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Abstract

Commitments have been shown to promote cooperation if, on the one hand, they can be suffi-

ciently enforced, and on the other hand, the cost of arranging them is justified with respect to

the benefits of cooperation. When either of these constraints is not met it leads to the prevalence

of commitment free-riders, such as those who commit only when someone else pays to arrange

the commitments. Here, we show how intention recognition may circumvent such weakness

of costly commitments. We describe an evolutionary model, in the context of the one-shot

Prisoner’s Dilemma, showing that if players first predict the intentions of their co-player and

propose a commitment only when they are not confident enough about their prediction, the

chances of reaching mutual cooperation are largely enhanced. We find that an advantageous

synergy between intention recognition and costly commitments depends strongly on the con-

fidence and accuracy of intention recognition. In general, we observe an intermediate level of

confidence threshold leading to the highest evolutionary advantage, showing that neither uncon-

ditional use of commitment nor intention recognition can perform optimally. Rather, our results

show that arranging commitments is not always desirable, but that they may be also unavoidable

depending on the strength of the dilemma.
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Introduction1

Since Darwin, the problem of explaining the evolution of cooperative behavior has been actively2

investigated in many fields, from Evolutionary Biology, Ecology, to Economics and Social Sci-3

ence. Several mechanisms responsible for the evolution of cooperation have been proposed,4

from kin and group selection to direct and indirect reciprocity, to structured population, and5

to punishment1–5. Recently, a large body of economic experiments and theoretical studies6

have shown that high levels of cooperation can be achieved if reliable agreements can be ar-7

ranged6–14. Arranging prior commitments, such as through enforceable contracts or pledges8,8

deposit-refund scheme11,12 or even emotional or reputation-based commitment devices7,9, pro-9

vides incentives for others to cooperate, clarifying the preferences or intentions of others8,15,16.10

However, in human societies, not all cooperative ventures require explicit prior commitments11

to be made. On the one hand, arranging reliable commitments may be very costly (and take12

time)15, which can lead to the prevalence of commitment free-riders, and, on the other hand,13

others’ intentions might be clarified without using a commitment device. Contracts are a pop-14

ular kind of commitment, which play a key role in enforcing cooperation in modern societies.15

But even then people occasionally prefer not to rely on using a contract, as are the cases for16

interactions between relatives or close friends, or between (or with) trustworthy brands. In such17

cases, partners’ cooperative behavior can be envisaged with high confidence. People also do not18

ask for promise or making threats when partners’ motivations can be predicted with high confi-19

dence, as doing so may lead to negative reactions or an implication of distrust from them13,17.20

Additionally, human beings are experts in mind reading, particularly at discerning what21

others are perceiving and intending18. An ability to assess intention in others, which is clearly22

possessed by humans19,20, has been demonstrated to play a promoting role for the emergence23

of cooperation. It enables individuals to assess cooperative intention in others in noisy and24
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uncertain environments, and to identify those with an exploitative intent8,16,21–23. In addition,25

behavioral experiments show that people do care about and distinguish between real intentions26

and outcomes, and that difference plays a crucial role in their decision, for instance, whether27

to cooperate or to defect, and to reward or to punish21,24–26. Although recognizing an intention28

cannot always be done with high enough confidence to make any decision based on it, an ability29

to assess intention in others, based on previous experience and available observations at hand,30

allows choosing cooperative partners even without resorting to commitment devices.31

Thus motivated, here we investigate whether a conditional use of commitment through32

intention recognition can promote the emergence of cooperation in the one-shot Prisoner’s33

