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gia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal

*corresponding authors: T.Han@tees.ac.uk, Tom.Lenaerts@ulb.ac.be

1



2

Abstract

When creating a public good, strategies or mechanisms are required to handle defectors. We

first show mathematically and numerically that prior agreements with posterior compensations

provide a strategic solution that leads to substantial levels of cooperation in the context of Public

Goods games, results that are corroborated by available experimental data. Notwithstanding

this success, one cannot, as with other approaches, fully exclude the presence of defectors,

raising the question of how they can be dealt with to avoid the demise of the common good.

We show that both avoiding creation of the common good, whenever full agreement is not

reached, and limiting the benefit that disagreeing defectors can acquire, using costly restriction

mechanisms, are relevant choices. Nonetheless, restriction mechanisms are found the more

favorable, especially in larger group interactions. Given decreasing restriction costs, introducing

restraining measures to cope with public goods free-riding issues is the ultimate advantageous

solution for all participants, rather than avoiding its creation.

Keywords: evolutionary games, cooperation, commitment, public goods.
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1 Introduction1

Arranging a prior commitment or agreement is an essential ingredient to encourage coopera-2

tive behavior in a wide range of relationships, ranging from personal to political and religious3

ones1–5. Prior agreements clarify the intentions and preferences of other players. Hence, re-4

fusing to establish an agreement may be considered as intending or preferring not to cooperate5

(non-committers)5–7. Prior agreements may be highly rewarding in group situations, as in the6

case of Public Goods Games (PGG)8, as it forces the other participants to signal their willing-7

ness to achieve a common goal. Especially for increasing group sizes, such prior agreements8

could be ultimately rewarding, as it becomes more and more difficult to assess the aspirations9

of all participants.10

In a PGG, where players meet in groups of size N 9,10, all players can choose whether to11

cooperate and contribute an amount, c, to the public good or to defect and take advantage of the12

public good without contributing to it. The total contribution is multiplied by a constant public13

goods producing factor, r > 1, and the result is afterwards distributed equally among all players.14

With r smaller than the group size (r < N ), non-contributing free-riders always gain more than15

contributors. Evolutionary game dynamics has shown that under those conditions cooperation16

disappears, which is famously known as the ‘tragedy of commons’10,11. Various mechanisms,17

such as direct and indirect reciprocity, kin and group selections, and costly punishment, have18

been proposed and evaluated both theoretically and experimentally, which explain the evolu-19

tion of cooperation nevertheless10,12,13, ranging from microbial systems to animals and humans20

societies12,14–18.21

Here, we examine a strategic solution based on prior agreements to address the problem of22

the evolution of cooperation in PGG. Prior to the PGG, commitment proposing players ask their23

co-players to commit to contribute to the PGG, paying a personal proposer’s cost to establish24
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that agreement. If all the requested co-players accept the commitment, the proposers assume25

that everyone will contribute to the public good. Those individuals that commit yet later do26

not contribute receive a penalty and are forced to compensate the proposers at a cost6,19,20. As27

such, our model explicitly and novelly addresses the relevance of the commitment proposing28

behavior regarding posterior compensations in group interactions, which has been suggested to29

be a major pathway to the emergence of cooperation1,5.30

As commitment proposers may encounter also non-committers, they require strategies that31

can deal with this kind of individuals1,6,21. When dealing with non-committers, the simplest32

strategy is to not participate in the creation of the common good or, when the interaction is33

mandatory, to simply not contribute, i.e. defect9,22, when not everyone commits. Yet, this34

avoidance strategy also removes the benefits for those that wished to establish the public good,35

hindering any advancements they could harness from this novel resource. Alternatively, one36

can try to establish boundaries on the common good so that only those that commit to make37

it work have access or that the benefit non-contributors can acquire from the common good is38

reduced, as is the case for food sharing, aid in social health and defence against predators23–25.39

An extreme case of exercising restriction is ostracism, which can be enforced through financial40

or social means26,27. Experimental studies with PGG have shown that the threat of excluding41

or ostracizing non-cooperative members from the PGG can significantly increase contribution42

and cooperation28,29. As public goods are by definition non-excludable8,30, ostracism may not43

be possible and non-committers may only be excluded to a certain degree. Moreover, a cost44

may be associated with this exclusion strategy, where the capacity to ostracize may be too45

costly. Evidence regarding restriction abounds in biological and social contexts: Animals fence46

and defend territory and resources25. Trade restrictions against non-participating countries are47

widely implemented in international and environmental treaties8,31, yet may be circumvented.48

While showing the relevance of our prior conclusions on commitment obtained for the pair-49
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wise prisoner’s dilemma (PD)20 within the context of the more complex PGG, we focus here50

on showing mathematically and numerically how best to deal with individuals that do not wish51

to make prior agreements and do not contribute to the common good. This issue is not only52

essential in the general discussion of the PGG, it is also fundamental in case of the strategic53

commitment behavior since we observed in the PD that the number of non-committers, to-54

gether with those that free-ride on the investment of committers, increase markedly with the55

increase of the cost of setting up the commitment20. We will examine under which conditions56

avoidance, which is a generalization of the PD commitment behavior towards the PGG, and re-57

stricting strategies are beneficial in the PGG, determining at the same time the condition when58

the latter strategy is preferred over the former. The effect of the different parameters implicit59

to the strategies on their viability is carefully analyzed. Interestingly, we will show that group60

size is an important factor in determining the conditions for which restriction may be better than61

simply avoiding non-committers.62

2 Results63

2.1 Commitment strategies in PGG64

Commitment strategies can propose a commitment deal to all members of the group before65

playing the PGG. The proposer(s) share the cost ϵP , while those who do not (but still can66

join the commitment) pay nothing. If all the requested co-players agree to the commitment,67

they are assumed to contribute to the public good. Those that commit though later do not68

contribute have to compensate the commitment proposers at their personal cost δ, and their69

compensation is shared among all proposers. Additionally, there may be group members that70

refuse the agreement, wishing to play the game without any prior commitment. As refusal71

may be conceived as a future defection (no contribution), proposers may wish to either avoid72
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interacting with them or set up some mechanism that restricts their access to the public good.73

We define those strategies as follows:74

• AVOID: refuses to play the game when there are non-committers in the group (hence, the75

