
Modelling Decision Making with Probabilistic Causation
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Abstract

Humans know how to reason based on cause and
effect, but cause and effect is not enough to draw con-
clusions due to the problem of imperfect information
and uncertainty. To resolve these problems, humans
reason combining causal models with probabilistic
information. The theory that attempts to model
both causality and probability is called probabilistic
causation, better known as Causal Bayes Nets.

In this work we henceforth adopt a logic program-
ming framework and methodology to model our
functional description of Causal Bayes Nets, building
on its many strengths and advantages to derive a
consistent definition of its semantics. ACORDA is
a declarative prospective logic programming system
which simulates human reasoning in multiple steps
into the future. ACORDA itself is not equipped to
deal with probabilistic theory. On the other hand,
P-log is a declarative logic programming language
that can be used to reason with probabilistic models.
Integrated with P-log, ACORDA becomes ready
to deal with uncertain problems that we face on a
daily basis. We show how the integration between
ACORDA and P-log has been accomplished, and we
present cases of daily life examples that ACORDA
can help people to reason about.

Keywords: P-log, ACORDA, Prospective Logic Pro-
gramming, Human Reasoning, Causal Models, Bayes
Nets.
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1 Introduction

Studying how human brain works [6] is one of the
most astonishing areas of research. It draws from
studies of intelligence by psychologists, but even more
from ethology, evolutionary biology, linguistics, and
the neurosciences [29, 9, 12, 11, 18]. The computa-
tional aspects of human brain are one of the attrac-
tive research areas of computer science. Nowadays, a
lot of research in the Artificial Intelligence (AI) com-
munity tries to mimic how humans reason.

Basically humans reason based on cause and effect.
David Hume described causes as objects regularly fol-
lowed by their effects [15]

We may define a cause to be an object, fol-
lowed by another, and where all the objects
similar to the first, are followed by objects
similar to the second.

Hume attempted to analyse causation in terms of
invariable patterns of succession that are referred to
as “regularity theories” of causation. There are a
number of well-known difficulties with regularity the-
ories, and these may be used to motivate probabilistic
approaches to causation.

The difficult part in regularity theories is that most
causes are not invariably followed by their effects.
For example, it’s widely acceptable that smoking is
a cause of lung cancer, but not all smokers have lung
cancer. By contrast, the central idea behind proba-
bilistic theories of causation is that causes raise the
probability of their effects; an effect may still occur in
the absence of a cause or fail to occur in its presence.
The probabilistic theorem of causation helps in defin-
ing a pattern in problems with imperfect regularities
[17].
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If A causes B, then, typically, B will not also cause
A. Smoking causes lung cancer, but lung cancer does
not cause someone to smoke. In other words, causa-
tion is usually asymmetric, cause and effect can not
be commuted. In addition, the asymmetry of causal
relation is unrelated with the asymmetry of causal
implication and its contraposition [27]. For example,
if A stands for the statement “Peter smokes” and
B stands for the statement “Peter has lung cancer”,
then A implies B (smoking causes lung cancer) but
¬B doesn’t imply ¬A (the absence of lung cancer
doesn’t cause Peter not to smoke). This may pose a
problem for regularity theories. It would be nice if a
theory of causation could provide some explanation
of the directionality of causation, rather than merely
stipulate it [16].

For a few decades, statisticians, computer scientists
and philosophers have worked on developing a the-
ory about how to represent causal relations and how
causal claims connect with probabilities. Those rep-
resentations show how information about some fea-
tures of the world may be used to compute probabil-
ities for other features, how partial causal knowledge
may be used to compute the effects of actions and
how causal relations can be reliably learned, at least
by computers. The resulting theory is called Causal
Bayes Nets.

Translation of human reasoning using causal mod-
els and Bayes Nets described previously into a com-
putational framework would be possible using logic
programming. The main argument is that humans
reason using logic. Logic itself can be implemented
on top of a symbol processing system like a computer.
On the other hand, there is an obvious human capac-
ity for understanding logic reasoning, one that might
even be said to have developed throughout our evo-
lution. Its most powerful expression today is science
itself, and the knowledge amassed from numerous dis-
ciplines, each with its own logic. From state laws to
quantum physics, logic has become the foundation on
which human knowledge is built and improved.

A part of the AI community has struggled, for some
time now, to turn logic into an effective program-
ming language, allowing it to be used as a system
and application specification language which is not
only executable, but on top of which one can demon-

strate properties and proofs of correctness that vali-
date the very self-describing programs which are pro-
duced. At the same time, AI has developed logic
beyond the confines of monotonic cumulativity and
into the non-monotonic realms that are typical of the
real world of incomplete, contradictory, arguable, re-
vised, distributed and evolving knowledge. Over the
years, enormous amount of work and results have
been achieved on separate topics in logic program-
ming, language semantics, revision, preferences, and
evolving programs with updates [10, 25, 1]. Compu-
tational logic has shown itself capable to evolve and
meet the demands of the difficult descriptions it is
trying to address.

Thus, in this work we henceforth adopt a logic
programming framework and methodology to model
our functional description of causal models and Bayes
Nets, building on its many strengths and advantages
to derive both a consistent definition of its semantics
and a working implementation with which to conduct
relevant experiments.

The use of the logic paradigm also allows us to
present the discussion of our system at a sufficiently
high level of abstraction and generality to allow for
productive interdisciplinary discussions both about
its specification and the derived properties. The lan-
guage of logic is universally used by both natural sci-
ences and humanities, and more generally at the core
of any source of human derived knowledge, so it pro-
vides us with a common ground on which to reason
about our theory. Since the field of cognitive sci-
ence is essentially a joint effort on the part of many
different kinds of knowledge fields, we believe such
language and vocabulary unification efforts are not
only useful but mandatory.

The paper is organized as follows: the next two
Sections provide the background of prospective logic
programming and probabilistic logic programming.
Section 4 provides the explanation of our implemen-
tation and the paper continues with an example of
how our implementation can be used in Section 5.
The paper finishes with conclusions and directions
for future work in Section 6.
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2 Prospective Logic Program-
ming

Prospective logic programming is an instance of an
architecture for causal models, which implies a no-
tion of simulation of causes and effects in order to
solve the choice problem for alternative futures. This
entails that the program is capable of conjuring up
hypothetical what-if scenaria and formulating abduc-
tive explanations for both external and internal ob-
servations. Since we have multiple possible scenaria
to choose from, we need some form of preference spec-
ification, which can be either a priori or a posteriori.
A priori preferences are embedded in the program’s
own knowledge representation theory and can be used
to produce the most relevant hypothetical abductions
for a given state and observations, in order to conjec-
ture possible future states. A posteriori preferences
represent choice mechanisms, which enable the pro-
gram to commit to one of the hypothetical scenaria
engendered by the relevant abductive theories. These
mechanisms may trigger additional simulations, by
means of the functional connectivity, in order to posit
which new information to acquire, so more informed
choices can be enacted, in particular by restricting
and committing to some of the abductive explana-
tions along the way.

2.1 Language

Definition 2.1 (Language) Let L be a first order
language. A domain literal in L is a domain atom
A or its default negation not A, the latter expressing
that the atom is false by default. A domain rule in L
is a rule of the form:

A← L1, . . . , Lt (t ≥ 0)

where A is a domain atom and L1, . . . , Lt are domain
literals.