Dilemma. In its simple form, a cooperative act (C) is to pay a cost (c) for its co-player to34

receive a benefit (b > c), while a defective act is to spend nothing and thus provides its co-35

player with no benefit. In a one-shot pairwise interaction, for each player it is better to play D,36

leading to a zero payoff for both, while both can obtain a higher payoff (b � c) if they simul-37

taneously choose C. Here, we consider a strategy, which, at each interaction, attempts first to38

assess the co-player’s intention (whether to cooperate or to defect). Only when it is not con-39

fident about what the co-player intends to do in the current interaction, does it propose to the40

co-player a commitment deal. A commitment proposer pays a cost of arrangement (✏) to make41

the commitment credible, but those who commit but then default have to provide the co-player42

with a compensation (�)27. It has been shown11,12,14,27, that substantial levels of cooperation43

are achieved if both the cost of arranging commitment is small enough compared to the cost of44

cooperation, and a sufficiently high compensation can be enforced. However, if either of these45

two conditions is not satisfied, commitment free-riders can take over and become dominant27.46

On the one hand, if the cost of arranging commitment is too large, those who commit and coop-47

erate only if someone else pays to arrange the commitment for them are dominant. On the other48

hand, when the cost of compensation is too low, for instance due to the difficulty of enforcing49
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the deal afterwards, those who agree on the commitment but then default on it dominate the50

commitment proposers.51

We show that a conditional use of commitments, by means of first assessing intentions of52

the co-player, can facilitate the commitment free-riding issue, ameliorating the performance of53

commitment and leading to improved cooperation. The key parameter in our model is a confi-54

dence threshold (✓), which is utilized to decide when intention recognition can be relied on (to55

choose a move), or a commitment deal needs to be arranged to clarify the co-player’s intention.56

The questions we would like to ask here are whether such a conditional use of commitment can57

resolve the commitment free-riding issues, particularly when a strong commitment cannot be58

arranged. Furthermore, what is the appropriate confidence threshold, inasmuch the benefit and59

the cost of commitments and the accuracy of the intention recognition vary?60

Results61

We consider here, next to the traditional pure cooperator (C) and defector (D) strategies, a62

new strategy which combines intention recognition and commitment arrangement, denoted by63

IRCOM. In an interaction, IRCOM recognizes the intention (to cooperate or to defect) of its64

co-player. A confidence level, x 2 [0, 1], is assigned to the recognition result. It defines the65

degree of confidence, in terms of a probability, that IRCOM predicts the co-player’s intention66

correctly. Then, if it is confident enough about the prediction, that is if x is greater than a given,67

so-called, confidence threshold, ✓ 2 [0, 1], then in the current interaction it cooperates if the68

recognized intention of the co-player is to cooperate, and defects otherwise.69

When IRCOM is not sufficiently confident about its co-player’s intention, i.e. x < ✓, it70

proposes a commitment to others and subsequently cooperates if the opponent accepts the deal.71

If the deal is not accepted, then this IRCOM refuses to play the game. We consider two ad-72
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ditional commitment free-riding strategies14,27: (i) The fake committers (FAKE), who accept a73

commitment proposal yet defect when playing the game, presuming that they can exploit the74

commitment proposers without suffering a severe consequence; and, (ii) the commitment free-75

riders (FREE), who defect unless being proposed a commitment, which they then accept and76

next cooperate in the PD game. In other words, these players are willing to cooperate when a77

commitment is arranged but are not prepared to pay the cost of setting it up.78

However, the prediction being made can be wrong. We assume that prediction accuracy79

and confidence are positively correlated28–30. Namely, the probability of a correct prediction80

is, y = r ⇥ x, where r > 0 is dubbed the accuracy-to-confidence ratio. Assuming that the81

confidence, x, are uniformly distributed in [0, 1], the payoff matrix for IRCOM reads82

M = (1� ✓)M1 + ✓M2, (1)

where M1 and M2 are the payoff matrices when IRCOM plays without proposing a commitment83

(i.e. when x > ✓) and when it does so (i.e. when x  ✓), respectively. For details of the com-84

putation of the two matrices see Methods and Supporting Information (SI). Table 1 summarizes85

the parameters and variables in our model.86

Note that if x  ✓, i.e. IRCOM is not confident enough about its intention prediction, it87

behaves the same as a pure commitment proposer (COMP)27 when interacting with the non-88

proposing commitment strategies (i.e. C, D, FAKE and FREE). The greater ✓ is, the more89

cautious IRCOM is about its intention recognition result, thereby tending to use commitments90

more frequently. In an interaction between IRCOM and COMP, we consider that COMP always91

proposes first and pays the arrangement cost ✏ due to the time delay and effort IRCOM spends92

on intention recognition deliberation.93
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Emergence of conditional commitment and cooperation94

