
Gödel and Computability 1 
 

Luís Moniz Pereira 
 

Centro de Inteligência Artificial – CENTRIA 
Universidade Nova de Lisboa, Portugal 

 
 

Abstract 
 

We discuss the influence of Gödel and his results on the surfacing of the 
rigorous notion of computability afforded by Turing. We also address the debate about 
the limits of Artificial Intelligence spurned by Roger Penrose, on the basis of Gödel's 
theorems, and the views of Gödel himself. We conclude by touching upon the use of 
logic as a tool with which to approach the description of mind. 

 
 
Hilbert’s Questions 
 
The research programme that David Hilbert presented to the international congress of 
mathematics in Bologna in 1928 was essentially an extension of the work he had 
initiated in the 1890s. He was not intent on answering the question that Frege and 
Russell had posed, about what mathematics really was. In that regard, he showed 
himself to be less philosophical and less ambitious. On the other hand he was much 
more penetrating, as he raised profound and hard questions about the systems of the 
kind that Russell had produced. In fact, Hilbert begot the question about what were, in 
principle, the limitations of a scheme like Principia Mathematica. Was there any way to 
find out what could, and could not, be demonstrated from within such theory? 
 
Hilbert’s approach was deemed formalist, as he treated mathematics as a game, a matter 
of form. The allowed steps in a demonstration should be looked at in the same way as 
the possible moves in the game of chess, with the axioms being the initial state of the 
game. In this analogy, ‘playing chess’ stood for ‘executing mathematics’, but the 
statements about chess (such as ‘two knights cannot achieve checkmate’) stood for 
statements about the scope of mathematics. It was with the latter statements that 
Hilbert’s programme was concerned. 
 
In that congress of 1928, Hilbert made his questions very precise. First, was 
mathematics complete? In the sense of whether all mathematical statements (such as “all 
integers are the sum of four square numbers”) could be demonstrated, or falsified. 
Second, he asked whether mathematics was consistent, which amounts to asking 
whether any contradictory statements, like ‘2+2=5’ could be demonstrated by a correct 
application of valid steps of the rules for derivation. And third he asked was 
mathematics decidable? By this he meant to ascertain if there was a well-defined 
method which, in principle, if applied to any assertion, could be guaranteed to produce a 
correct decision about the truth of that assertion. 
 
                                                 
1 Translation of an invited article for a special issue of the “Bulletin of the Portuguese Mathematical 
Society” dedicated to Kurt Gödel, to appear end of 2006 on the occasion of the 100th anniversary of his 
birth. 



In 1928, none of these questions had an answer. Hilbert hypothesized that the answer 
was ‘yes’ to every one of them. In his opinion, “there were no unsolvable problems”. 
But it didn’t take long before the young Austrian mathematician, Kurt Gödel, presented 
results which struck a severe blow to Hilbert’s programme. 
 
Gödel’s Answers 
 
Kurt Gödel was able to show that every formalization of arithmetic must be incomplete: 
that there are assertions that cannot be demonstrated nor rebutted. Starting from Peano’s 
axioms for the integer numbers, he extended them to a simple type theory, in such a 
way that the obtained system could represent sets of integers, sets of sets of integers, 
and so forth. However, his argument could be applied to any formal system sufficiently 
rich to include number theory, and the details of the axioms were not crucial. 
 
Next he showed that all operations in a ‘proof’, the ‘chess-like’ deduction rules, could 
be represented in arithmetic. This means that such rules would be constituted only by 
operations like counting and comparing, in order to verify if an expression (itself 
represented arithmetically) had been correctly replaced by another – just like the 
validity check of a chess move is only a matter of counting and comparing. In truth, 
Gödel showed that the formulas of his system could be codified as integers, to represent 
assertions about integers. This is his main idea. Subsequently, Gödel showed how to 
codify demonstrations as integers, in such a way that he had a whole theory of 
arithmetic, codified from within arithmetic. He was using the fact that, if mathematics 
was to be regarded as a pure symbol game, then one could employ numerical symbols 
instead of any others. He managed to show that the property of ‘being a demonstration’ 
or being ‘provable’ was as much arithmetical as that of ‘being square’ or ‘being prime’. 
 
