A Survey of Paraconsistent Semantics for Logic
Programs

Carlos Viegas Damaésio and Luis Moniz Pereira

Abstract

In this chapter we motivate the use of paraconsistency, and survey the most
salient paraconsistent semantics for (extended) logic programs. Most of the se-
mantics are accompanied by their multi-valued model theory. The survey also
presents new results regarding the embedding of part of these semantics into
normal logic programs under Well-Founded Semantics [32], Partial Stable Model
Semantics (or stationary semantics) [72], and Stable Model Semantics [34]. The
conclusions provide a discussion of the relative merits and distinguishing features
of paraconsistent logic programming semantics. We believe a comprehensive cov-
erage of the topic as it stands at present is attained here. The reader is assumed
to have a adequate knowledge of the semantics of normal logic programs.

1 Introduction

Our contribution to this volume consists in giving a logic programmer’s view
on handling program inconsistency. The semantics we cover will touch sev-
eral aspects of implementing reasoning in the presence of contradiction. Logic
programming has already shown a wide applicability for representing knowl-
edge [10]. Also, the most important non-monotonic formalisms, for instance De-
fault Logic [75] and Autoepistemic logics [53, 54], have a counterpart semantics
on the logic programming side.! Moreover, logic programming has turned out
to be vehicle for implementing and exploring other important aspects of Artifi-
cial Intelligence such as updates and belief revision. Therefore, it is not strange
that a lot of work in the logic programming community has been carried out to
understand the integration of paraconsistent reasoning with logic programming,
in preparation for an applicational and implementational role of great potential,
now emerging.

Until recently, a mechanism for explicitly declaring the falsity of propositions
was not available in the restricted language of normal logic programs. The
importance of extending logic programming with an explicit form of non-classical
negation, “=”, beside the usual default one, has lately been stressed, for use in
deductive databases, knowledge representation, and non-monotonic reasoning.
This need has been recognized by several authors [59, 35, 44, 88, 61], which
have proposed an enhanced language and semantics [35, 71, 61, 91]. Extended
logic programming came thus to be born. A recent study of this explicit form

! For an overview of Modal Logics and Default Logics based knowledge representation
formalisms, see the Chapters by Meyer and van der Hoek and Schaub in this volume.

of negation (and its strong form) compared with classical negation can be found
in [5].

However, the introduction of explicit negation enables and requires being able
to reason with, or at least detect, contradictory information. Indeed, information
is not only normally incomplete but contradictory as well. As remarked in [66,
91] there are three main ways of dealing with inconsistent information in logic
programs (see also the introduction of Meyer and van der Hoek’s Chapter in this
volume):

Explosive approach: If the program is contradictory then every formula is
derived from it. This corresponds to the usual approach in mathematical
logic, and of several of the semantics for extended logic programs [71, 35, 61].

Belief revision approach: The program is revised in order to regain consis-
tency. This is the view adopted by some authors in the logic programming
community [66, 62, 41, 64, 2, 7, 3]. It does not necessarily require an ex-
plicit paraconsistent semantics: the procedural program transforming revi-
sion operators suffice. This corresponds to a particular case of potential-
contradictions view of handling inconsistency, as defined in the introductory
chapter by Besnard and Hunter in this volume.

Paraconsistent approach: Accept contradictory information into the seman-
tics and perform reasoning tasks that take it into account. This is the ap-
proach followed by at least a dozen semantics which we will describe in this
paper, and corresponds to the actual-contradictions view of Besnard and
Hunter (see their chapter in this volume).

The first approach only makes sense when dealing with mathematical objects.
For instance, if we have a large knowledge base being maintained or updated
by different agents, it is natural to encounter inconsistencies in the database.
Most of the time, this inconsistency is local to some part of the knowledge
base and shouldn’t affect other, independent, information. But if we adopt the
explosive approach, when a single contradiction is found we must discard the
entire knowledge base. This is uneconomical.

Sometimes the contradictory information can be due to a specification error,
and we'd like to fix it through debugging. In other situations the information
provided is in itself contradictory, and is not to be corrected. In the former case,
we rely on belief revision techniques. In the latter, a paraconsistent deductive
mechanism is necessary. However, even to perform belief revision we need, in any
case, to detect inconsistencies and the reasons supporting them. Thus, paracon-
sistent reasoning is, at least implicitly, an intermediate step for attaining belief
revision.

The idea of introducing paraconsistent reasoning in logic programming is
fairly recent. Since paraconsistent reasoning seems to be fundamental for under-
standing human cognitive processes, it has been studied in philosophical logic
by several authors [18, 38, 11, 39, 76, 6, 68]. The reader is referred to Hunter’s
Chapter in this volume for a more detailed discussion on the logical properties
of several paraconsistent logics. Their intuitions and results have been brought

to the logic programming setting mainly by Blair, Pearce, Subrahmanian, and
Wagner [13, 59, 60, 56, 57, 90, 91]. The introduction of a non-classical explicit
form of negation in logic programming led other researchers to address this issue
as well, namely Przymusinski, Sakama and ourselves, with respect to extensions
of both well-founded and answer sets semantics (see further on for references).

In this survey we emphasize the relationships between the diverse semantics,
rather than providing a complete analysis of each one. Their prominent features
will be singled out by a large body of examples. We try to reduce most of
the semantics to either well-founded or stable model semantics. This means that
they can be readily implemented, by means of the program transformations given
here, using the existing implementations, for the two most important approaches
to semantics of normal logic programs, skeptical and credulous.

Furthermore, the description of most of the semantics reported in this chapter
are complemented with a short analysis of the underlying multi-valued logic
theory. The most important properties of these logics are pointed out, for the
sake of comparison. We avoid incursions into a full discussion of the logics. We
believe that this presentation can give to the outsider a more complete view of
the work carried out in logic programming, from different perspectives.

The plan of the chapter is as follows. We start by motivating the need for
a paraconsistent semantics, with recourse to examples. Next we begin by dis-
cussing the semantics for definite extended logic programs, i.e. those without
the occurrence of default negation. Then we cover non-monotonic semantics for
extended logic programs with default negation based on the well-founded se-
mantics. In a subsequent section we engage in a similar study, but for answer
sets based semantics. We proceed by dissecting the semantics advanced for de-
tecting support on contradiction. The semantics covered in these first sections
all adhere to the actual-contradictions view. We finish our detailed overview
in Section 7 with the works on logic programming which follow, or enable, the
potential-contradictions view.

Unfortunately we cannot consider in this survey, in the same detail, all extant
semantics for paraconsistent logic programs (extended or otherwise). Notable
cases are the annotated logic programs extensions in [42, 43], with the exception
of [13]. Fitting’s semantics [28, 29] also will not be addressed in great detail.
Still, in Section 8, we briefly describe the most important features of these and
other related works.

Finally, we collect, in the last section, the main conclusions of our compara-
tive study.

To help the reader plan his journey we exhibit in Figure 1 the dependencies
among sections and subsections of this chapter.

Several reading paths are possible. In Table 1 we outline some possibilities,
besides the advised one comprehending all sections. Sections 1, 2, 3, 8 and 9 are
mandatory. The others can be traversed according to the reader’s interest.

Concerning the semantics defined for the more general class of disjunctive
extended logic programs, we study only their disjunction-free fragment.

Table 1. Some reading paths

Core 1+24+3+8+4+9
Bird’s eye view of the topic |Core + 4.1 + 4.2 + 5.1
Well-founded based semantics |{Core + 4.1 + 6.1 + 7.2
Stable-models based semantics|Core + 5 + 6.2 + 7.2

WFSXp, based semantics Core +41+424+6+72+4+73
Support on Contradiction Core +4.1+42+4+514+6
Blocking Contradiction Core +4+51+6+7

Actual Contradictions View [Core +4 +5+6 + 7
Potential Contradictions View |Core + 4 + 6.3 + 7

2 DMotivating Examples

Paraconsistency is present in our everyday life. We support this statement with
two examples of realistic situations. We also describe the main problems and re-
quirements of a paraconsistent semantics. For the syntax used check Definition 1
and Definition 19. The reader acquainted with the syntax of first-order classical
logic will certainly understand the examples.

An interesting case in point is that of taxonomies with incomplete informa-
tion. It is a natural example because our knowledge of the animal world is rather
limited, and new species are discovered regularly:

Example 1. Consider the following simple-minded common-sensical rules for iden-
tifying birds and mammals:

Oviparous warm-blooded animals having a bill are birds;
— Hairy warm-blooded animals are mammals;

— Birds are not mammals and vice-versa;

Birds fly;

Mammals nurse their offspring.

This chunk of knowledge can be represented by the following extended logic
program rules:

bird(X) « bill(X),warm_blood(X), oviparous(X).
mammal(X) < hair(X), warm_blood(X).
—mammal (X) < bird(X).

=bird(X) + mammal (X).

flies(X) < bird(X).

nurses(X) < mammal (X).

If the information regarding cats and ducks is correctly filled in one gets the
expected results in most paraconsistent semantics for extended logic programs.
We just add to the program the set of facts, with the obvious abbreviations:

hair(c) warm_blood(c). bill(d). warm_blood(d). oviparous(d).

Relevant conclusions are that cats are mammals, cats nurse their offspring,
cats are not birds and do not fly. On the other hand, ducks are birds, ducks fly,
ducks are not mammals and do not nurse.

On your trip to Australia you discover there are creatures named platypuses,
which lay eggs, have warm-blood, sport a bill, and are hairy! You thus obtain
stupendous contradictions from the program containing the facts:

hair(p). warm_blood(p). bill(p). oviparous(p).

According to the above program it is expectable that semantics for extended
logic programs provide the information that platypuses are mammals and are
not mammals, platypuses are birds and are not birds, platypuses fly and nurse.

The remarkable points about this example are manifold. First, contradic-
tory information can coexist with safe information without interfering with each
other; in particular, we must not relinquish the information about cats and ducks
after introducing the characteristics of platypuses. Second, we should detect a
contradiction about both the mammal and the bird predicates. Furthermore,
since consequences of these predicates are to be propagated, we should be aware
that the knowledge about platypuses regarding their nursing and flying abilities
is open to doubt because supported on contradiction. Third, any correct infor-
mation should be covered by the program’s model: platypuses are mammals, do
not fly, and nurse their progeny. Finally, it is unsound to introduce a heuris-
tic rule to the effect of dropping all objective (or default) knowledge regarding
platypuses. We want to retain that they nurse their descendants but also to
discard the fly(p) conclusion.

The above taxonomy example clearly identifies another desirable property of
a semantics for extended logic programs. Assume the above knowledge is to be
revised in order to consistently incorporate the new information regarding platy-
puses. All contradiction supported conclusions should be available so that the
desirable and undesirable ones can be identified. Program revision (or declarative
debugging if you prefer) may then be performed, and problematic rule instances
pinpointed, namely in this example

bird(p) « bill(p), warm_blood(p), oviparous(p)

Indeed, we have devised such declarative debugging techniques for logic pro-
grams on the basis of our paraconsistent semantics and contradiction removal
methods. The reader is referred to [63, 64, 65] for the definitions and techniques.
It is manifest from this discussion that conclusions supported on contradiction
are desirable and should not be avoided or discarded, as they contain the neces-
sary information for identifying and fixing the problem.

Another use of paraconsistency is to evaluate the pros and cons of two possi-
ble situations, and take the appropriate measures for each of the contingencies.
This is particularly relevant when representing medical knowledge.

Ezxample 2. An emergency patient arrives at a hospital with the following symp-
toms and signs?:

— Sudden epigastric pain;
— Abdominal tenderness;
— Signs of peritoneal irritation.

These symptoms are common to a perforation of a peptic ulcer and to an
acute pancreatitis. The former requires surgery and the latter solely therapeutic
treatment. The (approximate) rules for diagnosing these two conditions are:

— If a patient has sudden epigastric pain, abdominal tenderness, and signs of
peritoneal irritation then he has a perforation of a peptic ulcer or an acute
pancreatitis®;

— Furthermore, if he has high amylase levels then a perforation of a peptic
ulcer can be eliminated; vice-versa, if he exhibits Jobert’s manifestation then
pancreatitis can be eliminated;

— Under either situation the patient should not be fed, and should take Ho
antagonists.

This scenario can be represented with the following extended logic program:

per foration < sudden_pain, abd_tenderness, per_Zirritation,
not high_amylase.

pancreatitis < sudden_pain, abd_tenderness, per_irritation,
not jobert.

surgery_indication < per foration.
asurgery_indication <— pancreatitis.
anesthesia < surgery_indication.

—nourish < per foration.
—nourish < pancreatitis.

H,_antagonist < per foration.
H,_antagonist < pancreatitis.

Notice that the rules for diagnosing perforation and pancreatitis make use of
the default negation operator. If high_amylase is inserted in the program then
the rule for per foration is not applicable. A similar reasoning is applicable to
the second one regarding Jobert’s manifestation.

Now assume that the physician is uncertain regarding the amylase levels and
existence of Jobert’s manifestation. He either adds nothing to the program or

2 We thank Doctor of Medicine Anténio Dias Ribeiro of Hospital dos Covées, Coimbra,
for providing us with this example. Any mistakes in coding it are entirely our own.

% He can also have a myocardial infarction, but for the sake of simplicity we ignore
this situation.

he adds the information —high_amylase and —jobert to the system, in addition
to the other symptoms sudden_pain, abd_tenderness, and per_irritation. In our
opinion, the same results should be obtainable.

He can conclude that the patient suffers from pancreatitis and perforation
of a peptic ulcer. In either case, the sick person should not be fed and should
take H, antagonists. Anesthesia is recommended but relies on contradictory
information, namely surgery-indication and —surgery_indication. In such a
problematic cases the patient is usually operated on, regardless. Therefore, it
should be possible in some situations to test whether a conclusion depends on a
contradiction.

Another motivation for the use of paraconsistency, and an important one, is
that queries should be executable in a goal-oriented fashion. That being the case,
first it is not desirable to pay an extra price for allowing paraconsistency. Second,
when queries are evaluated in a goal-oriented fashion it is not recommended to
test and check consistency of the entire knowledge base: contradictions are dealt
with at “run-time” instead of at “compile-time”, with the advantage of simplify-
ing knowledge-base updating. If global consistency is to be enforced, then allow-
ing paraconsistency should help in identifying the reasons behind non-intended
conclusions. Restoring consistency can then be carried out in a computationally
more demanding second stage of contradiction removal. Furthermore, since a
precise and declarative meaning of programs should be provided by the under-
lying semantics, one should not be reluctant in having consequences and con-
clusions based on contradiction, as long as they can be distinguished from the
other ones. Moreover, as we have noted, keeping contradiction can be important
for knowledge-representation because it proffers significative information about
contradiction-supported conclusions.

3 Definite Extended Logic Programs

Next we introduce the language of definite extended logic programs without de-
fault negation (or monotonic extended logic programs) and a semantics which is
a common denominator to almost all other semantics examined in this survey.
It is related to Blair and Subrahmanian’s generalized Horn programs [13], Wag-
ner’s logic programs with strong negation [90, 91], and Almukdad and Nelson’s
paraconsistent constructive system N~ [6].

3.1 Language and Semantics

As usual, for the sake of simplicity and without loss of generality, we will restrict
the discussion to (possibly infinite) propositional programs. A non-ground pro-
gram stands for its fully instantiated version, i.e. the set of all ground instances
of its rules. The alphabet of the language of the programs is the set of atoms At.
Atoms can be negated by juxtaposing them with the explicit negation symbol
“=” thereby obtaining the explicitly negated literals. The explicit complement

of aset A ={ay,as,...} is A = {—ay,nasq,...}. The set of objective literals is
OLit = At U —At.

Definition 1. A definite extended logic program is a set of rules of the form
Lg(—Ll,...,Lm. (mZO)

where L; (0 <1i < m) are objective literals. If m = 0 the rule Lg < is said to be
a fact and will be denoted simply by Ly.

One natural idea is to view definite extended logic programs in such a way
that explicitly negated literals are simply envisaged as new atoms. As remarked
in [83] this approach was put forward in [51].

Definition 2. Let P be a definite extended logic program. The model Mp of
the program is obtained as follows:

1. Transform program P into a definite logic program P~ by substituting every
occurrence of objective literals a and —a, respectively, by a? and a™.

2. Let M ™ be the minimal model of P™, which can be computed by the ordinary
Tp operator [25].

3. Then, to obtain the model Mp, reverse the mapping of the first step by
transforming a? € M~ (a™ € M ™) into a € Mp (—a € Mp).

It is obvious that this semantics is monotonic, since it relies on classical logic
to determine the meaning of a program.

Ezample 3. [61, 4] Consider the classical birds example:

flies(X) « bird(X).
= flies(X) < penguin(X).
bird(X) + penguin(X).

Suppose the facts bird(tweety) and penguin(fred) are added to the above
rules. The model Mp of this program is:

{flies(tweety), bird(tweety) }J
{flies(fred),~flies(fred), bird(fred), penguin(fred)}

Notice that in the corresponding classical theory every literal is entailed by the
program, because of the “ex falso quodlibet” principle.

If an arbitrary set of new facts or rules is added to the program, the corre-
sponding model will be a superset of the above. This behaviour is justified by
the monotonicity of the semantics.

Recall that Besnard and Hunter, in the introductory chapter of this volume,
identify three schemas for detecting the presence of contradiction in a theory: C-
scheme, A-scheme and N-scheme. The C-scheme says that inconsistency arises
when all formulas are inferred. In the A-scheme a set of elements of the language

is used to represent absurdity. Finally, the N-scheme relies on the existence of
a negation operator for capturing the notion of contradiction: the simultaneous
truth of a formula A and its negation —A represents an inconsistency.

As can be seem from the above example, we face a contradiction whenever
Mp contains a literal L and its explicit negation —L, corresponding to the
adoption of the N-scheme presented. However, from this contradiction we do
not conclude everything nor do we have a special proposition identifying this
contradiction on this particular objective literal: the C-scheme and A-scheme
are not enforced. Even though the latter two schemes are not inbuilt into the
semantics, the user can explicitly program them, as shown in the next examples.
The semantics is compatible with these schemas.

Ezxample 4. Let us recall the first example of the introduction of this volume.
Consider the language £ = {rain, snow,sun} and the relation C such that
C(T) = L iff {rain,snow} C T. In all other cases C(T') = T. Such a relation
can be implemented by the following definite extended logic program containing
theory 7' and the following rules:

rain < rain, SNOW. SNOW <— rain,SNow. Sun — rain, SNow.
In fact one can drop the first two rules, as they are void.

Ezxample 5. Consider Besnard and Hunter’s illustrating example of the combi-
nation of the A and N-schemes. The language is £ = {coloured, ~coloured,
solid, —solid, fool., fools}. Recall that the literals fool. and fools represent,
respectively, contradiction on literal coloured and solid. The inference relation
should obey:

C({coloured, —coloured}) = {coloured, —coloured, fool.}
C({solid,—solid}) = {solid, —solid, fools}

The logic programming rules implementing these constraints are:

fool. + coloured, —coloured fools « solid, —solid

All other examples can be worked out in a similar fashion. We can now state
our first main result. The most important semantics surveyed here coincide on
the class of definite extended logic programs.

Theorem 3. Let P be a definite extended logic programs. Apart from syntactical
differences, all the semantics reported in [13, 66, 78, 57, 3, 4, 80], and Wagner’s
logic programs with strong negation [91] and with liberal reasoning [90] are iso-
morphic to Mp.

The above theorem fully characterizes the several semantics of definite ex-
tended logic programs in terms of the semantics given in Definition 2.

3.2 Model-theoretic semantics

In order to get a better understanding of the underlying “logic”, we now provide
a model-theoretical characterization of the semantics. We resort to Belnap’s
four-valued logic [11] depicted in Figure 2. The first use of this semantics for
providing the meaning of paraconsistent logic programs was reported in [13]. We
discuss this approach in detail in Section 3.3. The truth-values L, f, t, T stand,
respectively, for undetermined, false, true, and overdefined (or contradictory).

We will resort to the type of representation of Figure 2 to synthetically char-
acterize the several logics to be discussed in this chapter. First, two orderings
on the truth-space are defined: the truth-ordering and the knowledge ordering.
In the former, along the t-axis, we have f <; L, f <; T, L <;tand T <; t. In
the latter, along the k-axis, we have L < f, 1 <pt, f < Tandt <; T.

Our interpretation of the connectives “A”, “V” and “=” is the one described
in [11] and can be found in Tables 2 to 4. The conjunction operation corresponds
to the meet in the truth-ordering while the disjunction operation reflects the join
in the same ordering. The negation operation is obtained by flipping the diagram
along the L /T vertical axis.

Table 2. Truth table for negation

LA JL[E]e[T]
[-ALe]f[T]

Table 3. Truth table for conjunction

[N L[] e [T
L f

LfL|f

flf|f|f|f
t||L|f|t|T
THE[E|T|T

We differ from Belnap’s logic in the definition of the consequence relation
and in the associated implication connective (presented in Table 5).

We define the propositional language of the logic as usual, the notion of
interpretation mapping propositional symbols into truth-values (in this case L,
f, t and T) and its generalization to arbitrary formulas (truth-valuation). We

Table 4. Truth table for disjunction

[vIL]e]e[T]
LiLjLjt]t

fllL|f|t|T
t|t|t|t|t
Tt [T|t|T

Table 5. Truth table for implication

Ll Llf]e][T]
t|t|f

f
f
t
t

| ||

t|t|f
tit|t
tjt|t

designate this logic FOUR. Interpretations are ordered by the usual extension
to sets of literals of the knowledge ordering among literals.

The translation of definite extended logic programs into F OUR logic theories
is immediate. We make use of the notion of designated truth-values from many-
valued logics [76, 87], to define the consequence relation.

Definition 4. Let I be a FOUR interpretation and I the corresponding truth-
valuation. Let F' be an arbitrary propositional formula. We say that I satisfies
F, denoted by I |=4 F, if and only if I(F) € {t, T}.

The set {t, T} forms the set of designated truth-values. An interpretation I
is a model of a theory iff it satisfies all the formulas in the theory. As usual,
I [£4 F stands for “I does not satisfy F.”

Note that the implication operator always evaluates to either f or t. The
whole point of the above definition is to ensure that the following equivalences
are valid:

Theorem 5. Let I be a FOUR interpretation. Then,

I|:4A/\B zﬁ[|:4AandI|:4B
I|:4A\/B sz[':4A or I':4B
I|:4A<—Bzﬁ"[':4A 07’[%4B

To further characterize our logic we need to clarify the notion of equivalence.
In a multi-valued setting one can define (at least) two natural notions of equiva-
lence, one based on the truth-value assignment and another on the consequence
relation.