We first study the stationary distribution in a population of the six above described strategies,95

namely IRCOM, COMP, C, D, FAKE and FREE (see Methods). The results show that, for a96

large range of the confidence threshold ✓, IRCOM is dominant, whereas the population spends97

most of the time in the homogenous state of IRCOM, regardless of the initial composition of98

the population (Figure 1a). However, when ✓ is low, free-riding strategies become dominant.99

That is, when IRCOM does not have sufficient confidence about whether its co-player intends100

to cooperate or to defect in the current interaction, it would be better off counting on arranging101

a (costly) commitment deal.102

Figure 1b shows that the prevalence of IRCOM endures for a wide range of ✏ and �, as103

long as an appropriate ✓ is adopted. Interestingly, in contrast to COMP27, it is not always the104

case that the frequency of IRCOM is demolished when ✏ increases (see also Figure S2 in SI).105

IRCOM actually becomes more frequent when ✏ is sufficiently high, but not too high. This is106

mainly because IRCOM suppresses the commitment free-riders for a wider range of ✏, as can107

be seen from Figure 1d where we show the transition probabilities and the transition directions108

amongst the six strategies. Namely, for a sufficiently high ✏ (namely, ✏ = 2.0), COMP is taken109

over by the FREE players, against which IRCOM still is a viable strategy. However, when ✏110

is too large, IRCOM is again taken over by FREE players (see Figure S4 in the SI for a larger111

✏). The viability of IRCOM in dealing with commitment free-riders is robust for varying the112

accuracy-to-confidence ratio, r, as shown in Figure 1c. Namely, we observe that IRCOM is the113

dominant strategy whenever this ratio is sufficiently high, although the commitment free-riding114

strategy FREE takes over when r is too small. That is, whenever intention recognition can be115

performed with a sufficiently high accuracy, as are the case for instance in repeated games16,23 or116

when the intention recognition process is facilitated21,26, IRCOM is amply sufficient at dealing117

with commitment free-riders.118
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We now analyze whether and when the conditional use of commitment can actually facil-119

itate the evolution of cooperation. To that end, we make a direct comparison in terms of the120

level of cooperation obtained through commitment strategies in our model, i.e. from IRCOM121

and COMP, and such a level in the unconditional commitment model where IRCOM is not in-122

cluded, see Figure 2. The results show that certain improvement is possible for a wide range123

of commitment deals, i.e. for varying ✏ and �, see Figure 2a. Interestingly, the improvement124

is most significant when the commitment deal is weak, that is, when it is rather costly to ar-125

range (high ✏) and/or no sufficiently high compensation can be enforced (low �). It is exactly126

when COMP does not perform well, as it is dominated by the commitment free-riders FREE127

and FAKE in either condition (i.e. high ✏ or low �), respectively27. This notable observation is128

robust for varying r, as can be seen in Figure 2b: the improvement in terms of cooperation is129

positive in general, and increases with r. Furthermore, the improvement is substantial for large130

✏ (see for instance cases with ✏ = 2 and 4). In SI, we show that the improvement is also more131

significant when the benefit-to-cost ratio is larger (see Figure S1).132

We now ask, when should one take more risk, avoiding to arrange costly commitment? In133

Figure 3 we address the effect of varying ✏ and �, as well as varying the accuracy over confidence134

ratio r. In general, the higher ✏ and the higher r, the lower confidence level needs to be attained135

to rely on intention recognition predictions. That is, as the PD becomes more beneficial and136

the intention recognition prediction can be carried out more accurately, a smaller confidence is137

exacted to rely on intention recognition, thereby avoiding the cost of arranging commitment.138