PGG does not take place and each player receives 0 payoff).76

• RESTRICT: sets up, at an extra cost ϵR, a mechanism to restrict the access of the non-77

committers to the public good. This restriction is modeled through a factor, ψ < 1,78

representing the fraction of the common resource the non-committers receive compared79

to the committed players (i.e. the smaller ψ the greater the effect).80

Next to the traditional unconditional contributors (C, who always commit when being proposed81

a commitment deal, contribute whenever the PGG is played, but do not propose commitment)82

and unconditional non-contributors (D, who do not accept commitment, defect when the PGG is83

played, and do not propose commitment), we consider two commitment free-riding strategies,84

which we have shown to become dominant under certain conditions in the pair-wise PD situa-85

tion20: (i) fake committers (FAKE), who accept a commitment proposal yet do not contribute86

whenever the PGG is played. These players assume that they can exploit the commitment87

proposing players without suffering the consequences; (ii) commitment free-riders (FREE),88

who defect unless being proposed a commitment, which they then accept and cooperate subse-89

quently in the PGG. In other words, these players are willing to contribute when a commitment90

is proposed but are not prepared to pay the cost of setting it up.91

We consider a well-mixed, finite population of a constant size Z, potentially composed92

of those five strategies, i.e. AVOID (or RESTRICT), C, FREE, D, and FAKE. To simplify the93

notations, the strategies are numerated 1, 2, 3, 4, and 5, respectively (where 1 can either indicate94

the AVOID or RESTRICT strategy). In each interaction, N individuals are randomly selected95

from the population for playing the PGG. Among N randomly selected players, the number96
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of players in the group of size N using strategy i is denoted by Ni, i = 1, . . . , 5, such that97

N = N1 +N2 +N3 +N4 +N5.98

We compute the payoffs of either the AVOID or RESTRICT strategy in the population in99

relation to the other strategies (see Methods and Supporting Information (SI)). In case of the100

AVOID strategy, if there is a D player in the group, i.e. N4 ≥ 1, the game is not played and101

every player in the group obtains 0 (the results will be unchanged if the game is not optional, as102

in that case, AVOID players contribute nothing to the public good). In case of the RESTRICT103

strategy, the game is always played and RESTRICT players share an additional cost, ϵR >104

0, to restrict the benefits D players can obtain from the public good. The committing player105

(RESTRICT, C, FREE and FAKE) and non-committing player (D) in the PGG gain respectively106

r(N1+N2+N3)
N1+N2+N3+ψN4+N5

c and r(N1+N2+N3)ψ
N1+N2+N3+ψN4+N5

c. The gain for a RESTRICT player is reduced by107

c + 1
N1
ϵP − N5

N1
δ, if N4 = 0, and by c + 1

N1
(ϵP + ϵR) −

N5

N1
δ, otherwise. The payoff for a C108

and a FREE player is reduced by c. Finally, the payoff for a FAKE player is reduced by δ. The109

detailed calculation of the payoff for each strategy as well as the payoff matrix is provided in110

SI.111

2.2 Constraints for viability of AVOID and RESTRICT112

We derive the conditions for which commitment strategies, AVOID and RESTRICT, are evo-113

lutionary viable in a PGG, showing when they are risk-dominant (see Methods) against all de-114

fectors and free-riders (i.e. FAKE, FREE and D players). Yet more importantly, we determine115

when RESTRICT becomes more advantageous than AVOID; that is, when it is worthwhile to116

pay extra cost to invest in restriction technologies and infrastructure that limit the benefits of117

non-committers (D).118

Equation (16) (see Methods) allows one to determine when AVOID and RESTRICT are119



8

risk-dominant against FREE. This occurs when120

N
∑

k=1

(rc− c− ϵP/k) ≥ (N − 1)(rc− c), (1)

which can be simplified to121

ϵP ≤ c(r − 1)/FN , with FN =
N
∑

k=1

1/k (2)

AVOID and RESTRICT are risk-dominant against FAKE if122

N
∑

k=1

(

(
rk

N
− 1)c+

Nδ − ϵP
k

− δ

)

≥
N−1
∑

k=1

(

rk

N
c− δ

)

. (3)

Which can also be simplified to123

δ ≥
N − r

NFN−1
c+

FN

NFN−1
ϵP . (4)

Now, as we aim to examine when restriction works better than avoiding non-committers, we124

first examine independently when AVOID or RESTRICT are risk-dominant agains D players.125

In case of the AVOID strategy this occurs when:126

ϵP ≤ N(r − 1)c. (5)

As Equation (2) is more restrictive than Equation (5), the two conditions in Equations (2) and127

(4) define when AVOID is risk-dominant against all types of defectors and free-riders (see SI for128

simplifications of these formulas using inequalities for FN ). Both conditions can be understood129

intuitively. For a successful commitment, the cost of arranging the commitment needs to be130

justified with respect to the benefit of (mutual) cooperation (i.e. r(c− 1)), and a compensation131
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needs to be arranged (see Equation 4) that is proportional to the player’s contribution and the132

investment cost she paid for setting up the commitment.133

This observation becomes clearer when looking at the transition probabilities and stationary134

distribution in a population of AVOID players with the other four strategies, as shown in Figure135

1a. Note the cycles from C to defection strategies (FREE, D and FAKE) and back to AVOID136

strategists, showing that defection strategies cannot completely be avoided in the PGG context137

(see also Figure S1): When the cost of arranging commitment, ϵP , is sufficiently small, the138

population spends most of the time in the homogeneous state with AVOID players, regardless of139

the initial composition of the population (Figure 1b). For low ϵP , nearly homogeneous AVOID140

populations are almost always reached for sufficiently large δ. More interestingly, this high141

frequency is not affected by changes in the compensation δ, once a certain threshold is reached.142

Accordingly, as for the PD20, the arrangement cost is the essential parameter for the emergence143

and survival of AVOID and mutual cooperation. Additionally, we observe that for a variety144

of group sizes N , the region of ϵP wherein AVOID is a viable strategy increases (see Figure145

S3, considering also the fact that right hand side of Equation (2) is an increasing function of146

N ): AVOID can handle the commitment free-riding strategies for a wider range of arrangement147

costs. Yet as the groups size increases, the frequency of AVOID, for similar small values of ϵP ,148

decreases, revealing that other strategies may be necessary to cope with the increasing number149

of defectors in the groups and the population (Figure S3). These results provide a novel insight,150

when moving from the PD to the PGG, which is that avoiding defectors by refusing to play the151

game when someone does not agree to commit might lead to cooperation at higher arrangement152

costs, yet may in turn be detrimental for the overall level of cooperation in the game.153