Definition 6. Let I and G be two formulas of the language of FOUR. We say
that F' =4 G iff I(F) = I(G) for every interpretation I. On the other hand, the

equivalence F' |5 ,G holds whenever for every interpretation I we have I =4 F
iff I =4 G. Otherwise, F' H ,G is false.

Theorem 7. Let F' and G be two formulas of the language of FOUR. Then,
If F =4 G then F H,G

Note that the above theorem is valid for an arbitrary many-valued logic,
whenever = is defined as truth-value equality and |= is expressed by means
of a set of designated truth-values. The two forms of equivalence will be used
only at the meta-language level. Unless stated otherwise, when we talk about
equivalence we mean the weaker form H .

The equivalences true in FOUR are similar to the ones holding in classical
logic. In fact, one can easily show that the associative, distributive, commutative,
idempotent, absorption, double negation, zero/one, and De Morgan’s laws all
hold in the logic FOUR. Also, the Deduction Theorem and Modus Ponens hold
as well.

However, the logic defined is not the classical one. For instance, the ex-
cluded middle and the law of contradiction are not valid (and hence the C-
scheme is not complied with). Furthermore, the implication is not definable in
terms of the other connectives and the contraposition laws are not obeyed*.
Modus Tollens and Disjunctive Syllogism fail. Interestingly, all axioms of propo-
sitional logic hold with the single exception of

(A= B) = (4= (=B)) = (=4))

corresponding to the introduction rule for negation of the natural deduction cal-
culus. The negation of FOUR is not intuitionistic, since both the elimination
and the introduction rules for negation of intuitionistic logic are not obeyed.
Clearly, the logic presented here is neither da Costa’s C,, system [18], since ex-
cluded middle is not satisfied, nor Belnap’s original logic [Belnap, 1977], since
Modus Ponens is a sound rule in FOUR. For more details consult Anthony
Hunter’s chapter in this volume.

After this small detour we provide the desired relationship of logic FOUR
to definite extended logic programs. The following theorem expresses the corre-
spondence between the consequence relation and the truth-assignment of propo-
sitional symbols.

Theorem 8. Let A be a propositional symbol and I an interpretation in a lan-
guage containing A. Then,

* For a definition of these properties see Tables 15 and 16 in the last section of this
chapter.

I =4 Aand I =4 -A iff 1(A)
T4 A and I Wy —A iff I(A)
TWy Aand I =4 =A iff T(A)
TWy A and I Wy —A iff I(A)

[
o e

The results of Theorem 8 are synthesized in Figure 3. A literal is L entailed
by an interpretation I iff I (L) maps to t or T. The explicit complement of
L, i.e. =L, holds iff f(L) maps to f or T. In the remaining of this chapter we
will present the logics as in Figure 3, conveying the information relating the
consequence relation with the truth-valuation function.

The above theorem paves the way to defining an isomorphism between
FOUR interpretations and sets of objective literals on the logic programming
side. The relationship is given by Theorem 9.

Theorem 9. Let P be a definite extended logic program. M p is the model of P
as per Definition 2 iff the following F OUR interpretation Ip is the least FOUR
model of P with respect to the knowledge ordering. Let A be an arbitrary propo-
sition in the language of P. Interpretation Ip is given by:

I(A) = Liff Ad Mp and -A & Mp
I(A)=f iff Ad Mp and -A € Mp
I(A) =t iff Ac Mp and ~A ¢ Mp
I(A) =T iff Ac Mp and -A € Mp

Ezample 6. Consider the definite extended logic program of Example 3. The least
FOUR model Ip of P is given by the mapping:

Ip (flies(tweety)) =t Ip (flies(fred)) =T
Ip (bird(tweety)) =t Ip (bird(fred)) =t
Ip (penguin(tweety)) = L Ip (penguin(fred)) =t

There are other models of the program which convey unsupported informa-
tion, for instance:

Ip (flies(tweety)) =t Ip (flies(fred)) =T
Ip (bird(tweety)) = t Ip (bird(fred)) =T
Ip (penguin(tweety)) = £ Ip (penguin(fred)) =t

This model is not minimal, as required by Theorem 9. Clearly, knowledge
regarding non-penguins and non-bird entities is not expressed in the program.
Therefore, it is unexpected to have —penguin(tweety) and —bird(fred) entailed
by the program’s model.

3.3 Blair & Subrahmanian’s generalized Horn programs

We present in this section the logic programming-based semantics defined in
[13]. Historically, this is the first semantics for logic programs taking into ac-
count the problems of handling contradiction in a coherent manner, and resorts
to a many-valued logic. The authors emphasize the need for a paraconsistent
logic programming semantics as a means to produce a declarative semantics
for arbitrary sets of clauses. They introduced the four-valued logic described in
the previous subsection and made use of the knowledge ordering <. The main
contribution to our discussion is in the definition of a monotonic fixpoint op-
erator with respect to <y, providing a direct way to compute the least model
Ip of a definite extended logic program. The negation operation is also adopted
and defined by them according to Table 2. We will restrict the comparisons and
definitions to the ground case.

Definition 10. [13] A generalized Horn program (GHP) is a set of gh-clauses,
i.e. those of the form Ag : puy < Ay : & ... &A, : p, where Ag,..., A, are
objective literals and pg,-..,u, are truth values (or annotations) from 7 =
{L,f,¢,T}5

In the original definition, a GHP is a finite set of possibly non-ground gh-
clauses. The definition of interpretation is, as usual, a function from the Her-
brand base into the set of truth-values 7 forming a complete lattice, ordered by
the extension to interpretations of the order among literals <;. The notion of
satisfaction of a formula by an interpretation is again as usual, with the excep-
tion of annotated literals. An interpretation I satisfies A : p iff I(A) =4 u, and
I satisfies = A : p iff it satisfies A : —u. Thus, every negated annotated literal
—A : p can be replaced by A : —~u everywhere in the program. The semantics
of a generalized Horn program G is given by its least model under ordering <.
This model can be determined by a continuous operator on the complete lattice
of interpretations, which is the natural generalization of Tp to GHPs.

Definition 11. [13] Suppose G is a GHP. Then T§"F is a mapping from the
Herbrand interpretations of G' to the Herbrand interpretations of G' defined by:

TEHP(D)(A) = lub{p |A:p< By & ... &By, : uy, € G
and I E By i & ... &By : g }-

In other words, the truth value p of A is the least upper bound of all the us of
gh-clauses for A with body satisfied in I. Note that lub{} = L.

5 In fact, the authors only consider well-annotated literals in the above rules. A literal
A : p is well-annotated iff p is £ or t. Their results easily carry over to this more
general syntax [43].

Example 7. Consider the following program G:

pla):t <=qla): f & r(a):t
pb):t<=q):f&r(d):t
ple):t<=qle):f&r(c):t

~ —

qla):t <= q(b) qle) : £ <=
r(a) : t < r(a)

r(b) : f < r(e) : t <

f <
f <

The computation of the least fixpoint proceeds as follows:

TgHP TO TgHP Tl TgHP TQZTgHP T3

pla) L 1 L = 1
pb) L 1 L = 1
ple) L 1 t = t
gla) L t t = t
ab) L £ f = f
q(c) 1 f f = f
r(a) L T T =T
r(b) L £ f = f
r(e) L t t = t

The relationship to definite extended logic programs is made via the following
definition:

Definition 12. Let G be a GHP and consider an arbitrary gh-clause of) of the
form Ag : po < Ay - & ... & A, : py,. The body of the gh-clause is transformed
into a conjunction Body, of objective literals, by replacing each annotated literal
A; ot (4; - f) by A; (—A;). Annotated literals 4; : T are replaced by the
conjunction A; A = A;. Literals A; : L are deleted since they are satisfied in any
interpretation.

The definite extended logic program is constructed from each of the
gh-clauses as follows. If g = L we add nothing to QHP. If g = f (o = t) we
add the rule —Ag « Body (Ap < Body). Otherwise, i.e. up = T, we add both
of these rules to the program.

QGHP

Example 8. Let G be the following GHP:
a:l<b:t. a:t<b:f&c:T b:f<c:t ¢c:T<d: L.
The resulting transformed extended logic program GSHF is:
a < ~b,c,c. —b + c. c. c.

The transformation of Definition 12 is very similar to the one appearing
in [91], ours being defined for all generalized Horn programs. Essentially, Wagner
does not consider the case of body literals annotated with L.

Theorem 13. Let G be a GHP, G = [fp(TSHY) and M = Mgaur. The follow-
ing equivalence between G and M holds:

GA)=Liff AgM and ~A¢ M
GA) =f iff A¢ M and -Ae M
G(A) =t iffAc Mand ~A¢g M
GA) =T iff Ae M and ~Ae M

The model is {p(c), g(a), 7q(b), ~q(c), r(a), ~r(a), r(b),r(c)}, correspondong to
TEHP 43 of Example 7.

Of course, the converse question naturally arises: are we able to transform
definite extended logic programs into generalized Horn programs ? The answer
is yes. The result follows from the previous theorem since it is clear that GHPs
without literals annotated with L or T are in one-to-one correspondence with
definite extended logic programs. As an immediate corollary we realize that every
GHP can be transformed into an equivalent GHP without occurrences of literals
annotated with L or T, corresponding to the well-annotated programs of [13].
Furthermore, operator TSP can be readily applied in the computation of the
least FOUR interpretation Ip of a definite extended logic program by inverting
the GHP-transformation of Definition 12.

What is the operational mechanism necessary to implement Blair and Sub-
rahmanian’s semantics? Most of their article is devoted to the study of a SLD-like
proof procedure for their semantics. They provide complex definitions and very
weak results regarding its soundness and completeness. By translating GHPs into
logic programs a derivation procedure based on SLD is readily implementable.

3.4 Wagner’s logic programs with strong negation

Wagner has been a supporter of the introduction of explicit negation and con-
structive based paraconsistent logics in logic programming [59, 60, 88, 89, 90, 91].
His main motivating works are Nelson’s constructive logic N with “strong nega-
tion” [55], Belnap’s system B [11] and Levesque’s vivid reasoning research pro-
gramme

[46, 47]. In his book [91] several proposals for extending logic programming with
strong negation in Nelson’s sense are explored, under the form of “Vivid Rule
Knowledge Bases.” One such system corresponds, as we shall see, to what we
previously named definite extended logic programs.

Definition 14. The language of logic programs with strong negation consists of
the logical operator symbols A, V, ~ and 1, standing for conjunction, disjunc-
tion, strong negation, and the verum, respectively, where the latter represents a
tautology.

A logic program with strong negation is a set of clauses of the form [« F
where [is an atom a or its strong negation ~ a, and F' an arbitrary formula.

The author assumes the language to have a finite number of atoms, with no
function symbols. As usual and without loss of generality, we will restrict the
discussion to the ground instantiation of a logic program with strong negation.
Furthermore, we assume that the premise F' of an implicational formula [< F
is a conjunction of literals. As shown by Wagner [91], every program in the full
syntax can be transformed into an equivalent one in this more restricted format.

His definition of the intended semantics for this class of programs is quite
simple and is based on the notion of partial models:

Definition 15. A partial Herbrand interpretation M = <Mt, Mf> is a pair of
sets of atoms, where M? contains the true atoms and M7 the false ones. A partial
interpretation gives rise to both a model relation (=) and a countermodel one
():

MEa iff a € M?

MEFAG if MEFand MEG

MEFVG ff MEFo MEG

ME~F if MSF

M=a iff ae M/
MEFAG iff MHFor M3G
MAFVG if M=Fand M4G
M= ~F if MEF

The attentive reader will notice the similarities of the above definition with
Levesque’s logic of implicit belief (see Meyer and Hoek’s chapter in this volume).
However, Wagner does not define a belief operator in his language.

The definition of model for logic programs with strong negation is obtained
by describing the intended meaning of the implication rule operator:

Definition 16. A partial Herbrand interpretation M is called a model of a logic
program [T with strong negation, symbolically M |= I, if, for all l «+ F € II,
M E F implies M [.

With this model definition, Wagner showed that every logic program with
strong negation has a least model M with the property that a formula F' is
entailed in every model of IT iff it is entailed by M. The semantics of his
programs is provided by this least model M. This is not surprising and the
attentive reader will notice immediately the similarities of the above definitions
with the semantics for definite extended logic programs of Section 3.1. In fact
the following natural correspondence holds:

Theorem 17. Let II° be the extended logic program obtained from a logic pro-
gram with strong negation II by substituting every literal of the form ~ A by
—A. Then, Mg Eaiff a € My and Mg |E~ a iff ~a € M.

After model-theoretically defining his semantics, Wagner tries to give it a
proof-theoretic interpretation. Wagner characterizes a special class of logic pro-
grams, which he designates well-founded and semi-well-founded, by showing that
My |= Fiff IT |=n- F, where F is an implication free formula and - is the
paraconsistent system obtained from Nelson’s logic IV by dropping the axiom
schema ¢ — (~ ¢ — %) [6], i.e. adopting a non-explosive behaviour in face
of contradiction (not everything follows from a contradiction, i.e. dropping the
C-scheme). In fact, the adequateness of M with respect to logic N~ is known
to hold for arbitrary definite extended logic programs:

Theorem 18. [56, 57] Let II be a logic program with strong negation, and L
a literal in the language of II. Then L belongs to My iff I =n- L.

Therefore, for the case of definite extended logic programs, the objective
literal consequences of M are the consequences of Nelson’s paraconsistent
constructive logical system N~. Therefore, the logic provided in Section 3.2 is
equivalent to the restriction of Almukdad and Nelson’s system N~ to the lan-
guage of definite extended logic programs! Other results relating ordinary logic
programming semantics with constructive logics can be found in [15, 16, 17].

4 Extended Logic Programs: WFS based semantics

Since definite extended logic programming is monotonic in character, a non-
monotonic reasoning mechanism is needed to increase the expressive power of
the language. As usual, the default negation operator “not” is employed for that
purpose.

We start by extending the language of extended logic programs with the de-
fault negation symbol, applicable to objective literals only. Thus, default literals
are of the form nota and not —a, where a is an atomic proposition in the lan-
guage’s alphabet. The set of all literals is Lit = OLit Unot OLit, where default
negation of a set of objective literals stands for the set comprised of the default
negation of each one.

Definition 19. An extended logic program is a set of rules of the form
Lo+ Lyi,...,Ly,not My,... not My (m,n >0)
where L; (0 <i <m) and M; (1 < j <n) are objective literals.

With the introduction of default negation a Pandora’s box opens. We ad-
dress in this section only three-valued extended logic programming semantics,
and in the next section the two-valued ones. Two paraconsistent extensions of
Well-Founded Semantics are presented, namely Sakama’s extended well-founded
semantics and our own paraconsistent Well-Founded Semantics with Explicit
Negation [3, 20], WFSX,. We conclude by studying Wagner’s Vivid Knowledge
Bases under liberal reasoning [90, 91].

4.1 Sakama’s Extended Well-founded Semantics and Przymusinski’s
Extended Stable Semantics

The first attempt to introduce explicit negation into well-founded semantics was
made by Przymusinski in [71], motivated by the work of Gelfond and Lifschitz
in answer sets semantics [35]. His semantics also views explicitly negated literals
simply as new atoms. However Przymusinski’s Extended Stable Semantics, by
definition, discards all inconsistent models, i.e. those which contain both A and
—A for some atom A. This corresponds to the adoption of the C-scheme and
the N-scheme discussed in the introduction of this volume. Sakama dropped
the C-scheme in his Extended Well-Founded Semantics [78], thereby obtaining
a paraconsistent version of WFS for extended logic programs (EWFS). The
original presentation of his semantics is based on Przymuskinski’s constructive
definition of WFS in terms of the © operator [69]. We prefer the following more
declarative and simpler definition, which is equivalent to the one in [78] and
supercedes the one of Definition 2.

Definition 20. Let P be an extended logic program. The extended well-
founded model Mp of the program is obtained as follows:

1. Transform program P into a normal logic program P~ by replacing all occur-
rences of literals A, —=A, not A and not = A by, respectively, AP, A™, not AP,
and not A™.

2. To obtain the model Mp undo the mapping of the previous step with respect
to the resulting WFM (P™).

Example 10. Consider the following extended logic program:
a < notb. b <+ nota. —a.

The extended well-founded model of this program is {—a,not—b}. Mark that
even though —a belongs to the model we do not have not a and hence b neither.

Probably one of the most interesting aspects of Sakama’s paper is the (ten-
tative) model-theoretical characterization of his EFWS. The author uses logic
VII of Ginsberg [36, 37] to define the model-theory for his version of WFS.

Logic VII was introduced by Ginsberg to represent default assumptions (see
Figure 4).

The reading of the 7 truth-values {L,df,dt,*,f,t, T} is, respectively, un-
defined, false by default, true by default, don’t care by default, false, true, and
contradictory. The consequence relation =7 is defined, again, in terms of the set
of designated truth-values {t, T}. For details consult Definition 4. The underly-
ing language of logic theories is extended with the not operator. The definition
of the two negation operations is given in Table 6.

Once again, the — operation flips the diagram around the vertical 1 /T axis.
Clearly, default negation is not an extension of classical negation since we have
notf = dt and nott = df. We believe that there is no natural reading for the
default negation operator, namely what regards the mapping of the more definite

Table 6. Truth table for negations in Logic VII

A [L[dffdt][«]f[¢[T]
-A ||L|dt|df ||t | f|T
not A|L| t | £ |T|df|dt]| =

truth-values (f,t, and T) to their default negations (dt, df, and *). In fact, one
cannot say that not, as defined by Sakama, is a true negation if we stick to the
following three fundamental properties:

“ »

Definition21. [37] A negation operator “~” in a bilattice
should satisfy the following three properties:

1. If A SkBthenNASkN B;
2. If A St B then ~ B StN A,
3. It is always the case that A =~~ A;

If the double negation condition (3) is not verified then the negation operator is
said to be weak [28].

The intuition is that negations should reverse the degree of truth but preserve
that of knowledge. The double negation law is dispensable; consider for instance
intuitionistic logic. Obviously, “not”, as defined in Table 6 does not satisfy the
first mandatory property.

The conjunction and disjunction operators are, as usual, the meet and join in
the truth-ordering. Implication is two-valued and defined (as in our logic FOUR)
in order to guarantee validity of

I|:7A(—BiffI|Z7AOI'II7$7B

Several theorems of classical logic are not valid in VII. Namely the excluded
middle and the contraposition laws are not verified for both forms of negation,
the law of contradiction is not valid for explicit negation (but holds for default
negation), and De Morgan’s laws do not hold for not . The implication connective
A < B is not definable in terms of the classical relation AV =B (or AV not B).
Furthermore, Modus Tollens is invalid for both forms of negation but nevertheless
Disjunctive Syllogism still holds in VII for default negation. Another important
property which is not valid is the coherence principle of [61, 4]:

If I =7 =F then I |=7 not F

for any formula F'.

We defer the discussion of this principle to the next section. Other fundamen-
tal equivalences of classical logic are true in VII, namely the associative, dis-
tributive, commutative, idempotent, absorption, double negation, and zero/one
laws. Also, the Deduction Theorem and Modus Ponens hold. Furthermore, the
two negations not and — are interchangeable, i.e.

not—A H ,—not A

One can easily conclude that VII is neither classical logic, intuitionistic logic,
nor da Costa’s C, system.

Another interesting aspect of logic VII is difference in the two notions of
equivalence (=7 and | ,). It is immediate that

AV(BAC)#Z; (AVB)A(AVC)
ANBVC)Z; (AANB)V(ANC)
ANAnotA #;f

This means that the distributive laws and the contradiction law for default
negation are not valid under the stronger form of equivalence =7. For all other
properties mentioned above the two forms of equivalence coincide.

The relationship between the extended well-founded model and a VII inter-
pretation is given by the following theorem.

Theorem 22. [78] Given the extended well-founded model Mp of a program P
construct a VII interpretation as follows, where A is an arbitrary atom:

— If A and —A belong to Mp then I(A) = T;

else, if A € Mp, respectively =A € P, then I(A) = t, respectively I(A) =f;
— else, if not A and not —A belong to Mp then I[(A) = x;

else, if not A € Mp, respectively not ~A € Mp, then 1(A) = df, respectively
I(A) = dt;

— otherwise, I(A) = L.

Then, interpretation I is a VII model of program P. The relation is patent in
Figure /.

However this seven-valued logic is not the natural logic for EWFS. We believe
that a nine-valued does a better job since, according to WFS, a literal is assigned
one of three logical values: false, undefined, or true.

This means that one can assign nine different combinations of logical values to
the pair of literals A/—A, which correspond to the following nine interpretations
in extended well-founded semantics:

{ {4} {-4} {4,-4} {notA}
{A,not-A} {-A,notA} {notA,not~A} {not-A}

But if we have nine combinations and seven logical values some grouping must
take place in logic VII. Indeed, the interpretations {A} and {—~A} are grouped,
respectively, with {4, not ~A} and {—A4,not A}, corresponding to VII’s logical
values true and false. This seems to us undesirable, and can lead to odd be-
haviour as shown in the following example.

Example 11. Consider the following two extended logic programs:

b nota b+ nota
Plz{ a } P, =< a<+ nota
-a

In P, a and b are assigned, by Sakama’s extended well-founded semantics, the
logical values false and true, respectively. In the second program a is still assigned
the truth value false, but “oddly” now b is no longer true: it has become default
true. Semantically, nothing should have changed since a kept its truth value.

4.2 Paraconsistent Well-Founded Semantics with Explicit Negation

Both semantics in the previous section see default negation and explicit negation
as unrelated. To overcome this situation a new semantics for extended logic pro-
grams was proposed in [61, 4]. Well-founded Semantics with Explicit Negation
(WFSX for short) embeds a “coherence principle” providing the natural miss-
ing link between both negations: if =L holds then not L should too (similarly,
if L then not—L). In Example 10, literal —a is true but nota is not entailed
under EWFS. With WFSX the more intuitive model {—a, b, not a, not b} is ob-
tained. More recently, a paraconsistent extension of this semantics (WFSX))
has been proposed in [3, 19] via an alternating fixpoint definition that we now
recapitulate.

We begin by recalling the definition of Gelfond-Lifschitz I" operator, used in
the alternating fixpoint definition of WFS [31], WFSX, and WFSX,.

Definition 23. [34] Let P be an extended program, I a two-valued interpreta-
tion. The GL—transformation produces the reduct ?, i.e. the program obtained
from P by removing all rules containing a default literal not A such that A € I,
and by then removing all the remaining default literals from P. By definition
I'pl =M E.

