
Towards Efficient Reasoning with Intensional Concepts

Jesse Heyninck1 , Ricardo Gonçalves2 , Matthias Knorr2 , João Leite2
1Technische Universität Dortmund

2NOVA LINCS, Departamento de Informátia, Faculdade de Ciências e Tecnologia, Universidade Nova
de Lisboa

jesse.heyninck@tu-dortmund.de, {rjrg,mkn,jleite}@fct.unl.pt

Abstract

Recent developments triggered by initiatives such as the Se-
mantic Web, Linked Open Data, the Web of Things, and geo-
graphic information systems resulted in the wide and increas-
ing availability of machine-processable data and knowledge
in the form of data streams and knowledge bases. Appli-
cations building on such knowledge require reasoning with
modal and intensional concepts, such as time, space, and obli-
gations, that are defeasible. For example, in the presence
of data streams, conclusions may have to be revised due to
newly arriving information. The current literature features a
variety of domain-specific formalisms that allow for defeasi-
ble reasoning using specific intensional concepts. However,
many of these formalisms are computationally intractable and
limited to one of the mentioned application domains. In this
paper, we define a general method for obtaining defeasible in-
ferences over intensional concepts, and we study conditions
under which these inferences are efficiently computable.

1 INTRODUCTION
In this paper, we develop a solution that allows us to effi-
ciently reason with intensional concepts, such as time, space
and obligations, providing defeasible/non-monotonic infer-
ences in the presence of large quantities of data.

Initiatives such as the Semantic Web, Linked Open Data,
and the Web of Things, as well as modern Geographic Infor-
mation Systems, resulted in the wide and increasing avail-
ability of machine-processable data and knowledge in the
form of data streams and knowledge bases. To truly take
advantage of this kind of knowledge, it is paramount to be
able to reason in the presence of intensional or modal con-
cepts, which has resulted in an increased interest in for-
malisms, often based on rules with defeasible inferences,
that allow for reasoning with time (Anicic et al. 2012;
Gonçalves, Knorr, and Leite 2014; Brandt et al. 2018;
Beck, Dao-Tran, and Eiter 2018; Brewka et al. 2018;
Walega, Kaminski, and Grau 2019), space (Brenton, Faber,
and Batsakis 2016; Walega, Schultz, and Bhatt 2017; Izmir-
lioglu and Erdem 2018; Suchan et al. 2018), and possibility
or obligations (Panagiotidi, Nieves, and Vázquez-Salceda
2009; Gonçalves and Alferes 2012; Governatori, Rotolo,
and Riveret 2018; Beirlaen, Heyninck, and Straßer 2019).
Examples of such concepts may be found in applications
with data referring for example to time (e.g., operators such

as “next”, “at time”, “during interval T”) or space (e.g., “at
place P”, “within a given radius”, “connected to”), but also
legal reasoning (e.g., “is obliged to”, “is permitted”).
Example 1. Consider an airport that constantly receives
data from sensors, cameras, etc. for monitorization, which,
in combination with, e.g., facial recognition algorithms, al-
lows one to automatize and optimize relevant tasks, such
as boarding, checking in, and giving or denying access to
certain parts of the airport. For example, checked-in pas-
sengers that are missing for boarding can be traced and
alerted, and, in the case of non-compliance to proceed to
the gate given the constraints on time and location, be sub-
ject to penalties. Also, passengers that comply with relevant
security procedures can be automatically boarded, and ir-
regularities can be communicated to the security personnel
for possible intervention, allowing for a more efficient allo-
cation of (human) resources, and a better-functioning and
safer airport.

In this context, efficient reasoning with non-monotonic
rules over intensional concepts is indeed mandatory, since a)
rules allow us to encode monitoring and intervention guide-
lines and policies in a user-friendly and declarative manner;
b) conclusions may have to be revised in the presence of
newly arriving information; c) different intensional concepts
need to be incorporated in the reasoning process; and d)
timely decisions are required, even in the presence of large
amounts of data, as in streams. However, relevant existing
work usually deals with only one kind of intensional con-
cepts (as detailed before), and, in general, the computational
complexity of the proposed formalisms is too high, usually
due to both the adopted underlying formalism and the unre-
stricted reasoning with expressive intensional concepts.

In this paper, we introduce a formalism that allows us
to reason with defeasible knowledge over intensional con-
cepts. We build on so-called intensional logic programs
(Orgun and Wadge 1992), extended with non-monotonic de-
fault negation, and equip them with a novel three-valued se-
mantics with favorable properties. In particular, we define a
well-founded model in the line of the well-founded seman-
tics for logic programs (Gelder, Ross, and Schlipf 1991).
Provided the adopted intensional operators satisfy certain
properties, which turn out to be aligned with practical appli-
cations such as the one outlined in Ex. 1, the well-founded
model is unique, minimal among the three-valued models,

in the sense of only providing derivable consequences, and,
crucially, its computation is tractable. Our approach allows
us to add to relevant related work in the sense of providing
a well-founded semantics to formalisms that did not have
one, which we illustrate on a relevant fragment of LARS
programs (Beck, Dao-Tran, and Eiter 2018).

The remainder of the paper is structured as follows. We
introduce intensional logic programs in Sec. 2, define our
three-valued semantics in Sec. 3, show how to compute the
well-founded model in Sec. 4, discuss the complexity and
related work in Secs. 5 and 6, respectively, before we con-
clude.

2 INTENSIONAL LOGIC PROGRAMS
In this section, building on previous work by Orgun and
Wadge [1992], we introduce intensional logic programs, a
very expressive framework that allows us to reason with in-
tensional concepts, such as time, space, and obligations, in
the presence of large quantities of data, including streams of
data. Such intensional logic programs are based on rules,
as used in normal logic programs, enriched with atoms that
introduce the desired intensional concepts. The usage of de-
fault negation in the rules is a distinctive feature compared
to the original work (Orgun and Wadge 1992) and is par-
ticularly well-suited to model non-monotonic and defeasi-
ble reasoning (Gelfond 2008) and allows us to capture many
other forms of non-monotonic reasoning, see, e.g., (Cami-
nada et al. 2015; Chen et al. 2010).

To assign meaning to intensional programs, we rely on
the framework of neighborhood semantics (Pacuit 2017), a
generalization of the Kripke semantics, that easily allows us
to capture a wide variety of intensional operators. In this
section, we introduce neighborhood frames to assign seman-
tics to intensional operators, and leave the definition of our
novel three-valued semantics for such programs to the next
section.

We start by defining the basic elements of our lan-
guage. We consider a function-free first-order signature
Σ = 〈P,C〉, a set X of variables, and a set of operation
symbols O, such that the sets P (of predicates), C (of con-
stants),X andO are mutually disjoint. The set of atoms over
Σ and X is defined in the usual way. We say that an atom
is ground if it does not contain variables, and we denote by
AΣ the set of all ground atoms over Σ. In what follows, and
without loss of generality, we leave the signature Σ implicit
and consider only the set of ground atoms over Σ, denoted
by A.