In turn, RESTRICT is risk-dominant against D when154

N−1
∑

k=1

rkc(1− ψ)

k + ψ(N − k)
≥ (N − r)c+ FN(ϵP + ϵR). (6)
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Because the left hand side of Equation (6) is a strictly decreasing function of ψ (see SI), the155

necessary condition for RESTRICT to be risk-dominant against D is (i.e. when ψ = 0)156

(N − 1)rc ≥ (N − r)c+ FN(ϵP + ϵR), (7)

which is equivalent to157

ϵP + ϵR ≤
N(r − 1)

FN

c. (8)

As the left hand side of Equation (6) is a continuous function of ψ, the satisfaction of Equation158

(8) guarantees that, for any given ϵP and ϵR, there exists a threshold ψD such that RESTRICT is159

risk-dominant against D for any ψ below it. This restriction threshold could be interpreted as the160

organizational or technological advancement required to guarantee success against individuals161

that exploit the non-exclusive public good. Moreover, it specifies what the limit is on the cost,162

combining the restriction and the proposing costs, for this to work.163

These observations are supported by Figure 2a, where we show the transition probabilities164

and stationary distribution in a population of RESTRICT players with other non-commitment165

proposing strategies. The main difference with Figure 1a, is the increase in the fixation prob-166

ability from D to RESTRICT. This effect depends on the value of restriction factor ψ, as is167

shown in Figure 2b. In general, the better the effect of restriction on non-committers (i.e. the168

smaller ψ), the higher the frequency of RESTRICT and cooperation in the long run, regardless169

of the initial composition of the population. These observations are robust against changes in170

the restriction ϵR, as seen in Figure 2c, where we show the frequency of RESTRICT varying171

both ψ and ϵR. One can observe in both figures that ψ is the decisive parameter on the frequency172

of RESTRICT: To achieve significantly high frequency of RESTRICT, and as a consequence173

cooperation, a stringent restriction of non-committers must be possible. Even when costless174

restriction (i.e. ϵR = 0) is available, the frequency of RESTRICT decreases quickly when ψ175
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approaches 1. Notice that when ψ = 1, RESTRICT is never risk-dominant against D players,176

as can be seen from Equation (6).177

This notable success of the RESTRICT strategy in dealing with non-committers becomes178

even more significant when the group size increases (see Figure 2d). When the cost of restriction179

is extreme (e.g. ϵR = 2), D players dominate when the group size is small. But when the group180

size is sufficiently large, thereby reducing the individual cost of implementing the restriction,181

which is shared by the proposers, RESTRICT becomes dominant. The frequency of RESTRICT182

is even higher when ϵR is small (see already Figure 3b). It is also interesting to note that the183

necessary condition for RESTRICT to be risk-dominant against D, as specified in Equation (8),184

is simpler for larger N , since the right hand side of the equation is an increasing function of N185

(see SI).186

2.3 What to do with the non-committers?187

Since there is no difference between AVOID and RESTRICT, except when playing D, one only188

needs to compare the stationary distribution of AVOID in a population with only D players189

against the stationary distribution of RESTRICT in a similar population. One can show that the190

frequency of RESTRICT is greater than AVOID if and only if the ratio of transition probabilities191

from D to RESTRICT and vice versa is greater than the ratio of transition probabilities from192

D to AVOID and vice versa, which can further be simplified, in the large population limit, to32
193

(see SI)194

N−1
∑

k=1

rkc(1− ψ)

k + ψ(N − k)
− (N − r)c− FN(ϵP + ϵR) ≥ rc− c− ϵP/N, (9)

which is equivalent to195

N−1
∑

k=1

k(1− ψ)

ψN + k(1− ψ)
rc− FNϵR − FN−1ϵP − (N − 1)c ≥ 0. (10)
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The left hand side of this equation is a decreasing function of ψ, ϵR and ϵP , but increasing in r196

(see proofs in SI). Note that the cost ϵP still persists because RESTRICT players need to pay197

this cost when there are D players in the group, while AVOID players do not have to pay it as198

they refuse to play with D players (thereby not arranging any commitment deal).199

An observation that can be derived immediately from Equation (10) is that, when ψ = 1,200

the equation is not satisfied. That is, unless restriction is possible, at least to some degree, it is201

better to refuse to play with those who explicitly do not agree to commit. Furthermore, with202

ψ = 0 we obtain the necessary condition for RESTRICT to be favored over AVOID:203

(r − 1)c ≥
FN

N − 1
ϵR +

FN−1

N − 1
ϵP . (11)

It means the cost of arranging the agreement and restricting the benefit of non-contributors204

needs to be justified with respect to the benefit of the PGG. Only in that case can restriction205

become justified over avoidance or non-participation. If this equation is not satisfied, AVOID206

is the better commitment strategy, however good the restriction of non-committers that can be207

brought about, including full exclusion or ostracism.208

In addition, as the left hand side of Equation (10) is a continuous function of ψ, this equa-209

tion guarantees that, for any given ϵP and ϵR, there exists a threshold ψAVOID which, for any210

ψ < ψAVOID , RESTRICT performs better than AVOID. This threshold moreover increases with211

r and can approach infinitely close to 1 when r tends to infinity, because, as mentioned above,212

the left hand side of this equation is a decreasing function of ψ, but increasing in r (see Figures213

S4 and S5 in SI). In addition, the equation provides the criteria for whether it is worthwhile214

to develop the restriction infrastructure or mechanism. As technological evolution may signifi-215

cantly (and unlimitedly) reduce the cost-to-impact ratio, for instance with respect to restriction216

mechanisms that require computing and communication power33,34, one can postulate that un-217
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der this condition RESTRICT will eventually be available and deployable, even when currently218

AVOID seems to be the best choice.219

Figure 3a shows the region of parameters where RESTRICT is better than AVOID, gener-220

ated from the analytical condition in Equation (10). There is a large range of costs for restricting221

the access of non-committers, ϵR, and the effect of restriction, ψ, where RESTRICT is better222

than AVOID. Yet, if ϵR is too large, even a full exclusion (ostracism) does not lead to a better223

commitment strategy (as also can be seen from Equation (11)). These analytical results are com-224

patible with the numerical simulation results shown in Figure 2c (see SI for more comparisons,225