To impose the coherence requirement Alferes and Pereira resort to the semi-
normal version of an extended logic program.

Definition 24. [61, 4] The semi-normal version P, of a program P is obtained
from P by adding to the (possibly empty) Body of each rule L < Body the
default literal not =L, where —L is the complement of L with respect to explicit
negation.

The semi-normal version of a program introduces a new anti-monotonic oper-
ator: I'p, (S). Below we use I'(S) to denote I'p(S), and I's(S) to denote I'p,(S).

Theorem 25. [3] The operator I'[s is monotonic, for arbitrary sets of literals.

Consequently every program has a least fixpoint of I'Ts. This defines the
semantics for paraconsistent logic programs. It also ensures that the semantics
is well-defined, i.e. assigns meaning to every extended logic program.

Definition 26. [3]

Let P be an extended logic program and T a fixpoint of I'T, then T U
not (Hp — I,T) is a paraconsistent partial stable model of P (PSM,). The
paraconsistent well-founded model of P, WFMy(P), is the least PSM, under
set inclusion order.

To enforce consistency on the paraconsistent partial stable models Alferes and
Pereira need only insist the extra condition 7' C I';T be verified, which succintly
guarantees that for no objective literal, L and not L simultaneously hold. So
it automatically rejects contradictory models where L and —L are both true
because, by coherence, they would also entail not L and not —L. This once more
corresponds to the simultaneous use of the C-scheme and N-scheme. Therefore
WFSX, generalizes WFSX, as it does not impose this additional condition.
Furthermore, for normal logic programs, it coincides with WFS.

Example 12. Let P be the extended logic program P:

{c(—notb a d(—notd}
P =
b<a -a

The sequence for determining the least fixpoint of I'I’s of program P is:

Iy = {}

IL =ITd} = I'{a,—a,b,c,d} = {a,—a,b}
I, =I'T{a,—a,b} = TI{d} = {a,—a,b,c}
Is = I'lT{a,~a,b,c} = I'{d} =1

Thus WF M,(P) = {a,a,b, c,not a,not —a, not b, not b, not ¢, not ~c, ~d}.

One of the distinguishing features of WFSX, is that it does not enforce de-
fault consistency, i.e. a and not a can be simultaneously true, in contradistinction
to all other semantics. In the above example this is the case for literals a, —a,
b and c. It is due to the adoption of the coherence principle: for instance, be-
cause a and —a hold then, by coherence, not -a and nota must hold too. We
will return to this issue later and see its usefulness for detecting dependencies in
contradictory information.

Next we consider a useful program transformation from WFSX, to normal
programs under WFS semantics which preserves the paraconsistent well-founded
model, though not the other PSMps. This is achieved at the cost of doubling the
program size and computation. The main idea is to use a variant of the doubled
program construction of [24, 92] (see also [9]), which doubles the number of rules
of the program: one takes care of computing the I's part and the other the I”
part:

Definition 27. Let P be an extended logic program. Normal logic program
PT=TU is derived from P by replacing each rule with two new ones obtained
from it. First, every atom A (—A) is replaced by AP (A™) and:

— In the first new rule all default negated occurences of objective literals are
subscripted with TU, and all other objective literals with T';

— In the second new rule all default negated occurences of objective literals are
subscripted with 7" and all other objective literals with T'U. Furthermore,
if AP (A™) is the head of the new rule then not A™ (not AP) is added to its
body.

The difference to the doubled program construction is in the introduction of
the extra default literal in the body of rules of the second rule form. Note the
similarities of the second form with the semi-normal program for P. The two
subscript distinct program parts are computationally linked via the program
divisions on default negated literals.

Ezxample 13. Let P be the extended logic program:
a < —c,notb. b < —a,b,not c,not —b. -q.
The resulting T'— T'U transformed program is:

aly i not by
alpy < iy, not b, not alp.
V. < a%t, bl not ¢y, not bl
P n P n n
Wy albyr, by, not ¢, not bk, not bly.
n
a.
T
aly < notay
TU T

Rules for literals subscripted with T'U are used to derive the literals obtained
at the I steps, and the ones subscripted with T the ones obtained at the I'[
steps. With this idea in mind the following result is more or less straightforward:

Theorem 28. Let P be an extended logic program. Then the following equiva-
lence holds for an arbitrary atom a:

~a€WFM,(P) iff a. € WFM(PT-TU);

--a € WFM, (P) iff a% € WFM (PT-TY);

-nota € WFM, (P) iff notal,; € WFM(PT-1U);

- not—a € WEM, (P) iff notal,;, € WFM(PT-1Y).

Now we address a main criticism leveled at the original definition of well-
founded semantics with explicit negation regarding its model theory. In [61, 4]
the definition of the logical implication operation is not truth-functional and
literals @ and —a are viewed almost as separate entities: though —a entails a
false, nothing else follows for other truth values. Furthermore, in some cases
the head of a rule can be assigned the truth value f, the body u, and the rule
(f < u) be satisfied, namely when the head of the rule is made explicitly false

by some other rule, a phenomenon known as overriding (see Example 14 below).
This is due to the coherence principle, and it might be considered awkward in a
three-valued logic. In other cases, where coherence does not intervene, the rule
is unsatisfiable, thus showing the non truth-functional character of the model
definition used.

Example 1. Consider the following extended logic program
b+ a. a < nota. =b.

The model of this program according to WFSX and WFSX, is {not-a,-b,
notb}, i.e. the undefinedness of a in the rule for b is overriden by the explicit
falsity of b. Compare with the model obtained with EWFS where the set of
conclusions is simply {not —a,—b}.

In [20, 19] we have provided a nine-valued truth-functional model theory
for WFSX,, based on Ginsberg’s bilattices concept [37], which is displayed in
Figure 5.

The set of truth-values is {L,df,dt,f,t,I,II, M, IV}. The consequence rela-
tion |=9 is obtained as per Definition 4 by letting the designated truth-values be
t, Il and I. By L we mean no opinion (or undecidedness or undefinedness), and
it corresponds to the bottom element of the lattice according to the knowledge
ordering. The two additional logical values correspond to default falsity (df) and
default truth (dt). We have also the classical t and f values, and four degrees of
contradictory information. The truth value IV should be understood as contra-
dictory belief, i.e. df and dt. The higher truth values I and I in the knowledge
ordering can be understood as truth plus contradictory belief and falsity plus
contradictory belief, respectively. Finally, I is the contradictory truth-value.

It might be controversial to say that IV is contradictory. It rather depends
on the interpretation of the not operator on the logic programming side. Some
works [74, 79, 80] interpret not F' as the belief in the falsity of F', formally B—F'.
Consequently, nota and not —a respectively entail B—a and Ba, i.e. in truth-
vale IV one simultaneously believes in the falsity of —a and in the truth of a.
This form of inconsistency is known in the paraconsistency literature as epis-
temic contradiction, which does not raise any problem from a conceptual point
of view [76, 68, 42]. In other works [33, 73, 14, 2] the reading of the default nega-
tion operator is =B and therefore the simultaneous truth of nota and not —a
is understood as —=Ba and —B-a, i.e. in truth-value IV one does not believe in
neither the truth of a nor the falsity of a, which is not inconsistent unless one
insists on the logic programming side that a is two valued.

We adhere to the former interpretation of the not operator, which is in
accordance with our intuitive reading of literals, and allows for three-valued
interpretations of logic programs.

Disjunction and conjunction are defined, respectively, as the meet and the
join in the truth-ordering (from left to right in the figure, f being the bottom
element and t the top one). We define the two negation operators according to
the truth-table depicted in Table 7.

Table 7. Truth table for negations in logic NZNE

[A [L[df[de[f[¢[T/ T[]V
~A |[L|dt|df [¢|F|[I|W]| 0|V
not A L]t | F [E|F|T[1|11

The rationale is that — finds the degree of knowledge conviction about the
negation of a proposition, in exchanging the roles of what counts for and what
counts against it, with respect to the L /T axis. The not operator determines
if the negation of a proposition is at least believed. It is immediate that — is
a negation operator, and that not is a weak negation operator, in the sense
of Definition 21. Finally, rule implication is two-valued and defined as before:
A < B is fiff B has one of the designated truth-values and A has none of them;
otherwise, A + B is t.

A remarking feature of NZNE is the set of classical truths which are still
obeyed. In particular, all of the associative, distributive, commutative, idem-
potent, absorption, zero/one, and De Morgan’s laws hold in the logic NZNE.
The double negation law for explicit negation is obeyed. Even though double
negation law fails for not the intuitionistic property A — not not A is a theorem
of NINE. Also, the Deduction Theorem and Modus Ponens hold. Interesting
too are the properties which are not valid: the excluded middle principle, the
contradiction law, the contraposition law and the classical definition of impli-
cation in terms of — or of not. In fact, the first two properties are not desired
in a paraconsistent logic for well-founded based semantics. Furthermore, Modus
Tollens and Disjunctive Syllogism are not sound rules with respect to NZNE.
We finally should mention that the negation symbols not and — are interchange-
able, i.e. not ~A H y—not A. Obviously, the coherence principle, if I =9 —L then
I =g not L, is valid in NZNE. As for the logics discussed before, NZNE does
not coincide with any of the classical, intuitionistic, or C,, systems.

The adequateness of NZN'E as the underlying model theory for WFSX , is
provided by the following theorem:

Theorem 29. [20, 19] Let P be an extended logic program and M a partial
paraconsistent stable model of P. Let I be the NIN E-interpretation and A an
arbitrary atom in the language of P:

I(A) =1 iff A¢I and -A¢I and not A¢I and not —~A¢I
I(A) =df iff A¢I and -A¢I and not A€l and not —~A¢I
I(A) =dt iff A¢I and -A¢I and not A¢I and not —~A€l
I(A)=f iff A¢I and —A€Il and not A€l and not —~A¢I
I(A) =t iff A€l and —-A&I and not AZI and not—A€l
I(A) =1 iff A€l and A€l and not A€T and not ~A€l
I(A) =1 iff A€l and -A¢I and not A€l and not —A€l
I(A) =II iff A¢I and —A€l and not A€l and not —A€l
I(A) =IV it A¢I and —A&I and not A€l and not —A€l

Then, I is a NINE model of P.

To conclude, we have proven elsewhere [19] that appropriate extensions of
Dix’s desirable strong and weak properties of a semantics [23, 22] for the paracon-
sistent case are all obeyed by WFSX,. All strong principles, with the exception of
Cautious Monotony, are verified by
WFSX,. However, two natural new versions of Cautious Monotony for gen-
eral logic programs were set forth by us, and we have proven WFSX,, satisfies
them. The weak principles were devised especially for normal logic programming
semantics, and therefore it is natural that with an extended language they have
to be modified to reflect the more general framework. With the exception of
Modularity, Equivalence, Isomorphy, Weak model property and Mp-extension,
all other properties had to be adapted for the paraconsistent extended logic
programming case.

4.3 Wagner’s Vivid Knowledge Bases under liberal reasoning

Similarly to what was done in the previous section for definite extended logic
programs with “not”, Wagner introduces alternatively a non-monotonic nega-
tion operator, “—”, which he names weak negation. The meaning of the weak
negation operator is defined by extending the model and countermodel relations
of Definition 15 induced by a partial interpretation with the following two rules:

ME-F iff MEF M= —F iff MF

Notice that this rendering of weak negation has the flavour of “negation by
failure” since —F' is true if we don’t have F' in a given partial interpretation
M. But as it stands some problems are immediately foreseeable. First, in every
partial interpretation we have M [a V —a, i.e. weak negation is “two-valued”.
Furthermore, it is impossible to have simultaneously a and —a true, i.e. M |=
—(a A —a).

Definition 30. [91] A vivid knowledge base (VKB) is a set of clauses of the
form [< F where [is an atom @ or its strong negation ~ a, and F' an arbitrary
formula constructed from the language defined by the logical operator symbols
A, V, ~, —and 1.

It is possible to transform an arbitrary VKB into a set of rules of the form
l + E, where E is a conjunction of literals (atoms or strong negation of atoms)
and weakly negated literals. Vivid knowledge bases of this form Wagner calls
extended deductive databases XDBs [90, 91]. So, without loss of generality, we
will restrict our discussion to these.

Like two-valued normal logic programs XDBs do not have a single minimal
model. Because of this, Wagner tries to define the consequences of a XDB proof-
theoretically. Let X be a XDB, E a set (conjunction) of literals and weakly
negated literals, and [a literal:

1) Xk 1

(—) X by — =1 if Xkl

(A XHE ifVeeE:Xke
(—/\)Xl—l—E if dee E: X —e

) Xkl #3(1«E)eX:XHE
(=) X+ -l Vi« E)eX:XH -E

This form of reasoning is called liberal since the truth or weak falsity of [(the
strong negation complement of [) does not affect the truth or weak falsity of .
Unfortunately some syntactic restrictions must be enforced so that the inference
relation can be defined in such a recursive manner (besides assuming that the
language does not have function symbols).

Ezample 15. Consider the XDB X = {a < bA¢;b + a;c+ 1;d + —d}. For X
we have the following infinite derivations:

Xl—la Xl—l—a Xl—ld
| | |
Xk bAae Xl—l—(b/\c) Xk —d

| |
Xk band X e Xtk —bor X+ —c¢ Xtk d

| |
Xtk aand X H; 1 Xtk —aor XFH -1

| |
Xl—la Xl—l—a

To avoid unending derivations and guarantee that a unique preferred model
is obtained Wagner imposes syntactic restrictions on theories such that the in-
tended conclusions of the XDB can be defined proof-theoretically: well-foundedness
and weak well-foundedness. The former discards programs with positive loops
or loops through weak negation. The latter allows positive loops while rejecting
negative loops over weak negation. For the case of weakly well-founded XDBs
Wagner defines the concept of perfect model, which is the immediate transla-
tion of Przymusinski’s perfect model notion [70] into the XDB setting. Given
this notion, Wagner then defines a new inference system (let us designate it by

I—;OOP) which is adequate with respect to the perfect model My, i.e. Mx = F
iff X I—iool’ F'. Inference system I—;OOP is F; plus loop-checking, failing all positive
cycles. Furthermore, for a well-founded XDB we have X I—;OOP Fiff X+ F.

The translation of weakly well-founded XDBs to logic programs is immediate,
via the usual isomorphism.

Definition 31. Let X be an XDB. Normal logic program P! is constructed from
X by substituting every occurrence of 1, a, ~ a, —a, and — ~ a, respectively by
true, a?, a™, notaP, and not a™, where a is an arbitrary atom.

It is immediately recognizable that an XDB X is well-founded iff P! is acyclic
[8] and weakly well-founded iff P! is locally stratified [70]. Therefore P! is locally
stratified and has a unique perfect model which is equivalent to the well-founded
model of P! [69]. It is not difficult to see that the following correspondence holds:

Theorem 32. Let X be a weakly well-founded XDB. Then the following equiv-
alences hold, where a is an atom in the language of X :

MxEa iffa? € WFM(PY)
Mx E —a iff nota? € WFM(P')
Mx E~a iffa® € WFM(P')
Mx E — ~a iff nota™ € WFM(P')

The main conclusion is that Wagner arrived at a semantics which is a re-
stricted case of Sakama’s extended well-founded semantics. This is most inter-
esting because Wagner started from paraconsistent constructive logics, thus for-
mally justifying some of the ideas behind extended logic programming semantics.
Unfortunately, the non-weakly well-founded programs are not taken care of, and
we still have to find out if there are intuitions in the mathematical logic field
which might justify three-valued extended logic programming semantics. A sug-
gestion by Wagner consists in extending partial interpretations with two more
sets, M¥ and M where the truth of —a and — ~ a are checked by testing,
respectively, if a € M¥ and a € M. The only condition required according to
Wagner is default consistency:

MY Mt = {} and MnMS = {}

Then a partial interpretation <M t M7t > in the sense of Wagner would have an
equivalent 4-place interpretation N with N* = M*, N¥ = Mf, N = At — M7
and N¥ = At — M, where At is the set of atoms of the underlying language.
Coherence is expressed by the condition:

Mt C M and M c Mm#

But default consistency and coherence entail M* N M7 = {}, and so no form of
paraconsistency is allowed when we have both.

Thus his liberal semantics foregoes the coherence principle instead of default
consistency, since it must allow M? N M/ # {}. For instance, if a < 1 and
~ a ¢ 1 simultaneously belong to an XDB then the weak negations —a and
— ~ a are not entailed. In general, the coherence principle could be obeyed only
if there is no pair of literals a and ~ a true in the model. This might make sense
in Wagner’s setting since there is not the need to override “undefined” literals
mentioned earlier (cf. Example 14) as by construction there are no undefined
atoms! But for our three-valued based WFSX, semantics this overriding seems
desirable, and even intuitive. However, by our previous results, if coherence is
not desired then a simple program transformation suffices to impede it: the P~
transformation of Definition 20. So, on the one hand we have a semantics with
an interpretation of weak negation as pure “negation by failure” which does not
assign semantics to every program and cannot obey coherence. On the other, we
have a semantics which assigns meaning to every extended logic program, with
an intuitive coherence principle which can be disabled if wanted. We opt for the
second approach and so drop the default consistency axiom instead, i.e. we think
coherence is more fundamental than default consistency: if we allow one form of
paraconsistency, on objective literals, why not allow it on subjective ones too 7

5 Extended Logic Programs: AS based semantics

The other semantics mainstream for extended logic programs originates in the
Answer Sets semantics. Its main feature is two-valuedness, i.e. either L or not L
holds. According to Wagner’s terminology this makes it a weak negation interpre-
tation of default negation. In contrats to Wagner’s liberal reasoning none of the
semantics overviewed in this section are restricted to the class of locally stratified
programs. We first discuss a direct generalization of Answer Sets Semantics [35],
independently proposed by several authors: Stable Environments [66], Weak An-
swer Sets [57] and Paraconsistent Stable Models [80]. Next we treat Sakama and
Inoue’s Semi-Stable Models, which assign meaning to every extended logic pro-
gram, and coincide with the Paraconsistent Stable Models whenever the latter
exist. Finally, we briefly present the OD-semantics of Grant and Subrahma-
nian [40].

5.1 Paraconsistent Stable Models

We start by presenting the generalization of Answer Sets to the paraconsistent
case proposed independently by [66, 57, 80]. The semantics is defined for the
disjunctive case, but we restrict the discussion to disjunctive free programs. For
the purpose of simplifying further comparisons, we use the terminology of [80],
namely the term Paraconsistent Stable Models®.

In what follows interpretations are now sets of objective literals.

6 We would prefer the term “Paraconsistent Answer Sets”.

Definition 33. Let P be an extended logic program and I an interpretation. [
is a paraconsistent stable model (shortly, p-stable model) of P iff [= I'pI.

Ezample 16. Consider program {—a;a + notb}. This program has the single
p-stable model {a;—a}, coinciding with the paraconsistent well-founded
model.

The relationship to WFS is immediate and again established through the
program transformation P~ of Definition 20.

Theorem 34. Let P be an extended logic program. Then I is a p-stable model
of Piff IUnot{L|L¢&I})" is a partial stable model of P~ under WFES se-
mantics.

As remarked in [80], Paraconsistent Stable Models are incomparable to An-
swer Sets. However the authors provide a relationship between these two se-
mantics in the same article. It uses the program P;,., obtained by adding to
an extended logic program P a set of axioms of the form N < L,—L (where
L and N are arbitrary objective literals), thus “implementing” the trivializa-
tion rule of Answer Set semantics. The p-stable models of P;,. are in one-to-one
correspondence with the answer sets of P. This corresponds to the adoption
of the C-scheme and N-scheme described in the introduction of this volume. By
dropping the C-scheme in Answer Sets Semantics one gets Paraconsistent Stable
Models (or Stable Environments or Weak Answer Sets).

In [61, 4] it was shown that WFSX, and therefore WFSX,, are a good ap-
proximation to Answer Sets semantics, i.e. the (paraconsistent) well-founded
model is contained in the intersection of all answer sets (whenever these are
defined). Obviously, if the paraconsistent well-founded model has a pair of con-
tradictory literals L and —L then if an answer set exists it must be the set of all
literals (Lit). What is important to notice is that the paraconsistent well-founded
model and p-stable models are, in general, incomparable.

Example 17. Consider the extended logic program P:
a < notb. b <+ nota. —a.

Its paraconsistent well-founded is {—a, b, not a,not =b}. The same program has
exactly two p-stable models, namely {a,—a} and {—a,b}. The first p-stable
model is incomparable to the above well-founded model. Notably, the coher-
ence principle is not enforced by Sakama and Inoue, and hence the disparate
results.

This example shows that WFSX,, cannot be used as an approximation to
p-stable models. However the following interesting property holds:

Proposition 35. Let P be an extended logic program. If I is a p-stable model
of P then there is a paraconsistent partial stable model of P containing I.

Ezample 18. Consider again the program of Example 17. A PSM), of P is given
by the interpretation {a,—a,b, not a,not —a, not b,not —b}. Notice that p-stable
model {a,—a} is contained in it and that the only other p-stable model coincides
with the paraconsistent well-founded model of the program.

By means of simple arguments it can be shown that the P~ program under
WEFS gives better limits to the intersection of p-stable models than the original
program P under WFSX, semantics. Whenever the set of all literals of P is
not an answer set the following inclusions hold:

gfp(I'eI'p) C gfp(fJ 1|3FPS)

|J p-stable models [answer sets

U U
() p-stable models | Janswer sets
Y U
Lfp(I'pI'p) C Ifp(IpIp,)

In the case that Lit is an answer set the inclusion | J answer sets C gfp(I'pI'p,)
is no longer valid.

The interesting point is that the inclusions pertaining to the p-stable models
are related to the fixpoints of I'I", while the ones for answer sets are related
to the fixpoints of I'Ts. The justification for this behaviour relies on the fact
that p-stable models do not obey coherence whereas answer sets do (with the
exceptional case of programs having Lit as its single answer set). Recall once
more that the inner I's step enforces the coherence principle. The inclusions for
answer sets semantics are destroyed only in the case of non-coherent answer sets,
i.e. for the set of all literals.

For some programs p-stable models do not exist, due to its semantics’ an-
swer sets basis. For instance, a program for which p-stable models do not exist is
{a < not a}. Paraconsistent Stable Models inherits other difficulties of Answer
Sets, namely failure of Cumulativity, Rationality, and Relevance [23, 22]. On
the bright side, this semantics has important known relations with constructive
logics [56, 57, 58], besides those with default theories and autoepistemic logics of
Stable Models (see [50, 9, 10]). We should also mention that Paraconsistent Sta-
ble Models coincide with Wagner’s perfect model whenever the latter is defined
(see Section 4.3).