Definition 2.2 (Integrity Constraint) An in-
tegrity constraint in L has a form:

⊥ ← L1, . . . , Lt (t > 0)

where ⊥ is a domain atom denoting falsity, and
L1, . . . , Lt are domain literals.

A (logic) program P over L is a set of domain
rules and integrity constraints, standing for all their
ground instances.

2.2 Abducibles

Each program P is associated with a set of abducibles
AP ⊆ L. Abducibles can be seen as hypotheses that
provide hypothetical solutions or possible explana-
tions of given queries. An abducible a can be as-
sumed in the program only if it is a considered one,
i.e. if it is expected in the given situation, and more-
over there is no expectation to the contrary [10]. The
atom consider(a) will be true if and only if the ab-
ducible a is considered. We can define it by the logic
programming rule:

consider(A)← expect(A), not expect not(A)

where A stands for a logic programming variable.
The rules about expectations are domain-specific
knowledge contained in the theory of the program,
and effectively constrain available the hypotheses.

2.3 Preferring Abducibles

To express preference criteria amongst abducibles, we
introduce the language L∗. Let L∗ be a language
consisting of logic program and relevance rules.

Definition 2.3 (Relevance Rule) Let a and b be
abducibles. A relevance atom a / b means abducible
a is more relevant or preferred than abducible b, i.e.
one can not abduce b without also abducing a. A rel-
evance rule is one of the form:

a / b← L1, . . . , Lt (t ≥ 0)

where a/b is a relevance atom and every Li(1 ≤ i ≤ t)
is a domain literal or a relevance literal.

Example 2.4 (Tea 1, taken from [21])
Consider a situation where Claire drinks either
tea or coffee (but not both). Suppose that Claire
prefers coffee over tea when she wants to keep
herself awake, and doesn’t drink coffee when she
has high blood pressure. Moreover, if she wants to

3



socialize, then she prefers drinking tea over coffee;
and she prefers socializing over staying wide awake
if she is in the mood for it. If Claire is sleepy,
then she expects to wake up, and she expects to
socialize if she is in the mood for it. This situation
is described by program P over L with abducibles
AP = {tea, coffee, awake, socialize}:
1 . d r ink ← t ea .

d r ink ← c o f f e e .
2 . expect ( t ea ) .

expect ( c o f f e e ) .
expect ( s o c i a l i z e ) ← in the mood .
expect ( awake ) ← s l e e p y .

3 . expect not ( c o f f e e ) ←
b l o o d p r e s s u r e h i g h .

4 . constrain (0 , [ tea , c o f f e e ] , 1 ) .
5 . c o f f e e / t ea ← awake .
6 . t ea / c o f f e e ← s o c i a l i z e .
7 . s o c i a l i z e / awake ← in the mood .

In the abductive stable model semantics, this pro-
gram has two models, one with tea the other with
coffee. Adding literal sleepy , enforced abduction
comes into play, enabling the preference of coffee over
tea given awake, thus defeating the abductive stable
model where only tea is present (due to the impos-
sibility of simultaneously abducing coffee). If later
we add blood pressure high, coffee is no longer ex-
pected, and the transformed preference rule no longer
defeats the abduction of tea which then becomes the
single abductive stable model, despite the presence
of sleepy .

Moreover, if instead of adding blood pressure high
we added in the mood , the preference of socialize
over awake would be triggered. In this scenario, now
the preference of tea over coffee is enforced and the
preference of coffee over tea is disabled. The pref-
erence of socialize over awake, enabled by the addi-
tion of in the mood , acts as a meta-preference con-
ditioning which preference rule between coffee and
tea would be enacted — even though sleepy is also
present.

Having the notion of expectation allows one to ex-
press the preconditions for an expectation or other-
wise about an abducible a, and expresses which pos-
sible expectations are confirmed (or assumed) in a
given situation. If the preconditions do not hold,
then abducible a can not be considered, and therefore

a will never be assumed. By means of expect not/1
one can express situations where one does not expect
something. In this case, when blood pressure is high,
coffee will not be considered or assumed because of
the contrary expectation arising as well (and there-
fore tea will be assumed).

2.4 Abducibles Sets

In many situations it is desirable not only to include
rules about the expectations for single abducibles,
but also to express contextual information constrain-
ing the powerset of abducibles. For instance, in the
previous example we expressed that abducing tea or
coffee was mutually exclusive (i.e. only one of them
could be abduced), but it is easy to imagine simi-
lar choice situations where it would be possible, in-
deed even desirable, to abduce both, or neither. The
behaviour of abducibles over different sets is highly
context-dependent, and as such, should also be em-
bedded over rules in the theory.

Overall, the problem is analogous to the ones ad-
dressed by cardinality and weight constraint rules for
the Stable Model semantics, and below we present
how one can nicely import these results to work with
abduction of sets, and also hierarchies of sets.

Example 2.5 Consider a situation where Claire is
deciding what to have for a meal from a limited buf-
fet. The menu has appetizers (which Claire doesn’t
mind skipping, unless she’s very hungry), three main
dishes, from which one can select a maximum of two,
and drinks, from which she will have a single one.
The situation, with all possible choices, can be mod-
elled by the following program P over L with the set
of abducibles

AP = {bread, salad, cheese, fish, meat, veggie,

wine, juice, water, appetizers, drinks,

main dishes}

1 . constrain ( 0 , [ bread , sa lad , chee se ] , 3 ) ←
a p p e t i z e r s .

2 . constrain ( 1 , [ f i s h , meat , v e g g i e ] , 2 ) ←
main d i she s .

3 . constrain ( 1 , [ wine , j u i c e , water ] , 1 ) ←
d r i n k s .
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4 . constrain ( 2 , [ a s p p e t i z e r s ,
main dishes , d r i n k s ] , 3 ) .

5 . ma in d i she s / a p p e t i z e r s .
6 . d r i n k s / a p p e t i z e r s .
7 . a p p e t i z e r s ← very hungry .

In this situation we model appetizers as being the
least preferred set from those available for the meal.
This shows how we can condition sets of abducibles
based on the generation of literals from other car-
dinality constraints along with preferences amongst
such literals.

2.5 A Posteriori Preference

Abduction can be seen as a mechanism to enable
the generation of the possible futures of an agent,
with each abductive stable model representing a pos-
sibly reachable scenario of interest. Preferring over
abducibles enacts preferences over the imagined fu-
ture of the agent. In this context, it is unavoidable
to deal with uncertainty, a problem decision theory
is ready to address using probabilities coupled with
utility functions.

Example 2.6 Suppose Claire is spending a day at
the beach and she is deciding what means of trans-
portation to adopt. She knows it is usually faster and
more comfortable to go by car, but she also knows, be-
cause it is hot, there is possibility of a traffic jam. It
is also possible to use public transportation (by train),
but it will take longer, though it meets her wishes of
being more environment friendly. The situation can
be modeled by the abductive logic program:

1 . hot .
2 . g o t o ( beach ) ← car .

g o t o ( beach ) ← t r a i n .
3 . expect ( car ) .

expect ( t r a i n ) .
4 . c o n s t r a i n t (1 , [ car , t r a i n ] , 1 ) .
5 . p r o b a b i l i t y ( t r a f f i c j am , 0 . 7 ) ←

hot .
p r o b a b i l i t y ( not t r a f f i c j am , 0 . 3 ) ←

hot .
6 . u t i l i t y ( s t u c k i n t r a f f i c , −8).

u t i l i t y ( was t ing t ime , −4).
u t i l i t y ( comfort , 1 0 ) .
u t i l i t y ( env i r onmen t f r i end l y , 3 ) .