The result of this codification process was that it became possible to write arithmetical 
assertions that referred to themselves, just like when a person says “I’m lying”. In fact, 
Gödel constructed a specific assertion that had exactly that property, as it effectively 
said “This assertion is not provable.” It followed that it could not be shown true, as that 
would lead to a contradiction. Neither could it be shown false, by the same reason. It 
was thus an assertion that could neither be proved nor refuted by logical deduction from 
the axioms. Gödel had just showed that arithmetic was incomplete, in Hilbert’s 
technical sense. 
 
But there is more to be said about the matter, because there was something special about 
that particular assertion of Gödel, more precisely the fact that, considering that it is not 
provable, it is in some sense true. But to assert that it is true requires an observer that 
can look at the system from the outside. It cannot be shown from within the axiomatic 
system. 
 
Another important issue is that this argument assumes that arithmetic is consistent. In 
fact, if arithmetic were inconsistent then any assertion would be provable, since in 
elementary logic everything follows from contradiction. More precisely, Gödel had just 
shown that arithmetic, once formalized, had to be either inconsistent or incomplete2. He 
could also show that arithmetic could not be proved consistent from within its own 
                                                 
2 In truth, the fact that a Gödel assertion cannot be refuted formally depends on the omega-consistency of 
the system, not just on its consistency. Rosser, later, by means of a slightly different kind of assertion, 
showed that one can do without the omega-consistency requirement. 



axiomatic system. To prove consistency, it would suffice to show that there was some 
proposition (say, ‘2+2=5’) that could not be proven true. 
 
But Gödel managed to show that such an existential statement had the same 
characteristic of the assertion that claimed its own non-provability. In this way, he 
«discharged» both the first and second questions posed by Hilbert. Arithmetic could not 
be proved consistent, and for sure it wasn’t consistent and complete. This was a 
spectacular turn of events in research on the matter, and quite disturbing for those that 
wished for an absolutely perfect and unassailable mathematics. 
 
 
Gödel, computability, and Turing 
 
The third of Hilbert’s questions, that of decidability, still remained open, although now 
it had to be formulated in terms of provability, instead of truth. Gödel’s results did not 
eliminate the possibility that there could be some way of distinguishing the provable 
from the non-provable assertions. This meant that the peculiar self-referencing 
assertions of Gödel might in some way be separated from the rest. Could there be a 
well-defined method, i.e. a mechanizable procedure, that could be applied to any 
mathematical statement, and that could decide if that statement was, or was not, 
derivable in a given formal system? 
 
From 1929 to 1930, Gödel had already solved most of the fundamental problems raised 
by Hilbert’s school. One of the issues that remained was that of finding a precise 
concept that would characterize the intuitive notion of computability. But it was not 
clear at the time that this problem would admit a definitive answer. Gödel was probably 
surprised by Turing’s solution, which was more elegant and conclusive than what he 
had expected. Gödel fully understands, at the beginning of the ‘30s, that the concept of 
formal system is intimately tied up with that of mechanizable procedure, and he 
considers Alan Turing’s 1936 work (on computable numbers) as an important 
complement of his own work on the limits of formalization. 
 
In 1934, Gödel gave lectures at the Institute of Advanced Studies in Princeton where he 
recommended the Turing analysis of mechanizable procedures (published in 1936) as an 
essential advance that could raise his incompleteness theorems to a more finished form. 
In consequence of Turing’s work, those theorems can be seen to “apply to any  
consistent formal system that contains part of the finitary number theory”. 
 
It is well known that Gödel and Alonzo Church, probably in the beginning of 1934, 
discussed the problem of finding a precise definition to the intuitive concept of 
computability, a matter undoubtedly of great interest to Gödel. In accordance with 
Church, Gödel specifically raised the issue of the relation between that concept and 
Church’s definition of recursivity, but he was not convinced that both ideas could be 
satisfactorily made equivalent, “except heuristically”. Over the years, Gödel regularly 
credited Turing’s 1936 article as the definitive work that captures the intuitive concept 
of computability, he being the only author to present persuasive arguments about the 
adequacy of the precise concept he himself defined. 
 