Sakama and Inoue provide as well a model theory which is an extension
of FOUR, incorporating default negation (see Figure 6). In their logic IV the
connectives A, V, < and — are interpreted as in logic FOUR of Section 3.2, and
therefore satisfy the same properties. The truth-table for not is presented in
Table 8.

It is clear that default negation defined as in logic IV is neither a negation
nor a weak negation in the sense of Definition 21. Surprisingly, if we analyse
the properties of not with respect to the consequence relation induced by the
designated truth-values t and T, we conclude that not behaves like classical
negation !

[pth]

1
.

_— Mandatory

........ Advised

Fig. 1. Dependencies among sections

Table 8. Truth table for default negation

A [Lie[e[T]
[not A T]e[f][L]

T
k f t
1
t >
Fig. 2. Belnap’s truth-space
[ht]
-L L
k
1
t >

Fig. 3. Correspondence between the consequence relation and truth-assignment

Let us explain this result and its consequences. First, the designation of
“two-valued” negation for the not of stable models and answer sets is fully
justified. Our conclusion agrees with the known result that the stable models of
a normal logic program are classical models of the corresponding propositional
theory. Second, one cannot simply classify an unary operator as a negation by
looking at its truth-table and associated knowledge and truth-orderings. The
set of designated truth-values has a primary influence in the set of consequences
derivable from the multi-valued logic. Last but not least, this allows us to explain

[ht]

\J

Fig. 4. Ginsberg’s Logic VII

[ht]

A not L @ not -L

Fig. 5. Logic NZNE.

[ht]

Y

Fig. 6. Sakama and Inoue’s logic IV

a frequent misunderstanding of logic programming semantics: even though the
underlying logic may be monotonic the resulting semantics might not. In fact, the
whole point of logic programming semantics is to single out a particular model
(or models). The process involved may (desirably) destroy the monotonicity of
the underlying model-theory. For instance, the models of the completion of a
normal logic program are classical ones, but as we know the resulting semantics
of negation by failure is non-monotonic.

5.2 Semi-Stable Models

To overcome those situations where p-stable models do not exist, Sakama and
Inoue define the notion of Semi-Stable Models [80]. The main idea consists in
translating (disjunctive) extended logic programs into positive disjunctive ex-
tended logic programs, and then to use a semantics for this restricted type of
programs. Again, for comparability, we will limit the discussion to the case of
non-disjunctive extended logic programs.

Definition 36. [80] Let P be an extended logic program. Its epistemic transfor-
mation is defined as the positive disjunctive extended logic program P* obtained
from P by replacing each rule of the form:

Lo« Ly,...,Lp,not Lyytq,...,n0t Ly, (0<m <n)

with the following not-free rules in P*:

)\VKLm+1V...VKLn(—Ll,...,Lm.

L0<—>\.
—~ANLj.(m+1<j<n)

Each already not-free rule in P is included in P* as it is.

To each disjunctive rule in P* a different A is associated. The KLj; literals
are new atoms in the language of P*, with the reading “L; is believed”, while
not L; has the meaning “L; is disbelieved”. These KL; literals can be shared
by different rules in the program. To give semantics to such P* programs the
meaning of disjunction in the heads and of integrity constraints must be defined.
Sakama and Inoue use the split program construction to achieve this:

Definition 37. [80] Given a positive extended disjunctive program P, a split
program is defined as the positive extended logic program obtained from P by
replacing each disjunctive rule

LyV...VLj+ Liyq,...,Ly,
with the following extended rules (called split rules):
Li+ Liy1,...,L,, forevery L; € S

where S is some arbitrarily chosen non-empty subset of {Li,...,L;} for each
disjunctive rule. Then a p-possible model is defined as the (unique) p-stable
model of any split program P. Different choices for the S engender all the split
programs.

Ezample 19. Consider the extended logic program of Example 17. Its corre-
sponding positive disjunctive program P* is:

A1V Kb. a+ A\ «—)\1,(). -a.
)\2\/Ka. b<—>\2 (—>\2,(J,.

The program P* has nine split programs but only five have p-stable models.
The corresponding p-possible models are:

p1 = {\,a,Ka,na},

p2 = {\1,a,Ka, Kb, ~a},
ps = {Ka, Kb, —a},

P4 = {A2,b, Kb, —a} and
b5 = {A2> b: Kb: K(l, _|(1}.

Given this bunch of p-possible models, Sakama and Inoue introduce a prefer-
ence criteria to select some of them, which are then used to define the Semi-Stable
models of an extended logic program:

Definition 38. [80] Let P be an extended logic program and Zp~ the set-
inclusion minimal p-possible models of P*”. An interpretation I € Zp~ is said
to be maximally canonical iff there is no interpretation J® € Zp« such that
{KL | KL € J%and L ¢ J*} C {KL | KL € I* and L ¢ I*}. The semi-
stable models of P are the maximally canonical interpretations in Zp~ with the
A; literals removed.

Ezample 20. Consider again program P of Example 19. The minimal p-possible
models of P* are p; = {\1,a,Ka,—a}, ps = {Ka,Kb,—a} and py = {2, b,
Kb, —a}. The semi-stable models are {a, Ka,—a} and {b, Kb, —a} corresponding,
respectively, to the p-possible models p; and ps. In this case, the semi-stable
models are isomorphic to the p-stable models of the program.

Ezample 21. Let P be the program {—a;b < notb}. Clearly, P has no p-stable
models, and the unique semi-stable model {-a, Kb}.

Two minimization processes are used to define the semi-stable models of an
extended logic program. The first one is, as usual in disjunctive logic program-
ming semantics, the selection of the minimal models. The second one is specific
to Sakama and Inoue’s semantics.

The authors show that p-stable models are the canonical interpretations in
Ip~, i.e. the interpretations such that for every KL € I* then L € I* or,
equivalently, for every L ¢ I* then KL ¢ I". Suppose, for simplicity, that
not a is the single default negated literal in the body of a rule. The canonical
condition guarantees that if a is false then Ka is false, and therefore if the body
is entailed the head entailed too, i.e. nota is true. If @ is true then the integrity
constraints do not let the A-literal be true, and therefore the head of the rule
cannot be entailed. Essentially we have the following two conditions, where I is
an interpretation:

— If a € I then nota is true, by the canonical condition;
— If @ € I then not a is false, by the integrity constraints on A-literals.

It is clear that the second condition holding is always desirable. However, when
p-stable models do not exist, the canonical condition is not satisfied. So the
idea is to accept as models of programs the interpretations which least violate
the canonical condition, those defined as the Semi-Stable Models. Notice that
a canonical interpretation is also maximally canonical, and is also smaller than
any other non-canonical interpretation, giving rise to the Paraconsistent Stable
Models in that case.

A first “problem” of Semi-Stable Models is their non compliance with the
coherence principle. The trivial example is program {a < not a; —a}, having the
unique semi-stable model {—a} in contrast with the paraconsistent well-founded
model {a, —a,not a,not —a}.

T This corresponds to the set-inclusion minimal models of P* viewed as a positive
disjunctive logic program.

The treatment of undefined literals in Semi-Stable Models is also in some
situations counter-intuitive, as illustrated in the following example:

Ezample 22. Consider the extended logic program {b <+ notd;c <« d;
d < notc}. Its unique semi-stable model is {b, not —b,not —c,not d, not ~d}.
Thus, ¢ is “undefined” but notd is true and therefore b is also true. The se-
mantics undefines only some of the literals involved in a negative loop. Notice
first that we have an undefined value implying a false one, which seems strange
for a normal logic program®.

Second, assume we add the rule “a < b,nota” to the above program.
Now there are two semi-stable models: {not —a, b, not =b, not —¢, not d, not ~d}
and {not a, not ~a, not b, not =b, not ¢, not ~d}. So, because of a rule “unrelated”
to d, we must now accept a model where ¢ and d are both undefined. We would
expect instead the first semi-stable model to be the single result in a “well-
behaved” semantics.

The treatment of “undefined” literals in Semi-Stable models seems a bit ad
hoc and program-dependent. This semantics does not obey any of Dix’s principles
of cumulativity, rationality, or relevance [22, 23]. We would also expect that a
paraconsistent semantics for arbitrary extended logic programs based on Answer
Sets would be defined in terms of the maximal partial stable models (or preferred
extensions) of program P~.

Finally, it should be remarked that a nine-valued logic exists, IX, that pro-
vides a model-theory for Semi-Stable Models. Logic IX is isomorphic to our
logic NZTNE, but with a different interpretation of default negation. Its Hasse
Diagram is presented in Figure 7.

The interpretation of these truth-values is as follows: bf and bt denote be-
lieved false and believed true, and are in accordance with the interpretation of
the K literals; bT, fcb, and tcb denote different degrees of contradictory in-
formation, the former means believed contradictory and fcb and tcb denote,
respectively, true with contradictory belief and false with contradictory belief;
the remaining four values correspond to Belnap’s ones, namely undefined, false,
true and contradictory.

As for NTNE, it is possible to define the truth-tables for the negation oper-
ators “=”, “not” and for the implication sign. The first remark is that both “—”
and “+” have truth tables isomorphic to our connectives under logic NZNE,
which supports the naturalness of both approaches (and also conjunction, dis-
junction and satisfaction). The essential difference is in the not operator. The
most natural way of defining Sakama’s not operator appears in Table 9, which
verifies the double negation law notnot L = L and the De Morgan laws with
respect to the consequence relation |=rx defined by the set of designated truth-
values {t,tcb, T}.

8 WFSX, has a similar behaviour, but only in those situations where we have an
explicitly negated fact overriding an undefined value. This never occurs in normal
logic programs.

[ht]

Y

Fig. 7. Sakama and Inoue’s logic IX

Table 9. Truth table for default negation in logic IX

[A [[L]bf bt [ft[bT[feb[tch|T]
[rot A[T [teb | fcb |6 [f|bT] bt | bf [L]

Furthermore, the associative, commutative, idempotent, distributive, absorp-
tion, zero/one, double negation, and De Morgan laws all hold in logic IX. The
two forms of negation are interchangeable. As usual, the Deduction Theorem
and Modus Ponens hold. The excluded middle principle is not obeyed by both
forms of negation. The contradiction law is obeyed by default negation under
the weaker form of equivalence relation (but not the stronger one =;x) while it
is invalid for explicit negation. Modus Tollens is invalid for both negations and
Disjunction Syllogism holds for default one but not for the explicit rendition. As
we have referred before, coherence is not verified by this logic. An interesting
remark is that not under consequence relation |=rx behaves as the three-valued
Lukasiewickz’s negation operator [49]. However, the definition of the implication
operator is rather different.

Finally, the most important of Fitting’s axioms (cf. Definition 21) for nega-
tion operators in interlaced bilattices is not obeyed in IX: the negation operator
should reverse truth but never knowledge. Sakama’s negation operator reverses

both at the same time. For instance we have bf <, tcb and bf <; tcb but
not tcb <, not bf and not tcb <; not bf. Notice this is not due to our way of
defining the truth table. It follows from the satisfaction of the double negation
and De Morgan laws. This discussion also stresses the originality of NZNE’s
not operator, which we have shown to be a weak negation operator in the sense
of Fitting.

Finally, and for the sake of completeness, we present the mapping between
the semi-stable models of a program and corresponding IX interpretations.

Theorem 39. [80] Let £* = OLit U {KL|L € OLit} and I" a subset of L".
Define a IX interpretation I from I® as follows, where A is an atom in the
language of the program:

I(A) =lubg{ z |z =t if Ae I,
x=1fif -Ael
x=bt if KA € I",
x =bf if KnA € I",
x = 1 otherwise}

If I* is a semi-stable model of P then I is a IX model of P.

The above theorem supports the terminology used for the several truth-
values, in particular, the interpretation of the K literals in the semi-stable mod-
els.

5.3 Over-determined semantics

In [40] is presented a semantics for extended logic programs, incorporating ideas
from [13] and from stable models. According to its authors the following three
issues should be addressed by extended logic programs:

Reasoning with Inconsistency: A small inconsistency should not cause the
entire database to be rendered useless;

Reasoning with the Law of Excluded Middle: The statement AV—A must
always be considered true. Hence, if we can reason that A implies B and - A
implies B then we should be able to conclude B;

Reasoning with Cases: Again, if we know that B or C' is true, and we know
that B implies D, and C implies D, then we should conclude D.

Even though the first and last conditions are are accepted by most para-
consistent semantics, the enforcement of the law of excluded middle for explicit
negation is more controversial. No other semantics in this survey enforce such
a requirement for explicit negation. The authors motivating example is the fol-
lowing:

Ezample 23. [40] Consider the following extended logic program:

masters(X) < credits(X,Y), has_thesis(X),eram(X,a),Y > 30.
masters(X) < credits(X,Y), has_thesis(X),exam(X,b),Y > 30.
masters(X) < credits(X,Y), —has_thesis(X),exam(X,a),Y > 36.
credits(jim, 36).

exam(jim, a).

As usual, we understand a non-ground program standing for its instantiated
version. The first two rules say that any student who has completed a thesis
and passed a comprehensive exam with either an A or a B grade, and has taken
at least thirty credits of courses, is eligible for a master’s degree. The third
rule says that students who haven’t done a thesis, but have taken 36 or more
credits of courses and got an A on the comprehensive exam are also eligible for
a master’s degree. Jim has taken 36 credits in course work and got an A in the
exam. Clearly, none of the semantics presented in Section 3 entail masters(jim),
which would be justified by the excluded middle law.

For handling these situations, and while being tolerant to inconsistency, the
authors delimit the truth-space of logic FOUR to the upper three truth-values in
the knowledge ordering: f, t and T. The undetermined truth-value is discarded,
thereby enforcing the law of the excluded middle. The notion of an interpretation
I being a model of a formula F' is the obvious restriction to be imposed on
FOUR, and is denoted by I |E,q F. An interpretation I is an OD-model of a
definite extended logic program iff, for every rule R in P, I =,4 R.

Definition 40. [40] Let P be a definite extended logic program. The over-
determined semantics for P is the set of all disjunctions of objective literals d,
such that for every OD-model I of P we have I |=,q4 d.

Obviously, the over-determined semantics obeys the authors’ three caveats
stated at the beginning of this section. It should also be clear that every conclu-
sion of the semantics given in Section 3 is again a conclusion of the OD-semantics.

Ezample 2/. In the program of Example 23 masters(jim) is an OD-
consequence. An OD-model I of the program must entail has_thesis(jim) or
—has_thesis(jim). In the first case I entails masters(jim) by the first program
rule. In the second, I derives masters(jim) by application of the third rule.
Thus, masters(jim) is true in all OD-models, and hence an OD-consequence of
the program of Example 23.

The extension of the OD-semantics for programs with default negation is
achieved by means of the usual Gelfond-Lifschitz program division construction
(cf. Definition 23).

Definition 41. [40] Let P be an extended logic program and X a set of objective
literals. Define operator Op as follows:

Op(X)={L | L is an objective literal such that £ |=,4 L}
A set of objective literals is an OD-answer set of P iff Op(X) = X.

Example 25. Consider the program obtained by adding the following rule to the
program of Example 23:

interview(X) < masters(X), not employed(X).
employed(sue).
masters(sue).

This program has exactly one OD-answer set, viz.

{ employed(sue), masters(sue),
interview(jim), exam(jim), credits(jim, 36), masters(jim)}

The usual problems of answer-sets semantics carry over to OD-semantics,
namely the inexistence of OD-answer sets for some programs. We conjecture that
the restriction of Sakama and Inoue’s logic IV to its upper three logic values
(and mapping not T to f) provides an appropriate model theory for OD-answer
sets semantics.

6 Detecting Support On Contradiction

We have reviewed several semantics for reasoning in the presence of contradiction
with different perspectives and objectives. However, humans tend to be overly
cautious when accepting conclusions in the presence of contradiction. So, we
rationally require additional mechanisms supporting paraconsistent deductions,
which give additional arguments for their validity. One obvious need is the ability
to detect safe conclusions, i.e. those which do not depend on contradiction.

Our first effort is to clarify what we mean by support on contradiction, some-
thing which has often been neglected in the literature. Our definition is declara-
tive and independent of the underlying semantics. We assume only the language
of extended logic programs.

Definition42. Let P be an extended logic program and C = {¢,—c | ¢,
-c € SEM(P)}, the set of the contradictory facts in SEM (P). We say that
any literal L depends on contradiction with respect to semantics SEM iff there
is S C C such that:

SEM(P)N{L} # SEM(P — Rules(S))N{L}
where Rules(S) is the set of rules of P with head in S.
The rationale is clear-cut. We say that L depends on contradiction iff by
removing some subset of the contradictory facts in the program’s truth-value of

L gets changed. Mark the implicit adoption of the N-scheme in the construction
of set C' as a means for defining the notion of “contradiction”.

Example 26. Suppose a bus driver is approaching a railway crossing where the
barriers are lifted but the warning lights are on. The dilemma the bus driver
faces can be expressed by the following extended logic program:

cross < —train. train. —train.

According to the semantics given in Section 3 the model of this program is

{cross, not ~cross, train, ~train}

Thus the semantics advises the driver to cross the rails. This is a suicidal
semantics for basing behaviour, unless additional information is provided. By
making use of Definition 42 we can detect the support of conclusion cross on
the contradictory pair train/—train: by removing the set of facts {-train} or
{train, ~train} from the above program conclusion cross is no longer entailed
by the model of the resulting programs.

Definition 42 is readily applicable to any semantics. However, the process
described is exponential, and useless in practice. Few semantics in the literature
solve or even address this problem. In this section, we present the extensions of
some of the semantics previously surveyed which provide additional information
regarding support on contradiction, according to Definition 42. In particular, we
will discuss Sakama’s suspicious well-founded and stable semantics [78, 80] and
our own WFSX, and its extension described in [21]. More careful semantics in
dealing with contradiction will be studied in the next section.

6.1 Sakama’s suspicious well-founded semantics

Sakama describes another variant of his EWF'S semantics (see Section 4.1) which
can return information about the support of a literal, i.e. whether or not the truth
of a literal depends on inconsistent information. Those literals that are supported
on contradictory literals are called suspicious, otherwise they are called safe.
Technically this is achieved by keeping track of all the literals involved in the
proofs of every literal in the bottom-up computation of the well-founded model.
We only present the basic definitions in order to discuss their approach. For more
details consult [78].

The author requires the new notion of suffixed literal L%, where L is an
objective literal in the language of an underlying program and X is a set of sets
of literals. The idea is to use X' to keep track of the literals involved in the proofs
for L. As we see in the next definition the construction used is rather operational
and asymmetric:

Definition 43. [78] Let P be an extended logic program and I = ITUnot Ir be
an interpretation where I is a set of suffixed literals and Ir a set of objective
literals. Let 7" and F be a set of suffixed literals and a set of objectve literals,
respectively. The mappings 7 and ¥} are defined as follows:

P3(T) ={A¥ | there are k rules A <~ By, ..., By,not Cj1,...,not Cy,
in P with 1 <[< k such that VBy; (1 <i <m)B;;" € Ir UT,
YV C1;(1 <j<n)Cy € Ir and where X is
Ul{{Bllv ooy Bim,notCpy, .. .,nOtCln} Uopn U...Uom, |

o € Xt}

U7 (F) ={A | for every rule A < By,...,By,notCy,...,notC,
inPAB; e I[rUF (1<i<m)or3C; (1<j<n)
such that C]-Zj elr }

Operator @7 is used to determine the set of objective true literals given the
current interpretation I, and keeps track of all literals involved in the proof of
such objective literals. In fact, it is an enhanced version of the Tp operator.
On the other hand, ¥} is used to determine the set of default falsities given I.
The complete definition of the suspicious well-founded model M} can be found
in [78] and is similar to Przymuskinski’s constructive definition of WFS in terms
of the @ operator [69]. A suffixed literal L* in M}, is suspicious iff every set in
Y has a literal L; such that Li" and —L;" both belong to M. It can be clearly
seen from the definition that the treatment of objective and default literals is
different. We will see shortly what are the consequences of such a commitment.

Ezample 27 [78]. Let P be the program:

innocent < —guilty.
—guilty < charged A not guilty.
charged.

The suspicious well-founded model is
{charged{{}} 7 _‘guilty{{charged, not guilty}} }U
innocenti17guilty, charged, not guilty}} }U
not {—charged, guilty, —innocent, man, ~man}

None of the literals is contradictory or suspicious.

On the other hand, if =charged and man are added instead to P, the truth
value of charged becomes contradictory, man is true (safe) and the truth-values
of the other literals remain the same as before. The new suspicious well-founded
model is:

{charged{{}} , —rcharged{{}} , man{{}} , ﬂguilty{{ChaTged’ not guilty}} }

U
{innocent{{_'gu“ty’ charged, not guilty}} } U not {guilty, ~innocent, ~“man}

The truth of both innocent and —guilty is now less credible since they are derived
from the inconsistent literal charged, as can be checked from their suffixes. Thus,
innocent is true suspiciously, and guilty false suspiciously.

The author argues that the extra information of support on contradiction
is only required for objective literals: the truth of a default literal can never
depend on the success of a pair of contradictory literals since all “proofs” for
that literal fail. This is not very convincing since the failure may be due to a
pair of contradictory literals too, as shown in the next example.

Example 28. Consider the following extended logic program:
a < notb. b < notc. b < not —c. c. —c.

The suspicious well-founded model of the above program entails a. Clearly the
truth of a depends on the contradictory pair of literals ¢ and —¢: by removing at
least one of them a is no longer true. Sakama’s suspicious well-founded model is
incapable of detecting this situation, since the suffixes are not propagated over
default negated literals.

Thus, according to our Definition 42, the suspicious well-founded model lacks
some power for detecting support on contradiction over default negated literals.
In fact, one can remove all occurences of default negated literals in the suffixes of
literals, since they are not used at all, for the purpose of checking dependency on
contradiction and simplifying the definition of @5. The definition of suspicious
well-founded model is overly complicated, since there is no need to keep all the
dependencies. Furthermore, the size of the suffixes can be exponential in the size
of the program which is a disadvantage for a practical implementation.

However we have the following partial result:

Theorem 44. Let P be a definite extended logic program with suspicious well-
founded model M},. A literal L depends on contradiction iff L is suspiciously
true in Mp.

6.2 Sakama and Inoue’s suspicious p-stable semantics

The work of Sakama on a suspicious well-founded model has been continued
in [80] under an extension of stable model semantics. The semantics is defined
for disjunctive extended logic programs with integrity constraints. As usual,
and for the sake of comparisons, we restrict the analysis and definitions to the
extended logic programming case.