We also observe that this confidence level does not significantly depend on �, see Figure 3b.139
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Discussion140

We have shown, within the context of the one-shot Prisoner Dilemma (PD), that a conditional141

use of commitment based on a subjective confidence in assessing a co-player’s intention can142

lead to improved levels of commitment and cooperation. In general, by avoiding the payment143

of the cost of arranging commitments whenever gaining a sufficient confidence about the co-144

player’s intention, an evolutionary advantage can be achieved. Waiting for a too large confi-145

dence may lead to unnecessarily paying the cost, though it can be avoided. However, doing146

so when confidence is low allows defectors and commitment free-riders to exploit, leading to147

the destruction of cooperation. Our results show that the gained improvement via the intention148

recognition capability is more significant when the PD is less harsh, and as more accurate pre-149

dictions can be achieved. Interestingly, such an improvement is most significant when the cost150

of arranging commitments is high, thereby overcoming the weaker cases of using the pure com-151

mitment strategy27. Moreover, our analysis suggests that, as the PD becomes more beneficial152

and the prediction is more accurate, a smaller confidence is required to enable to take the risk153

involved in avoiding to arrange costly commitments. These results suggest that, although many154

societies may have evolved mechanisms to facilitate the making and the enforcement of prior155

commitments (e.g. legal contracts)9,15, the cost-efficiency problem faced when implementing156

such mechanisms (e.g. law systems) may be coped with by using more complex cognitive skills157

such as of intention recognition (which has been demonstrated to be prevalent in humans and158

primates18–20), in order to facilitate further the sustainability of the commitment mechanisms,159

hence cooperation.160

Our results are in line with the work in31, where a resource claiming model is described.161

In that model, players can choose whether to engage in a fight for a resource based on their162

estimation of the opponents’ capability and the players’ confidence about their own capacity. It163
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has been shown that overconfidence (which is equivalent to the avoidance of arranging costly164

commitment at a low confidence threshold in our model) can become evolutionarily stable when165

the resource is sufficiently large compared to the cost of fighting, as the players might lose their166

chance of winning the resource if not being confident enough even when they have a stronger167

capacity than their opponents. Our work differs from this model in that whenever the players168

have a low confidence level (about their opponents’ intention), instead of refusing to play they169

can make use of the alternative, but provenly efficient strategy, of arranging prior commitments.170

As we have shown, this combination of the two strategic behaviors performs substantially better171

than the sole intention recognition one.172

The key role of intention recognition in the current model is to allow choosing cooperative173

partners and avoid reliance on arranging a costly explicit commitment. In environments where174

partner selection is possible—that is, when people can choose with whom they associate for175

mutualistic endeavors—then implicit commitments are evolved, by which people behave as if176

they had bargained with others in order to reach an agreement, in accordance with contractualist177

moral psychology32,33. Hence, our results suggest that intention recognition might have been178

shaped by natural selection to enable effective partner selection, which in turn drives the evolu-179

tion of implicit commitments, thereby avoiding the cost of arranging explicit commitments.180

Several behavioral experiments on intention based strategies exist that are closely related181

to our model. The experiment in26 uses a sequential PD (in the presence of noise) where the182

second-moving player can recognize the first-moving player’s intention, and choose whether to183

punish a defecting act. The experiment showed that individuals tend to use strong punishment184

against those who are recognized to have a clear intention of defection while no (or weak)185

punishment is used against those who defected but the act is recognized to be unintentional. Our186

work differs from this experimental setting in that the intention recognition process is done prior187

to the interaction (to find out whether it is necessary to arrange prior commitments), while it is188
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posterior in the experiment, i.e. after the move has been made. Another experiment in21 showed189

that, in the course if the repeated Prisoner’s Dilemma, if co-players’ intention can be observed, it190

significantly fosters cooperation since unintentional defection caused by noise can be forgiven,191

as also shown theoretically in22. Note that both experiments have been designed so that the192

intention recognition process is facilitated, thereby guaranteeing a high confidence level. In193

such cases, as shown in the present work, the synergy of intention recognition and commitments,194

both aiming at clarifying co-players’ intention, can promote a high level of cooperation.195