Regarding the concept of mechanizable procedure, Gödel’s incompleteness theorems 
also naturally begged for an exact definition (as Turing would come to produce) by 



which one could say that they applied to every formal system, i.e. every system on 
which proofs could be verified by means of an automatic procedure. In reality, Hilbert’s 
programme included the Entscheidungsproblem (literally, ‘decision problem’), which 
aimed to determine if there was a procedure to decide if, in elementary logic, any 
proposition was derivable or not by Frege’s rules (for elementary logic, also known as 
first-order logic). This requires a precise concept of automatic procedure, in case the 
answer is negative (as is the case). 
To this end, in 1934, Gödel introduces the concept of general recursive functions, which 
was later shown to capture the intuitive concept of mechanizable computability. Gödel 
suggested the concept and Kleene worked on it. The genesis of the concept of general 
recursive functions was implicit in Gödel’s proof about the incompleteness of arithmetic. 
When Gödel showed that the concept of proof using “chess-like” rules was an 
‘arithmetical’ concept, he was in fact saying that a proof could be realized by a ‘well-
defined’ method. This idea, once formalized and somewhat extended, gave rise to the 
definition of ‘recursive function’. It was later verified that these were exactly equivalent 
to the computable functions. 
 
After some time, Gödel came to recognize that the conception of ‘Turing machine’ 
offers the most satisfactory definition of ‘mechanic procedure’. According to Gödel 
himself, Turing’s 1936 work on computable numbers is the first to present a convincing 
analysis of such a procedure, showing the correct perspective by which one can clearly 
understand the intuitive concept. 
 
On the rigorous definition of the concept of computability performed by Turing, Gödel 
says: “This definition was by no means superfluous. Although before the definition the 
term ‘mechanically calculable’ did not have a clear meaning, though not analytic [i.e. 
synthetic], so the issue about the adequacy of Turing’s definition would not make 
perfect sense, instead, with Turing’s definition the term’s clarity undoubtedly receives a 
positive answer”. 
 
Once the rigorous concept, as defined by Turing, is accepted as the correct one, a simple 
step suffices to see that, not only Gödel’s incompleteness theorems apply to formal 
systems in general, but also to show that the Entscheidungsproblem is insoluble. The 
proof of this insolubility by Turing himself showed that a class of problems that cannot 
be solved by his “A-machines” (from “Automatic machines”, today known as Turing 
machines) can be expressed by propositions in elementary logic. 
 
In his Ph.D. thesis, Turing is interested in finding a way out from the power of Gödel’s 
incompleteness theorem. The fundamental idea was that of adding to the initial system 
successive axioms. Each ‘true but not demonstrable’ assertion is added as a new axiom. 
However, in this way, arithmetic acquires the nature of a Hydra, because, once the new 
axiom is added, a new assertion of that type will be produced that takes it now into 
consideration. It is then not enough to add a finite number of axioms, but it is necessary 
to add an infinite number, which was clearly against Hilbert’s finitary dream. If it were 
possible to produce a finite generator of such axioms, then the initial theory would also 
be finite and, as such, subject to Gödel’s theorem. 
 
Another issue is that there exist an infinite number of possible sequences by which one 
can add such axioms, leading to different and more complete theories. Turing described 
his different extensions to the axioms of arithmetic as ‘ordinal logics’. In these, the rule 



to generate the new axioms is given by a ‘mechanical process’ which can be applied to 
‘ordinal formulas’, but the determination whether a formula is ‘ordinal’ was not 
mechanizable. Turing compared the identification of an ‘ordinal’ formula to the work of 
intuition, and considered his results disappointingly negative, for although there existed 
‘complete logics’, they suffered from the defect that one could not possibly count how 
many ‘intuitive’ steps were needed to prove a theorem3. 
 
This work, however, had a pleasantly persistent side effect, namely the introduction of 
the concept of ‘oracle Turing machine’, precisely so it could be allowed to ask and 
obtain from the exterior the answer to an insoluble problem from within it (as that of the 
identification of an ‘ordinal formula’). It introduced the notion of relative computability, 
or relative insolvability, which opened a new domain in mathematical logic, and in 
computer science. 
 
The connection, made by S.A. Cook, in 1971, between Turing machines and the 
propositional calculus would give rise to the study of central questions about 
computational complexity. In 1936, Gödel also noted that theorems with long proofs in 
a given system could very well obtain quite shorter proofs if one considered extensions 
to the system. This idea has been applied in Computer Science to demonstrate the 
inefficiency of some well known decision procedures, to show that they require an 
exponential (or worse) amount of time to be executed. This is a particular instance of 
one of Gödel’s favourite general ideas: problems raised in a particular system can be 
handled with better results in a richer system. 
 