The idea is to introduce adorned literals of the form L®, where L is an ob-
jective literal. The new literals of the form L°® denote suspicious literals. Inter-
pretations I° are subsets of

{A,—~A, A%~ A% | where A is an atom in the language of a program }

For simplicity of presentation we assume that if L belongs to some interpretation
then its adorned counterpart L® also does. We shall say that a literal is (safely)
true when L € I°. Literal L is suspiciously true iff L® € I® and L ¢ I°. The reason
for this will be apparent below. A new definition of the immediate consequence
operator is given in order to cope with these extended interpretations. As usual,
the operator is defined only for definite extended logic programs.

Definition 45. Let P be a definite extended logic program and an interpretation
I°. Then

Tg(I°) ={ L| exists L < L4,..., L, in P such that
Vlgign L; € I* and —L; QIS and —|Lf QIS}

U{ L° |exists L Ly,...,L, in P such that
Vlgign L; € I° or Lf S I}

The intuition is straightforward. A literal is safely entailed iff there is at
least one rule with the body safely entailed. In order to check that the body
does not depend on contradiction we have to test that the explicit complements
of the body literals and their corresponding adorned literals are not entailed.
A literal is suspiciously entailed whenever there is a rule for it with the body
at least suspiciously entailed. The above definition guarantees that whenever
L € TE(I°) then it is also the case that L® € TE(I°). The model of program P
is obtained by finding the least fixpoint of 7%, i.e. M%H =Tp 1.

Ezample 29. Consider again the program of Example 26
cross < —train. train. —train.

Then
T30 = {}

Tyt = Te(T§ 1°) = {train, train®, —~train, ~train®}
TE1? = TE(TE 1Y) = {cross®, train, train®, —train, ~train®}
Tyt = T3(TE 1) = M}

Thus, train and —train are contradictory and cross is suspiciously true.

The extension of the above semantics to arbitrary extended logic programs
is immediate and is along the lines of the definition of stable models:

Definition 46. Let P be an extended logic program and I° an interpretation.
As in Definition 23, the reduct of P by I°® is the program Iﬂs obtained from P
by removing all rules containing a default literal not A such that A® € I®, and
then by removing all the remaining default literals from P.

The suspicious p-stable models of P are the interpretations I° such that

M =1I°
z

Example 30. Consider the program:

innocent < —guilty. charged. man.
—gutlty < charged, not guilty. —charged.

Its single suspicious p-stable model I° is

{man, man?, charged, charged®, ~charged,
—charged® , ~guilty®, innocent® }

This can be easily checked by noting that IL; is
innocent < —gutlty. charged.man.

aguilty < charged. —charged.

with the model identical to I*. One can conclude that man is true, charged
and —charged are contradictory, and that —guilty and innocent are suspiciously
true. These are the expected results.

Compare this logical approach of suspicious stable models with the previous
semantics based on well-founded semantics. It can be easily shown that for pos-
itive definite extended well-founded programs both semantics coincide. But, the
definition of the semantics in this section is much more declarative and intuitive.
A reformulation of the suspicious well-founded semantics in terms of a nested
application of M?% is immediate. We leave the details to the interested reader.

As for suspiciqus well-founded semantics, the propagation of support on con-
tradiction through default negated literals is not taken care. Example 28 also
applies to the semantics presented above. Therefore, a partial completeness re-
sult along the lines of Theorem 44 holds for suspicious p-stable models, with the
obvious changes.

The authors define the logic VI to provide a model theory for their seman-
tics. Besides the usual four values L, f, t and T, there are two additional logical
values, sf and st which denote suspiciously false and suspiciously true, respec-
tively. The logic is not a bilattice (see Figure 8). However we were able to define
truth-tables for all connectives which respect the caveats of the authors. These
can be found in Tables 10, 11 and 12.

Table 10. Truth table for negations in Logic VI

A [L[sf[st[£][¢][T]
-A || List|sf|t|f|T
not A|| T |st|sf|t|f| L

The consequence relation ¢ is defined by means of the set of designated
truth-values {st,t, T}.
The implication table is defined as usual in order to satisfy

I|:6A(—Blﬁ‘I|ZGAOI'II#GB

Under the equivalence relation =|4 a lot of properties of classical logic are
obeyed. First, default negation is classical negation. This is expected since logic
V1 is a refinement of logic IV of the same authors, discussed in Section 5.1. As
usual, explicit negation fails to obey the excluded middle, the contradiction law,

[ht]

Fig. 8. Sakama and Inoue’s Logic VI

Table 11. Truth table for conjunction in Logic VI

IAJlL]sf]st][f] 6] T]

Ll Lfsf|L|f|L|F
sf || sf |sf | sf | |sf|sf
st|| L|sf|st|f|st|T
f|f|f|f|f|f|F
t || L|sf|st|f|t|T
T £ |sEf|TI|E|T|T

Table 12. Truth table for disjunction in Logic VI

LV L [sflst[f]e[T]

1L List| L|t]|t
sf|| L|sf|st|sf|t|T
st|[st|st|st|st|t]|st
f|L|sf|st|f |[t|T
tjft|t|t|t]|t|lt
Tt | Tist|T|t|T

contraposition, coherence, Modus Tollens, and Disjunctive Syllogism. However
the stronger equivalence =¢ is much worse behaved. For instance, the associa-
tivity and distributivity laws are not satisfied.

Finally, we present the mapping between suspicious p-stable models and six-
valued interpretations.

Theorem 47. [78] Let P be an extended logic program and I° a suspicious
p-stable model. Then, construct the VI interpretation as follows:

— If A and —A belong to I® then I(A) = T;

— else, if A€ I® (resp. ~A € I°) then I(A) =t (resp. I(A) =f£);

— else, if A° € I* (resp. ~A® € I*) then I(A) = st (resp. I(A) = sf);
— otherwise, I(A) = L.

The interpretation I is a VI model of program P.

6.3 Suspicious WFSX,

One main advantage of WFSX, with respect to other paraconsistent semantics
is in surpassing the others’ limited facility in detecting the support of conclusions
on contradiction. We start by stating a main result regarding WFSX :

Theorem 48. Let P be an extended logic program with paraconsistent well-
founded model M such that for every objective literal L we have L € M or
not L € M or both. Some L € M depends on contradiction iff both L and not L
are in M.

Thus WFSX,, detects support on contradiction in total paraconsistent mod-
els simply by testing for the presence of both L and not L in the model. Depen-
dence is also an operational concept, related to the underlying proof procedures
for WFSX, described in [3, 19].

Theorem 48 can be made more general: if L and not L belong to the model
(total or otherwise) then L depends on contradictory information, i.e. L is deriv-
able from inconsistent antecedents.

This theorem justifies why in some situations we have a literal and its default
negation belonging simultaneously to the program’s model. Contrary to what
might be expected this conveys very important information.

Ezample 31. Consider again the situation of Example 26. The WFSX , semantics
states that the driver can cross the railroad, but to be careful since this conclusion
depends on contradictory information. This is checked by noticing that both
cross and not cross simultaneously hold in the program’s model. This is achieved
as a result of the coherence principle: train holds therefore not —train also holds;
since the body of the rule for cross has the body falsified by not —train we
conclude not cross.

Ezxample 32. The program of Example 30 has the following paraconsistent well-
founded model:

{charged, ~charged, ~guilty, innocent, man} U
not {charged, ~charged, guilty, ~guilty, innocent, ~innocent, ~man}

For this program, objective literal conclusions in our semantics coincide with
the usual ones obtained by suspicious well-founded and p-stable models. How-
ever, if we look at the default negated literals, we notice that notinnocent and
not ~guilty are true. Though innocent and —guilty are true, but —innocent and
guilty are not entailed, we nevertheless know that innocent and —~guilty depend
on contradictory information, even if not themselves contradictory.

As we have seen, the previous semantics in Sections 6.1 and 6.2 are not able
to propagate the knowledge about the support on contradiction through negation
by default. Let us compare with the results obtained by WFSX :

Ezample 33. Returning to the program of Example 28 we obtain as paraconsis-
tent well-founded model the set of literals:

{a,b, ¢, ~c} Unot {a, ~a,b, b, cc}

This means that ¢ and —c¢ are contradictory and that @ and b depend on contra-
dictory information, which are the intended results.

Note that we can apply WFSX, to detect support on contradiction on def-
inite extended logic programs instead of using the suspicious semantics of the
previous two sections. For objective literals the results of the three semantics
coincide.

Our semantics is able to detect the support on contradictory information
in the above examples since the model is total, as this is guaranteed by Theo-
rem 48. In some non-total situations, it might happen that the truth of a literal
depends on contradictory information, but WFSX,, is not able to detect it via
Theorem 48. This can occur only if there are undefined literals in the model.
Theorem 51 below corrects this situation, so that WFSX,, does cover all the
cases. Let us see what the problem is.

Example 3. Consider the extended logic program:
a < notb. a <+ c. b < notb. c. —c.

In this program the truth of a depends on the contradictory fact —c. But not a is
not entailed by the W F M, model of the program, since b is undefined. Sakama’s
suspicious well-founded semantics handles this program properly.

In [21] we equipped WFSX , semantics with additional mechanisms to handle
the non-total cases. Failure to detect support on contradiction by Theorem 48 for
non-total models always hinges on some literal true in the model but with at least
one rule with undefined body. This remark motivates the following definition:

Definition 49. Let P be an extended logic program and M its W F M,,. Program
AP is obtained from P by deleting all the rules with a true head and an undefined
body. A rule has an undefined body iff there is a literal in the body that does not
belong to M, and for each body literal its default complement does not belong
to M.

Now, such rules can be removed without shrinking the semantics. Moreover,
whenever P is a normal logic program, or an extended one with consistent well-
founded model, we have WFM,(P) = WFM,(AP). This property does not
hold for contradictory extended logic programs:

Example 85. Consider the program of Example 34. The corresponding A pro-
gram is obtained by deleting the rule a < notb. The well-founded model of
the transformed program is {a,not a,not —a,not —b, ¢, =¢, not ¢, not ¢}, which
is distinct from that of the original program.

However, one can easily show that in general AP C P and WFM,(P) C
W FM,(AP), i.e. when the program monotonically decreases the corresponding
model monotonically increases.

The idea is to apply the A operator iteratively till the least fixpoint is reached.
At each step the undefined rules which can prevent the propagation of contra-
diction supportedness are removed. In the end one obtains the desired property
of contradiction support detection, since all rules which could prevent the appli-
cation of Theorem 48 have been removed.

Definition 50. Let P be an extended logic program. Construct the following
transfinite sequence of programs { P, }:

Py=P
PaJrl = APoz
Ps = {Px | a < ¢} for limit ordinal ¢

There exists a smallest ordinal A for the sequence above, such that Py is the

least fixpoint of A. We can now define the suspicious paraconsistent well-founded
model WF M, (P) = WFM,(Py), and the main result is readily obtained:

Theorem 51. Let P be an extended logic program and let M = WFM;(P),
Both literal L and its default complement notL are in M iff L € M and L
depends on contradiction.

Ezample 36. The sequence originated by program P of Example 34 is:

Py —p
W FM,(Py) = {a,not —a, not —b, ¢, ¢, not ¢, not ~c}

P =Py — {a < not b}
WEFM,(P,) = WFM,(Py) U {not a}

P, =P
W FM,(P5) = WFM,(P) = WFM;(P)

An important remark is that the construction of Definition 50 is not con-
tinuous. As a result, more than w steps may be necessary to obtain the least
fixpoint. This behaviour is illustrated next.

Ezample 37. Let P be the following extended logic program, whose variables
range over the natural numbers:

p(0) < c. p(X +1) + not p(X).

p(0) «—u. p(X +1) ¢+ u.

s < notr. r <+ p(X). c. u <4 notu.

$ < u. ¢ U 4= not —u

The transfinite sequence of programs and associated models M; = W FM,(F;)

is, where “.” is an anonymous variable:
P =P
My = {p(0),not —~p(0), ¢, ~¢, not ¢, not —c, r,not —~r}
P1 :PO—{p(O)<—u}

M, = My U {notp(O),p(l),not _'p(]-)}

P2 :Pl—{p(1)<—u}
My = M; U {notp(1),p(2),not ~p(2)}

P, =P —{p(-)« u}
Mw = {p(—)anOtp(—)anOt —lp(_)}U
{¢, me, not ¢, not —c, r,not r, not =, s, not s}

P,iy =P, —{s<+u}
M,+1 = M, U {not s}

The WFM;(P) is {p(-),notp(.),not=p(-)} U {c,—c,notc,not=c,r,notr,
not —r, s,not —s,not s}. Mark that all literals are simultaneously true and de-
fault false. According to Theorem 51 this means that all literals depend on some
contradictory literal. Since c is the single contradictory literal, all other literals
depend on c.

Finally, the NZN € logic provides the appropriate model theory for the sus-
picious version of the WFSX , semantics (see Section 4.2).

7 Blocking Contradiction Propagation

The semantics we have discussed allow one to conclude for the truth of literals
even if on the basis of contradictory information. In some situations it is desirable
to detect contradictions and avoid any propagation of inconsistency based on
them. For instance, in our medical example of Section 2, when faced with the

contradiction —surgery_indication and surgery_indication a physician opts for
the latter. Also, consider the situation of the bus driver who wants to cross
a railroad and has contradictory information about a coming train. The best
strategy is to not cross the railroad. However, a criminal trying to escape the
police might risk it and cross the railroad. Thus the appropriate type of reasoning
is situation dependent. In this section we discuss several approaches to implicitly
or explicitly block the propagation of contradiction.

We start by presenting Wagner’s conservative, credulous, and skeptical forms
of reasoning [90]. We then overview the introspective framework presented in [93],
where the language of extended logic programs is augmented with two new op-
erators. These modalities provide the means of implementing reasoning forms of
the kind “Does L depend on some contradiction ?” and “Is L contradictory ?”.
We finally discuss the extension of WFSX, incorporating these two operators
which appeared in [21].

Wagner’s entailment relations and the introspective framework of [93] adopt
the potential-contradictions view, while we stick to the actual contradictions
view but providing new mechanisms for explicitly blocking contradiction propa-
gation. In some sense these two semantics open new horizons for extended logic
programming paraconsistent semantics. However, as we shall see, both suffer
from problems. The reader is warned that this section presents work that is still
exploratory and no definite solutions have been reached.

7.1 Wagner’s credulous, conservative and skeptical reasoning

To handle the more careful reasoning discussed in this section’s introduction,
Wagner defines new reasoning forms based on defeasible inheritance systems [90].
The idea is that contradictory pieces of information neutralize each other. Es-
sentially, a conclusion is accepted only if it is supported and not doubted. By
selecting different notions of supportedness and doubt different forms of rea-
soning are obtained, i.e. what counts in favour of some potential conclusion
and what counts as a neutralizing counterargument®. He proposes credulous,
conservative and skeptical reasoning, besides the liberal kind. The blocking of
contradiction propagation (neutralization) is inbuilt into the several entailment
relations. There is no explicit control by the user of which form of blocking to
use: if one wants a different behaviour one should select another semantics.

Credulous (¢,), conservative (-.) and skeptical () reasoning are defined
proof theoretically via entailment relations containing the basic rules (1), (——),
(A), and (—A) (see Section 4.3 for the definitions and language used), plus the
following ones for derivation of literals and their weak negation complements:

¥ For definition of paraconsistent logics based on argumentation concepts see Anthony
Hunter’s chapter in this volume.

() Xtel iff Xkl andV(i+ E)eX:Xte —EF
() X bep =1 iff XF —l,orI(« E)eX Xt E

() Xkl iff 31« E)eX: Xk, E,

iff andV(i+ F)eX: X+, —F
(-) X k.=l iff VI« E)eX: Xk, —E,
iff or I+ F)eX:XF.F

() XF,1 iff I« E)eX:XF,E and X b, -]

(<)X b, —l iff Vi< E)eX:Xt,—E,or X+l

In credulous reasoning a conclusion [is accepted if it is liberally inferred but
not credulously doubted, i.e. when [is not (potentially) credulously entailed,
where [is the strong negation complement of [. In conservative reasoning, sup-
port and doubt have the same weight: a conclusion holds if it is conservatively
supported but not conservatively doubted. Finally, Wagner proposes a skeptical
inference relation. The intuition is that liberally entailed literals cast doubt on
their strong negation complements, i.e. there must be no doubt at all in order to
establish a conclusion. Both conservative and skeptical reasoning are inherently
consistent.

Ezample 38. [90] Let X be the following extended deductive database:
p1l. ~p+1l. ~qg1l. gp. r<p ~rq.

Literals p, ~ p, q, ~ q, r and ~ r are liberally entailed by X;. But only ~ ¢ and
~ r are credulously entailed. It is obvious that p and ~ p are not credulously
entailed because, although they are liberally entailed, there are rules of the form
~ p < 1 and p < 1, respectively, which do not have their bodies “falsified”.
The same applies to g. Now, ~ ¢ is credulously entailed since ~ ¢ is liberally
entailed but —p is credulously entailed. The same sort of reasoning applies to r
and ~ 7, and therefore both are entailed. Conservatively we can only conclude
~ ¢q. Nothing is skeptically derivable.

It is important to notice that conclusion r, under credulous reasoning, is in
some sense not supported because the body of its single rule is not entailed. Fur-
thermore, the example shows that the set of formulae inferred under credulous
reasoning is not a model of the extended deductive base, according to Wag-
ner’s notion of liberal model, because we have a true body, 1, but a false head
(for instance p). The same problem can occur with conservative and skeptical
reasoning.

In the above systems of reasoning, the case when there is a dependency of
reasoning of [on [, or vice versa, is not allowed: only the more restricted class
of strongly well-founded XDBs is considered by Wagner, where no positive or
negative loops (through either explicit or default negation) are permitted.

We can reduce entailment in strongly well-founded XDBs, under the above
three reasoning forms, to entailment in normal logic programs under WFS. Each
form of reasoning requires a different program transformation, to be found in
the following definitions, where X is a XDB.

Definition 52. Program P°" is constructed as follows. First, program P! (see
Definition 31) is included in P¢". For each atom in the language of X the fol-
lowing two rules

+

a « a?,notdoubt_a™ and a~ + a", not doubt_a~

are added to P¢", where at, doubt_.a™, a—, and doubt.a~ are new predicate
symbols. Finally, for each rule of the form (where a;, bj, ¢k, d; are atoms)

l(—al,...,am,wbl,...,Nbn,—cl,...,—co,—~d1,...,—~dp

add to P" the rule with head doubt_a™ if | = a (or head doubt_a™ if | =~ a)
and body

af,...,a;,bf,.. b, notcf,...,notcj‘,notdf,...,notdp_

¥ n

Definition 53. [85] Program P is constructed as follows. First, for each atom
in the language of X the two rules a™ < a?,nota™ and a~ « a",nota®? are
added to P, where at, a—, a?, and a” are new predicate symbols. For each
rule of the form (where a;, bj, cx, d; are atoms)

l(—al,...,am,wbl,...,Nbn,—cl,...,—co,—~d1,...,—~dp

add to P the rule with head a? if [= a (or head a™ if | =~ a) and body

af,...,a;,bf,.. b, notcf,...,notcj,notdf,...,notd;

*r¥n

Definition 54. Program P* is constructed as follows. First, program P! is in-
cluded in P?. For each rule of the form (where a,a;,b;,cx, d; are atoms)

Q4= Q1,...,Qp,~bi,...,~by,—c1,...,—Co,— ~di,...,— ~d,
add to P? the rule
+ — -
at «af,...;a} b7,..., b,
+ —_ —
notcy,...,notct, notd; yo--snotd, nota”

For each rule of the form (where a, a;,bj, cx, d; are atoms)

~a4=ar,. .. ,Qp,~ b, .~ by, —Cly o, —Co,— ~dy, L, =~ dy
add to P? the rule
— —+ + — _
a <—al,...,a0,b7,...,b,,

notcf,...,notcj,notdf,...,notd;,notap

The rationale behind the first transformation is that inference rule (1) is
captured by the logic program rules introduced in the second step of the trans-
formation. We have a conjunction of two literals: one checks whether the lit-
eral is liberally entailed, and the other tests whether it is not doubted. The
rules introduced in the last step test if a literal is doubted, i.e. implement the
test I «+ E) € X : X k., E. Weak negation derivability inference rules are
captured by negation as failure. For conservative reasoning the transformation
described is due to Teusink [85], which he uses to compute approximations to
the answer-set semantics. The idea is again to code rule (I) with the first type
of rules. Rule with head a? (a™) test the condition 3(a + E) € X : X F. E
(I~ a <+ E) e X : X k. E). Now the translation is obvious, since we can
again equate negation by default with weak negation derivability. For skeptical
reasoning the intuition is quite simple. The extra literal added at the end of the
rule performs the test whether the strong complement of the literal in the head
is liberally entailed. Now the equivalence theorem is immediate:

Theorem 55. Let X be a strongly well-founded XDB. Then the following equiv-
alences hold, where a is an atom and * is one of cr, co or s:

Xtia iff at € WEM(P*)
XF.—a iff nota® € WFM(P*)
Xbo~a iffa- € WEM(P¥)
X F.—~aiffnota” € WFM(P*)

Ezxample 39. Consider the XDB X; of Example 38. Its corresponding program
Per s

pP. pt <« pP not doubt_pT. doubt_p~.
pn. p~ < p”, not doubt_p~. doubt_pT.
q". g < q%,not doubt_q+. doubt_q+.
qP < pP. g~ < q¢",notdoubt_q. doubt_q~ < pt.
rP < pP. rT < r? not doubt_r+. doubt_r— < pt.
r? < qP. r~ < ", not doubt_r—. doubt _rt < q¢T.

The well-founded model of P°" consists of the following true facts'®:
{p?,p", ¢, q",rP, ", doubt_p*, doubt_p~—,doubt_q*,q,r*,r~}
which is in accordance with the credulous model of X;.

Ezxample 40. Consider the XDB X; of Example 38. Program P is

pT < pP,not p™. pP.
p~ <+ p",not pP. p".
gt < q°,not q". g < pT.
q~ <~ q",notqP. q".
rt <« rP notr". rP < pt.
T 1" notrP. r® ¢ qt.

10 All other literals are false since the model is two-valued.

The well-founded model of P consists of the following true facts:
{p*.p"q" "}

Therefore, ~ ¢ is entailed and all other literals are weakly false in X; under
conservative reasoning.