Several extensions to the present model can be described. In our model we have consid-196

ered a general one-shot interaction scenario, but we envisage that as more prior experience is197

incorporated, for instance by observing direct or indirect past actions of the co-player, intention198

recognition can be performed better, thereby leading to better performance of IRCOM. Indeed,199

in22,34, in the context of the repeated PD with implementation noise, Artificial Intelligence based200

intention recognition strategies35,36 can more accurately assess a co-player’s intention whenever201

more past interactions are taken into account. In SI, we consider a more effective IRCOM strat-202

egy, having a more accurate intention recognition capability (see Figure S3). Our numerical203

results show that, whenever the intention recognition model is efficient enough, the intention204

recognition strategy by itself alone (i.e. IRCOM with ✓ = 0) performs quite well, complying205

with the results obtained in22,34, where concrete intention recognition models are deployed.206

Overall, our work indicates that, on the one hand, it is evolutionarily advantageous to be207

able to avoid arranging costly commitments whenever the co-player’s intention can be assessed208

with sufficient confidence and accuracy. On the other hand, arranging prior commitments may209

be also unavoidable, depending on the strength of the dilemma, in order to reach a high level of210

cooperation.211
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Methods212

Our analysis is based on evolutionary game theory methods for finite populations37,38. In the

context of evolutionary game theory, the individuals’ or agents’ payoff represents their fitness or

social success. The dynamics of strategy change in a population is governed by social learning,

that is, the most successful agents will tend to be imitated by the others. There are many ways

to model social learning5,39,40. Adopting one of the most frequently used ones, we consider the

so-called pairwise comparison rule41, which assumes that an agent A with fitness f
A

adopts the

strategy of another agent B with fitness f
B

with probability given by

1

1 + e��(fB�fA)
,

where � controls the ‘imitation strength’, i.e., how strongly the agents are basing the decision213

to imitate on fitness comparisons. For � = 0, we obtain the limit of neutral drift – the imitation214

decision is random. For large �, imitation becomes increasingly deterministic.215

In the absence of mutations, the end states of evolution are inevitably monomorphic: once216

such a state is reached, imitation cannot produce any change. We thus further assume that, with217

a certain mutation probability µ > 0 (also dubbed the exploration rate42), an agent switches218

randomly to a different strategy without imitating any other agent. The resulting Markov Chain219

has a stationary distribution, which characterizes the average time the population spends in each220

of these monomorphic end states. Yet, for arbitrary exploration rates and number of strategies,221

stationary distributions are often cumbersome to compute43–45.222

Fortunately, in the case of small exploration or mutation rates, analytical computation of223

this stationary distribution can conveniently be computed38,43,46,47. The small exploration rates224

guarantee that any newly occurred mutant in a homogeneous population will fixate or become225

extinct long before the occurrence of another mutation. Hence, the population will always226
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consist of at most two strategies in co-presence. This allows one to describe the evolutionary227

dynamics of our population in terms of a reduced Markov Chain, whose size is equal the number228

of strategies being considered, and each state represents a possible monomorphic end state of229

the population associated with a one of the strategies. The transitions between states are defined230

by the fixation probabilities of a single mutant of one strategy in a homogeneous population of231

individuals adopting another strategy46.232

More precisely, let N be the size of the population. Suppose there are at most two strategies233

in the population, say, k agents using strategy A (0  k  N ) and (N � k) agents using234

strategy B. Thus, the (average) payoff of the agent that uses A or uses B can be written as235

follows, respectively,236

⇧
A

(k) =
(k � 1)⇡

A,A

+ (N � k)⇡
A,B

N � 1
,

⇧
B

(k) =
k⇡

B,A

+ (N � k � 1)⇡
B,B

N � 1
,

(2)

where ⇡
X,Y

stands for the payoff an agent using strategy X obtained in an interaction with237

another agent using strategy Y , given by the payoff matrix (9).238

Now, the probability to change, by ±1, the number k of agents using strategy A at each time239

step can be written as240

T±(k) =
N � k

N

k

N

1

1 + e⌥�[⇧A(k)�⇧B(k)]
. (3)