The set O contains the symbols representing the various
intensional operators ∇. Based on these, we introduce in-
tensional atoms.
Definition 1. Given a set of atoms A and a set of operation
symbolsO, the set IAO of intensional atoms overA andO is
defined as IAO = {∇p | p ∈ A and ∇ ∈ O}, and the set of
program atoms LAO is defined as LAO = A ∪ IAO .

We can define intensional logic programs as sets of rules
with default negation, denoted by ∼, over program atoms.
Definition 2. Given a set of atoms A and a set of operation
symbolsO, an intensional logic program P overA andO is

a finite set of rules of the form:

A← A1, . . . , An,∼ B1, . . . ,∼ Bm (1)

where A,A1, . . . , An, B1, . . . , Bm ∈ LAO. We call A the
head of the rule, and A1, . . . , An,∼ B1, . . . ,∼ Bm its
body.
We also call P simply a program when this does not cause
confusion and positive if it does not contain default nega-
tion. Intensional logic programs are highly expressive as
intensional operators can appear arbitrarily anywhere in the
rules, in particular in rule heads and in scope of default nega-
tion.
Example 2. Consider a fragment of the setting in Ex. 1 with
two gateways: a and b. The area before gateway a is α,
the area between gateway a and b is β, and the area behind
gateway b is γ. α and β are transit zones where one is not
allowed to wait. For simplicity we assume a finite timeline
T = {1, 2}.1 Consider the set of operators O1:

O1 = {O,�t,@t,`,@`, /t | t ∈ T, ` ∈ {α, β, γ}}
where O expresses that “something is obligatory”, �t
means “something is the case at time t and every place
`”, @` means “something is the case at location `”, @t,`

means “something is the case at time t and location `”, and
/t means “something is the case at or before time t”. We
use a signature 〈P,C〉 where the set C of constants con-
tains identifiers representing persons, including p represent-
ing Petra, and the set P of predicates is composed of the
following unary predicates: passeda, passedb move, is
and called. They express that x passed through gate a or
b, x moves, x is at a spatio-temporal point, and x is called,
respectively.

Consider program P composed of the following rules: 2

called(x)← Omove(x),∼ move(x) (2)
Omove(x)← ∼ @γis(x) (3)
�tmove(x)← @t+1,βis(x),@t,αis(x) (4)
�tmove(x)← @t+1,γis(x),@t,βis(x) (5)
@t,βis(x)← /tpasseda(x),∼ /tpassedb(x) (6)
@t,γis(x)← /tpassedb(x) (7)

�1passeda(p)← (8)

Rule (2) encodes that if a person should move, but does
not, she will be called. Rule (3) encodes that a person ought
to move if she is not at γ. In the case of rules (4) and (5),
a person moved if she was at two different locations at two
subsequent time points. Rule (6) encodes that if a person
passed through gate a, but not through gate b, she is at
β, whereas rule (7) imposes that she is at γ if she passed
through gate b. Finally, rule (8) asserts that Petra passed
through gate a at time 1.

1Note that for applications such as the one described here, in
practice, considering an arbitrarily large, but finite timeline does
indeed suffice.

2In the course of this example, we use variables to ease the
presentation. They represent the ground instantiation of such rules
with all possible constants in the usual way. Time variable t also
represents all possible values.

In order to give semantics to intensional operators, we fol-
low the same ideas as employed by Orgun and Wadge [1992]
and consider the neighborhood semantics, a strict general-
ization of Kripke-style semantics that allows capturing in-
tensional operators (Pacuit 2017) such as temporal, spatial,
or deontic operators, even those that do not satisfy the nor-
mality property imposed by Kripke frames (Chellas 1980).

We start by recalling neighborhood frames.

Definition 3. Given a set of operation symbols O, a neigh-
borhood frame (overO) is a pair F = 〈W,N〉 where W is a
non-empty set (of worlds) and N = {θ∇ | ∇ ∈ O} is a set
of neighborhood functions θ∇ : W → ℘(℘(W)).3

Thus, in comparison to Kripke frames, instead of a rela-
tion over W , neighborhood frames have functions for each
operator that map worlds to a set of sets of worlds. These
sets intuitively represent the atoms necessary (according to
the correspondent intensional operator) at that world.

Example 3. The operators from Ex. 2 are given semantics
using a neighborhood frame where the set of worlds W1 is
composed of triples (t, `, ?) where t ∈ T is a time point,
` ∈ {α, β, γ} is a location and ? ∈ {I,A} indicates if the
world is the actual world A or the ideal world I (postulating
ideal worlds is a standard technique for giving semantics to
modal operators (McNamara 2019)). The neighborhoods of
O1 are defined, for t, t′ ∈ T , `, `′ ∈ {α, β, γ}, w ∈ W1 and
? ∈ {I,A}, as:

• θO((t, `, ?)) = {W ′ ⊆W1 | (t, `, I) ∈W ′};
• θ�t(w) = {W ′ ⊆ W1 | (t, `,A) ∈ W ′ for every ` ∈
{α, β, γ}}.

• θ@`((t, `
′, ?)) = {W ′ ⊆W1 | (t, `,A) ∈W ′};

• θ@t,`(w) = {W ′ ⊆W1 | (t, `,A) ∈W ′};
• θ/t(w) = {W ′ ⊆ W1 | (t′, `,A) ∈ W ′, for some t′ ≤
t and for some ` ∈ {α, β, γ}}.

Intuitively, θO((t, `, ?)) consists of all the sets of worlds
which include the ideal counterpart (t, `, I) of (t, `, ?);
θ�t(w) consists of all the sets of worlds which includes all
the actual worlds with time component t; θ�t(w) consists
of all the sets of worlds that include all actual worlds with
a time stamp t; θ@`(w) contains all sets of worlds that con-
tains at least one actual world with a space component `; a
set of worlds is in θ@t,`(w) if it contains (t, `,A); finally, a
set of worlds is in θ/t(w) if it contains at least one actual
world with a time stamp t′ which is earlier or equal as t.

Thus, neighborhood functions θ can be both invariant under
the inputw, i.e., θ(w) = θ(w′) for anyw,w′ ∈W (e.g., θ�t
and θ@t,`), or variate depending onw (e.g., θO and @`). This
is why the above definitions of neighborhood functions that
depend on w need to explicit the components of the world
w, i.e., (t, `, ?).

3Note that we often leave O implicit as N allows to uniquely
determine all elements from O. Also, to ease the presentation, we
only consider unary intensional operators. Others can then often be
represented using rules (cf. also (Orgun and Wadge 1992)).

3 THREE-VALUED SEMANTICS
In this section, we define a three-valued semantics for inten-
sional logic programs as an extension of the well-founded
semantics for logic programs (Gelder, Ross, and Schlipf
1991) that incorporates reasoning over intensional concepts.
The benefit of this approach over the more commonly used
two-valued models is that, although there are usually several
such three-valued models, we can determine a unique min-
imal one – intuitively the one which contains all the min-
imally necessary consequences of a program – which can
be efficiently computed. In fact, even for programs without
intensional concepts, a unique two-valued minimal model
does not usually exist (Gelfond and Lifschitz 1991).

