XChange [25] is a reactive rule language addressing the need for evolution and
reactivity on the Web, both local (at a single Web node) and global (distributed
over several Web nodes) . As motivated in the beginning of this Chapter, it is
based on ECA rules of the form “ON event query IF Web query DO action.” When
events answering the event query are received and the Web query is successful
(i.e., has a non-empty result), the rule’s action is executed.

In contrast to the ECA rule frameworks presented in the previous section,
XChange aims at providing a single, homogenous, and elegant language that
is tailored for working with Web data and that is easy to learn and use. A
guiding idea of XChange is to build upon the existing Web query language
Xcerpt [68, 67]. (Xcerpt is discussed in Chapter ?? of this book; the core ideas
as relevant for understanding XChange will also be presented shortly here.)

XChange builds on the pattern-based approach of Xcerpt for querying data,
and additionally provides for pattern-based updating of Web data [63, 30]. De-
velopment of Xcerpt, XChange, and also of the complex event query language
XChangeEQ [18] follows the vision of a stack of languages for performing com-
mon tasks on Web data such as querying, transforming, and updating static
data, as well as reacting to changes, propagating updates, and querying complex
events. The result is a set of cooperating languages that provide, due to the
pattern-based approach that is common to all of them, a homogenous look-and-
feel. When a programmer has mastered the basics of querying Web data with
Xcerpt’s query terms, she can progress quickly and with smooth transitions to
more advanced tasks.

1.4.1 Representing, Querying, and Constructing Web Data

Data terms XML and other Web data is represented in XChange in the term
syntax of Xcerpt that is arguably more concise and readable than the original
formats. Further, data terms are the basis for query terms and construct terms,
and the importance of conciseness and readability of the term syntax will become
more pronounced when we introduce them shortly.

Figure 15(a) shows an Xcerpt data term for representing information about
flights; its structure and contained information corresponds to the XML docu-
ment shown in Figure 15(b). A data term is essentially a pre-order linearization
of the document tree of an XML document. The element name, or label, of the
root element is written first, then surrounded by square brackets or curly braces,
the linearizations of its children as subterms separated by commas.

The term syntax provides two features that are not found in XML: First,
child elements in XML are always ordered. The term syntax allows children to
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flights [
flight {

number { "UA917" },

from { "FRA" },
to { "IAD" }

},

flight {

number { "LH3862 " },
from { "MUC" },

to { "FCO" }
},

flight {
number { "LH3863 " },

from { "FCO" },
to { "MUC" }

}
]

(a) Data term

<flights >
<flight >

<number >UA917 </number>

<from >FRA </from >
<to>IAD </to>

</flight >

<flight >

<number >LH3862 </number>
<from >MUC </from >

<to>FCO </to>
</flight >

<flight >
<number >LH3863 </number>

<from >FCO </from >
<to>MUC </to>

</flight >
</flights >

(b) XML document

Fig. 1.15. An Xcerpt data term and its corresponding XML document

be specified as either ordered (indicated by square brackets [ ]) or unordered
(indicated by curly braces { }). The latter brings no added expressivity to the
data format (an unordered collection can always been given some arbitrary or-
der) but is interesting for efficient storage based on reordering elements and for
avoiding incorrect queries that attempt to make use of an order that should not
exist. In the example of Figure 15(a), the order of the flight children of the
flights element is indicated as relevant, whereas the order of the children of
the flight elements is not.

Second, the data model of XML is that of a tree. Our terms are more general,
supporting rooted graphs, which is necessary to transparently resolve links in
XML documents (specified, e.g., with IDREFs [13, 14] or with XLink [31, 17, 16])
and to support graph-based data formats such as RDF. However for understand-
ing XChange in the scope of this article, this feature is not necessary and we
therefore refer to [68, 67] for more details.

Query Terms A query term describes a pattern for data terms; when the pattern
matches, it yields (a set of) bindings for the variables in the query term. Variable
bindings are also called substitutions, and sets thereof (called substitution sets).
The syntax of query terms resembles the syntax of data terms and extends it to
accommodate variables, incompleteness, and further query constructs.