By assuming each of the abductive hypotheses, the
general utility of going to the beach can be computed
for each particular scenario:

Assume car
Probability of being stuck in traffic = 0.7
Probability of a comfortable ride = 0.3
Expected utility = 10 * 0.3 + 0.7 * -8 = -2.6

Assume train
Expected utility = -4 + 3 = -1

It should be clear that enacting preferential reasoning
over the utilities computed for each model has to be
performed after the scenarios are available, with an a
posteriori meta-reasoning over the models and their
respective utilities.

Once each possible scenario is actually obtained,
there are a number of different strategies which can
be used to choose which of the scenaria leads to more
favourable consequences. A possible way to achieve
this is using numeric functions to generate a quanti-
tative measure of utility for each possible action. We
allow for the application of this strategy, by making a
priori assignments of probability values to uncertain
literals and utilities to relevant consequences of ab-
ducibles. We can then obtain a posteriori the overall
utility of a model by weighing the utility of its con-
sequences by the probability of its uncertain literals.
It is then possible to use this numerical assessment
to establish a preorder amongst remaining models.

Both qualitative and quantitative evaluations of
the scenaria can be greatly improved by merely ac-
quiring additional information to make a final de-
cision. We next consider the mechanism that our
agents use to question external systems, be they other
agents, actuators, sensors or other procedures. Each
of these serves the purpose of an oracle, which the
agent can probe through observations of its own.

Having computed possible scenaria, represented by
abductive stable models, more favourable scenaria
can be preferred amongst them a posteriori. Typi-
cally, a posteriori preferences are performed by eval-
uating consequences of abducibles in abductive stable
models. The evaluation can be done quantitatively
(for instance by utility functions) or qualitatively (for
instance by enforcing some rules to hold). When
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currently available knowledge is insufficient to prefer
amongst abductive stable models, additional infor-
mation can be gathered, e.g. by performing experi-
ments or consulting an oracle. To realize a posteriori
preferences, ACORDA provides predicate select/2
that can be defined by users following some domain-
specific mechanism for selecting favoured abductive
stable models. The use of this predicate to perform
a posteriori preferences will be discussed in a subse-
quent section.

3 Probabilistic Logic Program-
ming

Probabilistic logic programming (P-log) was intro-
duced for the first time by Chitta Baral et.al [3, 4].
P-log is a declarative language that combines logical
and probabilistic reasoning, and uses Answer Set Pro-
gramming (ASP) as its logical foundation and Causal
Bayes Nets [19] as its probabilistic foundation.

The original P-log1 [3, 4] uses Answer Set Program-
ming (ASP) as a tool for computing all stable models
of the logical part of P-log. Although ASP has been
proved to be a useful paradigm for solving varieties
of combinatorial problems, its non-relevance property
[7] makes the P-log system sometimes computation-
ally redundant. Newer developments of P-log2 [2] use
the XASP package of XSB Prolog for interfacing with
an answer set solver.

The power of ASP allows the representation of both
classical and default negation in P-log easily. More-
over, P-log(XSB) uses XSB as the underlying pro-
cessing platform, allowing arbitrary Prolog code for
recursive definitions. P-log can also represent a mech-
anism for updating or reassessing probability [13].
Later by using XASP, we can easily integrate with
the prospective logic programming system ACORDA
[24] that will be explained in Section 4.

The declaration part of a P-log program Π con-
tains sorts and attributes. A sort c is a set of
terms. It can be defined by listing all its elements:

1The original P-log can be accessed at
http://www.cs.ttu.edu/~wezhu/

2The newer P-log(XSB) can be accessed at
http://sites.google.com/site/plogxsb/Home

c = {x1, x2, . . . , xn}. Given 2 integers L ≤ U we can
also use 2 shortcut notations: c = {L..U} for the sort
c = {L, L + 1, . . . , U} and c = {h(L..U)} for the sort
c = {h(L), h(L + 1), . . . , h(U)}. We are also able to
define a sort by arbitrarily mixing the previous con-
structions, e.g. c = {x1, .., xn, L..U, h(M..N)}. In
addition, it is allowed to declare union as well as in-
tersection of sorts. A union sort is represented by
c = union(c1, ...., cn) while an intersection sort by
c = intersection(c1, ..., cn), where ci, 1 ≤ i ≤ n are
declared sorts.

Definition 3.1 (Sorted Signature) The sorted
signature Σ of a program Π contains a set of con-
stant symbols and term-building function symbols,
which are used to form terms in the usual way.
Additionally, the signature contains a collection of
special function symbols called attributes.

Definition 3.2 (Attribute) Let c0, c1, . . . , cn be
sorts. An attribute a with the domain c1 × ... × cn

and the range c0 is represented as follows:

a : c1 × ...× cn → c0

If attribute a has no domain parameter, we simply
write a : c0. The range of attribute a is denoted by
range(a). Attribute terms are expressions of the form
a(t̄), where a is an attribute and t̄ is a vector of terms
of the sorts required by a.

The regular part of a P-log program Π consists of
a collection of rules, facts and integrity constraints
formed using literals of Σ.

Definition 3.3 (Random Selection Rule) A
random selection rule has a form:

random(RuleName, a(t̄), DynamicRange) :- Cond

This means that the attribute instance a(t̄) is ran-
dom if the conditions in Cond are satisfied. The
DynamicRange allows to restrict the default range
for random attributes. The RuleName is a syntactic
mechanism used to link random attributes to the cor-
responding probabilities. The constant full is used in
DynamicRange to signal that the dynamic domain
is equal to range(a).
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Definition 3.4 (Probabilistic Information)
Information about probabilities of random attribute
instances a(t̄) taking particular value y is given by
probability atoms (or simply pa-atoms) which have
the following form:

pa(RuleName, a(t̄, y), d (A, B)):- Cond

It means if Cond were to be true, and the value of
a(t̄) were selected by a rule named RuleName, then
a(t̄) = y with probability A

B .

Example 3.5 (Tea 2) (Continuation of Example
2.4) Suppose if we know that the availability of tea
for agent Claire is around 60%.

8 . beginPr .
9 . b e ve rage = { tea , c o f f e e } .
10 . a v a i l a b l e : b e ve rage .
11 . random( rd , a v a i l a b l e , f u l l ) .
12 . pa ( rd , a v a i l a b l e ( t ea ) , d (60 , 1 00 ) ) .
13 . endPr .

The probabilistic part is coded in between beginPr/0
and endPr/0. There are two kinds of beverage: tea
and coffee and both are randomly available. We get
the information the availability of tea is 60%, coded
by pa(rd, available(tea), d (60, 100)).

Definition 3.6 (Observations and Actions)
Observations and actions are, respectively, state-
ments of the forms obs(l) and do(l), where l is a
literal. Observations are used to record the out-
comes of random events, i.e. random attributes
and attributes dependent on them. The statement
do(a(t, y)) indicates that a(t) = y is made true as
the result of a deliberate (non-random) action.