We consider three truth values, “true”, “false”, and “unde-
fined”, where the latter corresponds to neither true nor false.
Given a neighborhood frame, we start by defining interpre-
tations that contain a valuation function which indicates in
which worlds (of the frame) an atom from A is true (W>),
and in which ones it is true or undefined (Wu), i.e., not
false 4.

Definition 4. Given a set of atoms A and a frame F =
〈W,N〉, an interpretation I over A and F is a tuple
〈W,N, V 〉 with a valuation function V : A → ℘(W) ×
℘(W) s.t., for every p ∈ A, V (p) = (W>,Wu) with
W> ⊆ Wu. If, for every p ∈ A, W> = Wu, then we
call I total.

The subset inclusion on the worlds ensures that no p ∈ A
can be true and false in some world simultaneously. This
intuition of the meaning is made precise with the denotation
of program atoms for which we use the three truth values.
We denote the truth values true, undefined and false with >,
u, and ⊥, respectively, and we assume that the language LAO
contains a special atom u (associated to u).

Definition 5. Given a set of atoms A, a frame F, and an
interpretation I = 〈W,N, V 〉, we define the denotation of
A ∈ LAO in I:

• ‖p‖†I = W † if A = p ∈ A, with V (p) = (W>,Wu) and
† ∈ {>, u};

• ‖u‖u = W and ‖u‖> = ∅, if A = u;

• ‖∇p‖†I = {w ∈ W | ‖p‖†I ∈ θ∇(w)} if A = ∇p ∈ IAO
and † ∈ {>, u};

• ‖A‖⊥I = W \ ‖A‖uI for A ∈ LAO.

For a formula A ∈ LAO and an interpretation I , ‖A‖>I
is the set of worlds in which A is true, ‖A‖uI is the set of
worlds in which A is not false, i.e., undefined or true, and
‖A‖⊥I is the set of worlds in which A is false. For atoms
p ∈ A, the denotation is straightforwardly derived from the
interpretation I , i.e., from the valuation function V , and for
the special atom u it is defined as expected (undefined in all
worlds). For an intensional atom ∇p, w is in the denotation
‖∇p‖†I of ∇p if the denotation of p (according to I) is a
neighborhood of∇ for w, i.e. ‖p‖†I ∈ θ∇(w).

4We follow the usual notation in modal logic and interpretations
explicitly include the corresponding frame.

We often leave the subscript I from ‖A‖†I as well as the
reference to A and F for interpretations and programs im-
plicit.

Example 4. Consider 〈W1, {θO, θ@1,α, θ@β}〉 as in
Ex. 3 and I1 = 〈W1, {θO, θ@1,α, θ@β}, V 〉 where:
V (passeda(p)) = ({(1, α,A)}, {(1, α,A)})
V (move(p)) = ({(1, α, I)}, {(1, α, I), (2, β,A)})

Then the following are examples of denotations of inten-
sional atoms:
‖Omove(p)‖>I1 = {(1, α,A), (1, α, I)}
‖@1,αpasseda(p)‖>I1 = W1

‖@βmove(p)‖uI1 = {(2, `, ?) | ` ∈ {α, β, γ}, ? ∈ {A, I}}
We explain the first denotation ‖Omove(p)‖>I1 : since
‖move(p)‖ 3 (1, α, I) and {(1, α, I)} ∈ θO((1, α, I))
and {(1, α, I)} ∈ θO((1, α,A)), we get the denotation
‖Omove(p)‖>I1 as stated above.

Based on the denotation, we can now define our model
notion, which is inspired by partial stable models (Przy-
musinski 1991), which come with two favorable properties,
minimality and support. The former captures the idea of
minimal assumption, the latter provides traceable inferences
from rules. We adapt this notion here by defining a reduct
that, given an interpretation, transforms programs into pos-
itive ones, for which a satisfaction relation and a minimal
model notion are defined.

We start by adapting two orders for interpretations, the
truth ordering, v, and the knowledge ordering, vk. The
former prefers higher truth values in the order ⊥ < u < >,
the latter more knowledge (i.e., less undefined knowledge).
Formally, for interpretations I and I ′, and every p ∈ A:

• I v I ′ iff ‖p‖†I ⊆ ‖p‖
†
I′ for every † ∈ {>, u};

• I vk I ′ iff ‖p‖>I ⊆ ‖p‖>I′ and ‖p‖⊥I ⊆ ‖p‖⊥I′ .
We write I ≺ I ′ if I � I ′ and I ′ 6� I for �∈ {v,vk}.

We proceed with a generalization of the notion of reduct
to programs with intensional atoms.

Definition 6. Let A be set of atoms, and F = 〈W,N〉 a
frame. The reduct of a program P at w ∈ W w.r.t. an in-
terpretation I , P/Iw, contains for each r ∈ P of the form
(1):

• A← A1, . . . , An if w 6∈
⋃
i≤m ‖Bi‖u

• A← A1, . . . , An, u if w ∈
⋃
i≤m ‖Bi‖u \

⋃
i≤m ‖Bi‖>

Intuitively, for each rule r of P , the reduct P/Iw contains
either a rule of the first form, if all negated program atoms
in the body of r are false at w (or the body does not have
negated atoms), or a rule of the second form, if none of the
negated program atoms in the body of r are true at w, but
some of these are undefined at w, or none, otherwise. This
also explains why the reduct is defined at w: truth and un-
definedness vary for different worlds. The special atom u is
applied to ensure that rules for the second case cannot im-
pose the truth of the head in the notion of satisfaction for
positive programs.

Note that the reduct of a program is a positive program,
for which we can define a notion of satisfaction as follows.

Definition 7. Let A be a set of atoms, and F = 〈W,N〉 a
frame. An interpretation I satisfies a positive program P at
w ∈ W iff for each r ∈ P of the form (1), we have that
w ∈

⋂
i≤n ‖Ai‖† implies w ∈ ‖A‖† (for any † ∈ {>, u}) 5.

Stable models can now be defined by imposing minimal-
ity w.r.t. the truth ordering on the corresponding reduct.

Definition 8. Let A be set of atoms, and F = 〈W,N〉 a
frame. An interpretation I is a stable model of a program P
if:

• for every w ∈W , I satisfies P/Iw at w, and

• there is no interpretation I ′ such that I ′ @ I and, for each
w ∈W , I ′ satisfies P/Iw at w.

Example 5. Recall P from in Ex. 2. For simplicity of pre-
sentation suppose that the set of constants C only contains
p, resulting in the following grounded program.6

called(p)← Omove(p),∼ move(p)

Omove(p)← ∼ @γis(p)

�tmove(p)← @t+1,βis(p),@t,αis(p)

�tmove(p)← @t+1,γis(p),@t,βis(p)

@t,βis(p)← /tpasseda(p),∼ /tpassedb(p)
@t,γis(p)← /tpassedb(p)

�1passeda(p)←

Consider F = 〈W1,O1〉 as in Ex. 3 and the total interpreta-
tion I1 defined by:

‖passeda(p)‖>I1 = {(1, `,A) | ` ∈ {α, β, γ}}
‖passedb(p)‖

>
I1 = {}

‖is(p)‖>I1 = {(1, β,A)}
‖move(p)‖>I1 = {(t, `, I) | t ∈ T ; ` ∈ {α, β, γ}}

‖called(p)‖>I1 = {(t, `,A) | t ∈ T ; ` ∈ {α, β, γ}}

We see that for any (t′, `,A) ∈ W1, P/(I1)w consists of
the following rules occuring in P .

called(p)← Omove(p)

Omove(p)←
�tmove(p)← @t+1,βis(p),@t,αis(p)

�tmove(p)← @t+1,γis(p),@t,βis(p)

@t,βis(p)← /tpasseda(p)

@t,γis(p)← /tpassedb(p)

�1passeda(p)←

5Since the intersection of an empty sequence of subsets of a set
is the entire set, then, for n=0, i.e., when the body of the rule is
empty, the satisfaction condition is just w ∈ ‖A‖† for any † ∈
{>, u}.