The fixation probability of a single mutant with a strategy A in a population of (N � 1) agents241

using B is given by38,41,43,46,48
242

⇢
B,A

=
1

1 +
P

N�1
i=1

Q
i

j=1
T

�(j)
T

+(j)

. (4)
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In the limit of neutral selection (� = 0), T�(j) = T+(j) 8j. Thus, ⇢
B,A

= 1/N . Considering243

a set {1, ..., q} of different strategies, these fixation probabilities determine a transition matrix244

M = {T
ij

}q

i,j=1, with T
ij,j 6=i

= ⇢
ji

/(q � 1) and T
ii

= 1 �
P

q

j=1,j 6=i

T
ij

, of a Markov Chain.245

The normalized eigenvector associated with the eigenvalue 1 of the transposed of M provides246

the stationary distribution described above38,43,46,48, describing the relative time the population247

spends adopting each of the strategies.248

Deriving Payoff Matrix The one-shot Prisoner’s Dilemma can be described with the follow-249

ing payoff matrix:250

0

B@

C D

C R, R S, T

D T, S P, P

1

CA.

251

Once the interaction is established and both players have decided to play C or D (with or without252

commitment arrangements), both players receive the same reward R (penalty P ) for mutual253

cooperation (mutual defection). Unilateral cooperation provides the sucker’s payoff S for the254

cooperative player and the temptation to defect T for the defecting one. The payoff matrix255

corresponds to the preferences associated with the Prisoner’s Dilemma when the parameters256

satisfy the ordering, T > R > P > S 5,49. In the main text, we use the Donor game, a special257

case of the PD, with T = b; R = b � c; P = 0; S = �1, where b and c are the benefit and cost258

of cooperation, respectively.259
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When proposing commitment, the average payoff of IRCOM, as the row player, reads27
260

M1 =

0

BBBBBBBBBB@

COMP C D FAKE FREE

COMP R� ✏/2 R� ✏ 0 S + � � ✏ R� ✏

C R R S S S

D 0 T P P P

FAKE T � � T P P P

FREE R T P P P

1

CCCCCCCCCCA

. (5)

261

The probability that IRCOM relies on the intention recognition prediction, and the prediction262

was actually correct, can be written as joint probability distribution50
263

p
c

= P (x > ✓, y < min{rx, 1}) =

Z +1

✓

Z min{rx,1}

0

dy dx =

8
>><

>>:

r(1�✓)(1+✓)
2 if r  1 or r � 1

✓

1� 1
2r

� r✓

2

2 otherwise .

(6)

Similarly, the probability that IRCOM relies on the intention recognition prediction, but the264

prediction was not correct, is265

p
ic

=

8
>><

>>:

(1� ✓)
h
1� r(1+✓)

2

i
if r  1 or r � 1

✓

,

1
2r

+ r✓

2

2 � ✓ otherwise.
(7)

Hence, IRCOM cooperation probability when playing with another IRCOM player is, ✓ + p
c

.266
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The payoff matrix for IRCOM when relying on intention recognition reads267

M2 = (1� ✓)

0

BBBBBBBBBB@

m11 m12 m13 m14 m15

m21 R S S S

m31 T P P P

m41 T P P P

m51 T P P P

1

CCCCCCCCCCA

, (8)

where268

m11 = Pu2 + (S + T )uv + Rv2;269

m12 = Tu + Rv;270

m15 = m14 = m13 = Su + Pv;271

m21 = Su + Rv;272

m51 = m41 = m31 = Tu + Pv;273

With u = p
ic

/(1� ✓) and v = p
c

/(1� ✓).274

Finally, the payoff matrix for IRCOM (as a row player) reads275

M = (1� ✓)M1 + ✓M2. (9)
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Table 1. Variables and parameters used in the model.