Variables in query terms are indicated by the keyword var. They serve as
placeholders for arbitrary content and keep query results in the form of bindings.
In the patterns of query terms, single brackets or braces indicate a complete
specification of subterms. In order for such a pattern to match, there must be
a one-to-one matching between subterms (or children) of the data term and
the query term. Double brackets or braces in contrast indicate an incomplete
specification (w.r.t. to breadth): each subterm in the query term must find a
match in the data term, but the data term may contain further subterms. As
with data terms, square brackets indicate that the order of subterms is relevant
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to the query and curly braces that it is not. Incompleteness in depth, that is
matching subterms that are not immediate children but descendants at arbitrary
depth, is supported with the construct desc.

Query terms also cater for restricted variables, negated subterms, optional
subterms, label variables, positional variables, regular expression matching, non-
structural conditions such arithmetic comparisons, and more. Examples of query
terms used in the ECA rule of Figure 1.16, which will be discussed in detail later,
are the first term with root element xchange:event (following the keyword ON)
and the term with root element flights.

Construct Terms Construct terms are used to create new data terms using
variable bindings obtained by a query. A construct term describes a pattern
for the data terms that are to be constructed. The syntax of construct terms
resembles the syntax of data terms and extends it to support variables and
grouping.

In constructing new data, variables in construct terms are simply replaced
by the bindings obtained from the query. The result is a new data term. If
there are no grouping constructs, then a new data term is generated for each
binding of the variables. For more complex restructuring of data, groupings can
be expressed as subterms in a construct term of the form all c group by { var

V }, where c is another construct term (which may of course contain further
grouping constructs). Its effect is to generate a data term from the construct
term c (as subterm for the overall construct term) for each distinct binding of
the variable V . The group by part can also be left out; the default then is to
group by the free variables immediately inside the construct term after all.
When grouping generates a list, the order of the generated subterms can be
influenced with an order by clause. Grouping constructs can be nested.

Construct terms also cater for aggregation functions (e.g., max, count),
groupings that are restricted to a fixed number of subterms, dealing with op-
tional variables, and construction of graph rather than tree data. An examples
of construct terms used in the ECA rule of Figure 1.16, which will be discussed
in detail later, is the second term with root element xchange:event (following
the keywords DO and and); note that this is a fairly simple construct term that
does not make use of grouping constructs.

1.4.2 Event-Condition-Action (ECA) Rules

An XChange program consists of one or more reactive rules of the form ON event
query IF Web query DO action.2, with the intuitive meaning as described above.
Both event query and Web query can extract data through variable bindings,
which can then be used in the action. As we can see, both event and Web queries

2 In the course of the development of XChange, different keywords and orders for the
rules have also been used. In particular, rules can also be written as RAISE event

raising action ON event query FROM Web query or TRANSACTION update action ON

event query FROM Web query.
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ON
xchange :event {{

flight -cancellation {{

flight -number { var N },
passenger {{

name { "John Q Public" }
}} }} }}

IF

in { resource { "http://www.example .com/flights .xml", "xml" },
flights {{

flight {{
number { var N },

from { var F },
to { var T }

}} }} }

DO
and {

xchange :event [
xchange :recipient [ "http://sms-gateway .org/us/206 -240 -1087/" ],

text -message [
"Hi, John! Your flight ", var N,

" from ", var F, " to ", var T, " has been canceled ."
] ],

in { resource { "http://shuttle .com/reservation.xml", "xml" },
reservations {{

delete shuttle -to -airport {{
passenger { "John Q Public" },

airport { var F },
flight { var N }

}} }} }
END

Fig. 1.16. An XChange ECA rule reacting to flight cancellations for passenger “John
Q Public”

serve a double purpose of detecting when to react and influencing —through
binding variables— how to react. For querying data, as well as for updating
data, XChange embeds and extends the Web query language Xcerpt presented
earlier.

