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Abstract We describe a novel method for the analysis of research activities of an
organization by mapping that to a taxonomy tree of the field. The method constructs
fuzzy membership profiles of the organization members or teams in terms of the tax-
onomy’s leaves (research topics), and then it generalizes them in two steps. These
steps are: (i) fuzzy clustering research topics according to their thematic similarities
in the department, ignoring the topology of the taxonomy, and (ii) optimally lift-
ing clusters mapped to the taxonomy tree to higher ranked categories by ignoring
“small” discrepancies. We illustrate the method by applying it to data collected by
using an in-house e-survey tool from a university department and from a university
research center. The method can be considered for knowledge generalization over
any taxonomy tree.
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1 Introduction

1.1 Motivation

Our subject should be counted as what can be referred to as organizational knowl-
edge management. We represent activity of an organization in a novel way by map-
ping it to an ontology of the field. Our method involves three stages: (i) data inte-
gration, (ii) ontology usage, and (iii) activity visualization.

To give an intuitive idea of the method, let us first consider three similar stages
of data representation for operative control, such as that by a company delivering
electricity to homes in a town zone. Fig. 1, taken from [2], represents an energy
network over a map of the corresponding district on which the topography and the
network data are integrated in such a way that gives the company “an unprecedented
ability” to control the flow of energy by following all the maintenance and repair
issues on-line in a real time framework.

Fig. 1: Energy network of Con Edison Company on Manhattan New-York USA visualized by
Advanced Visual Systems [2].

What we are concerned with is whether a similar mapping is possible for a long-
term analysis of an organization whose activity is much less tangible, such as a
university research department. There are three major ingredients that allow for a
successful representation of the energy network:

(1) map of the district,
(2) the energy network units, and
(3) mapping (2) at (1).

Moreover, one could imagine an extension of this mapping to other infrastructure
items, such as the water supply, sewage type and transports, so that the map could
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be used for more long-term city planning tasks such as development of leisure or
residential areas and the like. This allows us to take, for a research department, the
following analogues to the elements of the mapping in Fig. 1:

(1’) an ontology of Computer Science (CS),
(2’) the set of CS research subjects being developed by members of the department,

and
(3’) representation of the research on the ontology.

Why would one want to do that? There can be various management goals such
as, for example:

– Positioning of the research organization within the taxonomy;
– Analyzing and planning the structure of research conducted in the organization;
– Finding nodes of excellence, nodes of failure and nodes needing improvement

for the organization;
– Discovering research elements that poorly match the structure of the taxonomy;
– Planning of research and investment;
– Integrating data of different research organizations in a region for the purposes

of regional planning and management.

Before moving further, let us take a look at the structure of Classification of
Computer Subjects developed by the Association for Computing Machinery (ACM-
CCS) [1] which is the heart of the Computer Science ontology. Its highest layer is
presented in Fig.2 that shows the whole of Computer Science as divided into eleven
first-layer subjects:
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Fig. 2: The higher level of ACM-CCS Taxonomy.

A. General Literature
B. Hardware
C. Computer Systems Organization
D. Software
E. Data
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F. Theory of Computation
G. Mathematics of Computing
H. Information Systems
I. Computing Methodologies
J. Computer Applications
K. Computing Milieux

Each of the eleven subjects is further subdivided into subjects of the second layer.
For example, the subject of our current interest, ‘I. Computing Methodologies’, con-
sists of seven specific subjects plus two of general interest, ‘0. GENERAL’ and ‘m.
MISCELLANEOUS’ these two are present in every division of ACM-CCS:

I. Computing Methodologies

I.0 GENERAL
I.1 SYMBOLIC AND ALGEBRAIC MANIPULATION
I.2 ARTIFICIAL INTELLIGENCE
I.3 COMPUTER GRAPHICS
I.4 IMAGE PROCESSING AND COMPUTER VISION
I.5 PATTERN RECOGNITION
I.6 SIMULATION AND MODELING (G.3)
I.7 DOCUMENT AND TEXT PROCESSING (H.4, H.5)
I.m MISCELLANEOUS

Many of these are further subdivided into subjects of the third-layer such as, for
instance,

I.5 PATTERN RECOGNITION

I.5.0 General
I.5.1 Models
I.5.2 Design Methodology
I.5.3 Clustering

Algorithms
Similarity measures

I.5.4 Applications
I.5.5 Implementation (C.3)
I.5.m Miscellaneous

There can be also units of the fourth layer that are not indexed and used mainly
as indications of the contents of the third layer subjects, such as those two shown
for topic ‘I.5.3 Clustering’. One can also see a number of collateral links between
topics both on the second and the third layers - they are in the parentheses at the end
of some topics such as G.3, referred to at I.6.

At first glance, mapping of subjects under development in a department to the
taxonomy is a rather straightforward exercise. For example, a survey found that 25
of the total of 81 meaningful subjects of the second layer are being developed in a
research department1. After these 25 subjects are mapped to the taxonomy, one can

1 Survey conducted in the CS department of Faculdade de Ciências e Tecnologia, Universidade
Nova de Lisboa (DI-FCT-UNL) in 2007 [33].
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see them visualized by black boxed nodes in Fig. 3. This portrayal is not entirely
unhelpful - the visualization does provide a useful information of the coverage of
the taxonomy subjects by the research. Yet this representation gives no hints of the
structure of the research: the subjects are presented with no indication of relation be-
tween them according to the working of the department. The taxonomy reflects only
those relations between the subjects that have been specified in it according to the
working of the entire community of computer scientists. The structure of research
projects in a department may impose a different taxonomy of the subjects. This “lo-
cal” taxonomy would reflect the relations between subjects according to research
projects worked on in the organization: the larger the number and weight of re-
search projects that involve two taxonomy subjects, the greater association between
the subjects in the department. The local taxonomy may not necessarily follow the
structure of the global taxonomy, and it would be of interest to map the local taxon-
omy to the global one. Although we are going to explore this problem in the future,
this paper concerns a less challenging undertaking. Instead of presenting the “local”
structure of research as a hierarchical taxonomic structure, we present it as a “flat”
set of not necessarily disjoint clusters of ACM-CCS subjects in such a way that the
clusters reflect the “local” associations between the subjects - the greater the weight
and number of the projects at which two subjects are involved the greater the asso-
ciation between those subjects and greater the chance that the two subjects belong
to the same cluster.

GE B KJA

E1 E2 E3 E4 E5 G1 G2 G3 G4 K1 K2 K3 K4 K5 K6 K7 K8

HFC D

CS
I

I1 I2 I3 I4 I5 I6 I7

C.1 C.2 C.3 C.4 C.5 D.1 D.2 D.3 D.4 H.1 H.2 H.3 H.4 H.5F.1 F.2 F.3 F.4

Fig. 3: Twenty five ACM-CCS subjects of a University department mapped to the ACM-CCS
taxonomy.

