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ABSTRACT. The main goal of this paper is to establish a nonmonotonic epistemic
logic EB with two modalities – provability and belief – capable of expressing and
comparing a variety of known semantics for extended logic programs, and clarify their
meaning. In particular we present here, for the first time, embeddings into epistemic
logic of logic programs extended with a second kind of negation under the well–
founded semantics, and contrast them to the recent embeddings into autoepistemic
logics of such programs under stable models based semantics.

Because of the newly established relationship between our epistemic logic EB and
extended program semantics, the former benefits from the procedures and implemen-
tations of the latter, and can be applied to at least the same class of AI problems that
the latter can. Moreover, one issue of epistemic logic introduced here, belief revision,
can profit from adapting techniques employed by the latter for contradiction removal.

Furthermore, the language of the epistemic logic presented here being more general
than that of extended programs, it offers a basic tool for further generalizations of the
latter, for instance regarding disjunction and modal operators.

Introduction

The relationships between logic programming and several nonmonotonic reasoning
formalisms bring them mutual benefits. Nonmonotonic formalisms provide semantics
for logic programs, and help understand how these can express and compute solutions
to AI problems. Conversely, the nonmonotonic formalisms benefit from the procedures
and implementations of logic programming. Also, relations among nonmonotonic
formalisms have been studied via logic programming shunting.

For normal logic programs the bridge to default theories [Rei80] was first made
in [BF87]. In [EK89] negation as failure of normal programs was first formalized as
abduction, and in [Dun91] was extended to capture both stable models [GL88] and the
well-founded semantics (WFS) of normal logic programs [GRS91].

The view of logic programs as autoepistemic theories [Moo85] first appeared in
[Gel87], which envisages every literal not L of logic programs as �LL, i.e. not L



has the epistemic reading: “there is no reason to believe in L”1. In [Bon92] a variety
of translations of negation as failure by belief literals are studied, in order to show
how different logic programming semantics can be obtained from autoepistemic logics
(AELs). In [Prz93], Przymusinski assigns to not L the translation B �L; with the
reading “L is believed to be false”.

Several authors have stressed the importance of extending logic programming with
a second kind of negation :; in addition to default negation, for use in deductive
databases, knowledge representation, and nonmonotonic reasoning [GL90, KS90,
PAA91b, Wag91]. Different semantics for extended logic programs with :-negation
have appeared [DR91, GL90, KS90, PA92, Prz90, Prz91b, Wag91]. [AP92] contrasts
some of these, where distinct meanings of :-negation are identified: classical, strong
and explicit. It is also argued that explicit negation is preferable.

Some work exists comparing extended logic programs semantics and nonmono-
tonic reasoning formalisms. In [GL90] the answer-sets semantics for extended pro-
grams is introduced and compared to default theories. A comparison between the
WFS with explicit negation (WFSX) [PA92] and default theories is given in [PAA92].
WFSX is captured within an abductive framework in [ADP93].

As noted by [Che93, LS93b, MT93], Gelfond’s translation cannot be generalized
to extended programs.

Example 1 According to Gelfond’s translation, P :a  b:a
is rendered as the theory T = fb) a; �ag:
This theory entails f�a;�bg; but the semantics of P under most of the approaches
(e.g. under WFSX and answer-sets) is f:ag:

A suitable translation between extended programs with answer-sets semantics and
reflexive AEL theories was proposed independently in [LS93b] and [MT93]. Reflexive
AEL, introduced in [Sch91], views the operator L as “is known” instead of the “is
believed” of Moore’s AEL [Moo85]2. The translation renders an objective literal A
(resp. :A) as LA (resp. L �A; where � denotes classical negation), i.e. “A is
known to be true” (resp. “A is known to be false”), and renders not L as L �LL,
i.e. “it is known that L is not known”. In [LS93b, MT93] the authors prove that
the answer-sets of an extended program correspond to the reflexive expansions of its
translation. Equivalently, the embedding of extended programs into reflexive AEL can
also be defined for (non-reflexive) AEL [LS93b, MT93], by translating any objective
literal L into L ^ LL: This translation was proposed in [Che93] too.

1Referred to here as Gelfond’s translation.
2Roughly, this is achieved by adding F � LF; instead of just LF , when F holds.
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In [Pea93], the author surmises a translation also equivalent to the ones above.
This translation is justified by first relating answer-sets to constructive logics with
strong negation [Nel49], and then using the already known translation of the latter into
nonmonotnic S4.

The embedding of stable models semantics into AEL was generalized to WFS
in [Prz91a], using Gelfond’s translation, but where Generalized Closed World As-
sumption (GCWA) [Min87] replaces the Closed World Assumption (CWA) [Rei78] in
what regards the adoption of default literals. No study of embeddings of WFS with:-negation exists to date. One main purpose of this paper is to remedy this. Signifi-
cantly, the embedding proposed in [Che93, LS93b, MT93, Pea93] does not generalize
to extended programs under WFS.

Example 2 The program: P = fa not ag
translates into the non-reflexive AEL theoryT = f�La ) La ^ ag = fLag:
It is easy to see that this theory has no expansion, even when GCWA is taken up instead
of CWA. The same goes for the reflexive AEL translation.

Indeed, that translation is too specific, and can only be applied to stable models
based semantics (i.e. that are two-valued).