Symbols Description
✏ The cost of arranging a commitment deal
� The compensation cost
c The cost of cooperation in the PD game
b The benefit of cooperation in the PD game
x The degree of confidence in a correct intention prediction
✓ The confidence threshold to rely on intention recognition (i.e. if x > ✓)
r The accuracy-to-confidence ratio
y The accuracy of intention prediction, given the confidence (y = r ⇥ x)
� The intensity of selection

Figure Legends394
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Figure 1. (a) Frequency of each strategy as a function of confidence threshold ✓. In a
population of IRCOM, COMP, C, D, FAKE and FREE individuals, for a sufficiently large ✓,
IRCOM is most frequent in the population. The performance of IRCOM decreases when ✓ is
too high. It implies that IRCOM should not be too cautious about its intention recognition
capacity, i.e. not be too careful to always propose commitment instead of believing in its
prediction accuracy; (b) Frequency of IRCOM at the optimal confidence threshold, as a
function of the cost of arranging commitment ✏ and the compensation cost �. Interestingly,
in contrast to COMP, it is not always the case that the frequency of IRCOM is smaller for
larger ✏. IRCOM is actually more frequent when ✏ is sufficiently large. (c) Frequency of each
strategy as a function of accuracy to confidence ratio, r, at the optimal confidence
threshold. When intention recognition accuracy is sufficiently high, IRCOM is prevalent, but
when it is small, FREE is most abundant. (d) Transitions probabilities and stationary
distributions (✓ = 0.28). Note the transitions from COMP to FREE to IRCOM. For clarity,
only the transitions that are larger than neutral are shown (⇢

N

= 1/N denotes the neutral
transition probability). Parameters: In panels (a), (c) and (d): � = 4; ✏ = 2; In panels (a), (b)
and (d): r = 1; In all cases, b = 4, c = 1; N = 100; � = 0.1.

Figure 2. (a) Improvement in cooperation level obtained from IRCOM and COMP
compared to the case where there is no IRCOM, as a function of the cost of arranging
commitment ✏ and the compensation cost �. Improvement is achieved for a wide range of ✏
and �. It is most significant when ✏ is rather high and � is not too large, i.e. the commitment
deal is weak (see Figure S1 in SI for the improvement obtained in percentage, and also for
other parameter values). (b) Such improvement as a function of the accuracy-to-confidence
ration, r, and for different commitment deals. In general, the larger r, the more significant
improvement is obtained. Furthermore, when r is sufficiently high, larger improvement is
obtained when it is costly to arrange commitments and/or a high compensation is difficult to
enforced. Parameters: b = 4, c = 1, N = 100, and � = 0.1.

Figure 3. Optimal confidence threshold, (a) as a function of r, for different commitment
deals, and (b) as a function of ✏ and �. In general, the higher r and the larger ✏, the lower
confidence level needs to be attained to rely on intention recognition predictions (i.e. taking
higher risk). This confidence level does not significantly depend on �. We adopt, in both cases,
b = 4, c = 1, N = 100, and � = 0.1. In panel (b), r = 1.
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In this supporting information, we provide additional numerical results to show the robust-

ness of our conclusions in the main text.

1 Results for different benefit-to-cost ratios

In Figure S1 we show the cooperation level from commitment strategies, IRCOM and COMP, as

a function of the cost of arranging commitment ✏ and the compensation cost �, the improvement

in cooperation level compared to the case where there is no IRCOM, and such an improvement

in percentage. We also plot the same quantity for different b/c. In general, we observe that

improvement is always possible, and furthermore, the larger b/c (i.e. the less harsh the PD), the

larger the improvement is achieved.

Figure S2 shows the frequency of COMP and IRCOM (at the optimal confidence threshold)

for different values of ✏ and �, and for different b/c ratios. In general, for sufficiently large � and

low ✏, IRCOM dominates the population. Interestingly, in contrast to COMP, it is not always

the case that the frequency of IRCOM is smaller for larger ✏. IRCOM is actually more frequent

when ✏ is sufficiently high, which is larger for larger b/c.