Example 41. Consider the XDB X; of Example 38. Program P? is

pT < not p™. pP.
p~ — notpP. p".
gt < pt,notq™. qP <+ pP.
q~ < notqP. q".
rT « pt,notr™. TP pP.
r~ < q",notr?. r" < qP.

The well-founded model of P* consists of the following true facts:
{p”.p", ", q", ", 1"}
and thus all literals are weakly false in X; under skeptical reasoning.

One advantage of using a normal logic program under WFS semantics is that
now one can assign semantics to non-strongly well-founded XDBs. Moreover,
one can combine the four different entailment relations in a single program.
Furthermore we can detect the mutual recursive problematic cases via literals
which are undefined in the well-founded model. The other non-undefined literals
still derive sound conclusions according to Wagner’s inference systems. Of course,
the proof-theoretical inference system should be extended in order to cope with
this larger class of XDBs as Wagner does for liberal reasoning with system I—iool’ .

We should notice that Wagner named his systems skeptical, conservative,
credulous, and liberal, on the motivation that for weak negation-free XDBs the
following relation holds, where [is an atom or the strong negation of an atom:

Xhsl=>XFl=>XbF, =2 XHI

The introduction of weak negation destroys some of these inclusions. One impor-
tant example is Teusink’s XDB {~ p + —p;p < 1}, where p is skeptically but
neither conservatively nor credulously derivable. Finally, by replacing in an XDB
every strongly negated literal ~ a by a new atom, say a”, then liberal reason-
ing can be indifferently “implemented” with resort to credulous, conservative,
or skeptical reasoning, hence concluding that these four inference relations have
the same expressive power.

7.2 Paraconsistent Introspective Programs

A three-valued framework for paraconsistent logic programs has been proposed
in [93], including a form of explicit negation, default negation, and disjunction.
Two introspective modal operators C and Cq are also provided, which can be
employed to detect, respectively, whether some literal is inconsistent on its own
or whether, alternatively, it is entailed by inconsistent premises. =~ We will start
by sketching the language and semantics as given in [93] We will show that
the semantics is ill-defined for the class of positive introspective logic programs,
i.e. with the modal operators and without occurrences of default negation. We
identify the problem and then proceed by discussing the semantics with default
negation. We restrict the discussion to disjunction free programs.

Definition 56. [93] Introspective programs are obtained by augmenting the
language of extended logic programs with the introspective operators CL and
CaL, where L is any objective literal. The occurence of introspective operators
is allowed only in the body of rules. Default negations of these operators are not
permitted.

Ezample /2. [93] A federal regulation requires the floor of a sausage plant to be
kept clean. The only way to satisfy this is by constantly washing the floor. A
state regulation requires the floor of a sausage plant not be wet. Violations will
be fined. This situation is encoded with the following extended logic program:

penalty <+ watering. watering.
penalty <+ —watering. ~watering.

According to the authors, the most appropriate information regarding penalty
is that penalty is depends on inconsistent premises, so that one may want to in-
vestigate and appeal the penalty. To achieve this, the rule “appeal < Cgpenalty”
is introduced in the program. Then, of course, appeal and Cwatering hold. Note
that neither watering nor —~watering nor penalty are entailed.

It is clear from the example that one has to use the modalities to check if
some literal is contradictory or depends on contradiction. This means that con-
tradiction is regarded harmful and makes the reading of logic programs difficult
(one cannot immediately see if some literal is entailed or not). Furthermore, the
authors discard the coherence principle.

The semantics for positive introspective programs is given by structures, as
defined below.

Definition 57. An interpretation is a set of objective literals. A structure is a
tuple (I,{Ii,...,I}) where I is an interpretation and each I;, 1 < j <k, is a
consistent subset, of I.

According to the authors, I is the current world, possibly inconsistent, and
the I;s are possible consistent subworlds of I. The structures induce an entail-
ment relation described in Definition 58.

Definition 58. Let S = (I,{I1,...,I}) be a structure. The logical entailment
relation between structures and formulas is defined as follows, where L is an
objective literal and F' and G are arbitrary formulas:

— S F=para L iff L € I; for every 1 <i < k;

— S Epara FAGUE S Fpare F and S Epera G
— S Epara not L iff S [fEpara L;

— S Epara CLiff L € I and -L € I,

— S FEpara CaL iff L € I and S |=parq not L;

The intuition should be obvious. An objective literal is entailed iff it is true
in all consistent subworlds, i.e it must be safely inferred. The satisfaction of a
conjunction and of the default negation operator are obvious. If a literal and its
explicit complement both belong to the current world then it is contradictory.
A literal depends on contradiction iff it belongs to the current world but can-
not be safely entailed from the consistent worlds. Notice the similarities with
Definition 42.

The candidate models for positive introspective programs are obtained from
structures with additional properties:

Definition 59. Let P be a positive introspective program. A structure S =
(I, M) is said to be a pre-model of P iff:

1. For each rule L < By, ..., By, in P, if for all B; (1 < j < m) either B; € I
or S Epare Bj, then L € I,

2. Each I; is S-supported, i.e. for each literal L € I; there is a rule L +
By,...,By, in P such that S |=pare Bi A ... A Bpy;

3. Each I; is maximal in the sense that there is no consistent, S-supported I’
with I; c I' C I.

The authors then define two ordering relations among pre-models to choose
the ones with the intended properties, the minimal para-models of P. For the
sake of simplicity we do not present such relations here. It is said that every
positive paraconsistent programs has a single minimal para-model.

Example 43. Consider the program of Example 42 with the rule for appeal added.
Its unique minimal para-model is

{appeal, penalty, watering, ~watering},
{{appeal, watering, }, {appeal, ~watering}}

This minimal para-model implies appeal, Cwatering, Cgpenalty and not
penalty.

Unfortunately, in [93] it is not realized that there are positive introspective
programs without any pre-models, as the next example shows.

Example 44. Consider the following program:
a < b. a + Cga. b. —b.
By condition (1) of Definition 59 I should include a, b and —b. The candidate

structures are:
S1 = ({a,b, -0}, {{}})
Sp = ({a'7 b, _'b}7 {{b}7 {_'b}}>
Sz = ({a'7 b, _'b}7 {{a’7 b}7 {_'b}}>
Sy = ({(J,, b, _'b}7 {{b}v {av _'b}}>
S5 = <{a> b, _'b}) {{a) b}) {a) _'b}}>

However, none obeys the three conditions of being a pre-model. S; Ss, S5 and
S4 do not satisfy the maximality condition (3). Structure S is not Ss-supported
since Cqa is not entailed in Ss.

The problem should be obvious: if Cqa is false then a depends on contradic-
tion and therefore Cga should hold. If Cga is true then there is a proof for a
which does not depend on contradiction and therefore Cqa should be false. This
behaviour is very similar to the inexistence of stable models in programs with
odd loops through negation by default. We conjecture that the problems may
be addressed by introducing a notion of stratification with respect to the occur-
rences of the Cq operator. We resume the discussion of computing the minimal
para-model in the next section.

The extension of the semantics for handling default negation is straightfor-
ward. First, a notion of reduct g of a program P by a structure S is provided
and is obtained by removing all rules which have a default literal not L such
that S |=pare L, and then deleting all default negated literals occuring in the re-
maining rules. This allows the definition of several semantics in terms of fixpoint
equalities, along the lines of the semantics for normal logic programs.

Definition 60. Let P be an introspective program and Fp(S) be the operator
returning the minimal para-model of %. Define the relation < over structures
by letting S; < Se iff I} C Iy or (I} = I, and My C Ms). Let S be a structure,

then

— S is a stable structure iff S is a fixpoint of Fp, i.e. Fp(S) = S;

— S is an alternating fixpoint of Fp iff Fp (Fp(S)) = S. It is called normal if
S = Fp(S);

— S is the well-founded structure iff S is the least normal alternating fixpoint
of Fp;

Ezample /5. [93] Consider the following program:

bird + tweety. fly < bird,notab. ab < C fly.
tweety. = fly + tweety.

The well-founded structure of this program is

S = ({tweety, bird, = fly}, {{tweety, bird, - fly}})

Therefore, it entails tweety, bird and fly, illustrating the blocking of the default
assumption not ab in the presence of a contradiction over fly. Note that default
negated literals are evaluated in S’ = Fp(P%), i.e.

g = {tweetya bird, fly7 _'fly) ab}:
T\ {{tweety, bird, fly, ab}, {tweety, bird, = fly, ab}}

Therefore we have S’ |=parq not fly and S’ |=parq not - fly. This means that ab
is undefined and that we have fly, not fly and not —fly simultaneously true!
This behaviour does not seem to be realized (and intended) by the proposers
of the semantics. There is no stable structure for this program because of the
odd-loop through negation introduced by the rule for ab.

Besides the above mentioned problems, both the stable and well-founded
structures do not cater for propagation of contradiction through negation by
default, as in the suspicious well-founded and p-stable models semantics of [80].

Example 46. Consider the following paraconsistent logic program:
a < notb. b < not ¢, not —c. c. —c.

This program has a single stable structure which coincides with the well-founded
one, namely < {b, ¢, ¢}, {{b,c}, {b,—c}} >. Accordingly we have nota, b, not c,
not —c and Cec true in that structure. One of the interesting points of this se-
mantics is that neither ¢ nor —¢ hold in the above program, since they are con-
tradictory. Now, suppose we remove one of ¢ or —¢. In the resulting programs,
and the associated well-founded structures and unique stable structure we have
notb and a true. This means that the conclusion nota in the original program
depends on the contradictory literals ¢ and —¢, as per Definition 42. However,
the approach followed in [93] is not capable of detecting this situation.

7.3 Introspective well-founded model

In Section 6.3 we have identified for WFSX,, the conditions for detection of a
contradictory conclusion and also of dependence on contradiction. Recall that to
test if an objective literal L is contradictory it suffices to check whether L and
=L belong to the program’s model; to test if L is supported on contradiction
it is enough to check that L and not L are both entailed. We will first simply
equate CL with “L and =L hold” and Cq with “L and not L hold.” This is a
meta-condition rather difficult to implement.

We’ve adopted the ideas of [93] in our semantics, including the terminology,
and we will show how their two operators can be implemented in WFSX, by
means of a program transformation into WFS, without recourse to modalities.

We slighty extend the language of introspective programs by allowing in our
language the application of default negation to the modalities.

Our approach is to make use of the PT~TV program transformation presented
in Section 4.2 to capture the intended meaning of the introspective operators.
However a completely satisfactory solution is not attained, except for total mod-
els. We will discuss the problems with our solution further on in this section.

Definition 61. Let P be an introspective program. Normal logic program P
is derived from P by replacing each rule with two new ones obtained from it.
Every occurence of an introspective operator is kept as in the original program.
The remaining translation of rules is identical to the PT~7U transformation.

Additionally, the following rules are added to P for every atom A in the
language of the program:

If CA then include CA + A%, A%

If C—A then include C—A « A%, A%;

— If CqA then include CqA + A%, not AY,;;

If Cq—A then include Cq—A + A%, not Ay,

For all purposes, literals of the form CL and CqL in P™™ are regarded as new
atoms.

First, notice that the translation of the introspective operators in 7" and TU
rules is the same. Therefore, an introspective operator has the same truth-value
in T rules and in TU rules in the P program. So, the situation never occurs
that the introspective operator and its default negation simultaneously hold.
This accomplishes the desired blocking of propagation of inconsistencies. For
instance, if a literal L is contradictory then CL holds but not not CL. Second,
the bodies of the rules which implement the new operators capture the two
conditions previously discussed. The semantics of the introspective programs is
now obtained straightforwardly.

Definition 62. Let P be an introspective program generating the normal logic
program P, The introspective well-founded model of P designated by W F M;(P),
is obtained from the well-founded model of P as follows:

Y

e WFM,P) iffa’ € WFM(P™)
C—a€ WFM(P) iff al € WFM(P™);
~nota € WFM;(P) iff notal,,, € WFM(P"t);
— not =a € WFM;(P) iff not a%;, € WF M (P™).

The truth (falsity) of an introspective operator can be tested by checking if
it (its default negation) belongs to W FM (P"t).

Example 47. Consider the program of Example 42. Its associated transformed
program is (with the obvious abbreviations):

ph — wh. wh.. al. < Cap.

Dy 4 Wiy, not pip. why, < not wi. alyy < Cap,not alp.
Pl wh. (N Cap < p'p,not plyy;.
Py < W, notplh. wly < notwk. Cw + wh., wh.

The well-founded model of the above normal logic program is:

p p P
{pg“a W, w%: Qs Ay sy Cdp7 C’U}}U
V4 n n p n n n

not {piers Ps Pl W Wiers O @y}

Therefore, we obtain the following model for the original program:
{pa w, w, a} U not {p) -p,w, Tw, _'a}

Notice the differences from the resulting model of [93], presented in Example 42.
The above literals are derived irrespectively of whether they depend on contra-
diction or not. Nevertheless, the information regarding the problematic literals
is provided by means of the introspective operators. These operators can then be
used, by reprogramming, to detect the contradiction and block its propagation
whenever desired. For example, if we substituted Cgp by p in the rule for a then
a and not a would be entailed. By introducing the introspective operator this is
no longer the case: only « is retained.

Even though the introspective operators inherently have a two-valued se-
mantics it is possible in some cases to have these operators undefined in the
introspective well-founded model. The same behaviour can occur for the original
C and Cg4 operators of [93]. This feature is illustrated in the next example.

Example 48. Let P be the introspective program containing the fact —a and
the rule a + not Ca. The introspective well-founded model of P is simply
{=a,nota}. The Ca operator gets undefined in the auxiliar P** program; any
other value leads to a contradiction: if Ca were true then the body of the rule
for a would be false, and therefore there would not be any support for the truth
of a, and hence C, would be false; if Ca were false then a would be entailed and
therefore Ca would be true.

Ezxample 49. Consider the program of Example 44:
a <+ b. a + Cga. b. —b.

In the introspective well-founded model of the above program we have Cga
undefined. We still have a, b and —b true. Even though not b and not —b are true
it is not the case that nota is true. Recall that the minimal para-model is not
defined for this program. Our semantics solves the problem by saying that a does
not depend on contradiction and by letting Cqa undefined. The intuitiveness of
this result might be questionable.

Some combinations of the primitive introspective operators are useful for
knowledge representation. The reading of the negations of the new operators is
immediate: not CL means that L is not contradictory, though it might depend on
contradiction; not Cq L simply means that L is safe, i.e. neither is it contradictory
nor does it depends on contradiction. The conjunction not CL A CqL means
that L is not contradictory but depends on contradictory premises. Finally, the
disjunction CL V not CqL means that either L is contradictory or it is safe,
thereby discarding the case of support of L on contradiction.

For those programs where the construction of Definition 50 is needed to de-
termine the dependencies on contradiction, the results might be unexpected: the
integration of the introspective operators into our language destroys the mono-
tonicity of the construction of the suspicious WFSX . The transfinite sequence
of programs as per Definition 50 monotonically decreases when we substitute
the WF M, by WFM; in the A operator. However, we have no more the corre-
sponding inclusion

WFM;(P) CWFM;(AP).

For the problems involved see the next example.

Ezample 50. Consider the introspective program P:

a + not Cgb. b < notc. c+d. d. Uu < notu.
a < u. C 4 U. —d. —u < not —u.

The sequence of programs and associated models M; = W FM;(F;) is:

P, =P

My = {a,c,d,~d} Unot {—a,b, b, —c,d, ~d}

P =P —{a+ u,c+ u}

My = {b,¢,d,~d} Unot {a,-a,b,-b,c,—c,d,~d}

We have nota true, which is not expected in the original program. Literal a
should be undefined.

A better mechanism for propagating consistency upwards is required for in-
trospective programs. Nevertheless, when the introspective well-founded model
is total, i.e. there are no literals and no introspective operators undefined, the
intended results are obtained. This is always the case when there are no de-
fault negations in the program and no loops over the introspective operators, as
secured by Theorem 48.

For programs in the above conditions, and when the minimal para-model
exists, we conjecture a relationship with the construction of [93]. Basically, the
literals which do not depend on contradiction coincide in both approaches, as
do the introspective operators. For the remaining literals, we entail them in our
semantics while in the minimal para-model of [93] they are not entailed. On this
conjecture, it is immediate to obtain the minimal para-model of a paraconsistent
program from the corresponding introspective well-founded model.

The integration of the techniques presented here with the suspicious WFSX,
are the subject of our current research. This is an open problem in need of
attention. One may proceed, as we have pointed out before, by defining an
appropriate notion of stratification with respect to the C and Cq operators. At
least for this class of so stratified programs we expect the correct results.

8 Other Paraconsistent Semantics

In this section we briefly overview other paraconsistent semantics for generaliza-
tions of logic programming, but in a direction different from the one of extended
logic programs.

The use and study of multi-valued logics in an integrated fashion, in partic-
ular bilattices, and for applications in AI is mainly due to Ginsberg [37]. The
logics discussed in this work require the existence of a T truth-value. However,
as pointed out in [81], the adoption of his fundamental principle by the proposed
logics, that of apparently-closed truth-assignments, gives rise to the collapse of
his framework in the presence of contradiction. Thus, from a paraconsistency
point of view the work of [37] is mostly irrelevant for our purposes.

Paraconsistent logic programming originated with the works of Blair and
Subrahmanian [13]. Their work has been extended in order to consider disjunc-
tive rules [84], and arbitrary upper semilattices of truth-values [42, 43]. The
work in [42], on generalized annotated logic programs (GAP), allows variable
annotations in the head or body of a rule as well as total computable function
annotations in the head. The language does not permit default negation. Two
semantics are provided for these programs, one ideal-theoretic and another along
the lines of Definition 11. It is shown that the former is continuous and that the
latter is monotonic but not continuous. Sound and complete proof-procedures
are discussed for the ideal-theoretic semantics whenever the set of truth values
is a lattice. The framework of GAP’s theory is applied to obtain reformulations
of several multivalued and temporal formalisms. A more recent application of
these semantics to the problem of amalgamation of knowledge bases is discussed
in [1].

The work on annotated predicate calculus [43] only allows constant annota-
tions of atomic first-order formulae with truth values of an upper semilattice
(the belief semilattice BSL). This work considers two forms of negation and
implication: ontological “=” and epistemic “~”. The former has a behaviour
similar to that of classical negation and the latter is a generalization of explicit
negation to BSLs. Ontological implication is defined as usual “¥ < ¢ = ¢V —¢”
and epistemic implication by the equivalence “¥ <~ ¢ = ¢ + (¢ A~ ~ @)”.
Using an entailment relation which minimizes inconsistency, the former implica-
tion is able to draw conclusions from inconsistent beliefs while the latter blocks
them. A proof theory is presented for the usual entailment relation. It is also
argued that inconsistent beliefs in APC represent the causes of inconsistency in
predicate calculus. An ideal-theoretic semantics is also presented.

In [12] an approach based on default logic is used to provide a semantics for
arbitrary propositional theories. The idea is to view A and —A as separate entities
and incrementally restore the relation between those pairs till an inconsistency
is generated. Several semantics are discussed based on this simple bright idea,
with differente degrees of skepticism or credulity. Such semantics can be readily
applicable to definite extended logic programs.

A different line of work has been followed by Fitting. In [28] he provides a
Kripke/Kleene semantics for logic programs under a richer range of logics than
the classical by resorting to bilattices. An illuminating discussion of the prob-
lems and solutions is presented. The main result is the extension of Fitting’s
operator ®p [27] and associated results for a broader class of logic programs:
compound logic programs. Compound logic programs allow the use of operators
“®” (consensus) and “®” (accept-anything) for the representation of distributed
logic programs. Deep results concerning the relationship of the least and greatest
fixpoints of &p with respect to the knowledge and truth orderings are presented.
This work was continued in [29] for a similar generalization of well-founded se-
mantics, but with the syntax limited to normal logic programs. The main criti-
cism leveled at these works is that the syntax of the programs is not as general as
the underlying logic, and thus some knowledge representation limitation exists.
In particular, and under very general conditions, the models returned are exact
and therefore consistent. The underlying logic may be paraconsistent but the
models provided are restricted to their consistent subset. In some sense this is
due to the absence of an explicit form of negation. This criticism is yet more
pertinent for the extensions of WFS.

Pradhan has described [67] a truth-functional five-valued paraconsistent logic,
dubbed Cs, which subsumes the answer-sets based semantics for extended logic
programs. This work is based on the idea of well-supported models of [26]. The
underlying semantics is paraconsistent but the resulting entailment relation is
always consistent.

In [30] the authors define two logics, the Logic of Argumentation (LA) and
the Meta-Logic of Argumentation (MLA). With logic LA, Toulmin’s notions of
support and confirmation of arguments are formalized [86].

Supported arguments are uncertain by nature and confirmed arguments the
certain ones. To each formula in their logic is assigned either the sign ‘+’ or
‘+-+’, meaning respectively that the formula is supported or confirmed. A natural
deduction scheme based on propositional minimal logic is provided for logic LA.
One remarkable rule is “Weakening”: from ¢ : ++ infer ¢ : 4+. There is a natural
correspondence from extended logic programming to LA logic: L, =L,not =L and
not L correspond, respectively, to L : ++, =L : ++, L : + and =L : +. With
this interpretation in mind it is easy to see that their Weakening rule is nothing
more than the coherence principle.

The logic MLA is used to perform reasoning with contradictory knowledge.
The authors assume that contradictory knowledge is permissible only if sup-
ported by distinct viewpoints/assumptions. They then define a meta-logic of
argumentation, where each argument for a proposition can be labeled with addi-

tional signs, representing different degrees of inconsistency. Given “two distinct
theories” the possible pairs of contradictions are described in Table 8.

Table 13. Distinct contradictory pairs of logic LA

Contradictory pairs |Sign|Meaning
(p:++)&(~p:++)| I |Strong claim/argument rebuttal

(p:4++)&(—¢:4+) | II |Strong claim/argument discount
(p:+)&(~p: ++) | I [Weak claim/argument rebuttal
(p:+) & (¢ +) IV |Weak claim/argument discount

These four signs correspond to truth values in logic NZNE. The similarities
of WFSX,, with logics LA and MLA end here because other mechanisms are
available in our WFSX, semantics to infer weak information, namely the de-
fault reasoning capabilities, and we are also more liberal, allowing any form of
contradiction to appear in extended logic programs. One disadvantage of logic
LA is that from a contradiction the negation of every proposition is entailed, be-
cause of its minimal logic basis. For a more recent (proof-theoretical) discussion
of logics LA and MLA consult [45].