Returning to the 25 ACM-CCS subjects, we have found that they can be reason-
ably divided into 6 clusters which are mapped to the ACM-CCS taxonomy sepa-
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rately to produce the following portrayal (Fig. 4) [33]. The mapping involves the
concept of “head subject” that can be defined as the highest rank node(s) covering,
in general, the cluster. Since the coverage is not necessarily exact (see Sect. 4 for
definitions and method) two more types of elements emerge. These are: “gap”, that
is a node covered by a cluster head subject but not belonging to the cluster, and
“offshoot”, that is a node belonging to the cluster but not covered by its head sub-
ject node(s). These are illustrated in Fig. 4 with different graphic elements. Among
interesting features of the research conducted in the department, three clusters have
been found to relate to head subjects ‘D.Software’ and ‘H. Information Systems’
so that two of the clusters have only one of them as their respective head subject,
whereas the third one received both of the nodes as its head subjects, thus suggesting
an integrating development that has been underway in the department. This integrat-
ing development can be attributed to establishment in recent years of ‘D.2 Software
Engineering’ as a major subject in Computer Science which is yet to be reflected by
raising the node in the ACM-CCS taxonomy.

Our method for finding clusters of research subjects according to the workings
of the organization involves the following steps:

1. defining research units representing the activities;
2. determining research profiles of the units, that is, crisp or fuzzy sets of the tax-

onomy subjects to represent every unit;
3. integrating the profiles in a matrix of similarity scores between the taxonomy

subjects which are worked on in the organization; and
4. finding clusters of taxonomy subjects representing the similarity matrix.

The cluster finding completes the first stage of the approach, (i) the organiza-
tion data integration. The second stage, (ii) the ontology usage, works as follows: a
thematic cluster found at stage (i) would be considered as a query to the ontology
requesting to find a node or two in the taxonomy, the head subject(s), as high as pos-
sible, to cover all the nodes in the query in such a way that the gaps and offshoots
emerging at the high rank head subject would be not too extensive, or too expensive
in the penalty function defined for any set of head subjects. The third stage, (iii) the
activity visualization, presents the results over the ontology in the manner of Fig.
4. The rules for interpretation of the results are yet to be produced, though some
simple observations like those above can be recommended already.

This three-stage approach has been sketched out in our previous paper [33]. The
current paper outlines the current state of the approach. Specifically, the following
novel features are described here. First, for stage (i), instead of a crisp clustering
approach, we developed a genuine fuzzy clustering method based on an additive
model of the subject-to-subject similarity matrix and involving the spectral cluster-
ing approach [35]. Second, for stage (ii), instead of some informal considerations
described in [33], we developed an optimal lifting method based on minimization
of a penalty function embracing all the elements of the lift, the head subjects, the
gaps and the offshoots [34]. Using the software developed, the visualization stage
(iii), now can be conducted automatically, not manually, which raises some new
possibilities in manipulating the relative weights of lifting elements.
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C.1 C.2 C.3 C.4 C.5 D.1 D.2 D.3 D.4 H.1 H.2 H.3 H.4 H.5F.1 F.2 F.3 F.4
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Fig. 4: Six clusters visualized on the ACM-CCS taxonomy by larger pentagrams of “head subjects”
differently colored. Now we can see more structure in the organization’s research as described in
the text.

1.2 Background

Since the stages of our approach involve relatively different techniques, the back-
ground will be described in the following subsections along the separate lines of
development in the literature: Fuzzy clustering background; Ontology usage back-
ground; Activity visualization background.
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1.2.1 Fuzzy Clustering Background

The major fuzzy clustering algorithms, such as c-means, an extension of the popu-
lar k-means approach, work on data in the entity-to-feature format [5]. Yet the result
of our first stage is a square subject-to-subject similarity matrix. Thus, we are con-
cerned here mainly with the so-called relational fuzzy clustering, an activity of de-
riving fuzzy clusters from a relation, that is, a matrix of a similarity or dissimilarity
index. The published work on this can be divided in two major streams: one utilizing
the fuzzy logics operations such as minimum or plus but no operation of division,
and the other involving all the numeric operations, including division. The former is
rather thin and less developed (see, for instance, [52] and [20]). We adhere to the lat-
ter stream, which can be traced to papers [40] and [49] that utilized, essentially, the
sum K

k=1t,t′ u
2
tku

2
t′kd(t,t ′) as the criterion to minimize over unknown membership

vectors uk = (utk),k = 1, ...,K where t,t denote ontology subjects. A similar crite-
rion, proven to be equivalent to the criterion of popular fuzzy c-means method [5],
was utilized by Hathaway, Davenport and Bezdek [21] to derive their RFCM algo-
rithm, that works in two-phase iterations similar to c-means, including a relational
analogue to the concept of cluster centroid. Specifying the so-called “fuzzifying”
constant at the level of 2, the RFCM criterion is the sum over k = 1, ...,K of items
t,t′ u

2
tku

2
t′kd(t,t ′)/t u

2
tk where d(t,t ′) is the squared Euclidean distance at differ-

ent d RFCM may lead to negative memberships. But even in this format, RFCM
appears to be superior to Windham’s assignment-prototype algorithm [4]. Later this
restriction was relaxed, initially, by modifying RFCM into NERFCM algorithm to
include the addition of a positive number to all off diagonal distances [22] and,
more recently, by directly imposing the non-negativity constraint for memberships
[9]. The latter paper also extended the concept of fuzzy clustering to include the so-
called “noise” cluster to hold the bulk of membership for entities that are far away
from the K clusters being built. Brouwer [6] makes use of a two-stage procedure in
which the first stage supplies the entities with a few distance-approximating features
so that the second stage utilizes a conventional algorithm such as fuzzy c-means for
building fuzzy clusters in the feature space. This approach proved superior to the
others in experiments reported in [6].

Yet there are a number of issues related to these approaches that are not quite
satisfactory:

1. The cluster memberships form what is called a fuzzy partition so that each entity
shares its full membership among the clusters. This does not allow an entity to
belong to no cluster or partly belong to the clusters.

2. The clusters do not feed back to the similarity data - they do not represent the
data as a function of clusters, which would be a desirable option when modelling
research activities. A nice additive clustering model of similarity data has been
introduced, in English, by Shepard and Arabie [44] for crisp clusters. The model
proposes that each cluster is characterized by a positive constant, intensity, that
adds up to the similarity between entities in the cluster. Paper [31] referred to
earlier publications, in Russian, and proposed an iterative crisp cluster extraction
framework in that setting. However, the additive clustering model had not been
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extended to relational fuzzy clustering until a simplified version of the model,
involving constant, not cluster-specific, intensity weights, was considered in [41]
citing no specific applications and using Newton’s descent method for fitting the
model. This method involves many initialization parameters that need to be pre-
specified, which is not what an innocent user would be willing to do. In this
paper, we would like to use a proper extension of the additive model to fuzzy
clustering such as introduced by Mirkin and Nascimento [35].

3. There is no explicit instruction for the choice of number of clusters in the fuzzy
clustering models. Typically, the number of clusters is considered to be deter-
mined based on some post-processing considerations related to stability of the
clusters regarding some random changes in either the initialization or the data
themselves [29]. In this regard, the sequential manner of the method proposed
in [35] can be considered an advantage because it allows choosing the option of
stopping computations after any number of clusters.

1.2.2 Ontology Usage Background

The concept of ontology as a computationally feasible environment for knowledge
maintenance has recently emerged to comprise, first of all, the set of concepts and
relations between them pertaining to the knowledge of the domain. The initial at-
tempts have been concentrated at automatically generating ontologies from web and
other document resources; a review of the efforts to about 2000 can be found in [10].
Meanwhile, it became clear that currently a relevant ontology can be produced only
manually, and big ontologies are being built, first of all, in medicine (see SNOMED
[46]) and bioinformatics (GO [18]). Currently, most research efforts by computer
scientists, beyond developing platforms and languages for ontology representation
(see, for example, developments of OWL language (e.g. [39]), are concentrated on
computational methods for (a) integrating ontologies and (b) using them for various
purposes.

