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Extended Abstract

Abstract Abduction has been on the back burner in logic programming, as abduction can be
too difficult to implement, and costly to perform, in particular if abductive solutions are not
tabled for reuse. On the other hand, current Prolog systems, with their tabling mechanisms,
are mature enough to facilitate the specific introduction of tabling abductive solutions (tabled
abduction) into them. We conceptualize tabled abduction for abductive normal logic programs,
permitting abductive solutions to be reused, from one abductive context to another. The ap-
proach relies on a program transformation into tabled logic programs that makes use of the dual
transformation, and enables efficiently handling the problem of abduction under negative goals,
by introducing dual positive counterparts for them. Tabled abduction is realized in Tabdual,
a system implemented in XSB Prolog, where the dual transformation is refined to permit ex-
ecuting programs with variables and non-ground queries, and to allow performing dualization
by-need only. Furthermore, we foster pragmatic approaches in Tabdual to cater to all varieties
of loops in normal logic programs, now complicated by abduction. Tabdual has been evalu-
ated in practice (with applications in declarative debugging and decision making) by examining
its five variants, according to various evaluation objectives. Tabdual’s correctness and com-
plexity are also referred, we identify its features that could migrate to the engine level, in Logic
Programming systems wanting to encompass tabled abduction, and we summarize related work.

KEYWORDS: abductive logic programming, tabled abduction, dual transformation, XSB Pro-
log, applications of abduction.

1 Tabdual: Tabled Abduction in Logic Programs

Abduction has been well studied in the field of computational logic, and logic program-
ming in particular, for a few decades by now (Denecker and de Schreye 1992; Inoue and
Sakama 1996; Fung and Kowalski 1997; Eiter et al. 1997; Kakas et al. 1998; Satoh and
Iwayama 2000; Alferes et al. 2004). Abduction in logic programs offers a formalism to
declaratively express problems in a variety of areas, e.g. in diagnosis, planning, scheduling,
reasoning of rational agents, decision making, knowledge assimilation, natural language
understanding, security protocols verification, and systems biology (Eshghi 1988; Kakas
and Mancarella 1990; Balsa et al. 1995; Gartner et al. 2000; Kakas and Michael 2001;
Alberti et al. 2005; Ray et al. 2006; Kowalski and Sadri 2011; Pereira et al. 2013). On the
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other hand, many Prolog systems have become mature and practical, and thus it makes
sense to facilitate the use of abduction into such systems, be it two-valued abduction (as
adopted in this work) or three-valued, e.g. (Damásio and Pereira 1995).

In abduction, finding some best explanations (i.e. adequate abductive solutions) to the
observed evidence, or finding assumptions that can justify a goal, can be very costly. It
is often the case that abductive solutions found within one context are also relevant in
a different context, and can be reused with little cost. In logic programming, absent of
abduction, goal solution reuse is commonly addressed by employing a tabling mechanism.
Therefore, tabling appears to be conceptually suitable for abduction, so as to reuse
abductive solutions. In practice, abductive solutions reuse is not immediately amenable
to tabling, because such solutions go together with an abductive context.

In (Pereira and Saptawijaya 2012), we preliminarily explore the idea of how to benefit
from tabling mechanisms in order to reuse priorly obtained abductive solutions, from
one abductive context to another. Tabling abductive solutions (tabled abduction) with
its prototype Tabdual, implemented in XSB Prolog (Swift and Warren 2012), consists
of a program transformation from abductive normal logic programs into tabled logic
programs, plus a library of system predicates. It requires no meta-interpreter, but gen-
erates a self-sufficient program transform, on which abduction is subsequently enacted.
Tabdual is available at http://sourceforge.net/projects/tabdual.

We simplify the specification of tabled abduction in Tabdual by introducing the
core transformation, which abstracts away from implementation details of its subsequent
refinements and more complex constructs, such as loops (i.e. positive loops and loops
over negation) in abductive normal logic programs. That is, the core Tabdual transfor-
mation focuses on an innovative re-uptake of prior abductive solution entries in tabled
predicates, and the dual transformation (Alferes et al. 2004), on which Tabdual relies.
The dual transformation, initially employed in Abdual (Alferes et al. 2004), allows to
more efficiently handle the problem of abduction under negative goals, by introducing
their positive dual counterparts. It enables us to obtain one abductive solution at a time,
just as when we treat abduction under positive goals. The dual transformation defines
for each atom A and its set of rules R in a normal program P , a set of dual rules whose
head not_A is true if and only if A is false by R in the employed semantics of P . Note
that, instead of having a negative goal not A as the rules’ head, we use its correspond-
ing ‘positive’ literal, not_A. The specification of the core Tabdual transformation and
further development of Tabdual are detailed in (Saptawijaya and Pereira 2013b).