Another semantics based on minimal logic appeared recently in [17]. Three-
valued interpretations like the ones of OD-semantics [40] are used for assigning
meaning to normal logic programs, subsuming the stable models semantics. The
whole purpose of this work is to give a compositional semantics for stable models
which is defined for all normal logic programs. To handle the rule a ¢+ not a the
author assigns the interpretations {a,—a, L} to the program. The conclusion
is that another logical value is required to treat such programs. While in well-
founded semantics the value undefined is used, in Bry’s intended models T is
used instead.

The work reported in [77] follows the potential-contradictions view and deals
with the problem of maintaining consistency in a dynamic updatable deductive
database. Basically, they start from a consistent database and update it with
self-consistent formulae. In order to keep consistency, the newer information has
precedence over the older. An algorithm is proposed to perform queries over such
databases.

Finally, a modal logic has been proposed in [48], where two modal operators
B and B€ are included to represent, respectively, possibly inconsistent beliefs or
just consistent ones. A first-order language extended with the modal operators
is used. The author is concerned with the axiomatization of these operators and
applies them to some knowledge representation problems. The relationships to
logic programming are not explored. But the ideas behind the two operators are
very similar to the ones in [93].

9 Discussion and Conclusions

Due to the extension of the paper (nearly twenty semantics have been treated)
we organize this conclusions section along several general features that we clas-
sify as the most important. We hope that we’ve convinced the reader of the
need of paraconsistent semantics and that logic programming can provide the
adequate tools for knowledge representation applications which require such rea-
soning forms. Depending on the situation the reader surely will find interesting
applications of the results reported here.

Semantical Concepts. The study of extended logic programming can be traced
back to the works of Blair and Subrhamanian [13] on paraconsistent logic pro-
grams. We have shown that their Generalized Horn Programs are equivalent
to Wagner’s Logic Programs with Strong Negation [91] and to extended logic
programs without default negated literals. This is the common basis on which,
with the exception of the semantics discussed in Section 7, all extended logic
programming semantics agree on, and has its own roots in the works on para-
consistent constructive logics [55, 6]. Belnap’s logic [11] provides the underlying
model theory for this semantics. The over-determined semantics of [40] extends
GHPs by introducing case analysis and the validity of the law of the excluded
middle.

With the introduction of default negation a Pandora’s box opens. Two dif-
ferent approaches are identifiable: the coherence view and the weak negation
view. The former adopts the coherence principle [61], relating the two forms of
negation, as basic and provides a localized “explosion” of consequences when
faced with contradiction; our WFSX |, and its extensions are the only represen-
tative of this type of semantics; the latter view sustain, more or less firmly, the
total independence of an atom A from its explicit negation = A, and all other
semantics embrace it, sometimes blindly. The coherence principle also appears
disguisedly in logic LA [30], which also identifies two strengths of belief and four
forms of inconsistency.

Wagner’s liberal reasoning is the basic inference relation for the weak nega-
tionist view, with the exception of his credulous, conservative, and skeptical
forms of reasoning. The differences lie, as for ordinary normal logic pro-
gramming semantics, in the treatment of infinite negative recursions. The well-
founded based semantics [71, 78] assign the logical value undefined to literals in-
volved in such recursions. Przymusinski’s semantics has an explosive behaviour
in face of contradiction, while Sakama’s extended well-founded semantics does
not.

Those of the weak negation persuasion have proposed several non-explosive
semantics [56, 57, 80] which are variants of the Answer Sets semantics [35].
Weak Answer Sets and Paraconsistent Stable Models are related to Almukdad
and Nelson’s logic system N~ [6] as shown in [57]. To overcome the problem
of non-existing models for some extended logic programs Sakama defined the
Semi-Stable Models semantics, but it suffers from problems in the treatment

of “undefined” literals. An extension of the over-determined semantics with a
stable-models substratum is also given in [40].

An interesting remark is that most of the paraconsistent semantics propos-
als for extended logic programs use fairly standard techniques of normal logic
programming semantics. First, the semantics is defined for default negation free
case. Then, if the behaviour of default negation is to be similar to the one in
WFS, an alternating fixpoint definition is pursued. If the not should be stable-
models like then a corresponding fixpoint equation is used to define the semantics
for the general case. The notable exception is Semi-Stable Models which rely on
a semantics for disjunctive logic programs.

None of the referred semantics cater for the problem of detecting support on
contradiction. This new feature was first touched upon by Sakama and Inoue,
with the suspicious well-founded model [78] and suspicious p-stable models [80],
extending EWF'S [78] and Paraconsistent Stable Models [80]. As we have shown,
their notions of support do not cope well with default negation. For the same
purpose and for well-founded based semantics, the suspicious WFSX,, [21] is
much more adequate, since detection of support on contradiction is guaranteed
for arbitrary extended logic programs.

Besides detecting unsafe conclusions, it is sometimes necessary to block the
propagation of contradiction. An argumentation approach to this problem is
adopted by Wagner in [90] with his credulous, conservative, and skeptical infer-
ence relations. The last two are inherently consistent. However, none of the
three semantics are reflexive and nor obey Modus Ponens. The introduction of
the introspective operators of [93] brings in new fresh issues. There, a full-fledged
paraconsistent framework for introspective programs allowing disjunction is pro-
vided. The programs can test in their rules whether a literal is contradictory or
depends on contradiction. However, their semantics is ill-defined for some classes
of programs and does not handle well the detection of support on contradiction
in paraconsistent programs with default negation.

By means of a program transformation the WFSX,, semantics has been ex-
tended to treat these new modalities [21]. The advantages of this semantics is
the adoption of the coherence principle, and a liberal way of propagating conse-
quences of contradictory literals relying on it. But the introspective well-founded
model, in the presence of non-stratified occurrences of introspective operators,
might not produce the intended results whenever the model contains undefined
literals. This occurs whenever there are supports on contradictions which are
not properly propagated.

The family tree of the semantics surveyed on this chapter can be found in
Figure 9. The non-obvious abbreviations on that figure are as follows. PSM,
WAS, and SFE stand for, respectively, Paraconsistent Stable Models, Weak An-
swer Sets and Stable Environments. Suspicious well-founded and p-stable mod-
els are shortened to WFS® and PSM?, respectively. The suspicious WFSX,,
semantics is represented by W FSX7, while introspective WFSX |, by WFSX;;.
The well-founded and stable structures are abridged to WS and SS. The same
designations will be used in the remainder of this section.

[ht]

N7, GHP, LPSN, Def. ELP

PSM, WAS, SE

: suspicious

WFSXS 1 WFSS : / . PSMS ISSM oD!
\ i : : |_c; .
WFSX, @ WS [- : 88
: e
. — e
........ PR R TIRIE

Fig. 9. Paraconsistent logic programming semantics’ genealogy

Ezistence of Semantics. The introspective WFSX, is defined for the whole class
of introspective programs, subsuming the one for extended logic programs. As
we have seen, well-founded structures are defined for every extended logic pro-
gramming. Its existence is not guaranteed for arbitrary introspective programs.
We suspect that programs without positive loops through the C4 operator are
also assigned a well-founded structure. Stable-structures are not defined for the
whole class of extended logic program because of the problems due to infinite
recursion through negation by default. Regarding introspective programs, the
problems advanced for well-founded, plus the additional ones originated by the
stable-models basis, carry over for stable structures.

The semantics which are defined for the whole class of extended logic pro-

grams are Semi-Stable Models, EWF'S, WFS®, WFSX,,, and WFSX_.
Then comes Wagner’s extended deductive bases under liberal and skeptical rea-
soning, defined for weakly well-founded XDBs. Finally, we find the class of
strongly well-founded XDBs under credulous and conservative reasoning, the
class of Generalized Horn Programs and Logic Programs with Strong negation,
which are strictly smaller than the previous one but incomparable with each
other.

The class of programs defined for Answer Sets and the one for Paraconsistent
Stable Models appear in between the classes of liberal reasoning and of Semi-
stable semantics. The suspicious p-stable models are defined whenever the PSMs
are. The OD-semantics is defined for every definite extended logic program, and
for the class of extended logic programs where loops through negation do not
occur. It is difficult to identify the class of programs for which stable structures
are defined. They are guaranteed to exist for (locally) stratified extended logic
programs without introspective operators.

Embeddings and complezity results. One of the main results of this work is
the equivalence-preserving polynomial program transformations, from most of
the extended logic programming approaches into normal logic programming.
These transformations allow us to compare the expressiveness of the various
approaches, as well as their complexity by resorting to the results for normal
logic programming. Furthermore, one can use the current implementations of
normal logic programming systems for implementing these new paraconsistent
reasoning forms.

Regarding the expressive power of the several semantics, we have identified
the following equivalence classes, in increasing order of expressiveness:

— Generalized Horn Programs, and Logic Programs with Strong Negation.
Mapped to positive definite logic programs by means of the P transfor-
mation;

— Liberal, Credulous, Conservative, and Skeptical reasoning. Mapped to locally
stratified programs by the P!, P¢", P and P*® transformations;

- WFSX,, WFSX;;, and Sakama’s extended and suspicious well-founded se-
mantics. Our semantics are mapped to WFS by making use of the PT—TU
transformation and its extension for introspective operators P, respec-
tively. EWFS is mapped to WFS again by P7;

— Weak Answer Sets, Stable Environments, Paraconsistent Stable Models, and
Suspicious p-stable Models. The first three are transformable into normal
logic programs by means of the P~ transformation;

The first three equivalence classes were for the first time identified in the
present work. Semi-stable models and OD-semantics are at least as expressive
as the Weak Answer Sets class. It is possible that these two semantics coalesce
into the latter class. Similarly, the suspicious WFSX,, is at least as expressive as
the class of WFSX,,. We do know that is less expressive than the class of WASs.

Accordingly, we adapted the known complexity results for normal logic pro-
grams of [82] to extended logic programs. These results can be found in Table 14.

There | P | is length of the program, | A | the number of atoms in the langauge of
P, and FE is the extensional database. It can be easily shown that for the propo-
sitional case the suspicious WFSX |, has worst case complexity O(| P |*> .| A).
The complexity results for stable and well-founded structures are not known.

Table 14. Complexity Results

| Semantics | Propositional [DATALOG |
GHP, LPSN O(|P) inductive in E
l_l, '_cr, '_cm l_s O(| P |) inductive in E
EWFSWFS* WFSX,,WFXS,|O(|P|.|Al)|comp. ind. in E
PSM, PSM?®, WAS, SE Co-NP-comp. | Co-NP-comp.

Note that the translation of extended logic programs into normal ones is
achieved in most cases by the P™ program transformation. Using a variant of
the same transformation, liberal reasoning in extended deductive bases is also
captured by logic programs. The P~ approach was also followed in the definition
of disjunctive extended logic programming semantics in [52].

The coherent semantics, WFSX, and WFSX;;, rely on the PT=TV trans-
formation for translation into normal logic programs. This completely clarifies
the different results and properties obtained in our semantics. There are several
forms of explicit negation!

Logical Properties. In our study we have described six different many-valued
logics. Surprisingly (or maybe not. ..), this is where most of the results converge
and are more noticeable. First, the logics are defined in terms of designated
truth-values. A remarkable property is that this set is obtained from the truth-
values lying in the line connecting t to T. Furthermore, the implication sign is
two valued and defined in such a way that the following properties plus Modus
Ponens hold in every logic:

IEAAB if IEAandI =B
IEAvB iff IEA or IEB
IEA+<~BiffIEA or I[£B

A set of classical truths obeyed by all logics is given in Table 15. Recall that
we are interested mostly in the weaker equivalence relation =|. The explicit
negation behaviour is fairly standard among the several logics, both in the the-
orems which are satisfied and the falsified ones, as can be seen from Table 15
and Table 16. Mark that the OD-semantics is the single one which enforces
the excluded middle property for explicit negation. Furthermore, Modus Tollens
and Disjunctive Syllogism are unsound rules for explicit negation in all logics
addressed. Coherence is only satisfied in NZNE.

Table 15. Propositional theorems verified by the logics

Commutativity (AvVB) H BVA
(ANB) H BAA
Associativity (AvB)vVC H Av(BV(0)
(ANB)AC H AAN(BACQ)
Distributivity AV (BAC) H (AVB)A(AV(O)
ANBVC) H (AAB)V(ANC)
Idempotent Laws AvA H A
AnNA H A
Absorption Laws AV(AAB) H A
ANAVB) H A
Zero Laws AvE H A
ANE H f
One Laws Ave H ¢
ANt H A
Implication Laws (A< B)A(A«+C) H A+ (BVvC()
(A«B)V(A«C) H A+« (BAC)
(B+—ANC+A) H (BAC)« A
B+~ A)V(IC+A) H (BVC)«+A
(A«B)«C H A+ (BAC)
De Morgan Laws -(AVB) H (-A)A(-B)
~(AAB) H (=A)V(-B)
Double Neg. Law -—A H A
Negations Swap -notA H not-A

The distinct features appear in the definition and properties of the not op-
erator. Logics IV and VI treat it as classical negation. The De Morgan laws
for default negation are obeyed by all logics, with the exception of VII. Logics
VII, IX and NZNE agree that not should not obey the excluded middle, con-
traposition, and definition laws, as well as Modus Tollens. This is not strange
since all these logics allow an undefined value for default negation, for handling
infinite recursion through negation by default. The distinguishing features of
default negation in NZNE are evident from the fact that neither the contradic-
tion nor double negation laws nor Disjunctive Syllogism are valid. However, the
implication A — notnot A is always satisfied in NZNE.

Under the stronger equivelence relation = the several logics are rather dis-
tinct. However, these results are not particularly relevant for our characterization
of the models of logic programs.

We hope to have contributed to fostering the use of paraconsistent logic
programming by showing it has become of age.

Table 16. Explicit negation theorems falsified by all logics

Excluded Middle* Av-A H ¢
Contradiction Law AN-A H f
Contraposition Laws (A<« B) H -B+ —-A
Definition Law (A«<~B) H Av-B

Coherence™ If I =L then I =not L™

* With the single exception of OD-semantics.
* x With the single exception of logic NZNE, which obeys it.

Acknowledgments

We acknowledge the support of project MENTAL (PRAXIS XXI contract num-
ber 2/2.1/TIT/1593/95) and JNICT, Portugal. We also thank Gerd Wagner for
helpful discussions.

Carlos Viegas Damasio
Universidade Aberta, and Universidade Nova de Lisboa, Portugal.

Luis Moniz Pereria
Universidade Nova de Lisboa, Portugal.

References

1. S. Adali and V. S. Subrahmanian. Amalgamating knowledge bases, III: Algo-
rithms, data structures, and query processing. Journal of Logic Programming,
28(1):45-88, 1996.

2. J. J. Alferes. Semantics of Logic Programs with Ezplicit Negation. PhD thesis,
Universidade Nova de Lisboa, October 1993.

3. J. J. Alferes, C. V. Damasio, and L. M. Pereira. A logic programming system for
non-monotonic reasoning. Special Issue of the Journal of Automated Reasoning,
14(1):93-147, 1995.

4. J. J. Alferes and L. M. Pereira. Reasoning with Logic Programming, volume LNAI
1111. Springer—Verlag, 1996.

5. J. J. Alferes, L. M. Pereira, and T. Przymusinski. Strong and explicit negation in
non-monotonic reasoning and logic programs. In JELIA’96, European Workshop
on Logic in Artificial Intelligence. Springer-Verlag, 1996. An extended version will
appear in JAR.

6. A. Almukdad and D. Nelson. Constructible falsity and inexact predicates. Journal
of Symbolic Logic, 49:231-233, 1984.

7. J. N. Aparicio. Logic Programming: a tool for reasoning. PhD thesis, Universidade
Nova de Lisboa, January 1994.

8. K. Apt and M. Bezem. Acyclic programs. New Generation Computing, 9(3):335—
363, 1991. Also appeared in ICLP’90.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

K. Apt and R. Bol. Logic programming and negation: A survey. Journal of Logic
Programming, 19,20:9-71, 1994.

C. Baral and M. Gelfond. Logic programming and knowledge representation.
Journal of Logic Programming, 19/20:73-148, 1994.

N. D. Belnap. A useful four-valued logic. In J. M. Dunn and G. Epstein, editors,
Modern Uses of Many-valued Logic, pages 8-37. D. Reidel, 1977.

P. Besnard and T. Schaub. Signed systems for paraconsistent reasoning. In J. J.
Alferes, L. M. Pereira, and E. Orlowska, editors, Logics in Artificial Intelligence.
Proceedings of the European Ws. JELIA’96, volume LNAI 1126, pages 404-416.
Springer—Verlag, 1996.

H. A. Blair and V. S. Subrahmanian. Paraconsistent logic programming. Theoret-
ical Computer Science, 68:135—154, 1989.

P. Bonatti. Autoepistemic logics as a unifying framework for the semantics of logic
programs. In K. Apt, editor, International Joint Conference and Symposium on
Logic Programming, pages 417-430. MIT Press, 1992.

F. Bry. Logic programming as constructivism: a formalization and its application
to databases. In Proc. of the Eighth ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems (PODS’89), pages 34-50, 1989.

F. Bry. Negation in logic programming: a formalization in constructive logic. In
Information Systems and Artificial Intelligence: Integration Aspects, pages 30-46.
Springer—Verlag, 1990.

F. Bry. A compositional semantics for logic programs and deductive databases.
In Proc. Joint International Conference and Symposium on Logic Programming’96
(JICSLP’96), pages 453-467. The MIT Press, 1996.

N. Costa. On the theory of inconsistency formal system. Notre Dame Journal of
Formal Logic, 15:497-510, 1974.

C. V. Damésio. Paraconsistent Extended Logic Programming with Constraints.
PhD thesis, Universidade Nova de Lisboa, October 1996.

C. V. Damiésio and L. M. Pereira. A model theory for paraconsistent logic pro-
gramming. In C. Pinto-Ferreira and N. J. Mamede, editors, Progress in Artificial
Intelligence - 7th Portuguese Conference on Artificial Intelligence, LNAI 990, pages
377-386. Springer-Verlag, 1995.

C. V. Damadsio and L. M. Pereira. A paraconsistent semantics with contradiction
support detection. In J. Dix and A. Nerode, editors, Proceedings of LPNMR’97,
Lecture Notes in Artificial Intelligence. Springer—Verlag, 1997.

J. Dix. A Classification-Theory of Semantics of Normal Logic Programs: I. Strong
Properties. Fundamenta Informaticae, XXI1(3):227-255, 1995.

J. Dix. A Classification-Theory of Semantics of Normal Logic Programs: II. Weak
Properties. Fundamenta Informaticae, XXI1(3):257-288, 1995.

W. Drabent and M. Martelli. Strict completion of logic programs. New Generation
Computing, 9(1):69-79, 1991.

M. V. Emden and R. Kowalski. The semantics of predicate logic as a programming
language. Journal of ACM, 4(23):733-742, 1976.

F. Fages. A new fixpoint semantics for general logic programs compared with the
well-founded and stable semantics. New Generation Computing, 9:425-443, 1991.
M. Fitting. A Kripke-Kleene semantics for logic programs. Journal of Logic Pro-
gramming, 2(4):295-312, 1985.

M. Fitting. Bilattices and the semantics of logic programming. Journal of Logic
Programming, 11:91-116, 1991.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

M. Fitting. Well-founded semantics, generalized. In Proceedings of ILPS’91, pages
71-84. MIT Press, 1991.

J. Fox, P. Krause, and S. Ambler. Arguments, contradictions and practical rea-
soning. In B. Neumann, editor, Proceedings ECAI’92, pages 623—627. John Wiley
& Sons, 1992.

A. V. Gelder. The alternating fixpoints of logic programs with negation. In 8th
Symposium on Principles of Database Systems. ACM SIGACT-SIGMOD, 1989.
A. V. Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics for general
logic programs. Journal of the ACM, 38(3):620-650, 1991.

M. Gelfond. On stratified autoepistemic theories. In AAAI’87, pages 207-211.
Morgan Kaufmann, 1987.

M. Gelfond and V. Lifschitz. The stable model semantics for logic programming.
In R. Kowalski and K. A. Bowen, editors, 5th International Conference on Logic
Programming, pages 1070-1080. MIT Press, 1988.

M. Gelfond and V. Lifschitz. Logic programs with classical negation. In Warren
and Szeredi, editors, 7th International Conference on Logic Programming, pages
579-597. MIT Press, 1990.

M. L. Ginsberg. Multivalued logics. In Proceedings of AAAI’86, pages 243-247,
1986.

M. L. Ginsberg. Multivalued logics: a uniform approach to reasoning in artificial
intelligence. Computational Intelligence, 4:265-316, 1988.

J. Grant. Inconsistent and incomplete logics. Mathematics Magazine, 48(3):154—
159, 1975.

J. Grant. Classifications for inconsistent theories. Notre Dame Journal of Formal
Logic, XIX:435-444, 1978.

J. Grant and V. S. Subrahmanian. Reasoning in inconsistent knowledge bases.
IEEE Transactions on Knowledge and Data Engineering, 7(1):177-189, 1995.

C. M. Jonker and C. Witteveen. Revision by expansion. In G. Lakemeyer and
B. Nebel, editors, Proceedings ECAI’92 Workshop on Theoretical Foundations of
Knowledge Representation, pages 40—44. ECAT’92 Press, 1992.

M. Kifer and E. Lozinskii. A logic for reasoning with inconsistency. Journal of
Automated Reasoning, 8:179-215, 1992.

M. Kifer and V. Subrahmanian. Theory of generalized annotated logic program-
ming and its applications. Journal of Logic Programming, 12:335-367, 1992.

R. Kowalski and F. Sadri. Logic programs with exceptions. In Warren and Szeredi,
editors, ICLP90. MIT Press, 1990.

P. Krause, S. Ambler, M. Elvang-Goransson, and J. Fox. A logic of argumentation
for reasoning under uncertainty. Computational Intelligence, 11(1):113-131, 1995.
H. Levesque. Making believers out of computers. Artificial Intelligence, 30:81-107,
1986.

H. Levesque. Logic and the complexity of reasoning. Journal of Philosophical
Logic, 17:355-389, 1988.

J. Lin. A semantics for reasoning consistently in the presence of inconsistency.
Artificial Intelligence, 86:75-95, 1996.

J. Lukasiewicz. Philosophische bemerkungen zu mehrwertigen systemen des aus-
sagenkalkiils. Comptes rendus de la Societé des Sciences et Lettres de Varsovie,
23:51-77, 1930.

W. Marek and M. Truszczyniski. Nonmonotonic Logic - Contexrt-Dependent Rea-
soning. Springer-Verlag, 1993.

51

52.

53.

54.

55.
56.

57.

58.
59.

60.

61.

62.

63.

64.

65.

66.

67.