6To ease the presentation, we still use t to represent all possible
values.

Whereas for any (t′, `, I) ∈W1, P/(I1)w consists of:

Omove(p)←
�tmove(p)← @t+1,βis(p),@t,αis(p)

�tmove(p)← @t+1,γis(p),@t,βis(p)

@t,βis(p)← /tpasseda(p)

@t,γis(p)← /tpassedb(p)

�1passeda(p)←

It can be checked that I1 satisfies minimality and is therefore
a stable model of P .

Consider now the total interpetation I2 identical to I1 ex-
cept for ‖passedb(p)‖>I2 = {(2, `,A) | ` ∈ {α, β, γ}}.
Then for e.g. (2, α,A), the reduct P/(I2)(2,α,A) is:

called(p)← Omove(p)

Omove(p)←
�tmove(p)← @t+1,βis(p),@t,αis(p)

�tmove(p)← @t+1,γis(p),@t,βis(p)

@t,γis(p)← /tpassedb(p)

�1passeda(p)←

Since (2, α,A) 6∈ ‖@2,γis(p)‖ = ∅ even though
@2,γis(p) ← /2passedb(p) ∈ P/(I2)(2,α,A) and
(2, α,A) ∈ ‖ /2 passedb(p)‖>I2 = W1, we see that I2 does
not satisfy P/(I2)(2,α,A) and therefore is not a stable model.

We can show that our model notion is faithful to par-
tial stable models of normal logic programs (Przymusinski
1991), i.e., if we consider a program without intensional
atoms, then its semantics corresponds to that of partial stable
models.
Proposition 1. Let A be set of atoms, F a frame, and P a
program with no intensional atoms. Then, there is a one-to-
one correspondence between the stable models of P and the
partial stable models of the normal logic program P .

While partial stable models are indeed truth-minimal, this
turns out not to be the case for intensional programs, due to
non-monotonic intensional operators.
Example 6. Consider the operator |j, k|γ representing that
an atom is true at γ at all time points in [j, k], and not in any
interval properly containing [j, k]. This operator has the fol-
lowing neighborhood (given W1 from Ex. 3): θ|j,k|(w) =
{W ′ ⊆ W1 | {(j, γ,A), (j + 1, γ,A), . . . , (k, γ,A)} ⊆
W ′ and (j − 1, γ,A), (k + 1, γ,A) 6∈ W ′}. Consider the
following program P consisting of:

@1,γis(p)←
@2,γis(p)←
@3,γis(p)←∼ |1, 2|γis(p)

This program has two stable models, of which one is
not minimal. In more detail, the following interpreta-
tions are stable: I1 with ‖is(p)‖>I1 = ‖is(p)‖uI1 =

{(1, γ,A), (2, γ,A)} and I2 with ‖is(p)‖>I2 = ‖is(p)‖uI2 =
{(1, γ,A), (2, γ,A), (3, γ,A)}. To see that I2 is stable,
observe first that since {(1, γ,A), (2, γ,A), (3, γ,A)} 6∈

θ|1,2|γ (w) for any w ∈ W1, ‖|1, 2|γis(p)‖>I2 = ∅,
which means that P/I2 = {@1,γis(p) ←; @2,γis(p) ←
; @3,γis(p) ←}. Clearly, I2 is the @-minimal interpreta-
tion that satisfies P/I2. However, I1 @ I2 and thus, I2 is
not a truth-minimal stable model.

To counter that, we consider monotonic operators. For-
mally, given a set of atoms A and a frame F, an inten-
sional operator ∇ is said to be monotonic in F if, for any
two interpretations I and I ′ such that I v I ′, we have that
‖∇p‖†I ⊆ ‖∇p‖

†
I′ for every p ∈ A and † ∈ {>, u}.

If all intensional operators in a frame are monotonic, then
truth-minimality of stable models is guaranteed.
Proposition 2. Let A be set of atoms, and F a frame in
which all intensional operators are monotonic. If I is a sta-
ble model of P , then there is no stable model I ′ of P such
that I ′ @ I .

Regarding support, recall that the stable models semantics
of normal logic programs satisfies the support property, in
the sense that for every atom of a stable model there is a
rule that justifies it. In other words, if we remove an atom p
from a stable model some rule becomes false in the resulting
model. Such rule can be seen as a justification for p being
true at the stable model. In the case of intensional logic
programs we say that an interpretation I = 〈W,N, V 〉 is
supported for a program P if, for every p ∈ A and w ∈ W ,
if w ∈ ‖p‖>, then there is a rule r ∈ P/Iw that is not
satisfied by I ′ at w, where I ′ = 〈W,N, V ′〉 is such that
V ′(q) = V (q) for q 6= p, and V ′(p) = 〈W> \ {w},Wu〉
where V (p) = 〈W>,Wu〉.

This notion of supportedness is desirable for intensional
logic programs since we also want a justification why each
atom is true at each world in a stable model. The following
results show that this is indeed the case.
Proposition 3. Let A be set of atoms, and F a frame. Then,
every stable model of a program P is supported.

In general, the existence and uniqueness of stable mod-
els of a program is not guaranteed, not even for positive
programs and/or under the restriction of all operators being
monotonic.
Example 7. Let O = {⊕}, A = {p} and F =
〈{1, 2}, {θ⊕}〉 where θ⊕(1) = θ⊕(2) = {{1}, {2}}. Let
P = {⊕p←}. This program has two stable models:
• I1 with V1(p) = ({1}, {1});
• I2 with V2(p) = ({2}, {2}).

The existence of two stable models of the above positive
program is caused by the non-determinism introduced by
the intensional operator in the head of the rule. Formally,
an operator θ of a frame F = 〈W,N〉 is deterministic if⋂
θ(w) ∈ θ(w) for every w ∈ W . A program P is deter-

ministic in the head if, for every rule r ∈ P of the form (1),
if A = ∇p, then θ∇ is deterministic.

We can show that every positive program that is determin-
istic in the head and only considers monotonic operators has
a single minimal model.
Proposition 4. Given a set of atoms A and a frame F, if P
is a positive program that is deterministic in the head and

every ∇ ∈ O is monotonic in F, then it has a unique stable
model.