The issue of (a) integration of different ontologies requires developing a com-
mon ground for representing different elements of ontologies as well as methods for
mapping the elements of the same type between ontologies. Examples of the former
can be found in [48, 15]. Examples of the latter can be found in [7, 19]. Both of
these are in rather initial states of development, which is supported by the findings
of [19]: this shows that a simple text matching method outperforms those involving
the ontologies.

The issue of (b) usage of ontologies is of especial importance to us because
our paper should be counted in this category. Most efforts here are devoted to
building rules for ontological reasoning and querying utilizing the inheritance re-
lation supplied by the ontology’s taxonomy in the presence of different data models
([8, 3, 47]). These do not attempt approximate representations but just utilize ad-
ditional possibilities supplied by the ontology relations. Another type of ontology
usage is in using its taxonomy nodes for interpretation of data mining results such
as association rules [27] and clusters [11, 14]. Our approach naturally falls within



10 Boris Mirkin, Susana Nascimento and Luı́s Moniz Pereira

this category. What we want is to generalize the query set within the taxonomy in
a ‘soft’ manner by allowing some “non-costly” discrepancies between the set and
the subtree rooted at the generalized concept, which differs from the other work on
queries to ontologies that strictly conform to the crisp meanings [8, 3, 47].

1.2.3 Visualization Background

The subject of visualization attracts increasing attention of computer scientists. In
this regard, usually the visualization of activities does not much differ from visual-
ization of any other concept, of which many papers and websites inform (see, for
a recent reference on visualization [28]). Some aspects of activities have been cov-
ered such as, for instance, web related activities [12], and, more recently, modelling
activity in general is being considered as well [42, 17]. Our case, as illustrated in
Fig.4, is very much clear cut: the organization’s activity is represented by a set of
clusters that are supplied to a taxonomy as query sets to be lifted to head subjects
expressing the general tendencies of the activities, not without some gap or offshoot
pitfalls. This visualization attends here to not just cognitive abilities of the user but
to more tangible issues related to the analysis of matches and mismatches between
the query and taxonomy, that could be interpreted, in respect, as points of strength
or weakness, and give rise to questions of their meaning in the context of the tax-
onomy to be used in planning of the organization changes and investment policies.
Potentially, after integration of activities of a number of organizations in the tax-
onomy, one could use the discrepancies to feedback to the taxonomy itself, as the
points requiring a most urgent taxonomy updating.

2 Taxonomy-based Profiles

In the case of investigation of activities of a university department or research center,
a research team’s profile can be defined as a fuzzy membership function on the set
of leaf-nodes of the taxonomy under consideration so that the memberships reflect
the extent of the team’s effort put into corresponding research topics.

2.1 E-Screen Survey Tool

Fuzzy membership profiles are derived from either automatic analysis of documents
posted on the web by the teams or by explicitly surveying the members of the
department. The latter option is especially convenient in situations in which the
web contents do not properly reflect the developments, for example, in non-English
speaking countries with relatively underdeveloped internet infrastructures for the
maintenance of research results. We have developed an interactive survey tool that
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provides two types of functionality: i) collection of data about ACM-CCS based re-
search profiles of individual members; ii) statistical analysis and visualization of the
data and results of the survey on the level of a department. The respondent is asked
to select up to six topics among the leaf nodes of the ACM-CCS tree and assign each
with a percentage expressing the proportion of the topic in the total of the respon-
dent’s research activity for, say, the past four years. This describes the respondent’s
activity fuzzy membership profile. Fig. 5 shows a screenshot of the baseline inter-
face for a respondent who has chosen six ACM-CCS topics during his/her survey
session.

Fig. 5: Screenshot of the interface survey tool for selection of ACM-CCS topics.

The set of profiles supplied by respondents forms an N ×M matrix F where
N is the number of ACM-CCS topics involved in the profiles and M the number
of respondents. Each column of F is a fuzzy membership function, rather sharply
delineated because only six topics maximum may have acknowledged membership
in each of the columns.

3 Representing Research Organization by Fuzzy Clusters of
ACM-CCS Topics

3.1 Deriving Similarity between ACM-CCS Research Topics

We represent a research organization by clusters of ACM-CCS topics to reflect the-
matic communalities between activities of members or teams working on these top-
ics. The clusters are found by analyzing similarities between topics according to
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their appearances in the profiles. The more profiles contain a pair of topics i and j
and the greater the memberships of these topics, the greater is the similarity score
for the pair.

Consider a set of V individuals (v = 1,2, · · · ,V ), engaged in research over some
topics t ∈ T where T is a pre-specified set of scientific subjects. The level of research
effort by individual v in developing topic t is evaluated by the membership ftv in
profile fv (v = 1,2, · · · ,V ).

Then the similarity wtt′ between topics t and t ′ is defined as

wtt′ =
V


v=1

nv

nmax
ftv ft′v, (1)

where the ratios of the number of topics chosen by individual v, nv, and nmax, the
maximum nv over all v = 1,2, · · · ,V , are introduced to balance the scores of indi-
viduals bearing different numbers of topics.

To make the cluster structure in the similarity matrix sharper, we apply the
spectral clustering approach to pre-process the similarity matrix W using the so-
called Laplacian transformation [26]. First, an N ×N diagonal matrix D is defined,
with (t,t) entry equal to dt = t′∈T wtt′ , the sum of t’s row of W. Then unnormal-
ized Laplacian and normalized Laplacian are defined by equations L = D−W and
Ln = D−1/2LD−1/2, respectively. Both matrices are semipositive definite and have
zero as the minimum eigenvalue. The minimum non-zero eigenvalues and corre-
sponding eigenvectors of the Laplacian matrices are utilized then as relaxations of
combinatorial partition problems [45, 26]. Of comparative properties of these two
normalizations, the normalized Laplacian, in general, is considered superior [26].
Since the additive clustering approach described in the next section relies on maxi-
mum rather than minimum eigenvalues, we use the Laplacian PseudoINverse trans-
formation, Lapin for short, defined by

L+
n (W ) = Z̃̃−1Z̃′

where ̃ and Z̃ are defined by the spectral decomposition Ln = ZZ′ of matrix
Ln = D−1/2(D−W )D−1/2. To specify these matrices, first, set T ′ of indices of ele-
ments corresponding to non-zero elements of  is determined, after which the ma-
trices are taken as ̃ =(T ′,T ′) and Z̃ = Z(:,T ′). The choice of the Lapin transfor-
mation can be explained by the fact that it leaves the eigenvectors of Ln unchanged
while inverting the non-zero eigenvalues  �= 0 to those 1/ of L+

n . Then the maxi-
mum eigenvalue of L+

n is the inverse of the minimum non-zero eigenvalue 1 of Ln,
corresponding to the same eigenvector.
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3.2 Fuzzy Additive-Spectral Clustering

In spite of the fact that many fuzzy clustering algorithms have been developed al-
ready [5, 25], most of them are ad hoc and, moreover, they all involve manually
specified parameters such as the number of clusters or threshold of similarity with-
out providing any guidance for choosing them. We apply a model-based approach
of additive clustering, combined with the spectral clustering approach, to develop
a fuzzy clustering method that is both adequate and supplied with model-based pa-
rameters helping to choose the right number of clusters.