Figure 1.16 shows an example of an XChange ECA rule, which will be used
for our subsequent explanations. The individual parts of the rules employ Xcerpt
and its pattern-based approach. Patterns are used for querying data in both the
event and condition part, for constructing new event messages in the action part,
and for specifying updates to Web data in the action part.

1.4.3 Events

Event messages Events in XChange are represented and communicated as XML
messages. The root element for all events is xchange:event, where the prefix
xchange is bound to the XChange namespace. Events messages also carry some
meta-data as children of the root element such as

– raising-time (i.e. the time of the event manager of the Web node raising the
event),

– reception-time (i.e. the time at which a node receives the event),
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<xc:event xmlns:xc="http://pms.ifi.lmu.de/xchange ">
<xc:sender > http://airline .com </xc:sender >
<xc:recipient > http://passenger.com </xc:recipient >

<xc:raising -time > 2005 -05 -29T18:00 </xc:raising -time >
<xc:reception -time >2005-05-29T18:01 </xc:reception -time >

<xc:reception -id> 4711 </xc:reception -id>

<flight -cancellation >

<flight -number >UA917 </flight -number >
<passenger >John Q Public </passenger >

</flight -cancellation >
</xc:event >

(a) XML syntax

xchange :event [
xchange :sender ["http://airline .com"],
xchange :recipient ["http:// passenger.com"],

xchange :raising -time ["2005-05 -29T18:00"],
xchange :reception -time ["2005-05 -29T18:01"],

xchange :reception -id ["4711"],

fligh -cancellation {

flight -number { "UA917" },
passenger { "John Q Public" }

}
]

(b) Data term syntax

Fig. 1.17. Example of an event message

– sender (i.e. the URI of the Web node where the event has been raised),
– recipient (i.e. the URI of the Web node where the event has been received),

and
– id (i.e. a unique identifier given at the recipient Web node).

An example event that might represent the cancellation of a flight with number
“UA917” for a passenger named “John Q Public” is shown in both XML and
term syntax in Figure 1.17.

Simple (“atomic”) event queries The event part of a rule specifies a class of
events that the rule reacts upon. This class of events is expressed as an event
query. A simple (or atomic) event query is expressed as a single Xcerpt query
term.

Event messages usually contain valuable information that will be needed in
the condition and action part of a rule. By binding variables in the query term,
information can flow from the event part to the other parts of a rule. Hence,
event queries can be said to satisfy a dual purpose: (1) they specify classes of
events the rule reacts upon and (2) they extract data from events for use in the
condition and action part in the form of variable bindings.

An XChange program continually monitors the incoming event messages to
check if they match the event part of one of its XChange rules. Each time an
event that successfully matches the event query of a rule is received, the condition
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part of that rule is evaluated and, depending on the result of that, the action
might be executed.

The event part of the ECA rule from Figure 1.16 would match the event
message in Figure 1.17. In the condition and action part the variable N would
then be bound to the flight number “UA917”.

Event Composition Operators To detect complex events, the original proposal of
XChange supported composition operators such as and (unordered conjunction
of events), andthen (ordered sequence of events), without (absence of events in
a specified time window), etc. [33, 63, 24, 25]. This algebraic approach to query
complex events with composition operators has been common in Active Database
research [62, 29]; it is however not without problems and has weaknesses in terms
of expressiveness and potential misinterpretations of operators [73, 38, 18, 21].

Querying Complex Events with XChangeEQ Later work on the complex event
query language XChangeEQ [18, 20] seeks to replace the original composition
operators of XChange with an improved and radically different approach to
querying complex events. The problems associated with composition operators
can be attributed to a large extend to the operators mixing different aspects
of querying (see [35] and [34] for an elaboration). For example in the case of a
sequence operator (andthen), composition of events and their temporal order
are mixed.