Due to this result, in what follows, we focus on monotonic
operators and programs that are deterministic in the head, as
this is important for several of the results we obtain subse-
quently. This does not mean that non-montonic intensional
operators cannot be used in our framework. In fact, we can
take advantage of the default negation operator ∼ to define
non-monotonic formulas on the basis of monotonic opera-
tors and default negation. As an example, consider again
the operator |j, k| from example 6. We can use the follow-
ing rule to define |j, k|p for some atom p ∈ A: |j, k|p ←
@jp,@j+1p, . . . ,@k−1p,@kp,∼ @j−1p,∼ @k+1p.

Among the stable models of a program, we can distin-
guish the well-founded models as those that are minimal in
terms of the knowledge order.

Definition 9. Given a set of atoms A and a frame F, an
interpretation I = 〈W,N, V 〉 is a well-founded model of a
program P if it is a stable model of P , and, for every stable
model I ′ of P , it holds that I vk I ′.
Example 8 (Example 5 continued). Since I2 is in fact the
unique stable model, it is therefore the well-founded model.

Given our assumptions about monotonicity and determin-
ism in the head, we can also show that the well-founded
model of an intensional program exists and is unique.

Theorem 1. Given a set of atoms A, and a frame F, every
program P has a unique well-founded model.

4 ALTERNATING FIXPOINT
In this section, we show how the well-founded model can be
efficiently computed. Essentially, we extend the idea of the
alternating fixpoint developed for logic programs (Gelder
1989), that builds on computing, in an alternating manner,
underestimates of what is necessarily true, and overesti-
mates of what is not false, with the mechanisms to handle
intensional inferences. Namely, we first define an opera-
tor for inferring consequences from positive programs, and
make it applicable in general using the reduct. Based on
an iterative application of these, the alternating fixpoint pro-
vides the well-founded model.

First, since different pieces of knowledge are inferable
in different worlds, we need a way to distinguish between
these. Therefore, we introduce labels referring to worlds
and apply them to formulas of a given language as well as
programs.

Given a language L, a frame F = 〈W,N〉, and a pro-
gram P , we define the language labelled by W , LW , as
{w : A | w ∈ W and A ∈ L}, and the program labelled
by W , PW , as {w : r | r ∈ P, w ∈ W}. PW is positive iff
P is. This allows us to say that some (program) atom is true
(or undefined) at world w, which can, e.g., be used for in-
ferences using rules labelled with w. This way, we can also
compute inferences for several worlds simultaneously, since
the labels allow us to avoid any potential overlaps.

We now proceed to define an operator for positive labelled
programs for computing inferences given a set of labelled

atoms. This operator is composed of three operators to in-
corporate reasoning over rules as well as over intensional
atoms.

We first define an immediate consequence operator ap-
plied to sets of labelled program atoms. To ease notation,
here and in the following, we use LW to represent (LAO)W .
Definition 10. Given a frame F, a set of LW -formulas ∆,
and a positive program PW , we define TPW (∆) as follows:

TPW (∆) = {w :A | w :A← A1, . . . An ∈ PW ,
w :A1, . . . , w :An ∈ ∆}

Example 9. Let PW = {(2, α,A) : @1passeda(p) ←}.
Then TPW (∅) = {(2, α,A) :@1passeda(p)}.

The result of TPW may contain labelled intensional
atoms, such as in Ex. 9, which implies that passeda(p)
holds at (1, α,A).

The next operator, the intensional extraction operator
IE∇ allows us to derive such labelled atoms from labelled
intensional atoms.
Definition 11. Given a frame F, a set of LW -formulas ∆,
and ∇ ∈ O, we define IE∇(∆) as follows:

IE∇(∆) = {w :A | w′ :∇A ∈ ∆, w ∈
⋂
θ∇(w′)}

As IE∇ is intended to be applied to results of TPW , and
these only contain intensional atoms occurring in the head
of some rule in a given program P , we restrict IE∇ to this
set of intensional operators, which we denote by OP . Since
P is deterministic in the head, this also ensures that IE∇
has a unique outcome. Also, since programs do not contain
nested operators, we can consider the union of IE∇ for all
∇ ∈ OP .

Finally, the intensional consequence operator IC∇ maps
atoms to intensional atoms that are implied by the former,
i.e., it maps w1 :A, . . . , wn :A to w :∇A if {w1, . . . , wn} ∈
θ∇(w).
Definition 12. Given a frame F = 〈W,N〉, a set of LW -
formulas ∆, and θ∇ ∈ N , we define IC∇(∆) as follows:

IC∇(∆) = {w : ∇A ∈ LW | {w′ | w′ :A ∈ ∆} ∈ θ∇(w),

w ∈W}
Here, we can also simply consider the union for all θ∇ ∈ N .
Example 10. Consider the frame F = 〈W1, {θ@1 , θ/1}〉 as
defined in Ex. 3. Let ∆ = {(2, α,A) : @1passeda(p)}.
Since (2, α,A) : @1passeda(p) ∈ ∆ and (1, l,A) ∈⋂
θ@1

((2, α,A)), IE@1
(∆) = {(1, `,A) : passeda(p) |

` ∈ {α, β, γ}}. Informally, to believe ∆, and thus to believe
that Petra passed gate a at time 1, passeda(p) has to be
true at every actual world with time stamp 1.

Also, IC/1(IE@1
(∆)) = {w :/1passeda(p) | w ∈W1},

since {(1, `,A) | ` ∈ {α, β, γ}} ∈ θ/1(w) for any w ∈
W1 and (1, `,A) : passeda(p) ∈ IE@1(∆) for any ` ∈
{α, β, γ}. Informally, since we know that passeda(p) is the
case at time 1, we derive that passeda(p) is the case at or
before time 1 (formally: /1passeda(p)).

We are now ready to define the closure operator as the
least fixpoint of the composition of TPW , IE∇ and IC∇.

Definition 13. Given a frame F = 〈W,N〉 and a positive
program PW , Cn(PW) is defined as the least fixpoint 7 of⋃

∇∈O
IC∇

(⋃
∇∈OP

IE∇(TPW)

)
.

The consequence operator defined above is adequate in
the sense that it calculates the minimal (total) model of a
positive program. In more detail, we define an interpretation
I(Cn): Wp = {w ∈ W | w : p ∈ Cn(PW)}, I(Cn) =
〈W,N, V 〉 is a minimal model with V (p) = (Wp,Wp) for
every p ∈ A.
Proposition 5. Given a frame F = 〈W,N〉, and a positive
program P , if every ∇ ∈ O is monotonic in F and P is de-
terministic in the head, then I(Cn) is the unique (and total)
stable model of P .

This result can be generalized to arbitary programs re-
lying on the reduct and on the alternating fixpoint (Gelder
1989). For the former, we adapt the reduct from Def. 6 to la-
belled languages, with the benefit that we can define a single
reduct for all worlds w ∈W .

Given a frame F = 〈W,N〉, a set ofLW -formulas ∆ and a
program PW , the reduct, PW /∆ = {w :A← A1, . . . , An |
r ∈ P of the form (1) and, ∀i 6 m,w :Bi 6∈ ∆}.

The idea of the alternating fixpoint can be summarized as
follows. We create two sequences, that are meant to repre-
sent an underestimation of what is true (P i) and an overes-
timation of what is not false (N i). Each iteration is meant
to further increase the elements in P i and further decrease
the elements in N i using Cn over reducts obtained from the
labelled program and the results from the previous iteration.