 
Mens ex-machina 
 

                                                 
3 I would like to make a reference here to my own ongoing work. The basic idea is to use an implemented 
logic programming language, EVOLP (Alferes et al. 2002), which has the capacity of self-updating, in 
order to obtain this self-evolution predicted by Turing. 
 
The model theory can be defined with the revised stable models semantics (Pereira e Pinto, 2005), with 
the introduction in each program of the following causal scheme, involving the usual not construct of 
logic programming, representing non-provability: 
 
  GA ← gödel_assertion(GA), not GA   
 
This scheme, representing its the ground instances, states that if GA is a Gödel assertion, and it is not 
demonstrable, then GA is true, where we take as a given the codification of the predicate 
gödel_assertion(GA), which tests, once codified, if the literal GA can be constructed using the 
Gödelization method. The conclusion is obtained by reductio ad absurdum, i.e. if not GA was true, then 
GA would be true; since this is a contradiction and we use a two-valued logic, then the premise not GA is 
false and the conclusion GA is true. 
 
The proof system is derived from this intuition, and uses the following EVOLP rule, where the literal GA 
can itself be a full-blown rule: 
 
  assert(GA) ← gödel_assertion(GA), not GA 
 
This means that each GA that complies with the premises will be part of the next state of the self-evolving 
program, and so forth. Such a role takes the place of the intuitive step necessary for evolution, 
conceptually realizing it by reductio ad absurdum followed by an update, which is allowed expression 
within the EVOLP language itself. 



It is worth mentioning that, contrary to Turing, Gödel was not interested in the 
development of computers. Their mechanics is so connected with the operations and 
concepts of logic that, nowadays, it is quite commonplace for logicians to be involved, 
in some way or other, in the study of computers and computer science. However, 
Gödel’s famous incompleteness theorem demonstrates and establishes the rigidness of 
mathematics and the limitations of formal systems and, according to some, of computer 
programs. It relates to the known issue of whether mind surpasses machine. Thus, the 
growing interest given to computers and Artificial Intelligence (AI) has lead to a general 
increase in interest about Gödel’s own work. But, so Gödel himself recognizes, his 
theorem does not settle the issue of knowing if the mind surpasses the machine. 
Actually, Gödel’s work in this direction seems to favour (instead of countering) the 
mechanist position (and even finitism) as an approach to the automation of formal 
systems. 
 
Gödel contrasts insight with proof. A proof can be explicit and conclusive for it has the 
support of axioms and of rules of inference. In contrast, insights can be communicated 
only via “pointing” at things. Any philosophy expressed by an exact theory can be seen 
a special case of the application of Gödel’s conceptual realism. According to him, its 
objective should be to give us a clear perspective of all the basic metaphysical concepts. 
More precisely, Gödel claims that this task consists in determining, through intuition, 
the primitive metaphysical concepts C and in making correspond to them a set of 
axioms A (so that only C satisfies A, and the elements in A are implied by the original 
intuition of C). He further admits that, from time to time, it would be possible to add 
new axioms. 
 
Gödel also advocates an ‘optimistic rationalism’. His justification appeals to (1) “The 
fact that those parts of mathematics which have been systematically and completely 
developed … show an astonishing degree of beauty and perfection.” As such (2) It is 
not the case “that human reason is irredeemably irrational by asking itself questions to 
which it cannot answer, and at the same time emphatically asserting that only reason 
can answer them.” It follows that (3) There are no “undecidable questions of number 
theory for the human mind.” So (4) “The human mind surpasses all machines.” 
 
However, the inference from (1) to (2) seems to be obtained from accidental successes 
in very limited fields to justify an anticipation of universal success. Besides, both (2) 
and (3) concern only a specific and delimited part of mind and reason which refer just to 
mathematical issues. 
 
Gödel understands that his incompleteness theorem by itself does not imply that the 
human mind surpasses all machines. An additional premise is necessary. Gödel presents 
three suggestions to that end: (a) It is sufficient to accept his ‘optimistic realism’ (b) By 
appealing “to the fact that the mind, and the way it’s used, is not static, but finds itself in 
constant development,” Gödel suggests that “there is no reason to claim that” the 
number of mental states “cannot converge to infinity in the course of its development.” 
(c) He believes that there is a mind separate from matter, and that such will be 
demonstrated “scientifically (maybe by the fact that there are insufficient nerve cells to 
account for all the observable mental operations).” 
 