XChangeEQ is built on the idea that an expressive event query language must
cover the following four orthogonal dimensions, and must treat them separately
to gain ease-of-use and full expressiveness:

– Data extraction: Events contain data that is relevant to whether and how
to react. For events that are received as SOAP messages (or in other XML for-
mats), the data can be structured quite complex (semi-structured). The data
of events must be extracted and provided (typically as bindings for variables)
to construct new events or trigger reactions (e.g., database updates).

– Event composition: To support composite events, i.e., events that are made
up out of several events, event queries must support composition constructs
such as the conjunction and disjunction of events (or more precisely of event
queries).

– Temporal (and causal) relationships: Time plays an important role in
event-driven applications. Event queries must be able to express temporal
conditions such as “events A and B happen within 1 hour, and A happens
before B.” For some applications, it is also interesting to look at causal rela-
tionships, e.g., to express queries such as “events A and B happen, and A has
caused B.”

– Event accumulation: Event queries must be able to accumulate events to
support non-monotonic features such as negation (absence) of events, aggrega-
tion of data, or repetitive events. The reason for this is that the event stream
is (in contrast to extensional data in a database) infinite; one therefore has
to define a scope (e.g., a time interval) over which events are accumulated
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when aggregating data or querying the absence of events. Application exam-
ples where event accumulation is required are manifold. A business activity
monitoring application might watch out for situations where “a customer’s
order has not been fulfilled within 2 days” (negation). A stock market appli-
cation might require notification if “the average of the reported stock prices
over the last hour raises by 5%” (aggregation).

XChangeEQ also adds support for deductive rules on events, relative temporal
events (e.g., “five days longer than event i”), and enforces a clear separation
between time specifications that are used as events (and waited for) or only as
restrictions (conditions in the where-part).

The research on XChangeEQ also puts an emphasis on formal foundations
for querying events [19]. Declarative semantics of XChangeEQ can be given as a
model theory with accompanying fixpoint theory [18]. This is a well-understood
approach for traditional (non-event) query and rule languages, and it is shown
that with some important adaptations, this approach can be used for event query
languages as well. Operational semantics for an efficient incremental evaluation
of XChangeEQ programs are based on a tailored variant of relational algebra
and finite differencing [19, 20]. The notion of temporal relevance is used in the
operational semantics to garbage collect events that become irrelevant (to a given
query) as time progresses during the evaluation [19, 20].

1.4.4 Conditions

Web queries The condition part of XChange rules queries data from regular Web
resources such as XML documents or RDF documents. It is a regular Xcerpt
query, i.e., anything could come after the FROM part of an Xcerpt rule. Like
event queries in the event part, Web queries in the condition part have a two-
fold purpose: they (1) specify conditions that determine whether the rule’s action
is executed or not and (2) extract data from Web resources for use in the action
part in the form of variable bindings.

The condition part in the rule from Figure 1.16 accesses a database of flights
like the one from Figure 1.15 located at http://www.example.com/flights.xml
(the resource is specified with a URI using the keyword in). It checks that the
number (variable N) of the canceled flight exists in the database and extracts
the flight’s departure and destination airport (variables F and T , respectively).

Deductive rules Web queries can facilitate Xcerpt rule chaining, that is, they
can access not only extensional data (i.e., data in some Web resource) but also
intensional data that has been constructed with deductive rules (i.e., results of
these rules). For this, an XChange program can contain Xcerpt CONSTRUCT-FROM
rules in addition to its ECA rules. Such rules are useful for example to mediate
data from different Web resources. In our example we might want to access
several flight databases instead of a single one and these might have different
schemas. Deductive rules can then be used to transform the information from
several databases into a common schema.
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1.4.5 Actions

The action part of XChange rules has the following primitive actions: rasing new
events (i.e., creating a new XML event message and sending it to one or more
recipients) and executing simple updates to persistent data (such as deletion or
insertion of XML elements). To specify more complex actions, compound actions
can be constructed from these primitives.

Raising new events Events to be raised are specified as a construct terms for
the new event messages. The root element of the construct term must be labeled
xchange:event and contain at least on child element xchange:recipientwhich
specifies the recipient Web node’s URI. Note that the recipient can be a variable
bound in the event or condition part.