Given a frame F = 〈W,N〉 and a program P , we define:

P 0 = ∅ N0 = LW
P i+1 = Cn(PW /N i) N i+1 = Cn(PW /P i)

Pω =
⋃
i

P i Nω =
⋂
i

N i

We can show that P i is increasing, and that N i is de-
creasing, and both sequences reach a fixpoint because the
operator for determining Cn is monotonic and the reduct is
antitonic.
Proposition 6. Given a set of atoms A, a frame F =
〈W,N〉, and a positive program P , if every∇ ∈ O is mono-
tonic in F and P is deterministic in the head, then there are
i, j ∈ N s.t. P i = P i+1 and N j = N j+1.
Example 11. Consider the frame F = 〈W1, {θ@1

, θ@1,β
}〉

as defined in Ex. 3. Let PW = {w : @1passeda(p) ←;w :
@1,βis(p)← passeda(p),∼ passedb(p) | w ∈ W1}. The
alternating fixpoint construction is carried out as follows:
We start with P 0 = ∅ and N0 = LW . Then PW /N0 =
{w : @1passeda(p) ←| w ∈ W1} and PW /P 0 = {w :
@1passeda(p) ←;w : @1,βis(p) ← passeda(p) | w ∈
W1}, which implies P 1 = {w : @1passeda(p); (1, `,A) :

7Recall that, given an operator T over lattice (L,6) and an
ordinal α, T ↑ α is defined as: T ↑ 0 = ∅, T ↑ α = T (T ↑ α−1)
for successor ordinals, and T ↑ α =

⋃
α T ↑ α for limit ordinals.

passeda(p) | w ∈ W1, ` ∈ {α, β, γ}} and N1 = P 1 ∪
{(1, `,A) : @1,βis(p) | ` ∈ {α, β, γ}}. From this we de-
rive PW /P 1 = PW /N1 = {w : @1passeda(p) ←;w :
@1,βis(p) ← passeda(p) | w ∈ W1}, which allows us to
calculate P 2 = N2 = N1. Notice that a fixpoint is reached
and thus Pω = Nω = N1.

Given a frame F, for which any ∇ ∈ O is monotonic in
F, the alternating fixpoint construction defined above offers
a characterization of the well-founded model for programs
that are deterministic in the head. In more detail, given a
pair 〈∆,Θ〉 of sets of LW -formulas, we define a partial in-
terpretation I(〈∆,Θ〉) = (W,N, V) on the basis of ∆ as
follows: for every A ∈ A, V (A) = ({w ∈ W | w : A ∈
∆}, {w ∈ W | w : A ∈ Θ}). We can then show this corre-
spondence.

Theorem 2. Given a frame F = 〈W,N〉, and a program P
s.t. every∇ ∈ O is monotonic in F and P is deterministic in
the head, then I(〈Pω, Nω〉) is the well-founded model of P .

Thus the result of the alternating fixpoint operator is a pre-
cise representation of the well-founded model of the consid-
ered intensional program.

5 COMPUTATIONAL COMPLEXITY
In this section, we study the computational complexity of
several of the problems considered. We recall that the prob-
lem of satisfiability under neighborhood semantics has been
studied for a variety of epistemic structures (Vardi 1989).
Here, we consider the problem of determining models for
the two notions we established, stable models and the well-
founded model, and we focus on the propositional case.8

We assume familiarity with standard complexity con-
cepts, including oracles and the polynomial hierarchy.

We first provide a result in the spirit of model-checking
for programs P . As we do not impose any semantic proper-
ties on the neighborhood frames we consider, determining a
model for a frame that can be arbitrarily chosen is not mean-
ingful. Thus, in the remainder, we assume a fixed frame F,
fixing the worlds and the semantics of the intensional oper-
ators.9

Proposition 7. Given a program P and an interpretation I ,
deciding whether I is a stable model of P is in coNP.

This result is due to the minimization of stable models,
i.e., we need to check for satisfaction and verify that there
is no other interpretation which is smaller (cf. Def. 8). This
also impacts on the complexity of finding a stable model
given a fixed frame.

Theorem 3. Given a program P , deciding whether there is
a stable model of P is in ΣP2 .

8Corresponding results for the data complexity of this problem
for programs with variables can then be achieved in the usual way
(Dantsin et al. 2001).

9This also aligns well with related work, e.g., for reasoning
with time, such as stream reasoning where often a finite timeline
is assumed, and avoids the exponential explosion on the number of
worlds for satisfiability for some epistemic structures (Vardi 1989).

Note that these results do not require that intensional op-
erators be monotonic or deterministic in the head. In fact, if
intensional operators are monotonic, we obtain the follow-
ing improved results on Prop. 7 and Thm. 3 from Prop. 2.

Corollary 1. Given a program P such that all operators
ocurring in P are monotonic, and an interpretation I , de-
ciding whether I is a stable model of P is in P.

Corollary 2. Given a program P , deciding whether there is
a stable model of P is in NP.

Thus, if all operators are monotonic the complexity re-
sults do coincide with that of normal logic programs (with-
out intensional atoms) (Dantsin et al. 2001), which indicates
that monotonic operators do not add an additional burden in
terms of computational complexity.

Now, if we in addition consider programs that are de-
terministic in the head, then we know that there exists the
unique well-founded model (cf. Thm. 1). As we have shown,
this model can be computed efficiently (cf. Thm. 2), and we
obtain the following result in terms of computational com-
plexity.

Theorem 4. Given a program P that is deterministic in the
head and all operators occurring in P are monotonic, com-
puting the well-founded model of P is P-complete.

Note that this result is indeed crucial in contexts were rea-
soning with a variety of intensional concepts needs to be
highly efficient.

6 RELATED WORK
In this section, we discuss related work establishing relations
to relevant formalisms in the literature.

Intensional logic programs were first defined by Orgun
and Wadge [1992] focussing on the existence of models in
function of the properties of the intensional operators. Only
positive programs are considered, but nesting of intensional
operators is allowed. The latter however can be covered in
our approach by introducing corresponding additional op-
erators that represent each nesting occurring in such a pro-
gram. This allows us to show that our approach covers the
previous work.

Proposition 8. Let P be program as in (Orgun and Wadge
1992). Then there is a positive intensional program P ′ such
that there is a one-to-one correspondence between the mod-
els of P and the total stable models of P ′.

The contrary is not true already for programs without in-
tensional operators. We could use a non-monotonic inten-
sional operator for representing default negation, but these
are not considered in (Orgun and Wadge 1992) confirming
that our work is indeed an extension of the previous ap-
proach.

Since (Orgun and Wadge 1992) covers classical ap-
proaches for intensional reasoning, such as TempLog (Abadi
and Manna 1989) and MoLog (del Cerro 1986), our work
applies to these as well.

It also relates to more recent work with intensional oper-
ators, and we first discuss two prominent approaches in the
area of stream reasoning.