Thematic similarities att′ between topics are but manifested expressions of some
hidden patterns within the organization which can be represented by fuzzy clusters
in exactly the same manner as the manifested scores in the definition of the similarity
wtt′ (1). We propose to formalize a thematic fuzzy cluster as represented by two
items: (i) a membership vector u = (ut), t ∈ T , such that 0 ≤ ut ≤ 1 for all t ∈ T ,
and (ii) an intensity  > 0 that expresses the extent of significance of the pattern
corresponding to the cluster, within the organization under consideration. With the
introduction of the intensity, applied as a scaling factor to u, it is the product u that
is a solution rather than its individual co-factors. Given a value of the product ut ,
it is impossible to tell which part of it is  and which ut . To resolve this, we follow
a conventional scheme: let us constrain the scale of the membership vector u on a
constant level, for example, by a condition such as t ut = 1 or t u

2
t = 1, then the

remaining factor will define the value of  . The latter normalization better suits the
criterion implied by our fuzzy clustering method and, thus, is accepted further on.

Our additive fuzzy clustering model follows that of [44, 31, 41] and involves K
fuzzy clusters that reproduce the pseudo-inverted Laplacian similarities att′ up to
additive errors according to the following equations [35]:

att′ =
K


k=1

2
k uktukt′ + ett′ , (2)

where uk = (ukt) is the membership vector of cluster k, and k its intensity.
The item 2

k uktukt′ is the product of kukt and kukt′ expressing participation
of t and t ′, respectively, in cluster k. This value adds up to the others to form the
similarity att′ between topics t and t ′. The value 2

k summarizes the contribution of
the intensity and will be referred to as the cluster’s weight.

To fit the model in (2), we apply the least-squares approach, thus minimizing the
sum of all e2

tt′ . Since A is definite semi-positive, its first K eigenvalues and corre-
sponding eigenvectors form a solution to this if no constraints on vectors uk are im-
posed. Additionally, we apply the one-by-one principal component analysis strategy
for finding one cluster at a time this makes the computation feasible and is crucial
for determining the number of clusters. Specifically, at each step, we consider the
problem of minimization of a reduced to one fuzzy cluster least-squares criterion

E = 
t,t′∈T

(btt′ − utut′)
2 (3)
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with respect to unknown positive  weight (so that the intensity  is the square root
of  ) and fuzzy membership vector u = (ut), given similarity matrix B = (btt′).

At the first step, B is taken to be equal to A. Each found cluster changes B by
subtracting the contribution of the found cluster (which is additive according to
model (2)), so that the residual similarity matrix for obtaining the next cluster is
equal to B− 2uu′ where  and u are the intensity and membership vector of the
found cluster. In this way, A indeed is additively decomposed according to formula
(2) and the number of clusters K can be determined in the process.

Let us specify an arbitrary membership vector u and find the value of  minimiz-
ing criterion (3) at this u by using the first-order optimality condition:

 =
t,t′∈T btt′utut′

t∈T u2
t t′∈T u2

t′
,

so that the optimal  is

 =
u′Bu

(u′u)2 (4)

which is obviously non-negative if B is semi-positive definite.
By putting this  in equation (3), we arrive at

E = 
t,t′∈T

b2
tt′ −  2 

t∈T
u2
t 

t′∈T

u2
t′ = S(B)−  2(

u′u
)2

,

where S(B) = t,t′∈T b2
tt′ is the similarity data scatter.

Let us denote the last item by

G(u) =  2 (
u′u

)2 =
(

u′Bu
u′u

)2

, (5)

so that the similarity data scatter is the sum:

S(B) = G(u)+E (6)

of two parts, G(u), which is explained by cluster ( ,u), and E , which remains
unexplained.

An optimal cluster, according to (6), is to maximize the explained part G(u) in
(5) or its square root

g(u) = u′u =
u′Bu
u′u

, (7)

which is the celebrated Rayleigh quotient: its maximum value is the maximum
eigenvalue of matrix B, which is reached at its corresponding eigenvector, in the
unconstrained problem.

This shows that the spectral clustering approach is appropriate for our problem.
According to this approach, one should find the maximum eigenvalue  and corre-
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sponding normed eigenvector z for B, [ ,z] = (B), and take its projection to the
set of admissible fuzzy membership vectors.

Our clustering approach involves a number of model-based criteria for halting
the process of sequential extraction of fuzzy clusters. The process stops if either is
true:

1. The optimal value of  (4) for the spectral fuzzy cluster becomes negative.
2. The contribution of a single extracted cluster to the data scatter becomes too low,

less than a pre-specified  > 0 value.
3. The residual data scatter becomes smaller than a pre-specified  value, say less

than 5% of the original similarity data scatter.

The described one-by-one Fuzzy ADDItive-Spectral thematic cluster extraction
algorithm is referred to as FADDI-S in [35]. It combines three different approaches:
additive clustering [44, 31, 41], spectral clustering [45, 26, 55], and relational fuzzy
clustering [5, 6] and adds an edge to each. In the context of additive clustering,
fuzzy approaches were considered only by [41], yet in a very restricted setting:
(a) the clusters intensities were assumed constant there, (b) the number of clusters
was pre-specified, and (c) the fitting method was very local and computationally
intensive - these all restrictions are overcome in FADDI-S. The spectral clustering
approach is overtly heuristic, whereas FADDI-S is model-based. The criteria used
in relational fuzzy clustering are ad hoc whereas that of FADDI-S is model-based,
and, moreover, its combined belongingness function values u are not constrained
by unity as is the case in relational clustering, but rather follow the scales of the
similarity relation under investigation, which is in line with the original approach
by L. Zadeh [54].

3.3 Experimental Verification of FADDI-S

We describe here results of two of the experiments reported in [35].

3.3.1 Fuzzy Clustering Affinity Data

The affinity data is a relational similarity data obtained from a feature based dataset
using a semi-positive definite kernel, usually the Gaussian one. Specifically, given
an N ×V matrix Y = (ytv), t ∈ T and v = 1,2, ...,V , non-diagonal elements of the
similarity matrix W are defined by equation

wtt′ = exp(−V
v=1(ytv − yt′v)2

22 ),

with the diagonal elements made equal to zero, starting from founding papers [45,
38]. The value ss = 22 is a user-defined parameter, that is pre-specified to make
the resulting similarities wtt′ spread over interval [0,1].
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To compare our approach with other methods for fuzzy clustering of affinity data,
we pick up an example from a recent paper by Brouwer [6]. This example concerns
a two-dimensional data set, that we refer to as Bivariate4, comprising four clusters
generated from bivariate spherical normal distributions with the same standard de-
viation 950 at centers (1000, 1000), (1000,4000), (4000, 1000), and (4000, 4000),
respectively. The data forms a cloud presented in Fig. 6.

−2000 0 2000 4000 6000 8000
−4000

−2000

0

2000

4000

6000

8000

Fig. 6: Bivariate4: the data of four bivariate clusters generated from Gaussian distributions accord-
ing to [6].