2 More efficient intention recognition

In the main text we have used a very inefficient intention recognition model, where the accu-

racy of intention recognition is a random number derived from [0, 1]. It is not surprising that

the performance of the intention recognition strategy solely—which corresponds to IRCOM

with ✓ = 0, is very poor. In the sequel, let us study the model using more efficient intention

recognition models (Figure S3).

We consider that the prediction accuracy, Y , is randomly distributed in the interval [�, 1],

where a larger � reflects a more efficient intention recognizer at work. In an increasing order of

efficiency, Y is uniformly drawn from intervals [0, 1], [0.3, 1], [0.6, 1], and [0.9, 1]. Note that in

the context of iterated interactions (e.g. in the framework of the iterated Prisoner’s Dilemma),

these levels of efficiency can be achieved (on average) by considering large enough numbers of

2
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Figure S1: Cooperation level from commitment strategies, IRCOM and COMP, as a function of the cost of

arranging commitment ✏ and the compensation cost � (first row); Improvement in cooperation

level compared to the case where there is no IRCOM (second row); and such an improvement

in percentage (third row). We plot for different b/c. The larger b/c, the larger the improvement.

Parameters: Panels (a) and (b): � = 4; ✏ = 0.7; In all cases, b = 2, c = 1; r = 1; N = 100; � = 0.1.
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Figure S2: Frequency COMP in a population of five strategies COMP, C, D, FREE, and FAKE (top row) and

of IRCOM (at optimal confidence threshold) in a population of six strategies IRCOM, COMP,

C, D, FREE, and FAKE (bottom row) for varying ✏ and �, and for different b/c. In general, for

sufficiently large �, IRCOM dominates the population for small ✏. Interestingly, in contrast to COMP,

it is not always the case that the frequency of IRCOM is smaller for larger ✏. IRCOM is actually more

frequent when ✏ is sufficiently large, which is larger for larger b/c. Parameters: In all cases: r = 1;

N = 100; � = 0.1.
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Figure S3: Frequency of IRCOM as a function of confidence threshold, ✓, in a population of IRCOM, C, D,

FAKE and FREE individuals. We consider different probability distributions of the intention prediction

accuracy, reflecting the efficiency or precision of the intention recognition model at work. Namely,

Y is uniformly drawn from [�, 1], with � = 0, 0.3, 0.6, 0.9. The results show that when intention

recognition is highly accurate, it is worth relying more on the intention predictions, even exclusively

(see � = 0.9 in panel a, and � = 0.6 and 0.9 in panel b). Parameters: ✏ = 0.25, � = 4 (panel a) and

✏ = 1, � = 2 (panel b); payoff entries, T = 2, R = 1, P = 0, S = �1; accuracy over confidence

ratio, r = 1; population size, N = 100; imitation strength, � = 0.1.
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Figure S4: Transitions probabilities and stationary distributions for a large ✏ (✏ = 3). Other parameters similar to

main text: � = 4, r = 1; b = 4, c = 1; N = 100; � = 0.1.

interactions between two players (or high enough probabilities of a next interaction4,5), given

that the noise is small enough. Normally, the more an intention recognizer interacts with a fixed

co-player, the better it predicts its co-player’s intention. For example, this holds for the two

intention recognition models described in2,3. Furthermore, in1, the authors present experimen-

tal evidence showing that, in a one-shot PD, subjects of only brief acquaintance were able to

recognize players with an intention to defect with more than twice chance accuracy.

The results show that, whenever the intention recognition model is efficient enough, the

intention recognition strategy solely (i.e. IRCOM with ✓ = 0) performs quite well, comply-

ing with the results obtained in2,3, where concrete intention recognition models are deployed.

However, when a quite strong commitment deal can be envisaged (Figure S3a), arranging it

can still glean some evolutionary advantage. But in case that only weak commitment deals can

be arranged (Figure S3b), it is then more beneficial to rely, even exclusively, on the intention

recognition strategy should it be efficient enough.
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