The action of the ECA rule in Figure 1.16 raises (together with performing
another action) an event that is sent to an SMS gateway. The event will inform
the passenger that his flight has been canceled. Note that the message contains
variables bound in the event part (N) and condition part (F , T ).

Updates Updates to Web data are specified as so-called update terms. An up-
date term is a (possibly incomplete) query pattern for the data to be updated,
augmented with the desired update operations. There are three different types
of update operations and they are all specified like subterms in an update term.
An insertion operation insert c specifies a construct term c that is to be in-
serted. A deletion operation delete q specifies a query term q for deleting all
data terms matching it. A replace operation replace q by c specifies a query
term q to determine data items to be modified and a construct term c giving
their new value. Note that update operations cannot be nested.

Together with raising a new event, the action of the ECA rule in Figure 1.16
modifies a Web resource containing shuttle reservations. It removes the reserva-
tion of our passenger’s shuttle to the airport. The update specification employs
variables bound in the event part (N) and condition part (F ).

Due to the incompleteness in query patterns, the semantics of complicated
update patterns (e.g., involving insertion and deletion in close proximity) might
not always be easy to grasp. Issues related to precise formal semantics for up-
dates that are still reasonably intuitive even for complicated update terms have
been explored in [30]. So-called snapshot semantics are employed to reduce the
semantics of an update term to the semantics of a query term.

Compound Actions Actions can be combined with disjunctions and conjunc-
tions. Disjunctions specify alternatives, only one of the specified actions is to
be performed successfully. (Note that actions such as updates can be unsuccess-
ful, i.e., fail.) The order in which alternatives are tried is non-deterministic and
implementation dependent. Conjunctions in turn specify that all actions need
to be performed. The combinations are indicated by the keywords or and and,
followed by a list of the actions enclosed in braces or brackets.
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The actions of the rule in Figure 1.16 are connected by and so that both
actions, the sending of an SMS and the deletion of the shuttle reservation, are
executed.

1.4.6 Applications

Due to its built-in support for updating Web data, an important application of
XChange rules is local evolution, that is updating local Web data in reaction to
events such as user input through an HTML form. Often, such changes must be
mirrored in data on other Web nodes: updates need to be propagated to realize
a global evolution. Reactive rules are well suited for realizing such a propagation
of updates in distributed information portals.

A demonstration that shows how XChange can be applied to programming
reactive Web sites where data evolves locally and, through mutual dependencies,
globally has been developed in [45] and presented in [23, 22]. The demonstra-
tion considers a setting of several distributed Web sites of a fictitious scientific
community of historians called the Eighteenth Century Studies Society (ECSS).
ECSS is subdivided into participating universities, thematic working groups,
and project management. Universities, working groups, and project management
have each their own Web site, which is maintained and administered locally. The
different Web sites are autonomous, but cooperate to evolve together and mirror
relevant changes from other Web sites.

The different Web sites maintain XML data about members, publications,
meetings, library books, and newsletters. Data is often shared, for example a
member’s personal data is present at his home university, at the management
node, and in the working groups he participates in. Such shared data needs to be
kept consistent among different nodes; this is realized by communicating changes
as events between the different nodes using XChange ECA rules.

Events that occur in this community include changes in the personal data
of members, keeping track of the inventory of the community-owned library,
or simply announcing information from email newsletters to interested working
groups. These events require reactions such as updates, deletion, alteration, or
propagation of data, which are implemented using XChange rules. The rules run
locally at the different Web nodes of the community, allowing for the processing
of local and remote events.

For a concrete example, consider changing a member’s personal data includ-
ing his working group affiliation. The information flow is depicted in Figure 1.18.
The initial change is entered by using a Web form at the member’s home univer-
sity LMU. The form generates event message m1. One ECA rule (r1) reacts to
this event and locally updates the member’s data at LMU accordingly. Another
ECA rule (r2) forwards the change to the management node.