Figure S6).226

In addition, because the right hand side of Equation (11) is a decreasing function of N ,227

converging to 0 when N approaches infinity (see proofs in SI), AVOID is less preferred for228

increasing N : As group size increases (see Figure 3b), the frequency of the strategy decreases.229

This indicates that avoiding non-committers in larger groups is less successful than avoiding230

them in smaller ones. Interestingly, RESTRICT seems to cope better with changes in group231

size: As group size increases, RESTRICT becomes more frequent than AVOID for a larger232

value of the restriction cost. When the cost of restriction is small (e.g. ϵR = 0.25), RESTRICT233

ensures a higher level of committers, and as a consequence contributors, in comparison to the234

AVOID strategy. Even when the restriction cost is high, there is a certain group size for which235

RESTRICT is more abundant than AVOID, see Figure 3b. Furthermore, as can be seen in236

Figures S4 and S5, when N increases, RESTRICT is the better strategy for strictly larger ranges237

of ϵP , ϵR and ψ, which becomes even more apparent for increasing values of the public good’s238

multiplication factor r.239
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3 Discussion240

We have shown that arranging prior commitment can lead to the evolution of cooperation in241

a PGG when the cost of arranging commitment is justified with respect to the benefit of co-242

operation. As such, this result generalizes the conclusions previously obtained for the PD20,243

underlining again the evolutionary advantage of this capacity to make prior agreements in com-244

bination with the capacity to send signals and act accordingly1,35. Moreover, we show that even245

though the commitment strategies become viable for a wider range of the arrangement cost246

when moving from the PD to the PGG, and more generally, when the group size of the PGG247

increases, it might be detrimental for the overall level of cooperation when the cost of arrange-248

ment is low. Nonetheless, prior agreements remain more efficient in achieving cooperation249

when being compared to simple peer punishment9,36 (see Figure S7) in the PGG, an important250

result we observed also in case of the PD scenario20.251

Notwithstanding this efficiency with respect to punishment, individuals that do not accept252

an agreement (D) or individuals that free-ride on the investment that commitment proposers253

make (FREE) may increase in frequency within both the PD and PGG contexts as the cost of254

setting up the commitment increases. We examined here in detail how to deal with the former:255

Either the commitment proposers can decide to avoid interacting with those non-committers256

(AVOID) or implement an infrastructure that allows them to restrict their access (RESTRICT),257

which corresponds to a reduction in the benefit they can obtain from the public good. For both258

strategies it is assumed that an institution is present in order to enforce the compensation when259

someone in the commitment does not honor it. As such, both strategies are closely related to260

pool punishment models in terms of the presence of a third party required for the execution of261

the process9,22. Yet AVOID and RESTRICT are also different from pool punishment as in the262

latter system no prior agreement on the posterior compensations is made. Additionally, the main263
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difference between AVOID and RESTRICT, in terms of execution, is that, AVOID does not pay264

to set up the agreement when someone does not accept the agreement, whereas RESTRICT265

always initiates the agreement to play and pays an additional fee to the institution to reduce the266

access of the (explicit) non-committers.267

We show here that for both strategies one can identify intuitive conditions, defined by costs268

and compensations, that lead to increased likelihood in receiving contributions for the common269

good. Furthermore, we have compared the AVOID and RESTRICT strategies and provided270

analytical conditions for when one mechanism is better than the other. Our results show that271

RESTRICT is better than AVOID if non-committers can be restricted to a certain degree, with272

a small enough cost. Otherwise, it is better to rely on AVOID, i.e. simply refuse to interact if273

there are non-committers in the group (or, if the interaction is mandatory, to not contribute when274

playing the PGG). The restriction effect ψ, which is defined as the reduction of the benefit of275

the non-committer, was shown to be a decisive factor. Interestingly, its threshold ψAVOID (i.e.276

for all ψ < ψAVOID , RESTRICT is better than AVOID) increases with r and can be infinitely277

close to 1. This indicates that for given costs and compensations of commitment, any restriction278

mechanism can be more advantageous than AVOID when the PGG is sufficiently beneficial.279

Moving from pairwise to multi-player interactions requires an analysis of the role of the280

group size in relation to the viability of the commitment strategies. Indeed, as group size in-281

creases, RESTRICT becomes more viable than AVOID even when it is costlier to implement282

the restriction measure. Furthermore, it is so for a strictly larger range of the commitment costs283

and restriction factors, especially when the public good’s producing factor (r) is high. As such,284

these results indicate that larger public goods with higher levels of contribution can be estab-285

lished once restriction becomes possible. The amount of restriction depends on the gain each286

participant gets from the public good: the lower the gain, the tougher the restriction needs to287

be.288
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These results differ from other observations related to the impact of group size on the level289

of cooperation in PGG37,38: Lehmann et al.37 showed that if the group size can be expanded290

stochastically, for instance, as a result of an increase in fecundity and/or a decrease in mortality,291

the kin-competition pressure induced by the limited dispersal in their networked model, can292

be significantly reduced, thereby favoring the evolution of cooperative behavior. In a similar293

manner, Alizon and Taylor38 showed that if the group size and compositions can be adapted294

over time, in a way that reduces the competition among relatives in a structured population (by295

allowing groups or patches with high fecundity rates to grow faster), the cooperation level is296

increased.297

In contrast, the strategic mechanisms we examine here do not consider any forms of relat-298

edness between group members or structured populations. The essential message is that for299

smaller groups one is better off to avoid individuals that do not wish to accept an agreement,300

prior to the game, when the cost of restriction is too large. Yet as group size increases, re-301

striction mechanisms are more efficient in achieving cooperation, depending on the association302

with the restriction. As such these results provide a completely new perspective on the role of303

group size on the level of cooperation. We envisage that AVOID and RESTRICT may also be304

more efficient in a structured population because the free-riders can be avoided and excluded305

permanently by removing links with them. Furthermore, an introduction of relatedness among306

individuals may reduce the need for arranging commitments as it provides additional incentive307

to not free-ride. Both issues may be explored in subsequent papers.308

The results presented here are in accordance with the outcomes of different behavioral com-309

mitment experiments6,19,28,29. High levels of cooperation were observed in a PGG experiment310