This data was analyzed in [6] by using the matrix D of Euclidean distances be-
tween the generated points. Five different fuzzy clustering methods have been com-
pared, three of them relational, by Roubens [40], Windham [49] and NERFCFM
[22], and two of fuzzy c-means (FCM) with different preliminary pre-processing
options of the similarity data into the entity-to-feature format, FastMap and SMA-
COF [6]. Of these five different fuzzy clustering methods, by far the best results
have been obtained with method FCM applied to a five-feature set extracted from
D with FastMap method [6]. The Adjusted Rand index [24] of the correspondence
between the generated clusters and those found with the FCM over FastMap method
is equal on average, of 10 trials, 0.67 (no standard deviation is reported in [6]).

To compare FADDI-S with these, we apply Gaussian kernel to the data generated
according to the Bivariate4 scheme and pre-processed by the z-score standardization
so that similarities, after z-scoring, are defined as ai j = exp(−d2(yi,y j)/0.5) where
d is Euclidean distance. This matrix then is Lapin transformed to the matrix W to
which FADDI-S is applied.
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To be able to perform the computation using a PC MatLab, we reduce the re-
spective sizes of the clusters, 500, 1000, 2000, and 1500 totaling to 5000 entities
altogether in [6], tenfold to 50, 100, 200 and 150 totaling to 500 entities. The issue
is of doing a full spectral analysis of the square similarity matrices of the entity set
sizes, which we failed to do with our PC MatLab versions at a 5000 strong dataset.
We also experimented with fivefold and twofold size reductions. This should not
much change the results because of the properties of smoothness of the spectral
decompositions [23].

Indeed, one may look at a 5000 strong random sample as a combination of two
2500 strong random samples from the same population. Consider a randomly gen-
erated N × 2 data matrix X of N bivariate rows, thus leading to Lapin transformed
N × N similarity matrix W . If one doubles the data matrix by replicating X as
XX = [X ;X ], in MatLab notation, which is just a 2N×2 data matrix consisting of a
replica of X under X , then its Lapin transformed similarity matrix will be obviously
equal to

WW =
[
W W
W W

]

whose eigenvectors are just doubles (z,z) of eigenvectors z of W . If the second
part of the double data matrix XX slightly differs from X , due to sampling errors,
then the corresponding parts of the doubled similarity matrix and eigenvectors also
will slightly differ from those of WW and (z,z). Therefore, the property of stability
of spectral clustering results [23] will hold for thus changed parts. This argument
equally applies to the case when the original sample is supplemented by four or nine
samples from the same population.

In our computations, five consecutive FADDI-S clusters have been extracted for
each of randomly generated ten Bivariate4 datasets. The very first cluster has been
discarded as reflecting just the general connectivity information, and the remaining
four were defuzzified into partitions so that every entity is assigned to its maximum
membership class. The average values of the Adjusted Rand index, along with the
standard deviations at Bivariate4 dataset versions of 500, 1000, and 2500 generated
bivariate points are presented in Table 1 for FADDI-S. The results support our view
that the data set size is not important if the proportions of the cluster structure are
maintained. According to the table, FADDI-S method achieves better results than
the ones obtained by the five fuzzy clustering methods reported in [6].

Table 1: Adjusted Rand Index values for FADDI-S at different sizes of Bivariate4 dataset
Size Adjusted Rand Standard

Index deviation
500 0.70 0.04

1000 0.70 0.03
2500 0.73 0.01
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A remark:
The entity-to-feature format of the Bivariate4 data suggests that relational clus-

ter analysis is not necessarily the best way to analyze it; a genuine data clustering
method such as K-Means may bring better results. Indeed, an application of the
”intelligent” K-Means method from [30] to the original data size of N = 5000 has
brought results with the average adjusted Rand index of 0.75 (the standard deviation
0.045), which is both higher and more consistent than the relational methods applied
here and in [6].

3.3.2 Finding Community Structure

The research in finding community structure in ordinary graphs has been a subject
of intense research (see, for example, [37, 36, 50, 26]). The graph with a set of
vertices T is represented by the similarity matrix A = (att′) between graph vertices
such that att′ = 1 if t and t ′ are connected by an edge, and att′ = 0, otherwise. Then
matrix A is symmetrized by the transformation (A+A′)/2 after which all diagonal
elements are made zero, att = 0 for all t ∈ T . We assume that the graph is connected;
otherwise, its connected components are to be treated separately.

The spectral relaxation involves subtraction of the “background” random interac-
tions from similarity matrix A = (att′). The random interactions are defined with the
same within-row summary values dt = t′∈T att′ as those used in Laplace matrices.
The random interaction between t and t ′ is defined as the product dtdt′ divided by
the total number of edges [36]. The modularity criterion is defined as a usual, non-
normalized cut, that is the summary similarity between clusters to be minimized,
with thus transformed similarity data [36]. The modularity criterion has proven good
in crisp clustering. This approach was extended to fuzzy clustering in the space of
the first eigenvectors in [55].

Our approach allows for a straightforward application of FADDI-S algorithm to
the network similarity matrix A. It also involves a transformation of the similarity
data which is akin to the subtraction of background interactions in the modularity
criterion [36]. Indeed we find initially the eigenvector z1 corresponding to the max-
imum eigenvalue 1 of A itself. As is well known, this vector is positive because
the graph is connected. Thus z1 forms a fuzzy cluster itself, because it is conven-
tionally normed. We do not count it as part of the cluster solution, though, because
it expresses just the fact that all the entities are part of the same network. Thus, we
proceed to the residual matrix with elements att′ −1z1t z1t′ . We expect the matrix A
to be rather “thin” with respect to the number of positive eigenvalues, which should
allow for a natural halting the cluster extracting process when there are no positive
eigenvalues at the residual matrix W .

We apply the FADDI-S algorithm to Zachary karate club network data, which
serves as a prime test bench for community finding algorithms. This ordinary graph
consists of 34 vertices, corresponding to members of the club and 78 edges between
them - the data and references can be found, for example, in [37, 55]. The members
of the club are divided according to their loyalties toward the club’s two prominent
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individuals: the administrator and instructor. Thus the network is claimed to consist
of two communities, with 18 and 16 differently loyal members respectively.

Applied to this data, FADDI-S leads to three fuzzy clusters to be taken into ac-
count. Indeed, the fourth cluster accounts for just 2.4% of the data scatter, which is
less than the inverse of the number of entities  = 1/34, reasonably suggested as a
natural threshold value. Some characteristics of the found solution are presented in
Table 2. All the membership values of the first cluster are positive - as mentioned
above, this is just the first eigenvector; the positivity means that the network is well
connected. The second and third FADDI-S clusters match the claimed structure of
the network: they have 16 and 18 positive components, respectively, corresponding
to the two observed groupings.

Table 2: Characteristics of Karate club clusters found with FADDI-S.
Cluster Contribution, % 1 Weight Intensity

I 29.00 3.36 3.36 1.83
II 4.34 2.49 1.30 1.14

III 4.19 2.00 0.97 0.98

Let us compare our results with those of a recent spectral fuzzy clustering method
developed in [55]. The latter method finds three fuzzy clusters, two of them repre-
senting the groupings, though with a substantial overlap between them, and the third,
smaller cluster consisting of members 5,6,7,11,17 of just one of the groupings – see
[55], p. 487. We think that this latter cluster may have come up from an eigenvector
embracing the members with the largest numbers of connections in the network. It
seems for certain that FADDI-S outperforms the method of [55] on Zachary club
data.