LARS (Beck, Dao-Tran, and Eiter 2018) assumes a set
of atoms A and a stream S = (T, v), where T is a closed
interval of the natural numbers and v is an evaluation func-
tion that defines which atoms are true at each time point
of T . Several temporal operators are defined, including ex-
pressive window operators, and answer streams, a general-
ization of FLP-semantics, are employed for reasoning. A
number of related approaches are covered including CQL
(Arasu, Babu, and Widom 2006), C-SPARQL (Barbieri et al.
2010), and CQELS (Phuoc et al. 2011). Among the imple-
mentations exists LASER (Bazoobandi, Beck, and Urbani
2017), which focuses on a considerable fragment, called
plain LARS.

We can represent a plain LARS program P for stream S
as a program PS , encoding S using the @t operator. This
allows us to show the following result relating the answer
streams of plain LARS to the total stable models of such a
program PS .

Proposition 9. Given a plain LARS program P for stream
S and PS , there is a one-to-one correspondence between
answer streams of P for S and total stable models of PS .

In addition, for such an encoding of plain LARS programs
into intensional programs, we can apply our well-founded
semantics, since the operators applied in plain LARS are
monotonic and deterministic. Hence, our work also provides
a well-founded semantics for plain LARS, i.e., we allow the
usage of unrestricted default negation while preserving poly-
nomial reasoning.

ETALIS (Anicic et al. 2012) aims at complex event pro-
cessing. It assumes as input atomic events with a time stamp
and uses complex events, based on Allen’s interval alge-
bra (Allen 1990), that are associated with a time interval,
and is therefore considerably different from LARS (which
considers time points). It contains no negation in the tra-
ditional sense, but allows for a negated pattern among the
events. Many of the complex event patterns from ETALIS
can be captured as neighborhood functions in our frame-
work. However, ETALIS also makes use of some event pat-
terns that would result in a non-monotonic operator, such
as the negated pattern not(p)[q, r] which expresses that p is
not the case in the interval between the end time of q and the
starting time of r. We conjecture that such a negation can
be modelled with a combination of the default negation ∼
and an operator [q, r]p which expresses that p is the case in
the interval between the end time of q and the starting time
of r, which in turn can to be defined using rules such as:
[q, r]p ← [t, t′]p,@tq,@t′r,∼ @t+1q,∼ @t′−1r. Defining
a transformation that converts a set of ETALIS rules into an
intensional logic program is left for future work.

Deontic logic programs of (Gonçalves and Alferes 2012)
are similar in spirit to our work as they extend logic pro-
grams with deontic logic formulas under stable model se-
mantics. Although complex deontic formulas can appear
in the rules, the deontic operators are restricted to those of
Standard Deontic Logic (SDL), and computational aspects
are not considered.

Answer Set Programming Modulo Theories extended to
the Qualitative Spatial Domain (in short, ASPMT(QS))

(Walega, Schultz, and Bhatt 2017) allows for the system-
atic modelling of dynamic spatial systems. It is based on
logic programs over first-order formulas (with function sym-
bols), which are not yet integrated in our approach. On the
other hand, this work does only conside spatial reasoning.
An interesting option for future work would be considering
an extension incorporating such formulas.

7 CONCLUSIONS
Building on work by Orgun and Wadge (1992), we have in-
troduced intensional logic programs that allow defeasible
reasoning with intensional concepts, such as time, space,
and obligations, and with streams of data. Relying on the
neighborhood semantics (Pacuit 2017), we have introduced
a novel three-valued semantics based on ideas adapted from
partial stable models (Przymusinski 1991). Due to the ex-
pressivity of the intensional operators, stable models may
not be minimal nor deterministic even for programs with-
out default negation. Hence, we have studied the charac-
teristics of our semantics for monotonic intensional opera-
tors and programs that only admit deterministic operators
in the heads of the rules, and shown that a unique minimal
model, the well-founded model, exists and can be computed
with an alternating fixpoint construction. We have studied
the computational complexity of checking for existence of
models and computation of models and established that the
well-founded model can be computed in polynomial time.
Finally, we have discussed related work and shown that sev-
eral relevant approaches in the literature can be covered.

In terms of future work, we want to investigate in more
detail the exact relations to existing approaches in the lit-
erature, that are not formally covered in this paper. Fur-
thermore, this work can be generalized in several direc-
tions, for example, by allowing for first-order formulas in-
stead of essentially propositional formulas (which is what
programs with constants and variables over a finite instan-
tiation domain amount to) and nested, non-deterministic,
and non-monotonic intensional operators. Furthermore,
we may want to consider intensional operators with mul-
tiple minimal neighborhoods, by defining IE∇ as a non-
determistic operator that extracts a minimal neighborhood
W ′ ∈ θ∇(w′). In that case, of course, the alternating fix-
point construction as it is defined now might not result in
a unique well-founded model. However, the occurence of
non-deterministic operators in the heads of rules is very sim-
ilar to disjunctive logic programs, where the truth of a head
of a rule can also be guaranteed by a choice of different
atoms (the disjuncts) being made true. Therefore, we plan
to look at techniques from disjunctive logic programming to
generate unique well-founded extensions (cf. references in
(Knorr and Hitzler 2007)). Finally, the integration with taxo-
nomic knowledge in the form of description logic ontologies
(Baader et al. 2007) may also be worth pursuing as applica-
tions sometimes require both (see e.g. (Alberti et al. 2011;
Alberti et al. 2012; Kasalica et al. 2019)). Hybrid MKNF
knowledge bases (Motik and Rosati 2010) are a more promi-
nent approach among the existing approaches for combin-
ing non-monotonic rules and such ontologies, and the well-
founded semantics for these (Knorr, Alferes, and Hitzler

2011), also based on an alternating fixpoint construction,
together with its efficient implementation (Kasalica et al.
2020) may prove fruitful for such an endeavour.

Acknowledgments The authors are indebted to the anony-
mous reviewers of this paper for helpful feedback. The
authors were partially supported by FCT project RIVER
(PTDC/CCI-COM/30952/2017) and by FCT project NOVA
LINCS (UIDB/04516/2020). J. Heyninck was also sup-
ported by the German National Science Foundation under
the DFG-project CAR (Conditional Argumentative Reason-
ing) KE-1413/11-1.