Back to Example 3.5 as an illustration for Defi-
nition 3.6. The statement obs(available(tea)) indi-
cates that we want to record the outcome of the
availability of tea, on another hand the statement
do(available(tea)) means tea was simply put on the
table in the described action that tea is really avail-
able and we have tea already.

4 Implementation

ACORDA [22, 23]3 is a system that implements
prospective logic programming. ACORDA is the
main component of our system with P-log used as
probabilistic support in the background. Computa-
tion in each component is done independently but
they can cooperate in providing the information
needed. Both ACORDA and P-log rely on the well-
known Stable Model semantics [14] to provide mean-
ing to programs (see their references for details).

The system architecture follows this separation in a
very explicit way. There is indeed a necessary separa-
tion between producer and consumer of information.
ACORDA and P-log can both act as a producer or
consumer of information. The interfaces between the
various components of the integration of ACORDA
with P-log are made explicit in Fig. 14. Each agent is
equipped with a Knowledge Base and a Bayes Net as
its initial theory. The first time around, ACORDA
sends Bayes Net information to P-log and later P-
log translates all the information sent by ACORDA
and keeps it for future computation. The problem
of prospection is then that of finding abductive ex-
tensions to this initial theory which are both relevant
(under the agent’s current goals) and preferred (w.r.t.
the preference rules in its initial theory). The first
step is to select the goals that the agent will possi-
bly attend to during the prospective cycle. Integrity
constraints are also considered to ensure the agent al-
ways performs transitions into valid evolution states.

Once the set of active goals for the current state is
known, the next step is to find out which are the rel-
evant abductive hypotheses. At this step, P-log uses
the abductive hypothesis for computing probabilis-
tic information to help ACORDA do a priori pref-
erences. Forward reasoning can then be applied to
abducibles in those scenaria to obtain relevant side-
effect consequences, which can then be used to en-
act a posteriori preferences. These preferences can
be enforced by employing utility theory that can be
combined with probabilistic theory in P-log. In case

3The integration of ACORDA with P-log can be accessed
at http://sites.google.com/site/acordaplog/Home

4Please note the dashed lines represent communication be-
tween ACORDA and P-log.
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additional information is needed to enact preferences,
the agent may consult external oracles. This greatly
benefits agents in giving them the ability to probe the
outside environment, thus providing better informed
choices, including the making of experiments. Each
oracle mechanism may have certain conditions spec-
ifying whether it is available for questioning. When-
ever the agent acquires additional information, it is
possible that ensuing side-effects affect its original
search, e.g. some already considered abducibles may
now be disconfirmed and some new abducibles are
triggered. To account for all possible side-effects, a
second round of prospection takes place.

4.1 Expected Abducibles

Each abducible needs first to be expected (i.e. made
available) by a model of the current knowledge state.
This is achieved via the expect/1 and expect not/1
clauses which indicate conditions under which an ex-
pectable abducible is indeed expected for an obser-
vation given the current knowledge state.

Sometimes we are not really sure about the rele-
vant expected abducibles. What we do is to make an
approximation of the expectation of some abducibles.
We expect only those abducibles for which we reach
a certain degree of belief. ACORDA handles this
using probabilistic information as the pre-condition
that must be satisfied before continuing the compu-
tation. This mechanism removes all unnecessary ab-
ducibles (i.e. all abducibles with the degree of belief
below some particular value).

Example 4.1 (Cab 1) There was an accident on
the street that involved a cab. Two cab companies op-
erate in the city: Blue and Green. Suppose the prob-
ability of a Green cab being involved is 70%. Now the
police try to catch the driver. Who are the suspects?
1 . falsum ← not ca t c h pe r s on .
2 . c a t c h pe r s on ← consider ( s u s p e c t (P ) ) .
3 . expect ( s u s p e c t (P) ) ←

d r i v e r (P, C) ,
cab company invo l ved (C, PR) ,
p r o l o g (PR > 0 . 5 ) .

4 . expect not ( s u s p e c t (P) ) ←
h a v e a l i b i ( person (P) ) .

5 . d r i v e r ( antonio , b l u e ) .
d r i v e r ( berry , b l u e ) .

d r i v e r ( c h a r l i e , b l u e ) .
6 . d r i v e r ( pe ter , green ) .

d r i v e r ( robe r t , green ) .
d r i v e r ( john , green ) .

7 . h a v e a l i b i ( person (P) ) ←
ob s e r v e ( prog , a l i b i O r a c l e (P) ,

s t r e e t a b c , true ) .
8 . o b s e r v e ( prog , a l i b i O r a c l e (P) ,Q,R) ←

orac l e ,
p r o l o g ( orac leQuery ( wa s no t a t (P,Q) ,R) ) .

9 . cab company invo l ved (C, PR) ←
cab (C) , p r o l o g ( pr ( cab (C) ,PR) ) .

10 . cab ( green ) . cab ( b l u e ) .
11 . beginPr .
12 . c o l o r = { green , b l u e } .
13 . cab : c o l o r .
14 . random( rc , cab , f u l l ) .
15 . pa ( rc , cab ( green ) , d (70 , 1 00 ) ) .
16 . endPr .

The abducible literals for this case are

Abs = {suspect(antonio), suspect(berry),
suspect(charlie), suspect(john),
suspect(peter), suspect(robert)}

There are six possible suspects and hence there are 63
(or 26−1) non-empty subsets of the set of all possible
suspects. On line 4 we state that someone is expected
to be a suspect if he is one of the drivers of a cab com-
pany which is suspected to be involved in the accident
by the degree of belief higher than 50%. At this stage,
ACORDA calls P-log to find out the probability of
each company being involved in the accident. Since
the results are: cab company involved(blue, 0.30)
and cab company involved(green, 0.70), the only ex-
pected suspects are Peter, John and Robert, since
they work for the Green company (line 6). Hence
from 63 possibilities only 7 (or 23 − 1) are remaining
and it can make the computation much more efficient.

In the next step, the police can question the re-
maining possible suspects about their alibi, which is
modelled as an external oracle. Based on the informa-
tion provided, the set of expected suspects is finally
identified.

4.2 Utility Function

Abduction can also be seen as a mechanism to enable
the generation of the possible futures of an agent,

8



Figure 1: Integration Architecture

with each abductive stable model representing a pos-
sibly reachable scenario of interest. Preferring over
abducibles in this case is enacting preferences over
the imagined future of the agent. In this particular
domain, it is unavoidable to deal with uncertainty, a
problem that decision theory is ready to address us-
ing probability theory coupled with utility functions
[5].

Example 4.2 (Cab 2) (Continuation of the Exam-
ple 4.1) After finding the suspects and interrogating
them, the police make a calculation and and weight
who has the highest chance of being a suspect. The
fact that the accident happened in the night.

17 . ca t c h pe r s on ← s u s p e c t (P,U) .
18 . s u s p e c t (P,U) ← consider ( s u s p e c t (P) ) ,

p r o l o g ( u t i l i t y V a l u e (P,U) ) ,
p r o l o g (U < 0 ) .