B. Meltzer. Theorem-proving for computers: some results on resolution and re-
naming. Automatation of Reasoning, 1:493-495, 1983.

J. Minker and C. Ruiz. Semantics for disjunctive logic programs with explicit and
default negation. Fundamenta Informaticae, 20(3/4):145-192, 1994.

R. C. Moore. Possible-world semantics for autoepistemic logic. In Proc. AAAT
Workshop on Non-monotonic Reasoning, pages 396—401, New Paltz, 1984.

R. C. Moore. Semantical considerations on nonmonotonic logic. Artificial Intelli-
gence, 25:75-94, 1985.

D. Nelson. Constructible falsity. Journal of Symbolic Logic, 14:16-26, 1949.

D. Pearce. Reasoning with Negative Information, II: hard negation, strong nega-
tion and logic programs. In D. Pearce and H. Wansing, editors, Nonclassical logic
and information processing, number 619 in LNAI pages 63-79. Springer—Verlag,
1992.

D. Pearce. Answer sets and constructive logic, II: Extended logic programs and
related non-monotonic formalisms. In L. Pereira and A. Nerode, editors, Logic
Programming and Nonmonotonic Reasoning - proceedings of the second interna-
tional workshop, pages 457-475. MIT Press, 1993.

D. Pearce. Safety, stability and deductive bases. Technical report, DFKI, 1995.
D. Pearce and G. Wagner. Reasoning with negative information I: Strong nega-
tion in logic programs. In L. Haaparanta, M. Kusch, and I. Niiniluoto, editors,
Language, Knowledge and Intentionality, pages 430-453. Acta Philosophica Fen-
nica 49, 1990.

D. Pearce and G. Wagner. Logic programming with strong negation. In
P. Schroeder-Heister, editor, Eztensions of Logic Programming, pages 311-326.
LNATI 475, Springer—Verlag, 1991.

L. M. Pereira and J. J. Alferes. Well-founded semantics for logic programs with
explicit negation. In B. Neumann, editor, European Conference on Artificial In-
telligence 1992, pages 102-106. John Wiley & Sons, 1992.

L. M. Pereira, J. J. Alferes, and J. N. Aparicio. Contradiction Removal within
Well-Founded Semantics. In A. Nerode, W. Marek, and V. S. Subrahmanian,
editors, Logic Programming and Non-monotonic Reasoning, pages 105-119. MIT
Press, 1991.

L. M. Pereira, C. V. Damasio, and J. J. Alferes. Debugging by diagnosing assump-
tions. In P. A. Fritzson, editor, Automatic Algorithmic Debugging, AADEBUG’93,
LNCS 749, pages 58-74. Springer—Verlag, 1993.

L. M. Pereira, C. V. Damaésio, and J. J. Alferes. Diagnosis and debugging as con-
tradiction removal. In L. M. Pereira and A. Nerode, editors, 2nd Int. Workshop on
Logic Programming and Non-Monotonic Reasoning, pages 334-348, Lisboa, Portu-
gal, 1993. MIT Press.

L. M. Pereira, C. V. Damadsio, and J. J. Alferes. Diagnosis and debugging as con-
tradiction removal in logic programs. In L. Damas and M. Filgueiras, editors,
Progress in Artificial Intelligence. Proceedings of the 6th Portuguese AI Conf.,
LNAT 727, pages 183-197, Porto, Portugal, 1993. Springer—Verlag.

S. G. Pimentel and W. L. Rodi. Belief revision and paraconsistency in a logic pro-
gramming framework. In A. Nerode, W. Marek, and V. S. Subrahmanian, editors,
Logic Programming and Non-monotonic Reasoning, pages 228-242. MIT Press,
1991.

S. Pradhan. A family of paraconsistent semantics for extended logic programs.
Technical report, CS, University of Maryland, 1996.

68

69.

70.

71.

72.

73.

74.

75.

76.

7.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

G. Priest, R. Routley, and J. Norman. Paraconsistent logics. Philosophia Verlag,
1988.

H. Przymusinska and T. C. Przymusinski. Semantic issues in deductive databases
and logic programs. In R. Banerji, editor, Formal Techniques in Artificial Intelli-
gence, a Sourcebook, pages 321-367. North Holland, 1990.

T. C. Przymusinski. On the declarative semantics of stratified deductive databases.
In J. Minker, editor, Foundations of Deductive Databases and Logic Programming,
pages 193-216. Morgan Kaufmann, 1988.

T. C. Przymusinski. Extended stable semantics for normal and disjunctive pro-
grams. In Warren and Szeredi, editors, 7th International Conference on Logic
Programming, pages 459-477. MIT Press, 1990.

T. C. Przymusinski. Stationary semantics for disjunctive logic programs and de-
ductive databases. In Debray and Hermenegildo, editors, North American Confer-
ence on Logic Programming, pages 40-57. MIT Press, 1990.

T. C. Przymusinski. Autoepistemic logic of closed beliefs and logic programming.
In A. Nerode, W. Marek, and V. S. Subrahmanian, editors, Logic Programming
and Non-monotonic Reasoning, pages 3—20. MIT Press, 1991.

T. C. Przymusinski. Static semantics for normal and disjunctive logic programs.
Annals of Mathematics and Artificial Intelligence, 14:323-357, 1995.

R. Reiter. A logic for default reasoning. Artificial Intelligence, 13:81-132, 1980.
N. Rescher and R. Brandom. The logic of inconsistency. Basil Blackwell, 1980.
N. Sand F. Rossi. Reasoning in inconsistent databases. In Proc. of the 1990 Norht
American Conf. on Logic Programming, pages 255—272. The MIT Press, 1990.

C. Sakama. Extended well-founded semantics for paraconsistent logic programs.
In Fifth Generation Computer Systems, pages 592-599. ICOT, 1992.

C. Sakama. Studies on Disjunctive Logic Programming. PhD thesis, Faculty of
Engineering of Kyoto University, July 1994.

C. Sakama and K. Inoue. Paraconsistent Stable Semantics for Extended Disjunc-
tive Programs. Journal of Logic and Computation, 5(3):265-285, 1995.

M. Schaerf. Notes on ginsberg’s multivalued logics. Computational Intelligence,
7:154-159, 1991.

J. S. Schlipf. Complexity and undecidability results for logic programming. Annals
of Mathematics and Artificial Intelligence, 15(3,4):257-288, 1995.

J. Shepherdson. Negation in logic programming for general logic programs. In
J. Minker, editor, Foundations of Deductive Databases and Logic Programming,
pages 19-88. Morgan Kaufmann, 1988.

V. S. Subrahmanian. Paraconsistent disjunctive deductive databases. Theoretical
Computer Science, 93:115-141, 1992.

F. Teusink. A proof procedure for extended logic programs. In Proc. ILPS’93.
MIT Press, 1993.

S. Toulmin. The uses of arguments. Cambridge University Press, 1958.

A. Urquhart. Many-valued logic. In D. Gabbay and F. Guenthner, editors, Hand-
book of Philosophical Logic, Vol. III,, pages 71-116. D. Reidel Publishing Company,
1986.

G. Wagner. A database needs two kinds of negation. In B. Thalheim,
J. Demetrovics, and H.-D. Gerhardt, editors, Mathematical Foundations of
Database Systems, pages 357-371. LNCS 495, Springer—Verlag, 1991.

G. Wagner. Logic programming with strong negation and inexact predicates.
Journal of Logic and Computation, 1(6):835-859, 1991.

90

91.

92.

93.

. G. Wagner. Reasoning with inconsistency in extended deductive databases. In
L. M. Pereira and A. Nerode, editors, 2nd International Workshop on Logic Pro-
gramming and Non-monotonic Reasoning, pages 300-315. MIT Press, 1993.

G. Wagner. Vivid logic: Knowledge-based reasoning with two kinds of negation.
LNAT 764, 1994.

M. Wallace. Tight, consistent, and computable completions for unrestricted logic
programs. Journal of Logic Programming, 15:243-273, 1993.

J.-H. You, S. Ghosh, L.-Y. Yuan, and R. Goebel. An introspective framework for
paraconsistent logic programs. In J. W. Lloyd, editor, ILPS95. The MIT Press,
1995.

Index

TSP operator, 14

Tp operator, 8, 14, 45

I" operator, 22, 31, 32

I'T" operator, 32

I'T’s operator, 22, 32

I'; operator, 22

Ca operator, 59, 60, 62, 63, 65
C operator, 59, 60, 62, 63, 65
Mp, 8

A-scheme, 8
Implementing, 9
Actual-contradictions, 2, 3, 54
Acyclicity, 29
Adorned Literals, 46
Alternating Fixpoint, 22, 32, 70
Annotated Predicate Calculus, 66
Annotations, 14
Answer Sets Semantics, 30, 43, 69
Compositional Semantics, 68
Over-determined Semantics, 41
Paraconsistent Stable Models, 30
Semi-Stable Models, 36
Stable Environments, 30
Stable Structures, 61
Suspicious p-stable Semantics, 46
Weak Answer Sets, 30
Argumentation, 54, 67, 70
Argumentation Logics, 67
Autoepistemic Logic, 1, 32

Belief Revision, 1, 2, 5, 7
Belnap’s Logic, 10, 69
Bilattice, 20, 25, 40, 66, 67
Blocking Contradiction Propagation, 53,
54, 63, 68, 70
Conservative Reasoning, 54
Credulous Reasoning, 54
Introspective Well-founded Model,
62
Paraconsistent Introspective Pro-
grams, 59
Skeptical Reasoning, 54
Stable Structures, 61
Well-founded Structures, 61

C-scheme, 8, 12, 18, 19, 23, 31

81

Implementing, 9
Canonical Condition, 38
Cautious Monotony, 27
Classical Negation, 32, 74
Coherence Principle, 20, 22, 25, 29, 32,
38, 67, 69, 70, 73
Complexity Results
Conservative Reasoning, 73
Credulous Reasoning, 73
Extended Well-founded Semantics,
73
Generalized Horn Programs, 73
Introspective Well-founded Model,
73
Liberal Reasoning, 73
Logic Programs with Strong Nega-
tion, 73
Paraconsistent WFSX, 73
Paraconsistent Stable Models, 73
Skeptical Reasoning, 73
Suspicious p-stable Models, 73
Suspicious WFS, 73
Compositional Semantics, 68
Conservative Reasoning, 54, 69, 70
P°° transformation, 56
Complexity Results, 73
Embedding into WFS, 57
Existence of Semantics, 72
Proof-theory, 55
Semantics, 55, 57
Constructive Logics, 16, 32
Bry’s logics, 18
Logic B, 16
Logic N, 16
Logic N7, 18
Logic LA, 67
Logic MLA, 67
Minimal Logic, 68
Contradiction, 1
Approaches, 2
Blocking Propagation, 53
Detecting Support, 43
Propagation of Support, 46, 48, 51
Contradiction Removal, 5, 7
Credulous Reasoning, 54, 69, 70
P! transformation, 56

Complexity Results, 73
Embedding into WFS, 57
Existence of Semantics, 72
Proof-theory, 55
Semantics, 55, 57
Cumulativity, 32, 39

Declarative Debugging, 2, 5

Default Consistency, 23, 29, 30

Default Literals, 18

Default Logic, 1, 32

Default Negation, 18, 70, 74

Definite Extended Logic Programs, 7
P~ transformation, 8
Isomorphism of semantics, 9
Language, 8
Logic FOUR, 10
Logical Properties, 12, 74
Model-theory, 10, 13
Over-determined Semantics, 42
Semantics, 8

Designated truth-values, 11, 19, 25, 32,

39, 48, 73
Disjunctive Logic Programming, 3, 30,
36, 70

Double Negation Law, 20
Doubled Program, 23

Embeddings, 16, 18, 19, 24, 29, 31, 57,
63
Epistemic Contradiction, 25
Epistemic Negation, 66
Equivalence relations
Strong form, 12
Weak form, 12
EWFS, see Extended Well-founded Se-
mantics
Existence of Semantics
Conservative Reasoning, 72
Credulous Reasoning, 72
Extended Well-founded Semantics,
72
Generalized Horn Programs, 72
Introspective Well-founded Model,
71
Liberal Reasoning, 72
Logic Programs with Strong Nega-
tion, 72
Over-determined Semantics, 72
Paraconsistent WFSX, 72

Paraconsistent Stable Models, 72
Semi-Stable Models, 72
Semi-Stable Semantics, 72
Skeptical Reasoning, 72
Stable Structures, 72
Suspicious WFSX ,, 72
Suspicious p-stable Models, 72
Suspicious WFS, 72
Well-founded Structures, 71
Explicit Negation, 1, 8, 73, 75
Extended Deductive Databases
Conservative Reasoning, 54
Credulous Reasoning, 54
Language, 28
Liberal Reasoning, 27
Skeptical Reasoning, 54
Extended Logic Programs
Language, 18
Extended Well-founded Semantics, 19,
29, 69, 70
P~ transformation, 19
Complexity Results, 73
Embedding into WFS, 19
Existence of Semantics, 72
Logic VII, 19
Logical Properties, 20, 74
Model-theory, 19, 21
Semantics, 19

Gelfond-Lifschitz Transformation, 22, 42,
47
Generalized Annotated Logic Programs,
66
Generalized Horn Programs, 14, 69
Q“"P Transformation, 15
Complexity Results, 73
Definite Logic Programs, 9
Embedding into Def. Logic Pro-
grams, 16
Existence of Semantics, 72
Language, 14
Semantics, 16
Generalized Well-founded Semantics, 67
Gh-clauses, 14
GHP, see Generalized Horn Programs
Ground instances, 7, 17

Introspective Operators, 54, 68, 70
Ca operator, 59, 60, 62, 63, 65
C operator, 59, 60, 62, 63, 65

Introspective Well-founded Model, 62,

70
Pi™ transformation, 63
Ca operator, 62, 63, 65
C operator, 62, 63, 65
Complexity Results, 73
Embedding into WFS, 63
Existence of Semantics, 71
Logical Properties, 74
Semantics, 63

Law of Excluded Middle, 41, 73

Liberal Reasoning, 27, 54, 69
P! transformation, 29
Complexity Results, 73
Embedding into WFS, 29
Existence of Semantics, 72
Model-theory, 29
Proof-theory, 28
Semantics, 29

Local Stratification, 29

Logic FOUR, 32
Connectives, 10
Consequence relation =4, 11
Designated truth-values, 11
Equivalence relations, 12
Properties, 12, 74

Logic N, 69

Logic N, 18, 69

Logic NINE, 25, 39, 74
Connectives, 25
Consequence relation |=o, 25
Designated truth-values, 25
Properties, 26, 74

Logic of Implicit Belief, 17

Logic Programming, 1
Conservative Reasoning, 54-58
Credulous Reasoning, 54-58
Definite Logic Programs, 7-18

Extended Well-founded Semantics,

19-22

Generalized Horn Programs, 14—

16

Introduction of Explicit Negation,

1

Introduction of Paraconsistency, 2

Introspective Well-founded Model,
62-66

Liberal Reasoning, 27-30

Logic Programs with Strong Nega-

tion, 16-18

Over-determined Semantics, 4143

Paraconsistent WFSX, 22-27

Paraconsistent Introspective Pro-

grams, 59-62

Paraconsistent Stable Models, 30—

36
Semi-Stable Models, 36—41
Skeptical Reasoning, 54-58
Suspicious WFSX,, 50-53

Suspicious p-stable Semantics, 46—

50
Suspicious WFS, 44-46

Logic Programs with Strong Negation,

16, 69
IT° transformation, 18
Complexity Results, 73

Embedding into Def. Logic Pro-

grams, 18

Existence of Semantics, 72
Language, 17
Logic N, 18
Model-theory, 18
Semantics, 17

Logic Cs, 67

Logic IV, 32, 43, 74
Connectives, 32
Consequence relation, 32
Designated truth-values, 32
Properties, 32, 74

Logic IX, 39, 74
Connectives, 39
Consequence Relation E=rx, 39
Designated truth-values, 39
Properties, 39, 74

Logic VII, 19, 74
Connectives, 19-20
Consequence relation =7, 19
Designated truth-values, 19
Properties, 2021, 74

Logic VI, 48, 74
Connectives, 48
Consequence relation |=¢, 48
Designated truth-values, 48
Properties, 50, 74

Logic LA, 67, 69

Logic MLA, 67

LPSN, see Logic Programs with Strong

Negation

Minimal para-model, 60

N-scheme, 8, 19, 23, 31, 43
Negation by Failure, 27, 36

Objective Literals, 8
OD, see Over-determined Semantics
Ontological Negation, 66
Over-determined Semantics, 41, 68-70
Existence of Semantics, 72
Model-theory, 42
Semantics, 42

p-possible model, 37
p-stable model, see Paraconsistent Sta-
ble Models, 37
Paraconsistent WFSX, 22, 69
PT-TU transformation, 24
Complexity Results, 73
Embedding into WFS, 24
Existence of Semantics, 72
Logic NINE, 25
Logical Properties, 26, 74
Model-theory, 24-26
Semantics, 23
Support on Contradiction, 50
Paraconsistent Introspective Programs,
59, 65, 70
Ca operator, 59, 60
C operator, 59, 60
Entailment relation, 60
Language, 59
Models, 60
Semantics, 61
Stable Structures, 61
Structure, 59
Well-founded Structures, 61
Paraconsistent Logics
Equivalence relations, 12
Logic N7, 18
Logic FOUR, 10
Logic NINE, 25
Logic Cs, 67
Logic IV, 32
Logic IX, 39
Logic VII, 19
Logic VI, 48
Logic LA, 67
Logic MLA, 67
Paraconsistent Reasoning, 2

Examples, 4-7
Requirements, 5
Paraconsistent Semantics
Annotated Predicate Calculus, 66
Compositional Semantics, 68
Conservative Reasoning, 57
Credulous Reasoning, 57
Extended Well-founded Semantics,
19
for Definite Logic Programs, 8
Generalized Annotated Logic Pro-
grams, 66
Generalized Horn Programs, 16
Generalized Well-founded Seman-
tics, 67
Introspective Well-founded Model,
63
Liberal Reasoning, 29
Logic Programs with Strong Nega-
tion, 17
Over-determined Semantics, 42
Paraconsistent WFSX, 23
Paraconsistent Stable Models, 31
Semi-Stable Models, 38
Signed Systems, 67
Skeptical Reasoning, 57
Stable Structures, 61
Suspicious p-stable Semantics, 47
Well-founded Structures, 61
Paraconsistent Stable Models, 30, 38,
69, 70
P~ transformation, 31, 32
Py, transformation, 31
Complexity Results, 73
Existence of Semantics, 72
Logic IV, 32
Logical Properties, 32, 74
Model-theory, 32
Relationship to WFSX,, 31, 32
Relationship to Answer Sets, 31,
32
Relationship to WFS, 31
Semantics, 31
Paraconsistent Well-Founded Semantics

with Explicit Negation, see Para-

consistent WFSX
Partial Herbrand Interpretation, 17, 27,
29
Countermodel relation, 17, 27
Model relation, 17, 27

Partial Models, 17
Partial Stable Model, 31
Perfect Model, 28, 29, 32
Potential-contradictions, 2, 3, 54, 68
Pre-Model, 60
Preferred Extensions, 39
Program Division, 22, 42, 47
Program Transformations, 72
P" epistemic transformation, 36
P~ transformation, 8, 19, 30-32,
39, 72, 73
P! transformation, 29, 56, 72
P? transformation, 72
PT-TU transformation, 24, 63, 72,
73
P¢° transformation, 56, 72
P¢" transformation, 72
Pi™ transformation, 63, 72
P? transformation, 56
Py, transformation, 31
QC"" transformation, 15
AP transformation, 52
I" operator, 22
IT° transformation, 18
Semi-normal program, 22
Propagation of Support on Contradic-
tion, 46, 48, 70
Properties of a Negation, 20

Rationality, 32, 39
Reduct, 22, 47
Relevance, 32, 39

Semi-normal Program, 22

Semi-Stable Models, 36, 38, 70
P" epistemic transformation, 36
Existence of Semantics, 72
Logic IX, 39
Logical Properties, 39
Model-theory, 39, 41
Semantics, 38

Semi-Stable Semantics
Existence of Semantics, 72

Signed Systems, 67

Skeptical Reasoning, 54, 69, 70
P? transformation, 56
Complexity Results, 73
Embedding into WFS, 57
Existence of Semantics, 72
Proof-theory, 55

Semantics, 55, 57
Split Program, 37
Stable Environments, see Paraconsis-
tent Stable Models
Stable Structures, 61
Existence of Semantics, 72
Strongly Well-founded XDBs, 56
Structure, 59
Entailment Relation, 60
Models, 60
Suffixed Literal, 44
Support on Contradiction, 43, 50, 52,
70
Propagation of Support, 51
Suspicious WFSX,, 50
Suspicious p-stable Semantics, 46
Suspicious WFS, 44
Suspicious WFSX, 50, 70
AP transformation, 52
Existence of Semantics, 72
Model-theory, 53
Propagation of Support, 51
Property, 52
Semantics, 52
Support on Contradiction, 50, 52
Suspicious p-stable Models, 47
Suspicious p-stable Semantics, 46, 70
T3 operator, 47
Complexity Results, 73
Existence of Semantics, 72
Logic VI, 48
Logical Properties, 50, 74
Model-theory, 48, 50
Propagation of Support, 48
Semantics, 47
Suspicious Well-founded Semantics, see
Suspicious WFS
Suspicious WFS, 44, 70
Complexity Results, 73
Existence of Semantics, 72
Operators, 45
Semantics, 45
Support on Contradiction, 46

Two-valued, 27, 34, 41, 64

Vivid Knowledge Bases, 16
Conservative Reasoning, 54
Credulous Reasoning, 54
Language, 27

Liberal Reasoning, 27
Skeptical Reasoning, 54

Weak Answer Sets, see Paraconsistent
Stable Models
Weak Negation, 27, 69
Weak Well-foundedness, 28
Well-annotated Literals, 14
Well-annotated Programs, 16
Well-founded Semantics, 69
© operator, 19
Extended Well-founded Semantics,
19
Generalized Well-founded Seman-
tics, 67
Introspective Well-founded Model,
62
Liberal Reasoning, 27
Paraconsistent WFSX, 22
Partial Stable Model, 31
Suspicious WFSX,, 50
Suspicious WFS, 44
Well-founded Structures, 61
Well-founded Structures, 61
Existence of Semantics, 71
Well-foundedness, 28
WFEFS, see Well-founded Semantics
WEFSX,, see Paraconsistent WFSX

XDB, see Extended Deductive Databases

This article was processed using the BTEX macro package with LLNCS style