4 Parsimonious Lifting Method

To generalize the contents of a thematic cluster, we propose a method for lifting it
to higher ranks of the taxonomy so that if all or almost all children of a node in
an upper layer belong to the cluster, then the node itself is taken to represent the
cluster at this higher level of the ACM-CCS taxonomy (see Fig. 7). Depending on
the extent of inconsistency between the cluster and the taxonomy, such lifting can
be done differently, leading to different portrayals of the cluster on ACM-CCS tree
depending on the relative weights of the events taken into account. A major event is
the so-called “head subject”, a taxonomy node covering (some of) leaves belonging
to the cluster, so that the cluster is represented by a set of head subjects. The penalty
of the representation to be minimized is proportional to the number of head subjects
so that the smaller that number the better. Yet the head subjects cannot be lifted too
high in the tree because of the penalties for associated events, the cluster “gaps”
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and “offshoots”, where their number depends on the extent of inconsistency of the
cluster versus the taxonomy.
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Fig. 7: Two clusters of second-layer topics, presented with checked and diagonal-lined boxes, re-
spectively. The checked box cluster fits within one first-level category (with one gap only), whereas
the diagonal line box cluster is dispersed among two categories on the right. The former fits the
classification well; the latter does not.

The gaps are head subject’s children topics that are not included in the cluster. An
offshoot is a taxonomy leaf node that is a head subject (not lifted). It is not difficult
to see that the gaps and offshoots are determined by the head subjects specified in a
lifting (see Fig. 8).

Topic in subject cluster

Gap

Head subject

Offshoot

Fig. 8: Three types of features in lifting a subject cluster within taxonomy.

The total count of head subjects, gaps and offshoots, each weighted by both the
penalties and leaf memberships, is used for scoring the extent of the cluster misfit
needed for lifting a grouping of research topics over the classification tree. The
smaller the score, the more parsimonious the lifting and the better the fit. Depending
on the relative weighting of gaps, offshoots and multiple head subjects, different
liftings can minimize the total misfit, as illustrated in Fig. 10 and Fig. 11 later.

Altogether, the set of topic clusters together with their optimal head subjects, off-
shoots and gaps constitute a parsimonious representation of the organization. Such
a representation can be easily accessed and expressed. It can be further elaborated



Intelligent Representation of Research Activities over a Taxonomy 21

by highlighting those subjects in which members of the organization have been es-
pecially successful (i.e., publication in best journals or awards) or distinguished by
a special feature (i.e., industrial use or inclusion in a teaching program). Multiple
head subjects and offshoots, when they persist at subject clusters in different orga-
nizations, may show some tendencies in the development of the science, that the
classification has not taken into account yet.

A parsimonious lift of a subject cluster can be achieved by recursively building
a parsimonious representation for each node of the ACM-CCS tree based on parsi-
monious representations for its children as described in [34]. In this, we assume that
any head subject is automatically present at each of the nodes it covers, unless they
are gaps (as presented in Fig. 8). Our algorithm is set as a recursive procedure over
the tree starting at leaf nodes.

The procedure [34] determines, at each node of the tree, sets of head subject gain
and gap events to iteratively raise them to those of the parents, under each of two
different assumptions that specify the situation at the parental node. One assumption
is that the head subject has been inherited at the parental node from its own parent,
and the second assumption is that it has not been inherited but gained in the node
only. In the latter case the parental node is labeled as a head subject. Consider the
parent-children system as shown in Fig. 9, with each node assigned with sets of gap
and head subject gain events under the two inheritance of head subject assumptions.

Let us denote the total penalty, to be minimized, under the inheritance and non-
inheritance assumptions by pi and pn, respectively. A lifting result at a given node
is defined by a pair of sets (H, G), representing the tree nodes at which events of
head subject gains and gaps, respectively, have occurred in the subtree rooted at the
node. We use (Hi,Gi) and (Hn,Gn) to denote lifting results under the inheritance and
non-inheritance assumptions, respectively. The algorithm computes parsimonious
representations for parental nodes according to the topology of the tree, proceeding
from the leaves to the root in the manner which is similar to that described in [32]
for a mathematical problem in bioinformatics.

Fig. 9: Events in a parent-children system according to a parsimonious lift scenario.

We present here only a version of the algorithm for crisp clusters obtained by a
defuzzification step. Given a crisp topic cluster S, and penalties h, o and g for being
a head subject, offshoot and gap, respectively, the algorithm is initialized as follows.
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At each leaf l of the tree, either Hn = {l}, if l ∈ S, or Gi = {l}, otherwise. The
other three sets are empty. The penalties associated are pi = 0, pn = o if Hn is not
empty, that is, if l ∈ S, and pi = g, pn = 0, otherwise. This is obviously a parsimo-
nious arrangement at the leaf level.

The recursive step applies to any node t whose children v∈V have been assigned
with the two couples of H and G sets already (see Fig. 9 at which V consists of
three children): (Hi(v),Li(v); Hn(v),Ln(v)) along with associated penalties pi(v)
and pn(v).

(I) Deriving the pair Hi(t) and Gi(t), under the inheritance assumption, the one
of the following two cases is to be chosen depending on the cost:

(a) The head subject has been lost at t, so that Hi(t) = ∪v∈V Hn(v) and Gi(t) =
∪v∈V Gn(v) ∪ {t}. (Note different indexes, i and n in the latter expression.) The
penalty in this case is pi = v∈V pn(v)+g;

or
(b) The head subject has not been lost at t, so that Hi(t) = /0 (under the assumption

that no gain can happen after a loss) and Gi = ∪v∈V Gi(v) with pi = v∈V pi(v).
The case that corresponds to the minimum of the two pi values is returned then.
(II) Deriving the pair Hn(t) and Gn(t), under the non-inheritance assumption, the

one of the following two cases is to be chosen that minimizes the penalty pn:
(a) The head subject has been gained at t, so that Hn(t) = ∪v∈V Hi(v)∪{t} and

Gn(t) = ∪v∈V Gi(s) with pn = v∈V pi(v)+h;
or (b) The head subject has not been gained at t, so that Hn(t) = ∪v∈V Hn(v) and

Gn = ∪v∈V Gn(v) with pn = v∈V pn(v).
After all tree nodes t have been assigned with the two pairs of sets, accept the
Hn, Ln and pn at the root. This gives a full account of the events in the tree.
This algorithm leads indeed to an optimal representation; its extension to a fuzzy

cluster is achieved through using the cluster memberships in computing the penalty
values at tree nodes [34].

5 Case Study

In order to illustrate our cluster-lift&visualization approach we are going to use
data from two surveys of research activities conducted in two Computer Science
organizations: (A) the research Centre of Artificial Intelligence, Faculty of Science
& Technology, New University of Lisboa and (B) Department of Computer Science
and Information Systems, Birkbeck, University of London. The ESSA survey tool
was applied for data collection and maintenance (see Sect. 2.1).

Because one of the organizations, A, is a research center whereas the other, B, is
a university department, one should expect that the total number of research topics
in A is smaller than that in B, and, similarly, the number of clusters in A should be
less than that in B. In fact, research centers are usually created for a limited set of
research goals, whereas university departments must cover a wide range of topics in
teaching, which relates to research efforts. These appear to be true: the number of
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ACM-CCS third layer topics scored in A is 46 (out of 318) versus 54 in B. With the
algorithm FADDI-S applied to the 46 × 46 and 54 × 54 topic-to-topic similarity
matrices (see equation (1)), two fuzzy clusters (in case of center A) and four fuzzy
clusters (in case of department B) have been sequentially extracted, after which the
residual similarity matrix has become definite negative (stopping condition (1) of
FADDI-S algorithm).