19 . beginProlog .
20 . u t i l i t y V a l u e (P,U) :−

( s h i f t (P, n i g h t ) →
Rate i s 1 ; Rate i s 0) ,

h i s t o ryRecord (P,HR) ,
a l c oho lRa t e (P, AR) ,

yearsOfExper i ence (P,YE) ,
U i s HR − ( Rate ∗ AR ∗ 1 / YE) .

21 . s h i f t ( antonio , day ) .
s h i f t ( berry , n i g h t ) .
s h i f t ( c h a r l i e , day ) .
s h i f t ( pe ter , n i g h t ) .
s h i f t ( robe r t , n i g h t ) .
s h i f t ( john , day ) .

22 . h i s t o ryRecord ( antonio , 0 . 6 ) .
h i s t o ryRecord ( berry , 0 . 6 5 ) .
h i s t o ryRecord ( c h a r l i e , 0 . 7 ) .
h i s t o ryRecord ( pe ter , 0 . 5 5 ) .
h i s t o ryRecord ( robe r t , 0 . 6 ) .
h i s t o ryRecord ( john , 0 . 8 ) .

23 . a l c oho lRa t e ( antonio , 2 ) .
a l c oho lRa t e ( berry , 2 ) .
a l c oho lRa t e ( c h a r l i e , 2 ) .
a l c oho lRa t e ( pe ter , 2 ) .
a l c oho lRa t e ( robe r t , 3 ) .
a l c oho lRa t e ( john , 10 ) .

24 . yearsOfExper i ence ( antonio , 5 ) .
yearsOfExper i ence ( berry , 5 ) .
yearsOfExper i ence ( c h a r l i e , 5 ) .
yearsOfExper i ence ( pe ter , 5 ) .
yearsOfExper i ence ( robe r t , 2 ) .
yearsOfExper i ence ( john , 10 ) .

25 . endProlog .
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Someone is considered as a suspect based on the
utility value assigned to him. The police compute
the utility value of each driver based on the time of
his shift, the history record, the amount of alcohol
in his blood and the number of years of experience.
We assume that all the drivers are honest and answer
all of the questions truthfully. Then it is impossible
that somebody who had the day shift is still a sus-
pect. The history record is also important in order to
see whether the driver is a good person or not. Fur-
ther, if he has more experience, it means that he is a
good driver and lowers the probability of him being
a suspect.

After the computation, the police get the result:

suspect person(john, 0 .8 ),
suspect person(peter , 0 .15 ),

suspect person(robert ,−0 .9 )

and find that Robert is clearly the best candidate for
a suspect.

4.3 A Priori Preference

Once the set of relevant considered abducibles is
determined from the program’s current knowledge
state, all that remains is to determine the active a pri-
ori preferences that are relevant for that set. This is
merely a query for all preference literals whose heads
indicate a preference between two abducibles that be-
long to the set, and whose body is true in the Well-
Founded Model of the current knowledge state. Now,
we can define the preferences using probabilistic in-
formation.

Example 4.3 (Wet Grass) Suppose that agent
Boby wants to have refreshing in the holiday time.
There are two options, going to the beach or going
to the cinema. Agent Boby prefers to go to the
beach if the probability of raining is quite low (less
than 40%). Agent Boby also does not want to go to
the cinema if the movies are boring. What should
agent Boby decide for his refreshing time given the
knowledge of wheather forecast and the information
that today the grass is wet?

1 . falsum ← not r e f r e s h i n g .
2 . r e f r e s h i n g ← beach .

r e f r e s h i n g ← cinema .
3 . expect ( beach ) .

expect ( cinema ) .
4 . beach ← consider ( beach ) .
5 . cinema ← consider ( cinema ) .
6 . beach / cinema ← r a i n i n g (PR) ,

p r o l o g (PR < 0 . 4 ) .
7 . r a i n i n g (PR) ← we t g ra s s (X) ,

p r o l o g ( pr ( ( ra in ( t ) ’ | ’ we t g ra s s (X) ) ,PR) ) .
8 . we t g ra s s ( t ) ←

ob s e r v e ( prog , g r a s s c ond i t i o n ,
today , true ) .

9 . we t g ra s s ( f ) ←
ob s e r v e ( prog , g r a s s c ond i t i o n ,

today , f a l s e ) .
10 . o b s e r v e ( prog , g r a s s c ond i t i o n , Q, R) ←

orac l e ,
p r o l o g ( orac leQuery ( g r a s s c o n d i t i o n (Q) ,R) ) .

11 . expect not ( cinema ) ← bor ing mov i e .
12 . bor ing mov i e ←

ob s e r v e ( prog , mov i e r e f e r ence ,
today , true ) .

13 . o b s e r v e ( prog , mov i e r e f e r ence , Q, R) ←
orac l e ,
p r o l o g ( orac leQuery ( bor ing mov i e (Q) ,

R) ) .
14 . beginPr .
15 . b oo l = { t , f } .
16 . c l oudy : b oo l .
17 . ra in : b oo l .
18 . s p r i n k l e r : b oo l .
19 . we t g ra s s : b oo l .
20 . random( rc , c loudy , f u l l ) .
21 . random( rr , rain , f u l l ) .
22 . random( rs , s p r i n k l e r , f u l l ) .
23 . random( rw , wetgrass , f u l l ) .
24 . pa ( rc , c l oudy ( t ) , d (1 , 2 ) ) .
25 . pa ( rc , c l oudy ( f ) , d (1 , 2 ) ) .
26 pa ( rs , s p r i n k l e r ( t ) , d (1 , 2) ) :−

c l oudy ( f ) .
27 . pa ( rs , s p r i n k l e r ( t ) , d (1 , 10)) :−

c l oudy ( t ) .
28 . pa ( rr , ra in ( t ) , d (2 , 10)) :−

c l oudy ( f ) .
29 . pa ( rr , ra in ( t ) , d (8 , 10)) :−

c l oudy ( t ) .
30 . pa ( rw , we t g ra s s ( t ) , d (0 , 1) ) :−

s p r i n k l e r ( f ) , ra in ( f ) .
31 . pa ( rw , we t g ra s s ( t ) , d (9 , 10)) :−

s p r i n k l e r ( t ) , ra in ( f ) .
32 . pa ( rw , we t g ra s s ( t ) , d (9 , 10)) :−

s p r i n k l e r ( f ) , ra in ( t ) .
33 . pa ( rw , we t g ra s s ( t ) , d (99 , 100)) :−

s p r i n k l e r ( t ) , ra in ( t ) .
34 . endPr .
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Figure 2: Bayes Nets for Wetgrass Condition

Agent Boby’s preference is based on the value of
probability raining given the condition of the grass
(lines 6-7). ACORDA calls the oracle to acquire the
condition of grass. Later, P-log computes the condi-
tional probability of rain(t) given wetgrass(X). All
lines between beginPr and endPr are reserved for
P-log code. The Bayes Nets for this problem is rep-
resented in Figure 2 and coded on lines 15-33.

4.4 A Posteriori Preference

If everything goes well and only a single model
emerges from computation of the abductive stable
models, the ACORDA cycle terminates and the re-
sulting abducibles are added to the next state of
the knowledge base. In most cases, however, we
can not guarantee the emergence of a single model,
since the active preferences may not be sufficient to
defeat enough abducibles. In these situations, the
ACORDA system has to resort on additional infor-
mation for making further choices.