There is a known ambiguity between the notion of mechanism confined to the 
mechanizable (in the precise sense of computable or recursive) and the notion of 



materialist mechanism. Gödel enounces two propositions: (i) The brain operates 
basically like a digital computer. (ii) The laws of physics, in their observable 
consequences, have a finite limit of precision. He is of the opinion that (i) is very likely, 
and that (ii) is practically certain. Perhaps the interpretation Gödel assigns to (ii) is what 
makes it compatible with the existence of non-mechanical physical laws, and in the 
same breath he links it to (i) in the sense that, as much as we can observe of the brain’s 
behaviour, it functions like a digital computer. 
 
Is mathematical insight algorithmic?  
 
Roger Penrose (1994) claims that it is not, and supports much of his argument, as J. R. 
Lucas before him (revisited in 1996), on Gödel’s incompleteness theorem: It is insight 
that allows us to see that a Gödel assertion, undecidable in a given formal system, is 
accordingly true. How could this intuition be the result of an algorithm? Penrose insists 
that his argument would have been “certainly considered by Gödel himself in the 1930s 
and was never properly refuted since then …” 
 
However, in his Gibbs lecture delivered to the American Mathematical Society in 1951, 
Gödel openly contradicts Penrose: 
 
 “On the other hand, on the basis of what has been proven so far, it remains 
possible that a theorem proving machine, indeed equivalent to mathematical insight, can 
exist (and even be empirically discovered), although that cannot be proven, nor even 
proven that it only obtains correct theorems of the finitary number theory.” 
 
In reality, during the 1930s, Gödel was especially careful in avoiding controversial 
statements, limiting himself to what could be proven. However, his Gibbs lecture was a 
veritable surprise. Gödel insistently argued that his theorem had important philosophical 
implications. In spite of that, and as the above citation makes it clear, he never stated 
that mathematical insight could be shown to be non-algorithmic. 
 
It is likely that Gödel would agree with Penrose’s judgment that mathematical insight 
could not be the product of an algorithm. In fact, Gödel apparently believed that the 
human mind could not even be the product of natural evolution. However, Gödel never 
claimed that such conclusions were consequence of his famous theorem. 
 
Due to the current prevailing trend to restrict discussion about the limits of rationality, 
in contraposition to insight, to the well-defined and surprising advances in computer 
science technology and programming, the perspective of considering reason in terms of 
mechanical capabilities has received much attention in the last decades. Such is 
recognised as being core to the study of AI, which is clearly relevant to Gödel’s wish of 
separating mind and machine. 
 
In this stance, AI would be primarily interested in what is feasible from the viewpoint of 
computability, whose formal concern involves only a very limited part of mathematics 
and logic. However, the study of the limitations of AI cannot be reduced to this 
restriction of its scope. In this regard, it is essential to distinguish between algorithms 
for problem-solving, and algorithms simpliciter, as sets of rules to follow in a 
systematic and automatic way, which are eventually self-modifiable, and without 
necessarily having a specific and well-defined problem to solve. 



 
Logic consciousness 
 
If one asks “How can we introduce the unconscious in computers?” some colleagues 
will answer that computers are totally unconscious. In truth, what we don’t know is how 
to introduce consciousness in algorithms, because we use computers as unconscious 
appendices to our own consciousness. The question is as such premature, seeing that we 
can only refer to the human conception of unconscious after we introduce consciousness 
into the machine. Indeed, we understand much better the computational unconscious 
than our own unconscious. 
 
These fertile questions point to the complexity of our thought processes, including those 
of creativity and intuition, that in great measure we do not understand, and pose a much 
richer challenge to AI, which can help us by providing an indispensable symbiotic 
mirror. 
 
The translation into a computational construction, of some functional model, as alluded 
above, of an introspective and thus self-referent consciousness, would be permitted 
using whatever methodologies and programming paradigms currently at our disposal. In 
the light of this realization, one might be inclined to ask why the use a logic paradigm, 
via logic programming, which is precisely the one we prefer (e.g. Lopes and Pereira 
(2006), plus ongoing work). There are several arguments which can be raised against its 
use. Hence we will try to reproduce in this section the most relevant, rebut them, and 
present our own in its favour. 
 