Let us focus our attention on the analysis of department B’s research activities.
On the clustering stage, as a result of the FADDI-S algorithm, four fuzzy clusters
are obtained which are presented in Tables 3 and 4. Each of the topics in the tables is
denoted by its ACM-CCS code and the corresponding string. The topics are sorted
in the descending order of their cluster membership values (left columns of Tables 3
and 4). For each cluster, it is also presented its contribution to the data scatter, G(u)
(equation (5)), its intensity  , and its weight  (equation (4)). Notice that the sum
of clusters’ contributions total to about 60%, which is a good result for clustering 2.

On the lifting stage, each of the found four clusters is mapped to and lifted in
the ACM-CCS tree by applying the parsimonious lifting method with penalties for
“head subjects” (h), “offshoots” (o) and “gaps” (g) of: h = 1, o = 0.8, and g = 0.15.
We have chosen the gap penalty value considering that the numbers of children
in ACM-CCS are typically around 10 so that two children belonging in the query
would not be lifted to the parental node because the total gap penalty 8*0.15=1.2
would be greater than the decrease of head subject penalty 2-1=1. Yet if 3 of the
children belong to the query, then it would be better to lift them to the parental node
because the total gap penalty in this case, 7*0.15=1.05 would be smaller than the
decrease of head subject penalty 3-1=2.

The parsimonious representation of the clusters in terms of the “head subjects”,
“offshoots”, and “gaps” are described in Tables 5-8. Specifically, cluster 1 has
as “head subject” ‘D.2 SOFTWARE ENGINEERING’ with “offshoots” including
‘C.2.4 Distributed Systems’, ‘D.1.6 Logic Programming’ and ‘I.2.11 Distributed
Artificial Intelligence’. Cluster 2 is of ‘J. Computer Applications’ with “offshoots”
including ‘G.2.2 Graph Theory’, ‘I.5.3 Clustering’, ‘K.6.0 General in K.6 - MAN-
AGEMENT OF COMPUTING AND INFORMATION SYSTEMS’, ‘K.6.1 Project
and People Management’. Cluster 3 is described by the subjects (not lifted) ‘E.2
DATA STORAGE REPRESENTATIONS’, ‘H.0 GENERAL in H. - Information
Systems’, ‘I.0 GENERAL in I. - Computing Methodologies’. Finally, cluster 4, with
a more broad representation, has as “head subject” ‘F. Theory of Computation’, ‘I.2
ARTIFICIAL INTELLIGENCE’, and ‘I.5 PATTERN RECOGNITION’; its “off-
shoots” include ‘E.1 DATA STRUCTURES’, ‘H.2.8 Database Applications’, ‘J.3
LIFE AND MEDICAL SCIENCES’ and ‘K.3.1 Computer Uses in Education’.

Let us illustrate the influence of the penalty parameters, more specifically the
cost of gaps, g, on the parsimonious representation of cluster’s research activities.
Consider the scenario represented in Fig. 10 resulting from the lifting method with
penalties of h = 1, o = 0.8, and g = 0.3. Due to the value of the gap penalty the
cluster’s topics (see Table 3) hold on as “leaf head subjects” as they are stated in the

2 A 50% sum of clusters’ contributions was obtained in the case of center A.
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Table 3: Two clusters of research topics in department B

Cluster 1
Contribution 26.7%
Eigenvalue 37.44
Intensity 5.26
Weight 27.68
Membership Code Topic
0.43055 K.2 HISTORY OF COMPUTING
0.39255 D.2.11 Software Architectures
0.35207 C.2.4 Distributed Systems
0.3412 I.2.11 Distributed Artificial Intelligence
0.3335 K.7.3 Testing, Certification, and Licensing
0.30491 D.2.1 Requirements/Specifications in D.2 Software Engineering
0.27437 D.2.2 Design Tools and Techniques in D.2 Software Engineering
0.24126 C.3 SPECIAL-PURPOSE AND APPLICATION-BASED SYSTEMS
0.19525 D.1.6 Logic Programming
0.19525 D.2.7 Distribution, Maintenance, and Enhancement in D.2 Software Engineering
Cluster 2
Contribution 13.4%
Eigenvalue 26.65
Intensity 4.43
Weight 19.60
Membership Code Topic
0.66114 J.1 ADMINISTRATIVE DATA PROCESSING
0.29567 K.6.1 Project and People Management in K.6
0.29567 K.6.0 General in K.6 MANAGEMENT OF COMPUTING AND INF. SYSTEMS
0.29567 H.4.m Miscellaneous in H.4 INF. SYSTEMS APPLICATIONS
0.29567 J.7 COMPUTERS IN OTHER SYSTEMS
0.2696 J.4 SOCIAL AND BEHAVIORAL SCIENCES
0.16271 J.3 LIFE AND MEDICAL SCIENCES
0.14985 G.2.2 Graph Theory
0.14593 I.5.3 Clustering
0.12307 I.6.4 Model Validation and Analysis
0.10485 I.6.5 Model Development

initialization of the lifting algorithm, being not lifted to higher ranks of the taxon-
omy (which would imply the appearance of some gaps). However, when decreasing
the gap penalty from g = 0.3 to g = 0.15, it would lead to a different parsimonious
generalization with subjects D.2.1, D.2.2, D.2.7 and D.2.11 generalized to “head
subject” D.2, and the consequent assignment of the other subjects as “offshoots”, as
well as the occurrence of a set of gaps (i.e. the children of D.2 not present in the
cluster). This scenario, described in Table 5, is visualized in Fig. 11.

Additionally, Fig. 11 illustrates the present visualization stage of our approach.
Each cluster is individually visualized on the ACM-CCS subtree that covers the
clusters’ topics, represented as a tree plot with nodes labeled with the correspond-
ing ACM-CCS subjects’s code. The “head subjects”, “gaps” and “offshoots” are
marked with distinct graphical symbols: black circle for “head subjects” (or leaf
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Table 4: Two other clusters of research topics in department B

Cluster 3
Contribution 18.9%
Eigenvalue 24.31
Intensity 4.83
Weight 23.31
Membership Code Topic
0.613 E.2 DATA STORAGE REPRESENTATIONS
0.55728 I.0 GENERAL in I. Computing Methodologies
0.55728 H.0 GENERAL in H. Information Systems
Cluster 4
Contribution 3.7%
Eigenvalue 19.05
Intensity 3.20
Weight 10.26
Membership Code Topic
0.35713 I.2.4 Knowledge Representation Formalisms and Methods
0.35636 F.4.1 Mathematical Logic
0.29495 F.2.0 General in F.2 ANAL. OF ALGORITHMS AND PROBLEM COMPLEXITY
0.28713 I.5.0 General in I.5 PATTERN RECOGNITION
0.28169 I.2.6 Learning
0.25649 K.3.1 Computer Uses in Education
0.24848 I.4.0 General in I.4 IMAGE PROCESSING AND COMPUTER VISION
0.24083 F.4.0 General in F.4 MATHEMATICAL LOGIC AND FORMAL LANGUAGES
0.18644 H.2.8 Database Applications
0.17707 H.2.1 Logical Design
0.17029 I.2.3 Deduction and Theorem Proving
0.15727 E.1 DATA STRUCTURES
0.15306 I.5.3 Clustering
0.14976 F.2.2 Nonnumerical Algorithms and Problems
0.14809 I.2.8 Problem Solving, Control Methods, and Search
0.14809 I.2.0 General in I.2 ARTIFICIAL INTELLIGENCE

head subjects), open circle for “gaps”, and dark grey square in case of “offshoots”.
Also, the children of an “head subjects” that were “head subjects” before the current
lifting stage are marked with grey circle.