where a binding agreement, which was enabled through a prior communication stage among the311

members of the group, could be arranged before the PGG interaction occurs6. The experiment312

showed that whenever a commitment deal is not binding or not enforced, corresponding to a low313
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compensation cost δ in our commitment models, defectors are widespread and the contribution314

level is low. Commitment can also take the form of a deposit-refund scheme19, where those315

who agree to commit have to deposit an amount which will be refunded only if they fulfill the316

commitment and contribute to the public good. Similarly to our results for the AVOID strategy,317

the most successful commitment strategy in that work was shown to be the one that refuses to318

set up the public good whenever there is a non-committer in the group (RESTRICT was not con-319

sidered). The outcome of this deposit-refund experiment showed that when the deposit amount,320

corresponding to δ in our model, is sufficiently high, the contribution level is significant19. Note,321

however, that in both these experiments6,19, the cost of setting up the commitment is always set322

to 0, thereby leading to effortless and effective commitment strategies. But as we have shown,323

this cost is the decisive factor for the viability of commitments strategies. This said, despite the324

fact that commitment has been shown experimentally to be a successful strategy for promoting325

cooperation in the PGG, our results further the understanding of the mechanism by identify-326

ing under which region of the parameters’ values the mechanism works (as in the experiments)327

and when it does not. As a result, the outcome of our analysis suggests the need to study how328

varying the parameters would affect the outcomes of those commitment experiments.329

Furthermore, PGG experiments, where exclusion of disapproved members (for example,330

through voting) is allowed, exhibit a high level of contribution and commitment28,29. But therein331

exclusion is carried out after the PGG takes place, towards the observed non-contributors, as332

in the model of Sasaki and Uchida39, which is different from our model where restriction oc-333

curs before the game takes place. This suggests that social exclusion or ostracism, even when334

it requires an additional cost and/or has a reduced effect in terms of the restriction, is an im-335

portant mechanism for promoting group cooperation26,29. However, we envisage that exclusion336

imposed through arranging prior commitment as in this work may be more suitable in the case337

where there is rivalry in the game, as is the case for Common-pool Resource games8, as in that338
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case posterior restriction would not hinder the participating players in collecting their benefit.339

Various extensions to the current model can be addressed. First, one can consider to move340

beyond the symmetric commitments, where the cost for arranging and managing the agreement341

is equally shared among the proposers. Asymmetric commitments, where the contribution to342

manage the agreement may depend on the wealth and the potential benefits of each member343

as in inequality models40,41, may further increase the realism of the conclusions one can draw344

from these models. Moreover, when extending to the repeated interaction scenario42, it is also345

natural to consider that those who benefited more from the previous interactions should con-346

tribute more to the management of the commitments. We envisage that these seemingly fairer347

ways of sharing the benefit and cost of commitment can elevate the willingness to commit and348

contribute. In this repeated interaction context, commitments can also be made incrementally,349

conditional on behaviors of others in the previous round of interaction; this option has been350

shown to promote a higher level of contribution in a repeated PGG experiment43.351

In summary, our results have demonstrated that arranging prior commitments provides an352

important pathway for the emerge of cooperation in the one-shot Public Good Games, suggest-353

ing that good agreements make good friends20 also in group interactions. Furthermore, always354

avoiding to play with those unwilling to commit is detrimental for the overall level of contri-355

bution, especially when interacting in large groups, and restriction towards those players might356

provide a better path to enhance the contribution level.357

4 Methods358

4.1 Population setup and evolutionary dynamics359

Both the analytical and numerical results obtained here use Evolutionary Game Theory meth-360

ods for finite populations10,44,45. In such a setting, individuals’ payoff represents their fitness361



19

or social success, and evolutionary dynamics is shaped by social learning10,46,47, whereby the362

most successful individuals will tend to be imitated more often by the others. In the current363

work, social learning is modeled using the so-called pairwise comparison rule48, assuming that364

an individual A with fitness fA adopts the strategy of another individual B with fitness fB with365

probability given by the Fermi function,
(

1 + e−β(fB−fA)
)−1

. The parameter β represents the366

‘imitation strength’ or ‘intensity of selection’, i.e., how strongly the individuals base their de-367

cision to imitate on fitness comparison. For β = 0, we obtain the limit of neutral drift – the368

imitation decision is random. For large β, imitation becomes increasingly deterministic.369

In the absence of mutations or exploration, the end states of evolution are inevitably monomor-370

phic: once such a state is reached, it cannot be escaped through imitation. We thus further371

assume that, with a certain mutation probability, an individual switches randomly to a different372

strategy without imitating another individual. In the limit of small mutation rates, the behav-373

ioral dynamics can be conveniently described by a Markov Chain, where each state represents374

a monomorphic population, whereas the transition probabilities are given by the fixation proba-375

bility of a single mutant9,45,49. The resulting Markov Chain has a stationary distribution, which376

characterizes the average time the population spends in each of these monomorphic end states.377

In finite populations, the groups engaging in PGG are given by multivariate hypergeometric

sampling. For transition between two pure states (small mutation rate), this reduces to sampling

(without replacement) from a hypergeometric distribution9. Denote

H(k,N,m,Z) =

(

m

k

)(

Z −m

N − k

)

(

Z

N

)

Let Πij(k) and Πji(k) denote the payoff of a strategists of type i and j, respectively, when378

the random sampling consists of k players of type i and N − k players of type j (as given in379
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the payoff matrix in Equation (1) in SI). Hence, in a population of x i-strategists and (Z − x)380

j-strategists, the average payoffs to i− and j− strategists are9,10:381

Pij(x) =
N−1
∑

k=0

H(k,N − 1, x− 1, Z − 1) Πij(k + 1)

=
N−1
∑

k=0

(

x− 1

k

)(

Z − x

N − 1− k

)

(

Z − 1

N − 1

) Πij(k + 1)

(12)

Pji(x) =
N−1
∑

k=0

H(k,N − 1, x, Z − 1) Πji(k)

=
N−1
∑

k=0

(

x

k

)(

Z − 1− x

N − 1− k

)

(

Z − 1

N − 1

) Πji(k)

(13)

Note that several Pij(x) can be further simplified (see Supporting Information). Now, the prob-382

ability to change the number k of individuals using strategy i by ±1 in each time step can be383

written as48
384

T±(k) =
Z − k

Z

k

Z

[

1 + e∓β[Pij(k)−Pji(k)]
]−1

. (14)