A given abducible can be defeated in any one of
two cases: either by satisfaction of an expect not/1
clause for that abducible, or by satisfaction of a pref-
erence rule that prefers another abducible instead.

However, the current knowledge state may be insuf-
ficient to satisfy any of these cases for all abducibles
except one, or else a single model would have already
been abduced. It is then necessary that the system
obtains the answers it needs from somewhere else,
namely from making experiments on the environment
or from querying an outside entity.

ACORDA consequently activates its a posteriori
choice mechanisms by attempting to satisfy addi-
tional selecting preferences. There are two steps, first
ACORDA computes the utility value for each ab-
ducible that is described later on. Later, ACORDA
selects amongst them based on the preference func-
tion defined. This steps is coded below in the meta
predicate select/2.
1 . s e l e c t (M, NewM) :−

s e l e c t 1 (M, M1) , s e l e c t 2 (M1, NewM) .
2 . s e l e c t 1 (M, M1) :−

addUt i l i tyValue (M, M1) .
3 . s e l e c t 2 (M1, NewM) :−

%preference function to select the model.

Example 4.4 (Tea 3) (Continuation of Example
3.5) Consider now we introduce the utility rate for
coffee and tea for agent Claire based on her prefer-
ence. What do we suggest for agent Claire’s bever-
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age when the utility probability value is taken into
account?

14 . beginProlog .
15 . s e l e c t (M, Mnew) :−

u t i l i t y R a t e ( tea , 0 . 8 ) ,
u t i l i t y R a t e ( c o f f e e , 0 . 7 ) ,
s e l e c t 1 (M, M2) ,
s e l e c t 2 (M2, 0 , [ ] , Mnew) .

16 . s e l e c t 1 ( [ ] , [ ] ) .
17 . s e l e c t 1 ( [X |Xs ] , [Y |Ys ] ) :−

addU t i l i t yVa l u e (X, Y) ,
s e l e c t 1 (Xs , Ys ) .

16 . s e l e c t 2 ( [ ] , , M, M) .
17 . s e l e c t 2 ( [M|Ms] , Acc , OldM , NewM) :−

member( u t i l i t yMo d e l (U) , M) ,
U > Acc → s e l e c t 2 (Ms,U,M,NewM) ;

s e l e c t 2 (Ms, Acc ,OldM ,NewM) .
18 . a d dU t i l i t yVa l u e ( [X] ,

[ u t i l i t yMo d e l (UM) | [X ] ] ) :−
ho l d s u t i l i t y R a t e (X, R) ,
pr ( a v a i l a b l e (X) , P) , UM i s R ∗ P.

19 . a d dU t i l i t yVa l u e ( , [ ] ) .
20 . endProlog .

First, ACORDA launches oracles to acquire informa-
tion about Claire’s condition – whether she is sleepy
and whether she has high blood pressure. If there
is no contrary expectation for any of the beverages,
i.e. agent Claire is not sleepy and also does not have
high blood pressure, we will have two different abduc-
tive solutions: M1 = {coffee}, M2 = {tea}. Next,
ACORDA performs a posteriori selection. Our se-
lecting preference amongst abducibles is codified on
lines 14-20. First we initialize the utility rate for
both beverages. In the addUtilityValue/2 pred-
icate, we define our utility function. In this ex-
ample, we define the utility value for each bever-
age as its probability of availability times its util-
ity rate. After the computation we get the re-
sult: M1 = {utilityModel(0.2800), coffee}, M2 =
{utilityModel(0.4800), tea}. Predicate select2/2
will select the highest utility model and the final
result is M2 = {utilityModel(0.4800), tea} which
means that based on the a posteriori preference us-
ing our utility function, agent Claire is encouraged to
have tea.

4.5 Multiple-step Prospection

Each cycle ends with the commitment of the agent
to an abductive solution that satisfies the current ac-
tive goals. Sometimes we also want to look ahead
several steps based on previously abduced variables
in combination with the probability and utility func-
tions. When looking towards the future, an agent
is confronted with several scenaria. Later when more
information is available (possibly given by an oracle),
the future prediction can be repeated.

Example 4.5 (Blue Cab Problem) A cab was
involved in a hit-and-run accident at night. Two
cab companies, the Green and the Blue, operate
in the city. Imagine you are given the following
information: 85% of the cabs in the city are Green
and 15% are Blue. A witness identified the cab as a
Blue cab. The court tested his ability to identify cabs
under the appropriate visibility conditions. When
presented with a sample of cabs (half of which were
Blue and half of which were Green), the witness
made correct identifications in 80% of the cases
and erred in 20% of the cases. What is the prob-
ability that the cab involved in this accident was Blue?

1st : find the cab suspect.
There is an accident, we should find the suspect.
ac c i d en t .
falsum ← acc iden t ,

not f i n d ca b company in vo l v e d .
f i nd ca b company in vo l v e d ←

f i n d ca b company in vo l v e d ( , ) .
f i nd ca b company in vo l v e d (X, P) ←

consider ( s u s p e c t (X, P ) ) .
expect ( s u s p e c t (X, P) ) ← cab (X) ,

p r o l o g ( pr ( cab (X) ’ | ’ w i t n e s s ( b l u e ) , P ) ) .
cab ( green ) .
cab ( b l u e ) .
constrain (2 , [ s u s p e c t ( b lue , PB) ,

s u s p e c t ( green , PG) ] , 2 ) ←
p ro l o g ( pr ( cab ( b l u e ) ’ | ’ w i t n e s s ( b l u e ) ,

PB) ) ,
p r o l o g ( pr ( cab ( green ) ’ | ’ w i t n e s s ( b l u e ) ,

PG) ) .
normal ← not c h e c k w i t n e s s r e l i a b i l i t y .
beginPr .

c o l o r = { green , b l u e } .
w i t n e s s : c o l o r .
random( r1 , w i tnes s , f u l l ) .
cab : c o l o r .
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random( r2 , cab , f u l l ) .
pa ( r2 , cab ( b l u e ) , d (15 , 100)) :−

n i g h t ( f ) .
pa ( r2 , cab ( green ) , d (85 , 100)) :−

n i g h t ( f ) .
pa ( r1 , w i t n e s s ( b l u e ) , d (80 , 100)) :−

cab ( b l u e ) , normal .
pa ( r1 , w i t n e s s ( b l u e ) , d (20 , 100)) :−

cab ( green ) , normal .
n i g h t ( t ) :− ho l d s n i g h t .
n i g h t ( f ) :− ho l d s n o t n i g h t .
normal :− ho l d s normal .

endPr .

2nd : Judge the guilty.
From the suspect which one is the guilty?

g u i l t y (X) ←
f i n d ca b company in vo l v e d (X, P) ,
p r o l o g (P > 0 . 5 ) .

g u i l t y ← g u i l t y ( ) .
falsum ← acc iden t , not ob s e r v e ( g u i l t y ) .

3rd : Defense.
The defendant claims that the accident happened in
the night. The number each cabs are different from
the number in the day. For Green company, the cabs
are reduced one fifth in the night and for the Blue
company, the number is reduced into one third.

no t n i g h t ← not n i g h t .

beginPr .
pa ( r2 , cab ( b l u e ) , d (X, 100)) :−

n i g h t ( t ) , compute ( b lue , X) .
pa ( r2 , cab ( green ) , d (X, 100)) :−

n i g h t ( t ) , compute ( green , X) .
compute (X, Val ) :−

N1 i s 85/5 + 15/3 ,
(X = b l u e →

Val i s 5/N1∗100; Val i s 17/N1∗100) .
endPr .