The management node has rules for updating its own local data about the
member (r3) and for propagating the change to the affected working groups (r4
for adding, r5 for deleting a member). In the example, the member changes the
working group affiliation from WG2 to WG3. Accordingly, event m4 is sent to
WG3 by rule r4 and m3 is sent to WG2 by r5.
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r1: ON change member
DO update LMU data

r2: ON change member
DO forward to management

r3: ON change member
DO update management data

r4: ON change member (w/WG3)
IF was not member of WG3
DO send add member to WG3

r5: ON change member (w/o WG2)
IF was member of WG2
DO send remove member to WG2

r6: ON remove member
DO update WG2 data

r7: ON add member
DO update WG3 data

Fig. 1.18. Changing a member’s personal data (including working group affiliation)

Finally, the working groups each have rules reacting to deletion and insertion
events (m2 and m3) to perform the requested updates (here: r6 at WG2 and r7
at WG3).

In this description we have restricted ourselves for space reasons to this
one example of changing member data. The demonstration realizes full mem-
ber management of the community, a community-owned and distributed virtual
library (e.g., lending books, monitions, reservations), meeting organization (e.g.,
scheduling panel moderators), and newsletter distribution. These other tasks are
also implemented by ECA rules that are in place at the different nodes.

The full application logic of the distributed Web sites in the demonstration is
realized in XChange ECA rules. While a similar behaviour as the one in the demo
could be obtained with conventional programming languages, XChange provides
an elegant and easy solution that also removes issues such as dealing low-level
network communication protocols from the programmer’s burden. Evolution of
data and reactivity on the Web are easily arranged for by using readable and
intuitive ECA rules. Moreover, by employing and extending Xcerpt as a query
language, XChange integrates reactivity to events, querying of Web resources,
and updating those resources in a single, easy-to-learn language. XChange ECA
rules have also been investigated as way to realize workflows, e.g., in business
processes. More details on this can be found in [65, 26].

1.5 Conclusions and Outlook

Reactivity in the Semantic Web was a quite untouched issue when the project
started. The work developed in Rewerse, and described in this chapter, has
established the basis for reactivity and evolution in the Semantic Web. It pro-
vides a proposal for a framework for active rules in the Semantic Web over
heterogeneous component languages; the rule ontology and markup together
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with component languages have been developed. Moreover, a concrete homoge-
neous language, XChange, has also been defined, and integrated in the general
framework. Both the language XChange and the general framework have been
implemented, including the implementation of the integration of XChange in the
r3 implementation of the framework.

In other words, the work in Rewerse materialised the initial vision of an ac-
tive Web, where reactivity, evolution and propagation of changes play a central
role. Behaviour in the Semantic Web includes being able to draw conclusions
based on knowledge in each Web node, but it also includes making updates on
nodes and propagate these updates. Moreover, the specification of the behaviour
must itself be part of this active Semantic Web, in as much as the specification of
derivation rules must be part of the (static) Semantic Web. This requires an on-
tology of behaviour and rules, both derivation or reactive ones, to be formulated
in this ontology, as well as concrete languages for detecting events in the Web,
for querying the Web and testing conditions and for acting, including updates
of Web data.

Despite all the advances made with the work described here, for having a
(Semantic) Web with evolution and reactive behaviour, some issues remained
untouched, and some new issues were raised, all of these calling for continuing
the research in this area.

To start, taking more advantage of a semantical representation of behaviour
rules is still pretty much an open issue. In our work an ontology for representing
active rules semantically has been developed, and an execution framework has
been realised. This semantical representation can also be used for working on
rules and reasoning about the rules as objects themselves, e.g., doing rule anal-
ysis, verification, etc. Defining declarative semantics for reactive rules, along the
lines of the existing languages in AI mentioned in the introduction, is certainly an
interesting and important topic for further investigation when reasoning about
the rules is desired. This work could also be seen as a generalisation for reactive
rules, of the existing work of combining (derivation) nonmonotonic rules with
ontologies, that is described in Chapter ??. Related with reasoning about rules
is also the topic of model checking and verification methods for reactive rules in
the Semantic Web. Preliminary studies have been made (cf. REX tool [36]), but
much more is left to be done.