Originally, the dual transformation in Abdual does not concern itself with programs
having variables. We refine the dual transformation in the context of Tabdual, to allow
it dealing with such programs. More precisely, it is refined to help ground (dualized)
negative subgoals, and to deal with non-ground negative goals. Regarding the latter,
we look just for abductive solutions of such non-ground negative goals, and not for
constraints on free variables of its calling arguments, i.e. no constructive negation.

The tabling mechanism in XSB Prolog supports the Well-Founded Semantics (WFS)
(van Gelder et al. 1991), which allows dealing with loops in the program and ensuring
termination of looping queries. Tabdual, being implemented in XSB, employs its tabling
mechanism as much as possible to deal with loops. Tabdual detects direct positive
loops (of any length), e.g. in r ← r, and fail predicates involved in such loops, as the
XSB tabling mechanism does. Nevertheless, tabled abduction introduces a complication
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concerning some varieties of loops. For instance, whereas r ← r fails query r, perforce
its dual rule not_r ← not_r succeeds query not_r. In Tabdual, such positive loops in
dualized negation (not_r in the above example) are detected by tracking the ancestors
of negative subgoals, whenever they are called from other negative subgoals. The core
Tabdual transformation is therefore adapted, resorting to a pragmatic approach, by
maintaining a list of ancestors of negative subgoals. Indeed, this ancestor list implements
the co-unfounded set of literals, defined in Definition 3.5 of (Alferes et al. 2004), in order
to deal with such loops. Another type of loops that needs to be handled carefully in the
transformation is negative loops over negation (of any length), e.g. in

p← q. q ← not p.

which are taken care by wrapping the positive dual counterparts of negative goals in the
bodies of rules (i.e. wrapping not_p for the above example) with the tabled negation
predicate (tnot/1 in XSB) twice: on the one hand it preserves the semantics of the rule
(keeping the truth value by applying tnot twice), and on the other hand introducing tnot

creates the intended negative loops over negation. The reader is referred to (Saptawijaya
and Pereira 2013b) for the implementation details of dealing with such loops.

Keeping in mind Tabdual as a practical tabled abduction system, under the WFS
with abduction (Alferes et al. 2004), several pragmatic aspects have been examined from
the implementation viewpoint. First, because Tabdual allows for modular mixes be-
tween abductive and non-abductive program parts, one can benefit in the latter part
by enacting a simpler translation of predicates in the program comprised just of facts.
This simpler treatment distinguishes the transformation between rules in general and
predicates defined extensionally by facts alone. It particularly helps avoid superfluous
transformation of facts, which would hinder the use of large factual data. Second, we
address the issue of potentially heavy transformation load due to producing the complete
dual rules (i.e. all dual rules regardless of their need), if these are constructed in advance
by the transformation. Such a heavy dual transformation makes it a bottleneck of the
whole abduction process. A natural solution is instead to perform the dual transforma-
tion by-need, i.e. dual rules for a predicate are only created as their need is felt during
abduction. We detail two approaches to realizing the dual transformation by-need: creat-
ing and tabling all dual rules for a predicate on the first invocation of its negation, or, in
contrast, lazily generating and storing (instead of tabling) its dual rules in a trie, as new
alternatives are required. The former approach leads to an eager dual rules tabling (al-
beit by-need) transformation (under local table scheduling strategy), whereas the latter
permits a by-need driven lazy one (in lieu of batched table scheduling). Third, Tabdual
provides a system predicate that permits accessing ongoing abductive solutions. This is
a useful feature and extends Tabdual’s flexibility, as it allows manipulating abductive
solutions dynamically, e.g. preferring or filtering ongoing abductive solutions, e.g. check-
ing them explicitly against nogoods at predefined program points. These implementation
aspects and others are examined in (Saptawijaya and Pereira 2013a; Saptawijaya and
Pereira 2013b).

Tabdual has been evaluated with various objectives, where five Tabdual variants
(of the same underlying implementation) are examined, by separately factoring out
Tabdual’s most important distinguishing features. In the first, we evaluate the benefit
of tabling abductive solutions, where we employ an example from declarative debugging
to debug incorrect solutions of logic programs, via a process now characterized as abduc-
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tion (Saptawijaya and Pereira 2013d), instead of as belief revision (Pereira et al. 1993a;
Pereira et al. 1993b). The other case of declarative debugging, that of debugging missing
solutions, is used next to evaluate the three dual transformation variants: complete, ea-
ger by-need, and lazy by-need. We touch upon tabling so-called nogoods of subproblems
in the context of abduction (i.e. abductive solution candidates that violate constraints),
and show, in the third evaluation, that tabling abductive solutions can be appropriate
for tabling nogoods of subproblems. We also evaluate Tabdual in dealing with programs
having loops, in the fourth evaluation, where we also compare its results with Abdual,
showing that Tabdual provides more correct and complete results. Finally, we describe
how Tabdual can be applied in action decision making under hypothetical reasoning,
and in a real medical diagnosis case (Saptawijaya and Pereira 2013d). The evaluations
and their results are detailed in (Saptawijaya and Pereira 2013b; Saptawijaya and Pereira
2013c).