The fixation probability of a single mutant with a strategy i in a population of (Z−1) individuals385

using j is given by45,48–50
386

ρj,i =

(

1 +
N−1
∑

i=1

i
∏

j=1

T−(j)

T+(j)

)−1

. (15)

In the limit of neutral selection (i.e. β = 0), ρB,A equals the inverse of population size, 1/Z.387

Considering a set {1, ..., q} of different strategies, these fixation probabilities determine a388

transition matrix M = {Tij}
q
i,j=1, with Tij,j ̸=i = ρji/(q − 1) and Tii = 1 −

∑q
j=1,j ̸=i Tij , of a389
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Markov Chain. The normalized eigenvector associated with the eigenvalue 1 of the transposed390

of M provides the stationary distribution described above45,49,50, describing the relative time the391

population spends adopting each of the strategies.392

393

4.2 Risk-dominance condition394

An important analytical criteria to determine the viability of a given strategy is whether it is risk-395

dominant with respect to other strategies13,32. Namely, one considers which selection direction396

is more probable: an i mutant fixating in a homogeneous population of individuals playing j or397

a j mutant fixating in a homogeneous population of individuals playing i. When the first is more398

likely than the latter, i is said to be risk-dominant against j 32, which holds for any intensity of399

selection and in the limit of large Z when400

N
∑

k=1

Πij(k) ≥
N−1
∑

k=0

Πji(k). (16)
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Figure 1. (a) Stationary distribution and fixation probabilities. The population spends
most of the time in the homogenous state of AVOID. The black arrows identify the
advantageous transitions, where ρN = 1/Z denotes the neutral fixation probability. The dashed
lines denote neutral transitions. Note the cyclic pattern from cooperation to defection to
commitment strategies and back. (b) Contour plot of the frequency of AVOID as a function

of ϵP and δ. For a small enough cost of arranging the commitment, AVOID is abundant
whenever a sufficient compensation is associated with the commitment deal. Parameters:
N = 5, Z = 100, r = 3; β = 0.1; In panel a, ϵP = 0.25, δ = 2.

Figure 2. (a) Transition probabilities and stationary distributions in case of RESTRICT.
For an efficient restriction (ϵR = 0.5 and ψ = 0.25), the population spends most of the time in
the homogenous state of RESTRICT. Notations are the same as in Figure 1a. (b) Frequencies

of each strategy for varying ψ, in case of RESTRICT. For a given cost of restriction
(ϵR = 0.5), in general the better the effect of restriction on non-committers (i.e. the smaller ψ),
the greater the frequency of RESTRICT. (c) Frequency of RESTRICT as a function of ϵR
and ψ, in a population with C, D, FREE and FAKE strategies. For a large range of cost for
restricting the access of non-committers, ϵR, and the restriction, ψ, RESTRICT is highly
frequent, having a higher frequency than AVOID. The double-stroke line corresponds to the
part having the same frequency as AVOID (i.e. 0.64, with the same parameter values), and the
area below this line identifies the area in which RESTRICT is more frequent than AVOID. In
general, the larger ϵR, the smaller ψ is required for RESTRICT to be advantageous to AVOID.
(d) Frequencies of each strategy as a function of the group size, N . RESTRICT becomes
more frequent when the group size increases, even for a rather high cost of restriction
(ϵR = 2.0). Parameters: In panels a, b, c: N = 5; in all cases, Z = 100, r = 3;
ϵP = 0.25, δ = 2; β = 0.1.

Figure 3. (a) Range of parameters ψ, ϵR and ϵP , generated from the analytical formula in

Equation (10), in which RESTRICT is better than AVOID. For a large range of cost for
restricting the access of non-committers, ϵR, and the effect of restriction, ψ, RESTRICT is
better than AVOID. In general, the larger ϵR, the smaller ψ is required for RESTRICT to be
advantageous to AVOID. (b) Group size is an important factor for making RESTRICT

more viable than AVOID. We compute, as a function of the group size, N , the frequencies of
RESTRICT for different values of restriction cost ϵR (the curves without markers), in
comparison to the frequency of AVOID (the red curve with circled markers). In general, the
lower the cost of restriction, the higher the frequency of RESTRICT. Also, the threshold of N
above which RESTRICT is more frequent than AVOID is smaller. Parameters: in panel b,
Z = 100, ϵP = 0.25, ψ = 0.25, β = 0.1; In both panels, N = 5, r = 3.
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1 Payoff formulas

First, we derive the the payoffs ⇧ij(k) for the five strategies AVOID (or RESTRICT), C, FREE,

D, and FAKE (denoted 1, 2, 3, 4, 5, respectively, as in the main text). Recall that ⇧ij(k) denotes

the payoff of a strategist of type i (resp., type j) when the random sampling consists of k players

of type i and N � k players of type j.

Denote ⇧(k) = {⇧ij(k)}5
i,j=1,i6=j , where, abusing notation, k is the number of AVOID (or

RESTRICT) players if they are present in the pair; otherwise, the number of C players if C is

present in the pair. Except for ⇧31(0) = ⇧51(0) = 0, we have

⇧(k) =

0

BBBBBBBBB@

1 C FREE D FAKE

1 � rc� c� ✏P
k rc� c� ✏P

k ⇧14(k) ( rk
N � 1)c + N��✏P

k � �

C rc� c � rk
N c� c rk

N c� c rk
N c� c

FREE rc� c rk
N c � 0 0

D ⇧41(k) rk
N c 0 � 0

FAKE rk
N c� � rk

N c 0 0 �

1

CCCCCCCCCA

(1)

where

• for RESTRICT, ⇧14(k) =

rkc
k+ (N�k)�c� ✏P +✏R

k 81  k  N and ⇧41(k) =

rkc 
k+ (N�k) 81 

k  N � 1 and ⇧41(0) = 0;

• for AVOID, ⇧14(N) = rc � c � ✏P
N and ⇧14(k) = 0 81  k  N � 1, and ⇧41(k) =

0 80  k  N � 1.