In the project we have developed specific languages for event querying in
the Web and for update languages of Web data. Here again there is scope for
further research, namely in detection of events at the semantic level, and on
definition of updates on other data and meta-data formats on the Web such as
RDF or TopicMaps. The extension of XChange (with its underlying Web query
language Xcerpt) and the addition of new component languages to the general
framework to deal with these data formats is an aspect of both practical relevance
and research interest. Versatility [27], where data in different formats must be
processed and reasoned with jointly to fulfill some task, becomes an important
research issue with the inclusion of new data formats in reactive languages and
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frameworks. A further research issue is that Web formats such as RDF [71]
(together with RDF Schema [15]) or OWL [57] can be considered more expressive
than XML, allowing to specify inferences and more constraints on data. Updates
on data in these formats may thus fail (because they violate constraints) or
require additional, inferred updates. A related issue is also the integration of
data formats and reasoning formalisms targeted for time and location, since
time and location often play an important role in reactive applications.

Related to action languages, there is the whole issue of transactions in the
Semantic Web which is a very important and by now almost untouched one.
With an open environment as the (Semantic) Web, transactions following the
ACID (Atomicity-Consistency-Isolation-Durability) properties as in databases
are not desired, if at all possible. Surely isolation is something quite difficult
to obtain in the Web, and independent nodes cannot wait, isolated, on actions
being performed by other independent nodes. However, this does not rule out a
relaxed notion of transaction. For instance, in our travel example, one may want
to reserve both a flight and hotel room for a stay abroad in such a way that if one
of these is not possible, then none should go ahead (i.e. if I cannot book the flight,
then there is no point in keeping the hotel rooms, and vice-versa). Clearly, in
such a case, some notion of atomicity is desired, even if isolation is not possible
since one cannot expect the flights services to wait for the hotel reservation,
nor vice-versa. This calls for defining a kind of long-running transactions, in the
same spirit of those defined for heterogeneous databases [39], where isolation
is only kept for (local) subtransactions, and irreversible actions on the global
environment are associated to compensation actions, to account for a weaker
form of atomicity. Though some preliminary work on transactions in the context
of Web services exists [58], a lot remains to be done for having long-running
transactions in the Semantic Web.

Another interesting new issue is that of automatic generation of ECA rules.
ECA rules explicitly specify reactive behaviour, giving the events and conditions
under which an action will be executed. Rather than authoring all rules manually,
some applications may call for the automatic generation of ECA rules from higher
level descriptions. Consider for example the distributed information portal with
update propagation described in Section 1.4.6. Rather than writing ECA rules for
all updates that are propagated manually, it may be conceivable to generate these
rules automatically from a specification that takes the form of view definitions
(e.g., over a global schema) that describe which nodes mirror which data. In a
similar manner, the generation of ECA rules from process descriptions (e.g., in
a language such as BPEL) is interesting [26].

Finally, for putting the whole work to usage in real practical applications,
more work is needed regarding the efficiency of the systems, possibly fixing a
smaller set of languages and services, and also on defining programming tools
and methodologies for reactive rules in the Web. In fact, efficient execution of
reactive rule sets has been given little consideration so far. The efficient exe-
cution of the individual parts of an ECA, i.e., event query evaluation, query
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evaluation and action processing, is well-understood. However, joint optimiza-
tion of all parts of a rule as well as full rule sets has received little attention. It
is conceivable for example to use multi-query optimization techniques to group
together and jointly evaluate queries that are shared in multiple rules. Also, cur-
rent reactive rule systems primarily work by evaluating all event queries first. It
is also conceivable to use the evaluation of the condition part to enable or disable
rules, thus saving the evaluation cost of the event query part when the condition
part is not satisfied. Note however that this requires a mechanism where the
condition part is re-checked whenever its underlying data changes.
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