As the core Tabdual transformation relies on the dual transformation, its correctness
stems from that of Abdual, shown formally there. It theoretically justifies, supports,
and closely reflects the correctness of the core Tabdual transformation. The details in-
troduced in the core transformation, and its subsequent refinements, including dealing
with programs having loops, are just a concrete realization of the more abstract theory of
Abdual. Its implementation aspects are extra complexities and refinements introduced
for Tabdual to achieve optimizations pertinent to the XSB features, like tabling and
tries. Nevertheless, one needs to note that, whereas Abdual is restricted to ground pro-
grams and queries, Tabdual caters to programs with variables and non-ground queries.
Indeed, its non-groundness does not violate the groundness assumption in the theory of
Abdual, since one can move the head unifications of a rule to equalities in its body.
Thereby, one can think of the ground instances of all the rules, and stick to the dual
transformation of Abdual with its groundness assumption.

In terms of complexity, the size of the program produced by the core Tabdual trans-
formation is linear in the size of the input program; the proof is given in (Saptawijaya
and Pereira 2013b). This result is similar to that of Abdual using the folded dual form,
cf. Lemma A.5 in (Alferes et al. 2004). It is known that the problem of query evaluation
to abductive frameworks is NP-complete, even for those frameworks in which entailment
is based on the WFS (Eiter et al. 1997). In (Alferes et al. 2004), it is shown that the
complexity of an Abdual query evaluation is proportional to the maximal number of
abducibles in any abductive subgoals, and to the number of abducible atoms in the pro-
gram. In particular, if the set of abducible atoms and ICs are both empty, then the cost
of query evaluation is polynomial. The complexity of Tabdual query evaluation should
naturally be based on that of Abdual, since Tabdual also employs the dual transforma-
tion. One may observe that the table size, used in tabling abductive solutions, would be
proportional to the number of distinct (positive) subgoals in the procedural call-graph,
i.e. each first call of the subgoals in a given query will table, as solution entries, the
abductive solutions of the called subgoal.

2 Related Work

There have been a plethora of work on abduction in logic programming, cf. (Kakas
et al. 1998; Denecker and Kakas 2002) for a survey on this line of work. But, with the
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exception of Abdual (Alferes et al. 2004), we are not aware of any other efforts that have
addressed the use of tabling in abduction for abductive normal logic programs, which
may be complicated with loops. Though both Abdual and Tabdual rely on the dual
transformation and the same theoretic underpinnings, Abdual does not allow variables
in rules, which is no restriction in Tabdual. Differently from Abdual, Tabdual employs
no meta-interpreter, but generates a self-sufficient program transform. Moreover, tabling
in Abdual is employed only to table its meta-interpreter, and it does not address at all
the issues raised by the desirable reuse of tabled abductive solutions; the latter being the
main concern of Tabdual.

Tabdual, being implemented in XSB, is underpinned by WFS, which enjoys the rel-
evance property. Thus, it allows abduction to be performed by need only, induced by
the top-down query-oriented procedure, solely for finding the relevant abducibles and
their truth value, assuming the ICs are satisfied. This is not the case with the bottom-
up approaches for abduction, e.g. (Satoh and Iwayama 1991), where stable models for
computing abductive explanations, not necessarily related to an observation, are con-
structed. Moreover, Tabdual allows dealing with odd loops in programs because of its
3-valued program semantics, whilst retaining 2-valued abduction by-need and the use of
integrity constraints. This is not enjoyed by the bottom-up approach and its 2-valued
implementation.

The tabling technique, within the context of statistical abduction, is employed in (Sato
and Kameya 2001; Riguzzi and Swift 2011). But they concern themselves with probabilis-
tic logic programs, whereas Tabdual with abductive normal logic programs. Moreover,
they do not employ the dual transformation and other techniques described here. In par-
ticular, the tabling technique in (Sato and Kameya 2001) imposes a constraint that does
not allow loops in a program, which pose no restrictions at all in Tabdual.

The reader is referred to (Saptawijaya and Pereira 2013b) for further discussion on
related work.

3 Concluding Remarks

The development of Tabdual thus far hints that several features, which are currently
deployed at the object language level, could migrate into an engine-level of Prolog sys-
tems that support tabling and, optionally, tries data structure, like XSB. These include
migrating operations on tabled abduction entries, such as consistency checking; hiding
data structures, like abductive contexts, and attending operations to detect loops in
programs; and admixtures of batched and local table scheduling strategies, which may
simplify and improve the lazy by-need dual transformation.

Abduction is by now a staple feature of hypothetical reasoning and non-monotonic
knowledge representation. It is already mature enough in its concept, deployment, ap-
plications, and proof-of-principle, to warrant becoming a run-of-the-mill ingredient in a
Logic Programming environment. We hope this work will lead, in particular, to an XSB
System that can provide its users with specifically tailored tabled abduction facilities.
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