4th : Prosecutor.
The prosecutor said that the reliability of witness in
the night is not good.

beginPr .
pa ( r1 , w i t n e s s ( b l u e ) , d (60 , 100)) :−

cab ( b l u e ) , n i g h t ( t ) ,
c h e c k w i t n e s s r e l i a b i l i t y .

pa ( r1 , w i t n e s s ( b l u e ) , d (40 , 100)) :−
cab ( green ) , n i g h t ( t ) ,
c h e c k w i t n e s s r e l i a b i l i t y .

c h e c k w i t n e s s r e l i a b i l i t y :−
ho l d s c h e c k w i t n e s s r e l i a b i l i t y .

endPr .

5th : Police.
Police is trying to find the suspect.
ca t ch pe r s on ← s u s p e c t p e r s on (P, U) .
expect ( s u s p e c t (P) ) ← d r i v e r (P, C) ,

f i nd ca b company in vo l v e d (C, PR) ,
p r o l o g (PR > 0 . 5 ) .

s u s p e c t p e r s on (P, U) ←
consider ( s u s p e c t (P) ) ,

p r o l o g ( u t i l i t y V a l u e (P, U) ) ,
p r o l o g (U > 0 ) .

person (P) ← d r i v e r (P, ) .
d r i v e r ( antonio , b l u e ) .
d r i v e r ( berry , b l u e ) .
d r i v e r ( c h a r l i e , b l u e ) .
d r i v e r ( pe ter , green ) .
d r i v e r ( robe r t , green ) .
d r i v e r ( john , green ) .
s h i f t ( antonio , day ) .
s h i f t ( berry , n i g h t ) .
s h i f t ( c h a r l i e , day ) .
s h i f t ( pe ter , n i g h t ) .
s h i f t ( robe r t , n i g h t ) .
s h i f t ( john , day ) .
beginProlog .

u t i l i t y V a l u e ( Person , 1) :−
ho l d s s h i f t ( Person , n i g h t ) .

u t i l i t y V a l u e ( Person , 0) :−
ho l d s s h i f t ( Person , day ) .

endProlog .

6th : Interrogation.
The police is asking suspects’ alibi.
f i n d a l i b i ← h a v e a l i b i ( s u s p e c t (P ) ) .
h a v e a l i b i ( person (P) ) ←

ob s e r v e ( prog , a l i b i o r a c l e (P) ,
s t r e e t a b c , true ) .

o b s e r v e ( prog , a l i b i o r a c l e (P) , Q, R) ←
orac l e ,
p r o l o g ( orac leQuery ( wa s no t a t (P, Q) ,

R) ) .

This case can be simulated in below.

Models for step 1:

[suspect(blue, 0.4138), suspect(green, 0.5862)]

Continue?(yes/no)yes.

Update knowledge?(yes/no)yes.

falsum <- accident, not observe(guilty).

finish.

Models for step 2:

[suspect(blue, 0.4138), suspect(green, 0.5862),

guilty(green)]

Continue?(yes/no)yes.

Update knowledge?(yes/no)yes.

night.
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finish.

Models for step 3:

[suspect(blue, 0.5405), suspect(green, 0.4595),

guilty(blue)]

Continue?(yes/no)yes.

Update knowledge?(yes/no)yes.

check_witness_reliability.

finish.

Models for step 4:

[suspect(blue, 0.3061), suspect(green, 0.6939),

guilty(green)]

Continue?(yes/no)yes.

Update knowledge?(yes/no)yes.

falsum <- not catch_person.

finish.

Models for step 5:

[suspect(peter), suspect(robert),

suspect(blue, 0.3061), suspect(green, 0.6939),

guilty(green)],

[suspect(peter), suspect(blue, 0.3061),

suspect(green, 0.6939), guilty(green)],

[suspect(robert), suspect(blue, 0.3061),

suspect(green, 0.6939), guilty(green)]

Continue?(yes/no)yes.

Update knowledge?(yes/no)yes.

expect_not(suspect(P)) <- have_alibi(person(P)).

finish.

Step: 6

Confirm observation: was_not_at(john, street_abc)

(true or false)? false.

Confirm observation: was_not_at(robert, street_abc)

(true or false)? false.

Confirm observation: was_not_at(peter, street_abc)

(true or false)? true.

Models for step 6:

[suspect(robert), suspect(blue, 0.3061),

suspect(green, 0.6939), guilty(green)]

Continue?(yes/no)no.

5 Example: Risk Analysis

The economics of risk [8] has been a fascinating area
of inquiry for at least two reasons. First, there is
hardly any situation where economic decisions are
made with perfect certainty. The sources of uncer-
tainty are multiple and pervasive. They include price
risk, income risk, weather risk, health risk, etc. As a
result, both private and public decisions under risk
are of considerable interest. This is true in posi-
tive analysis (where we want to understand human

behaviour), as well as in normative analysis (where
we want to make recommendations about particu-
lar management or policy decisions). Second, over
the last few decades, significant progress has been
made in understanding human behaviour under un-
certainty. As a result, we have now a somewhat
refined framework to analyze decision-making under
risk.

In a sense, the economics of risk is a difficult sub-
ject; it involves understanding human decisions in the
absence of perfect information. In addition, we do not
understand well how the human brain processes infor-
mation. As a result, proposing an analytical frame-
work to represent what we do not know seems to
be an impossible task. In spite of these difficulties,
much progress has been made. First, probability the-
ory is the cornerstone of risk assessment. This allows
us to measure risk in a fashion that can be com-
municated amongst decision makers or researchers.
Second, risk preferences are better understood. This
provides useful insights into the economic rationality
of decision-making under uncertainty. Third, over
the last decades, good insights have been developed
about the value of information. This helps us to bet-
ter understand the role of information and risk in
private as well as public decision-making.

We define risk as representing any situation where
some events are not known with certainty. This
means that one can not influence the prospects for
the risk. It can also relate to events that are relatively
rare. The list of risky events is thus extremely long.
First, this creates a significant challenge to measure
risky events. Indeed, how can we measure what we
do not know for sure? Second, given that the num-
ber of risky events is very large, is it realistic to think
that risk can be measured? We will present a sim-
ple example about decision–making in a restaurant
where risk is taken into account.

Example 5.1 (Mamma Mia) The owner of the
Restaurant “Mamma Mia” wants to offer a new
menu. Before the launch of the new menu, he per-
formed some research. Based on it, 75% of teenagers
prefer the new menu and 80% of adults prefer the
original menu. Around 40% of his costumers are
teenagers. If he offers the new menu, each new menu
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will return 5 Euros. The basic cost that he should
spend for 100 new menus is 200 Euros. What is your
suggestion for the owner of the Restaurant “Mamma
Mia”? The owner’s utility function is approximately
represented by U(X) = 2 ∗X − 0.01X2, (X ≤ 100),
X being his income.
1 . expect ( d ec i d e ( launch new menu ) ) .

expect ( d ec i d e ( no t l aunch ) ) .
2 . constrain ( 1 , [ d e c i d e ( launch new menu ) ,

d e c i d e ( no t l aunch ) ] , 1 ) .
3 . d e c i s i o n ← consider ( d ec i d e (X) ) .
4 . d e c i d e ( launch new menu ) /

dec i d e ( no t l aunch ) ←
n o t t a k e r i s k ,
p r o l o g ( pr (menu(new ) , PN) ) ,
p r o l o g ( pr (menu( o r i g i n a l ) , PO) ) ,
p r o l o g (PN > PO) .