The first argument to be raised in these discussions is that regular human reasoning does 
not use logic, there existing complex, non-symbolic processes in the brain that 
supposedly cannot be emulated by symbolic processing. Following this line of thought, 
many models have been produced based on artificial neural networks, on emergent 
properties of purely reactive systems, and many others, in an attempt to escape the 
tyranny of GOFAI (‘Good Old Fashioned AI’). There is a catch, however, to these 
models: Their implementation by its proponents ends up, with no particular qualms, 
being on a computer, which cannot help but use symbolic processing to simulate these 
other paradigms. 
 
The relationship of this argument to logic is ensured by the philosophical perspective of 
functionalism: logic itself can be implemented on top of a symbol processing system, 
independently of the particular physical substrate supporting it. Once a process is 
described in logic, we can use its description to synthesize an artefact with those very 
same properties. So long it is a computational model, any attempt to escape logic will 
not prove itself to be inherently more powerful. 
 
On the other hand, there is an obvious human capacity for understanding logical 
reasoning, a capacity developed during the course of brain evolution. Its most powerful 
expression today is science itself, and the knowledge amassed from numerous 
disciplines, each of which with their own logic nuances dedicated to reasoning in their 
domain. From nation state laws to quantum physics, logic, in its general sense, has 
become the pillar on which human knowledge is built and improved, the ultimate 
reward for our mastery of language. 
 



Humans can use language without learning grammar. However, if we are to understand 
linguistics, knowing the logic of grammar, syntax and semantics is vital. Humans do use 
grammar without any explicit knowledge of it, but that does not mean it cannot be 
described. Similarly, when talking about the movement of electrons we surely do not 
mean that a particular electron knows the laws it follows, but we are certainly using 
symbolic language to describe the process, and it is even possible to use the description 
to implement a model and a simulation which exhibits precisely the same behaviour. 
Similarly, even if human consciousness does not operate directly on logic, that does not 
mean we won't be forced to use logic to provide a rigorous description of that process. 
And, if we employ logic programming for the purpose, such a description can function 
as an executable specification. 
 
Once obtained a sufficiently rigorous description of the system of consciousness, we are 
supposedly in possession of all our current (temporary) knowledge of that system, 
reduced to connections between minimal black boxes, inside which we know not yet 
how to find other essential mechanisms. Presently, no one has managed to adequately 
divide the black box of our consciousness about consciousness in the brain, but perhaps 
we can provide for it a sufficiently rigorous description so that we can model a 
functional system its equivalent. If a division of that epistemic cerebral black box into a 
diversity of others is achieved later on, we are sure to be able, in this perspective, to 
describe new computational models equivalent to the inherent functional model. 
 
In its struggle for that rigorous description, the field of Artificial Intelligence has made 
viable the proposition of turning logic into a programming language (Pereira 2002). 
Logic can presently be used as a specification language which is not only executable, 
but on top of which we can demonstrate properties and make proofs of correction that 
validate the very descriptions we produce with it. Facing up to the challenge, AI 
developed logic beyond the confines of monotonic cumulativity, far removed from the 
artificial paradises of the well-defined, and well into the real world purview of 
incomplete, contradictory, arguable, reviseable, distributed and updatable, demanding, 
among other, the study and development of non-monotonic logics, and their computer 
implementation. 
 
Over the years, enormous amount of work has been carried out on individual topics, 
such as logic programming language semantics, belief revision, preferences, evolving 
programs with updates, and many other issues that are crucial for a computational 
architecture of the mind. We are in the presence of a state-of-the-art from whence we 
can begin addressing the more general issues with the tools already at hand, unifying 
such efforts into powerful implementations exhibiting promising new computational 
properties. Computational logic has shown itself capable to evolve to meet the demands 
of the difficult descriptions it is trying to address. 
 
The use of the logic paradigm also allows us to present the discussion of our system at a 
sufficiently high level of abstraction and generality to allow for productive 
interdisciplinary discussions both about its specification and its derived properties. 
 
As previously mentioned, the language of logic is universally used both by the natural 
sciences and the humanities, and more generally is at the core of any source of human 
derived common knowledge, so that it provides us with a common ground on which to 
reason about our theories. Since the field of cognitive science is essentially a joint effort 



on the part of several distinct knowledge fields, we believe such language and 
vocabulary unification efforts are not just useful, but mandatory. 
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