A similar analysis had been performed concerning the representation of research
activities in center A. The parsimonious representations of the two clusters found
correspond to cluster 1 having as “head subject” ‘H. Information Systems’ and ‘I.5
PATTERN RECOGNITION’ with offshoots including ‘I.2.6 Learning’, ‘I.2.6 Natu-
ral Language Processing’, ‘I.4.9 Applications’, ‘J.2 PHYSICAL SCIENCES AND
ENGINEERING’. Cluster 2 has as head subject ‘G. Mathematics of Computing’
and its “offshoots” include ‘F.4.1 Mathematical Logics’, ‘I.2.0 General in I.2 - AR-
TIFICIAL INTELLIGENCE’, ‘I.2.3 Deduction and Theorem Proving’ as well as
‘J.3 LIFE AND MEDICAL SCIENCES’.

Overall, the surveys’ results analyzed in this study are consistent with the in-
formal assessment of the research conducted in each of the research organizations.
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Table 5: Parsimonious representation of department B cluster 1

HEAD SUBJECT

D.2 SOFTWARE ENGINEERING

OFFSHOTS

C.2.4 Distributed Systems
C.3 SPECIAL-PURPOSE AND APPLICATION-BASED SYSTEMS
D.1.6 Logic Programming
I.2.11 Distributed Artificial Intelligence
K.2 HISTORY OF COMPUTING
K.7.3 Testing, Certification, and Licensing

GAPS

D.2.0 General in D.2 - SOFTWARE ENGINEERING
D.2.3 Coding Tools and Techniques
D.2.4 Software/Program Verification
D.2.5 Testing and Debugging
D.2.6 Programming Environments
D.2.8 Metrics
D.2.9 Management
D.2.10 Design
D.2.12 Interoperability
D.2.13 Reusable Software
D.2.m Miscellaneous in D.2 - SOFTWARE ENGINEERING

Moreover, the sets of research topics that have been chosen by individual members
at the ESSA survey follow the cluster structure rather closely, falling mostly within
one of them.

6 Conclusion

We have proposed a novel method for knowledge generalization that employs a
taxonomy tree. The method constructs fuzzy membership profiles of the entities
constituting the system under consideration in terms of the taxonomys leaves, and
then it generalizes them in two steps. These steps are:

(i) fuzzy clustering research topics according to their thematic similarities, ignor-
ing the topology of the taxonomy, and

(ii) lifting clusters mapped to the taxonomy to higher ranked categories in the
tree.
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Table 6: Parsimonious representation of department B cluster 2

HEAD SUBJECT

J. Computer Applications

OFFSHOTS

G.2.2 Graph Theory
H.4.m Miscellaneous in H.4 - INFORMATION SYSTEMS APPLICATIONS
I.5.3 Clustering
I.6.4 Model Validation and Analysis
I.6.5 Model Development
K.6.0 General in K.6 - MANAGEMENT OF COMPUTING AND INFORMATION SYSTEMS
K.6.1 Project and People Management

GAPS

J.0 GENERAL in J. - Computer Applications
J.2 PHYSICAL SCIENCES AND ENGINEERING
J.5 ARTS AND HUMANITIES
J.6 COMPUTER-AIDED ENGINEERING
J.m MISCELLANEOUS in J. - Computer Applications

Table 7: Parsimonious representation of department B cluster 3

SUBJECTS

E.2 DATA STORAGE REPRESENTATIONS
H.0 GENERAL in H. - Information Systems
I.0 - GENERAL in I. - Computing Methodologies

These generalization steps thus cover both sides of the representation process:
the empirical – related to the structure under consideration – and the conceptual –
related to the taxonomy hierarchy.

Potentially, this approach could lead to a useful instrument for comprehensive
visual representation of developments in any field of organized human activities.

However, there are a number of issues remaining to be tackled. They relate to
all main aspects of the project: (a) data collection, (b) thematic clustering and (c)
lifting. On the data collection side, the mainly manual e-survey ESSA tool should
be supported by an automated analysis and rating of relevant research documents
including those on the internet. The FADDI-S method, although already experimen-
tally proven competitive to a number of existing methods, should be further explored
and more thoroughly investigated. The issue of defining right penalty weights for
parsimonious cluster lifting should be addressed.
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Table 8: Parsimonious representation of department B cluster 4

HEAD SUBJECTS

F. Theory of Computation
I.2 ARTIFICIAL INTELLIGENCE
I.5 PATTERN RECOGNITION

OFFSHOTS

D.2.8 Metrics
E.1 DATA STRUCTURES
G.2.2 Graph Theory
H.2.1 Logical Design
H.2.8 Database Applications
I.4.0 General in I.4 - IMAGE PROCESSING AND COMPUTER VISION
J.3 LIFE AND MEDICAL SCIENCES
K.3.1 Computer Uses in Education

GAPS

F.0 GENERAL in F. - Theory of Computation
F.1 COMPUTATION BY ABSTRACT DEVICES
F.2.1 Numerical Algorithms and Problems
F.2.3 Tradeoffs between Complexity Measures
F.2.m Miscellaneous in F.2 - ANAL. OF ALGORITHMS AND PROBLEM COMPLEXITY
F.3 LOGICS AND MEANINGS OF PROGRAMS
F.4.2 Grammars and Other Rewriting Systems
F.4.3 Formal Languages
F.4.m Miscellaneous in F.4 - MATHEMATICAL LOGIC AND FORMAL LANGUAGES
F.m MISCELLANEOUS in F. - Theory of Computation
I.2.1 Applications and Expert Systems
I.2.2 Automatic Programming
I.2.5 Programming Languages and Software
I.2.7 Natural Language Processing
I.2.9 Robotics
I.2.10 Vision and Scene Understanding
I.2.11 Distributed Artificial Intelligence
I.2.m Miscellaneous in I.2 - ARTIFICIAL INTELLIGENCE
I.5.1 Models
I.5.4 Applications
I.5.5 Implementation
I.5.m Miscellaneous in I.5 - PATTERN RECOGNITION
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Fig. 10: Parsimonious representation lift of department B cluster 1 within the ACM-CCS tree with
penalties of h = 1, o = 0.8, and g = 0.3
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Fig. 11: Parsimonious representation lift of department B cluster 1 within the ACM-CCS tree with
penalties of h = 1, o = 0.8, and g = 0.15

Moreover, further investigation should be carried out with respect to the exten-
sion of this approach to more complex structures than the hierarchical tree taxon-
omy, ontology structures. Finally, there remains to be explored the usage of the
cluster and head subjects information in query answering, and its visualization; as
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well as the updating of taxonomies (or other structures) on the basis of the empirical
data found, possibly involving aggregating data from multiple organizations.
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