5 . d e c i d e ( no t l aunch ) /
dec i d e ( launch new menu ) ←

n o t t a k e r i s k ,
p r o l o g ( pr (menu( o r i g i n a l ) , PO) ) ,
p r o l o g ( pr (menu(new ) , PN) ) ,
p r o l o g (PO > PN) .

6 . n o t t a k e r i s k ← not t a k e r i s k .
7 . falsum ← not d e c i s i o n .
8 . beginPr .
9 . age = { t eenager , a d u l t } .
10 . o f f e r = { o r i g i n a l , new } .
11 . customer : age .
12 . random( rc , customer , f u l l ) .
13 . pa ( rc , customer ( t e enage r ) , d ( 60 , 1 00 ) ) .
14 . menu : o f f e r .
15 . random( ro , menu , f u l l ) .
16 . pa ( ro , menu(new ) , d (75 ,100) ) :−

customer ( t e enage r ) .
17 . pa ( ro , menu( o r i g i n a l ) , d (80 ,100) ) :−

customer ( a du l t ) .
18 . endPr .
19 . beginProlog .
20 . :− import member/2 , l ength /2

from bas ics .
21 . s e l e c t (M, Mnew) :−

s e l e c t 1 (M, Mnew) ,
s e l e c t 2 ( , 0 , [ ] , ) .

22 . s e l e c t 1 ( [ ] , [ ] ) .
23 . s e l e c t 1 ( [X |Xs ] , [Y |Ys ] ) :−

addU t i l i t yVa l u e (X,Y) ,
s e l e c t 1 (Xs , Ys ) .

24 . s e l e c t 2 ( [ ] , ,M,M) .
25 . s e l e c t 2 ( [M|Ms] , Acc ,OldM ,NewM):−

member( u t i l i t yMo d e l (U) , M) ,
U > Acc → s e l e c t 2 (Ms,U,M,NewM) ;

s e l e c t 2 (Ms, Acc ,OldM ,NewM) .
26 . a d dU t i l i t yVa l u e ( [ d e c i d e (X) ] ,

[ u t i l i t yMo d e l (EU) ,
e x p e c t e dP r o f i t ( P r o f i t ) ,

d e c i d e (X) ] ) :−
e x p e c t e dP r o f i t (X, P r o f i t ) ,
e x p e c t e dU t i l i t y (X, EU) .

27 . e x p e c t e dP r o f i t ( Action , P) :−
r e tu rn ( Action , R) , c o s t ( Action , C) ,
P i s R − C.

28 . e x p e c t e dU t i l i t y ( Action , EU) :−
pr (menu(new ) , PrN) ,
e x p e c t e dP r o f i t ( Action , Pf ) ,
EU i s (2∗Pf∗PrN − 0.01∗Pf∗Pf∗PrN ) .

29 . r e tu rn ( launch new menu , 5 ) .
r e tu rn ( no t launch , 0 ) .

30 . c o s t ( launch new menu , 2 ) .
c o s t ( no t launch , 0 ) .

31 . endProlog .

In Example 5.1, the expected return value depends
on the probability of the number of new menu offers.
Given probability information about the age of cus-
tomers and their behaviour in choosing a menu offer,
we compute the expected probability of new menu
choices. In this case, the probability of new menu
choices is 0.42 an the probability of original menu
choices is 0.58. The probability of original menu
choices is higher than the probability of new menu
choices. Furthermore, if we compute the expected
return more comprehensively, we will get the result:

M1 = {utilityModel(3 .1323 ), expectedProfit(3 ),
decide(launch new menu)},

M2 = {utilityModel(0 .0000 ), expectedProfit(0 ),
decide(not launch)}

Based on the computation, it is better if he launches
a new menu even though it is risky.

6 Conclusion and Future Work

Humans reason using cause and effect models with
the combination of probabilistic models such as Bayes
Nets. Unfortunately, the theory of Bayes Nets does
not provide tools for generating a scenario that is
needed for generating several possible worlds. Those
are important in order to simulate human reasoning
not only about the present but also about the future.
On the other hand, ACORDA is a prospective logic
programming language that is able to prospect possi-
ble future worlds based on abduction, preference and
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expectation specifications. But ACORDA itself can
not handle probabilistic information. To deal with
this problem, we integrated ACORDA with P-log,
a declarative logic programming language based on
probability theory and Causal Bayes Nets. Now, us-
ing our new system, it is easy to create models using
both causal models and Bayes Nets. The resulting
declarative system can benefit from the capabilities
of the original ACORDA for generating scenaria, and
is equipped with probabilistic theory as a medium to
handle uncertain events. Using probability theory
and utility functions, the new ACORDA is now more
powerful in managing quantitative as well as qualita-
tive a priori and a posteriori preferences.

Often we face situations when new information is
available that can be added to our model in order
to perform our reasoning better. Our new ACORDA
also makes it possible to perform a simulation and af-
terwards add more information directly to the agent.
It can also perform several steps of prospection in
order to predict the future better. For illustrative
understanding, we presented taking a risk example
in which the system can help people to reason and
rationally decide.

When looking ahead a number of steps into the
future, the agent is confronted with the problem of
having several different possible courses of evolution.
It needs to be able to prefer amongst them to deter-
mine the best courses of evolution from its present
state (from any state in general). The (local) prefer-
ences, such as the a priori and a posteriori ones pre-
sented above are not appropriate enough anymore.
The agent should be able to prefer amongst evolu-
tions by their available historical information as well
as by quantitatively or qualitatively evaluating their
consequences.

Sato proposes PRISM (PRogramming In Statisti-
cal Modeling) for logic programs with distribution
semantics [26]. P-log and PRISM share a substan-
tial number of common features. Both are declar-
ative languages capable of representing and reason-
ing with logical and probabilistic knowledge. In both
cases logical part of the language is rooted in logic
programming. There are also substantial differences.
PRISM allows infinite possible worlds, has the abil-
ity for statistical parameters learning embedded in its

inference mechanism, but limits its logical power to
Horn logic programs. We can use PRISM ideas to ex-
pand the semantics of P-log to allow infinite possible
worlds.

In Section 5 we show the analysis of risk be-
haviour under general risk preferences under the ex-
pected utility model. However, applying this ap-
proach to decision-making under uncertainty requires
having good information about the measurement of
the probability disribution of x and the risk prefer-
ences of the decision-maker as represented by util-
ity function U(x). It is easier to obtain sample
information about the probability distribution of x
than about individual risk preferences. It is possi-
ble to conduct risk analysis without precise informa-
tion about risk prefrences using stocastic dominance.
Stochastic dominance provides a framework to rank
choices among alternative risky strategies when pref-
erences are not precisely known [28]. It forsees the
elimination of “inferior choices” without strong a pri-
ori information about risk preferences. For future
work, we can extend P-log to handle stochastic pro-
cesses.
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