References
Abadi, M., and Manna, Z. 1989. Temporal logic program-
ming. J. Symb. Comput. 8(3):277–295.
Alberti, M.; Gomes, A. S.; Gonçalves, R.; Leite, J.; and
Slota, M. 2011. Normative systems represented as hybrid
knowledge bases. In CLIMA, volume 6814 of LNCS, 330–
346. Springer.
Alberti, M.; Knorr, M.; Gomes, A. S.; Leite, J.; Gonçalves,
R.; and Slota, M. 2012. Normative systems require hybrid
knowledge bases. In AAMAS, 1425–1426. IFAAMAS.
Allen, J. F. 1990. Maintaining knowledge about temporal in-
tervals. In Readings in qualitative reasoning about physical
systems. Elsevier. 361–372.
Anicic, D.; Rudolph, S.; Fodor, P.; and Stojanovic, N. 2012.
Stream reasoning and complex event processing in ETALIS.
Semantic Web 3(4):397–407.
Arasu, A.; Babu, S.; and Widom, J. 2006. The CQL contin-
uous query language: semantic foundations and query exe-
cution. VLDB J. 15(2):121–142.
Baader, F.; Calvanese, D.; McGuinness, D. L.; Nardi, D.;
and Patel-Schneider, P. F., eds. 2007. The Description
Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press, 2nd edition.
Barbieri, D. F.; Braga, D.; Ceri, S.; Valle, E. D.; and Gross-
niklaus, M. 2010. C-SPARQL: a continuous query language
for RDF data streams. Int. J. Semantic Computing 4(1):3–
25.
Bazoobandi, H. R.; Beck, H.; and Urbani, J. 2017. Ex-
pressive stream reasoning with LASER. In Procs. of ISWC,
volume 10587 of LNCS, 87–103. Springer.
Beck, H.; Dao-Tran, M.; and Eiter, T. 2018. LARS: A logic-
based framework for analytic reasoning over streams. Artif.
Intell. 261:16–70.
Beirlaen, M.; Heyninck, J.; and Straßer, C. 2019. Structured
argumentation with prioritized conditional obligations and
permissions. Journal of Logic and Computation 29(2):187–
214.
Brandt, S.; Kalayci, E. G.; Ryzhikov, V.; Xiao, G.; and Za-
kharyaschev, M. 2018. Querying log data with metric tem-
poral logic. J. Artif. Intell. Res. 62:829–877.
Brenton, C.; Faber, W.; and Batsakis, S. 2016. Answer
set programming for qualitative spatio-temporal reasoning:

Methods and experiments. In Technical Communications of
ICLP, volume 52 of OASICS, 4:1–4:15. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik.
Brewka, G.; Ellmauthaler, S.; Gonçalves, R.; Knorr, M.;
Leite, J.; and Pührer, J. 2018. Reactive multi-context sys-
tems: Heterogeneous reasoning in dynamic environments.
Artif. Intell. 256:68–104.
Caminada, M.; Sá, S.; Alcântara, J.; and Dvořák, W. 2015.
On the equivalence between logic programming semantics
and argumentation semantics. International Journal of Ap-
proximate Reasoning 58:87–111.
Chellas, B. F. 1980. Modal Logic: An Introduction. Cam-
bridge University Press.
Chen, Y.; Wan, H.; Zhang, Y.; and Zhou, Y. 2010. dl2asp:
implementing default logic via answer set programming.
In European Workshop on Logics in Artificial Intelligence,
104–116. Springer.
Dantsin, E.; Eiter, T.; Gottlob, G.; and Voronkov, A. 2001.
Complexity and expressive power of logic programming.
ACM Comput. Surv. 33(3):374–425.
del Cerro, L. F. 1986. MOLOG: A system that extends PRO-
LOG with modal logic. New Generation Comput. 4(1):35–
50.
Gelder, A. V.; Ross, K. A.; and Schlipf, J. S. 1991. The
well-founded semantics for general logic programs. J. ACM
38(3):620–650.
Gelder, A. V. 1989. The alternating fixpoint of logic
programs with negation. In Procs. of SIGACT-SIGMOD-
SIGART, 1–10. ACM Press.
Gelfond, M., and Lifschitz, V. 1991. Classical negation in
logic programs and disjunctive databases. New Generation
Comput. 9(3-4):365–385.
Gelfond, M. 2008. Answer sets. In Handbook of Knowl-
edge Representation, volume 3 of Foundations of Artificial
Intelligence. Elsevier. 285–316.
Gonçalves, R., and Alferes, J. J. 2012. Specifying and rea-
soning about normative systems in deontic logic program-
ming. In Procs. of AAMAS, 1423–1424. IFAAMAS.
Gonçalves, R.; Knorr, M.; and Leite, J. 2014. Evolving
multi-context systems. In ECAI, volume 263 of Frontiers
in Artificial Intelligence and Applications, 375–380. IOS
Press.
Governatori, G.; Rotolo, A.; and Riveret, R. 2018. A deontic
argumentation framework based on deontic defeasible logic.
In International Conference on Principles and Practice of
Multi-Agent Systems, 484–492. Springer.
Izmirlioglu, Y., and Erdem, E. 2018. Qualitative reasoning
about cardinal directions using answer set programming. In
Procs. of AAAI, 1880–1887. AAAI Press.
Kasalica, V.; Gerochristos, I.; Alferes, J. J.; Gomes, A. S.;
Knorr, M.; and Leite, J. 2019. Telco network inventory
validation with nohr. In LPNMR, volume 11481 of LNCS,
18–31. Springer.
Kasalica, V.; Knorr, M.; Leite, J.; and Lopes, C. 2020.
NoHR: An overview. Künstl Intell.

Knorr, M.; Alferes, J. J.; and Hitzler, P. 2011. Local
closed world reasoning with description logics under the
well-founded semantics. Artif. Intell. 175(9-10):1528–1554.
Knorr, M., and Hitzler, P. 2007. A comparison of disjunctive
well-founded semantics. In FAInt, volume 277 of CEUR
Workshop Proceedings. CEUR-WS.org.
McNamara, P. 2019. Deontic logic. In Zalta, E. N., ed.,
The Stanford Encyclopedia of Philosophy. Metaphysics Re-
search Lab, Stanford University, summer 2019 edition.
Motik, B., and Rosati, R. 2010. Reconciling description
logics and rules. J. ACM 57(5):30:1–30:62.
Orgun, M. A., and Wadge, W. W. 1992. Towards a unified
theory of intensional logic programming. The Journal of
Logic Programming 13(4):413–440.
Pacuit, E. 2017. Neighborhood semantics for modal logic.
Springer.
Panagiotidi, S.; Nieves, J. C.; and Vázquez-Salceda, J. 2009.
A framework to model norm dynamics in answer set pro-
gramming. In MALLOW.
Phuoc, D. L.; Dao-Tran, M.; Parreira, J. X.; and Hauswirth,
M. 2011. A native and adaptive approach for unified pro-
cessing of linked streams and linked data. In Procs. of ISWC,
volume 7031 of LNCS, 370–388. Springer.
Przymusinski, T. C. 1991. Stable semantics for disjunctive
programs. New Generation Comput. 9(3/4):401–424.
Suchan, J.; Bhatt, M.; Walega, P. A.; and Schultz, C. P. L.
2018. Visual explanation by high-level abduction: On
answer-set programming driven reasoning about moving ob-
jects. In Procs. of AAAI, 1965–1972. AAAI Press.
Vardi, M. Y. 1989. On the complexity of epistemic reason-
ing. In Procs. of LICS, 243–252. IEEE Computer Society.
Walega, P. A.; Kaminski, M.; and Grau, B. C. 2019. Rea-
soning over streaming data in metric temporal datalog. In
Procs. of AAAI, 3092–3099. AAAI Press.
Walega, P. A.; Schultz, C. P. L.; and Bhatt, M. 2017. Non-
monotonic spatial reasoning with answer set programming
modulo theories. TPLP 17(2):205–225.

	INTRODUCTION
	INTENSIONAL LOGIC PROGRAMS
	THREE-VALUED SEMANTICS
	ALTERNATING FIXPOINT
	COMPUTATIONAL COMPLEXITY
	RELATED WORK
	CONCLUSIONS