We now derive the average payoffs Pij(x) and Pji(x) defined in the main text. For sim-

2



plicity, consider c = 1. We have

P12(x) = P13 =

N�1X

k=0

H(k, N � 1, x� 1, Z � 1) (r � 1� ✏

k + 1

) = r � 1�

✓
Z

N

◆
�

✓
Z � x

N

◆

x

✓
Z � 1

N � 1

◆ ✏P

P21(x) =

N�1X

k=0

H(k, N � 1, x, Z � 1) (r � 1) = r � 1

P31(x) =

N�1X

k=1

H(k, N � 1, x, Z � 1) (r � 1) = (r � 1)

0

BB@1�

✓
Z � 1� x

N � 1

◆

✓
Z � 1

N � 1

◆

1

CCA

P15(x) =

N�1X

k=0

H(k, N � 1, x� 1, Z � 1) (

r(k + 1)

N
+

N� � ✏P

k + 1

� � � 1) =

=

r

N

✓
1 + (x� 1)

N � 1

Z � 1

◆
+

✓
Z

N

◆
�

✓
Z � x

N

◆

x

✓
Z � 1

N � 1

◆
(N� � ✏P )� � � 1

P51(x) =

N�1X

k=1

H(k, N � 1, x� 1, Z � 1) (

rk

N
� �) =

r(N � 1)

N(Z � 1)

x� �

0

BB@1�

✓
Z � 1� x

N � 1

◆

✓
Z � 1

N � 1

◆

1

CCA

P23(x) = P24 = P25 =

r

N

✓
1 + (x� 1)

N � 1

Z � 1

◆
� 1

P32(x) = P42 = P52 =

r(N � 1)

N(Z � 1)

x

P34(x) = P43 = P35 = P53 = P45 = P54 = 0

For AVOID: P41(x) = 0 and P14(x) =

✓
x� 1

N � 1

◆

✓
Z � 1

N � 1

◆
(r � 1� ✏P

N )

For RESTRICT: P14 and P41 are hard to compute analytically, we follow the sum formulas in

our numerical simulations.
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2 Some simplifications of the analytical results and proofs

2.1 Some simplifications

Here, using the well-known inequalities4

log N + � < FN =

NX

k=1

1

k
 log N + 1

where � = 0.577215, we provide some simplifications of the conditions obtained in the main

text. First of all, regarding the conditions for risk-dominance of AVOID against D, FREE and

FAKE:

✏P 
c(r � 1)

log N + �

� � N � r

NFN�1
c +

FN

NFN�1
✏P .

(2)

They can be simplified to

✏P  c(r � 1)/FN

� � (N2 � rN)c + ✏P

N2
(log(N � 1) + 1)

+

✏P

N
.

(3)

Now, the necessary condition for RESTRICT to be risk-dominant against D, which is

✏P + ✏R 
N(r � 1)

FN
c, (4)

can be simplified to

✏P + ✏R <
N(r � 1)

log N + �
c. (5)

Furthermore, the necessary condition for RESTRICT to be favored to AVOID

(r � 1)c � FN

N � 1

✏R +

FN�1

N � 1

✏P (6)

can be simplified to

(r � 1)c � ✏R(log N + �) + ✏P (log(N � 1) + �)

N � 1

(7)
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2.2 Some proofs

2.2.1 Ratio of fixation probabilities

It has been shown that5

⇢j,i

⇢i,j
=

N�1Y

k=1

T�(k)

T+
(k)

=

N�1Y

k=1

1 + e�[Pij(k)�Pji(k)]

1 + e��[Pij(k)�Pji(k)]
= e�

PN�1
k=1 (Pij(k)�Pji(k))

Hence, considering two different strategies j and j0, the inequality

⇢j,i

⇢i,j
� ⇢j0,i

⇢i,j0

holds if and only if

N�1X

k=1

(⇡ij(k)� Pji(k)) �
N�1X

k=1

(Pij0(k)� Pj0i(k))

This can be further simplified, in large population limit, to1

NX

k=1

Pij(k)�
N�1X

k=0

Pji(k) �
NX

k=1

Pij0(k)�
N�1X

k=0

Pj0i(k)

2.2.2 Decrease of FN/N and FN/(N � 1)

We prove that FN/N > FN+1/(N + 1) and that FN/(N � 1) > FN+1/N . Indeed, we have

(N + 1)FN �NFN+1 = N(FN � FN+1) + FN = FN �
N

N + 1

=

NX

k=1

(

1

k
� 1

N + 1

) > 0

(8)

Moreover,

NFN � (N � 1)FN+1 = N(FN � FN+1) + FN+1 > N(FN � FN+1) + FN > 0

(9)

Furthermore, since limN!+1 FN = log N + � 4, we have

lim

N!+1

✓
FN

N � 1

✏R +

FN�1

N � 1

✏P

◆
= 0.
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2.2.3 Properties of the function in Equation (10) in the main text

Consider the following formula

N�1X

k=1

k(1�  )

 N + k(1�  )

rc� FN✏R � FN�1✏P � (N � 1)c. (10)

It is clear that it is a decreasing function of ✏R and ✏P since FN and FN�1 are positive. It

increases with r for a similar reason. Moreover, it decreases with  since

k(1�  )

 N + k(1�  )

=

k

k + N  
1� 

=

k

k + N
⇣

1
1� � 1

⌘ (11)

is a decreasing function of  2 (0, 1) for all 1  k  N � 1.

Furthermore, when r tends to infinity, fixing other parameters,  (and hence also its thresh-

old below which RESTRICT is better than AVOID,  AVOID) tends to 1 since

lim

r!+1

FN✏R � FN�1✏P � (N � 1)c

rc
= 0

and
N�1X

k=1

k(1�  )

 N + k(1�  )

= 0 at  = 1.

