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Abstract

Regulating the development of advanced technology such
as Artificial Intelligence (AI) has become a principal topic,
given the potential threat they pose to humanity’s long term
future. First deploying such technology promises innumer-
able benefits, which might lead to the disregard of safety pre-
cautions or societal consequences in favour of speedy devel-
opment, engendering a race narrative among firms and stake-
holders due to value erosion. Building upon a previously pro-
posed game-theoretical model describing an idealised tech-
nology race, we investigated how various structures of in-
teraction among race participants can alter collective choices
and requirements for regulatory actions. Our findings indi-
cate that strong diversity among race participants, both in
terms of connections and peer-influence, can reduce the con-
flicts which arise in purely homogeneous settings, thereby
lessening the need for regulation.

Introduction
Researchers and stakeholders alike have urged for due dili-
gence in regard to AI development on the basis of several
concerns. The desire to be at the foreground of the state-
of-the-art, or the pressures imposed by upper management,
might tempt developers to ignore safety procedures or ap-
prehensions about ethical consequences (Armstrong et al.,
2016; Cave and ÓhÉigeartaigh, 2018). Regulation and gov-
ernance of advanced technologies such as Artificial Intelli-
gence (AI) have become increasingly more important given
their potential implications, such as for associated risks and
ethical issues (European Commission, 2020; Declaration,
2018; Russell et al., 2015; Future of Life Institute, 2015,
2019). With the tremendous benefits promised from being
first able to supply such technologies, stake-holders might
cut corners on safety precautions in order to ensure rapid
deployment, in a race towards AI market supremacy (AIS)
(Armstrong et al., 2016; Cave and ÓhÉigeartaigh, 2018).

With this aim in mind, a baseline model of an innova-
tion race has been recently proposed (Han et al., 2020), in

which innovation dynamics are pictured through the lens of
Evolutionary Game Theory (EGT) and where all race partic-
ipants are equally well-connected in the system. The base-
line results have showed the importance of accounting for
different time-scales of development, and also exposed the
dilemmas that arise when what is individually preferred by
developers differs from what is globally beneficial. How-
ever, real-world stakeholders and their interactions are far
from homogeneous (Schilling and Phelps, 2007; Newman,
2004; Barabasi, 2014). Some individuals are more influen-
tial than others, or play different roles in the unfolding of
new technologies. Technology races are shaped by complex
networks of exchange, influence, and competition where di-
versity abounds. Here we summarise a recent work (Cim-
peanu et al., 2022) studying impacts of network topology on
the adoption of safety measures in innovation dynamics.

Models and Methods
Assuming that winning the race towards supremacy is the
goal of the development teams and that a number of devel-
opment steps are required, the players have two strategic op-
tions at each step: to follow safety precautions (denoted by
SAFE) or to ignore them (denoted by UNSAFE) (Han et al.,
2020). As it takes more time and effort to comply with
the precautionary requirements, playing SAFE is not only
costlier but also implies a slower development speed, com-
pared to playing UNSAFE. Let us also assume that to play
SAFE players need to pay additional costs. The interactions
are iterated until one or more teams achieve a designated ob-
jective, after having completed W development steps. As a
result, the players obtain a large benefit B, shared among
those who reach the target objective at the same time. How-
ever, a setback or disaster can happen with some probabil-
ity, which is assumed to increase with the number of times
the safety requirements have been omitted by the winning
team(s). Although many potential AI disaster scenarios have
been sketched (Armstrong et al., 2016; Pamlin and Arm-
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Figure 1: Colour gradients indicating the average fraction of AU (unsafe strategy) for (a) homogeneous (well-mixed and lattices)
populations and (b) scale-free networks (BA and DMS models). In the early regime, region II indicates the parameters in which
safe AI development is the preferred collective outcome, but unsafe development is expected to emerge and regulation may be
needed. In regions I and III, safe and unsafe AI development, respectively, are both preferred collective outcomes and expected
to emerge from self-organization. In the late regime, the solid black line marks the boundary above which safety is the preferred
outcome, whereas the blue line indicates the boundary above which safety becomes risk dominant against unsafe development.

strong, 2015; Han et al., 2019, 2022), the uncertainties in
accurately predicting these outcomes are high. When such
a disaster occurs, risk-taking participants lose all their bene-
fits. We denote by pr the risk probability of such a disaster
occurring when no safety precaution is followed at all.

To study the effect of network structures on the safety out-
come, we have analysed the following types of networks,
from simple to more complex (Cimpeanu et al., 2022): well-
mixed populations (complete graph), where each agent in-
teracts with all other agents in a population; square lat-
tice of size with periodic boundary conditions; and scale-
free (SF) networks (Barabási and Albert, 1999; Dorogovt-
sev, 2010; Newman, 2003), generated by means of two
growing network models — the widely-adopted Barabási-
Albert (BA) model (Barabási and Albert, 1999; Albert and
Barabási, 2002) and the Dorogovtsev-Mendes-Samukhin
(DMS) model (Dorogovtsev, 2010), the latter of which al-
lowed us to assess the role of a large number of triangular
motifs (i.e. high clustering coefficient).

Results and Conclusions
We initially considered the roles of degree-homogeneous
graphs in the evolution of safety in the AI race game. They
simulated the AI race game in well-mixed populations (Fig-
ure 1, first column), and then explored the same game on
a square lattice, where each agent can interact with its four
edge neighbours (Figure 1, second column). They show that

the trends remain the same when compared with well-mixed
populations, with very slight differences in numerical values
between the two. That is, homogeneous spatial variation is
not enough to influence safe technological development.

Investigating beyond homogeneous structures, we make
use of two SF network models. Contrary to the findings on
homogeneous networks, SF structures produce marked im-
provements in almost all parameter regions of the AI race
game (Figure 1). Given that innovation in the field of AI
(more broadly, technological advancement), should be prof-
itable (and robust) to developers, shareholders and society
altogether, it is important to discuss the analytical loci where
these objectives can be fulfilled. Assuredly, it is observed
that diversity in players introduces two marked improve-
ments in both early and late safety regimes. Firstly, very lit-
tle regulation is required in the case of a late AI race, princi-
pally concerning the existing observations in homogeneous
settings. Intuitively, this suggests that there is little encour-
agement needed to promote risk-taking in late AIS regimes:
diversity enables beneficial innovation. Secondly, the region
for early AIS regimes in which regulation must be enforced
is diminished, but not completely eliminated. Consequently,
governance should still be prescribed when developers are
racing towards an early or otherwise uncertain timeline to
reaching transformative AI. It stands to reason that insight
into what regime type the AI race operates in is therefore
paramount to the success of any potential regulatory actions.
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