3 Performance of AVOID and RESTRICT depending on the

arrangement cost

In Fig. S1 we show the frequencies of the five strategies in case of AVOID and RESTRICT for

varying the cost of arranging commitment ✏P . In general, the smaller this cost, the higher the

frequency of AVOID and RESTRICT. For small cost of arranging commitment, both AVOID

and RESTRICT are highly frequent, dominating their population. When the cost is sufficiently

large, in case of AVOID the commitment free-riders FREE takes over. This observation is

similar to the pairwise case2. But in case of in case of RESTRICT the non-committers D take

over. Note that AVOID players do not have to pay this cost when playing with D because no

game is played between these strategies (see the models in the main text), while RESTRICT

6



fre
qu
en
cy

AVOID C FAKED FREE RESTRICT C FAKED FREE

εP εP 
Figure S1: Frequency of each strategy in case of AVOID (left) and RESTRICT (right) for varying ✏P . For

small cost of arranging commitment, both AVOID and RESTRICT are dominant, while commitment

free-riders FREE takes over when the cost is high in the first case, and the non-committers take over

in the second case. The blue line is the analytical threshold (derived in the main text of ✏P ) for which

AVOID is risk-dominant against all defectors and free-riders. Clearly, analytical results complies with

numerical ones. Parameters: In the right panel, ✏R = 1.0; In both cases, N = 5, Z = 100, r = 3,

� = 2; � = 0.1;

7



COMPR
36%

C
6%

D
50%

FAKE
1%

4.2ρN

4.2ρN

51.8ρN

FREE
8%

4.2ρN

COMPR
70%

C
10%

D
13%

FAKE
1%

1.9ρN

4.2ρN

4.2ρN

51.8ρN

FREE
6%

4.2ρN

8.0ρN

2.2ρN

a b

1.9ρN

8.0ρN

Figure S2: Transition probabilities and stationary distributions in case of RESTRICT. For a given cost of

restriction ✏R, the better the effect of restriction on non-committers D, the better RESTRICT. Note the

arrow from D to RESTRICT for small  (panel a,  = 0.25) which disappears when  is large (panel

b,  = 0.5). Parameters: N = 5, Z = 100, r = 3; ✏R = 0.5; � = 0.1;

players have to (and also the cost of restriction ✏R) when playing with D. We therefore see

additionally that in case of AVOID when ✏P is sufficiently large, D does not increase in terms

of frequency while it does so in case of RESTRICT.

4 Contour plots for AVOID with varying N

For varying N , AVOID is abundant whenever a sufficient compensation is associated with

the commitment deal, see Figure S3. Hence, ✏P is the essential parameter deciding whether

the commitment strategy is successful. Furthermore, when the cost is small the frequency of

AVOID decreases with group size; but when the cost is sufficiently large this frequency in-

creases. It is like when we have a good law-enforcing system which reduces the cost of ar-

ranging commitment: then AVOID can lead to better cooperation; but once that cost cannot be

reduced sufficiently, then interacting in larger groups is actually better for AVOID because the

cost is shared between more AVOID players.
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 δ

 δ

cost of proposing, εP 

r=1.5

r=3.0

N = 2 N = 3 N = 5 N = 10

N = 4 N = 5 N = 10 N = 20

Figure S3: Contour plot of the frequency of AVOID as a function of ✏P and �, for different group sizes N .

Parameters: Z = 100, � = 0.1. In general, for small enough cost of arranging the commitment,

AVOID is abundant whenever a sufficient compensation is associated with the commitment deal. That

is, ✏P is the essential parameter for the commitment strategy. Nonetheless, for small ✏P the frequency

of AVOID decreases with N , while for larger ✏p, it increases.
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εR 

εP
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εR 

εP

 ! 

εR 

εP

 ! 

εR 

εP

 ! 

 N=5  N=10 

 N=20  N=100 

Figure S4: Range of parameters  , ✏R and ✏P , generated from the analytical formula in Eq. (10) in the main

text, in which RESTRICT is better than AVOID, for different values of N . In general, the larger

N , the larger the parameter space in which RESTRICT is advantageous to AVOID in dealing with

non-committers D. Parameters: Z = 100, ✏P = 0.25, r = 3.
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εR εR 

 N=5  N=10 

 N=20  N=100 

r = 6

εR εR 

 ! 

 ! 

 N=5  N=10 

 N=20  N=100 

r = 3

r = 12

εR εR 

 N=5  N=10 

 N=20  N=100 

r = 24

εR εR 

 N=5  N=10 

 N=20  N=100 

Figure S5: Range of parameters  , ✏R and ✏P , generated from the analytical formula in Eq. ... in the main

text, in which RESTRICT is better than AVOID, for different values of N and r. In general, the

larger r and N , the larger the parameter space in which RESTRICT is advantageous to AVOID in

dealing with non-committers D. Parameters: Z = 100, ✏P = 0.25.
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0.38

0.28
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Figure S6: Frequency of RESTRICT as a function of ✏R and  , with (a) ✏P = 0.25 and (b) ✏P = 0.5. For a

large range of cost for restricting the access of non-committers, ✏R, and the restriction,  , RESTRICT

is better than AVOID. See the area below the double-stroke curves, which corresponds to the frequency

of AVOID (0.64 in panel a and 0.49 in panel b). In general, the larger ✏R, the smaller  required for

RESTRICT to be advantageous to AVOID. This clearly complies with analytical results generated

by Eq. (10) in the main text, as shown in the panels (c) ✏P = 0.25 and (d) ✏P = 0.5. Interestingly,

 is the decisive parameter on the frequency of RESTRICT. Parameters: N = 5, Z = 100, r = 3;

� = 2; � = 0.1.
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 εP  εP 

 δ

CP AVOID

a b

Figure S7: Costly peer punishment (CP) versus AVOID. (a) Fraction of CP in a population with C and D; (b)

fraction of AVOID in a population with C, D, FREE and FAKE. Parameters: N = 5, Z = 100, r = 3;

� = 2; ✏P = 0.25; � = 0.1.

5 RESTRICT vs. AVOID for varying N and r

We generate analytical results using Eq. (10) in the main text, describing the parameter space

where RESTRICT is better than AVOID in dealing with non-committers (hence, becomes more

frequent in the population with the other four non-proposing strategies). In general, the larger

N , the larger the parameter space in which RESTRICT is advantageous to AVOID in dealing

with non-committers, see Figure S4.

In Fig. S5 we show similar results for varying the public goods producing factor r. The

results show that the larger r, the larger parameter space where RESTRICT is advantageous to

AVOID. It complies with the Eq (10) in the main text, the left hand size of which is clearly an

increasing function of r.

In Fig. S6 we also show that these analytical results corroborate with the the numerical

simulations.
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6 Simple Punishment vs. AVOID

A costly peer punishment strategy, CP, in the PGG game, contributes to the public good. After

the PGG was played, the punisher can impose a fine � upon each non-contributor (defector) D,

at a personal cost ✏P (see more details in reference3).

Figure S7 shows that, differently from AVOID where ✏ is the crucial parameter as long as

� is sufficiently large, the frequency of CP always increases with �. We observe that AVOID is

more frequent than CP most of the time.
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