In contradistinction, our stance is that, for greater generality, the second kind
of negation introduced in logic programming represents and requires, for translation
into some epistemic logic, an additional modality other than the one necessary for
interpreting negation by default3. In our view, an objective literal :A (resp. A) should
be read

“A is proven false”

denoted by E �A (resp. “A is proven true”); and not L should be read “it is believed
that L is not proven”, denoted by B �EL: Thus, E refers to epistemic knowledge as
defined by propositional provability, and relates to the consistency modality M byE ��M�: The belief operator of this logic is B, and is inspired by the one introduced
in [Prz93].

The main goal of this paper is to define, in section 1, an AEL augmented with
the modality E which is capable of expressing and comparing various semantics of
extended programs. The flexibility and generality of our approach are brought out
in section 2, by establishing how different notions of provability and knowledge, and
different semantics for extended programs are captured by it, and so providing for a

3In [Lif92] the author also proposes a bi-modal logic (MBNF) for interpreting extended logic programs.
There is a MBNF rendering of answer-sets which, as shown in [Che93, LS93b], is equivalent to the
AEL-unimodal translations, already discussed above, that express answer-sets too.
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better understanding of the different kinds of negation. The improved generality of
our AEL language provides a tool for examining further generalizations of extended
logic programming. This is discussed in section 3. For the sake of self-sufficiency, in
appendix we present the definitions of Answer-Sets, and WFSX semantics.

1 A logic of belief and provability

In this section we define an epistemic logic, EB, with provability and belief modalities,
and show how it captures the WFSX semantics for extended logic programming [PA92],
which extends WFS with explicit negation [AP92], in addition to default negation.

We begin by considering definite extended logic programs only (i.e. extended
programs without negation by default), and by defining a modal logic to interpret such
programs. We then extend this logic to deal with belief propositions. Finally, we relate
the EB logic to the full language of WFSX.

1.1 Provability in extended definite programs

To motivate and make clear the meaning of the provability modality, we begin with
the simpler problem of how to capture the meaning of extended programs without
negation by default, i.e. sets of rules of the form:L0  L1; : : : ; Ln n � 0 (1)

where each Li is an atom A or its explicit negation :A: Without loss of generality, as
in [PP90], we assume that all rules are ground, and programs may be infinite sets of
such rules.

The semantics of these programs is desireably monotonic, and must be noncon-
trapositive, i.e. distinguish between a  b and :b  :a; so that rules can be
viewed as (unidirectional) “inference rules”; Gelfond’s translation does not capture
this distinction: both rules translate to b) a:
Example 3 In example 1, notice how �b is derived in T via the contrapositive of the
first rule.

The cause of the problem is that :A translates into “A is false”, and the rule
connective into material implication. In contrast, the semantics of extended logic
programs wants to interpret :A as “A is provenly false”, in a grounded sense, and as an inference rule. To capture this meaning we introduce the modal operator E;
referring to (propositional) “provability”, or “epistemic knowledge”, and accordingly
translate rule (1) into: EL1 ^ : : : ^ ELn ) EL0 (2)

where any explicitly negated literal :A is translated into E �A and reads “A is
provenly false”, and any atom A is translated into EA and reads “A is provenly true”.

This translation directly captures the intuitive meaning of a rule

“if all L1; : : : ; Ln are provable then L0 is provable”
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and does not conflate contrapositives: a  b becomes Eb ) Ea; whilst :b  :a is
rendered as E �a) E �b:

Note the similarities to the translation defined in [LS93b, MT93] into reflexive
AEL, where an atom A is translated into LA; and :A into L �A; where L is the
knowledge operator of modal logic SW5.

We need to assume little about E; and this guarantees flexibility. E is defined as
the necessity operator of the smallest normal modal system, modal logic K. This logic
includes only4, modus ponens, and:

Necessitation:
FEF

Distribution over conjunctions: E(F ^G) � EF ^ EGK : E(F ) G)) (EF ) EG)
In logic K, E is the dual of the modal consistency operatorM; i.e. E ��M �:

This weak modal logic, although sufficient for WFSX when combined with a belief
modality and nonmonotonicity (as shown below), can also express other (stronger)
meanings of E just by introducing more axioms for it. In section 2, in particular,
we interpret E as knowledge by introducing, as usual, the additional axioms for the
stronger logic SW5.

Since at this stage we are simply interested in the semantics of monotonic (definite)
extended programs, we do not require yet a nonmonotonic version of this logic.

Above we said that translation (2) can capture the semantics of extended logic
programs. The next theorem makes this statement precise for answer–sets and WFSX
semantics. It generalizes for almost every semantics of extended logic programs,
the only exception being, to our knowledge, the “stationary semantics with classical
negation” defined in [Prz91b], which is contrapositive.

Theorem 1.1 Let P be an extended logic program, and T the theory obtained fromP by means of translation (2). If T `K EA ^ E �A, for no atom A; then:T `K EA � P j=AS A � P j=WFSX AT `K E �A � P j=AS :A � P j=WFSX :A
where `S denotes, as usual, the consequence relation in modal logic S (in this caseK), andP j=AS L (resp. P j=WFSX L) means thatL belongs to all answer–sets (resp.
all WFSX partial stable models) of P:

Otherwise, the only answer–set is the set of all objective literals, and P is contra-
dictory wrt to WFSX.

1.2 Belief and provability

Besides explicit negation, extended logic programs also allow negation by default,
which is nonmonotonic and usually understood as a belief proposition. Thus, we need

4For a precise definition of logic K and its properties see [Che80, HC84].
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to enlarge modal logic K with a nonmonotonic belief operator.

Before tackling the more general problem, we begin by defining what beliefs follow
from definite extended programs. Such programs are readily translatable into sets of
Horn clauses, thereby possessing a unique minimal model. So, as a first approach
consider:

“the agent believes in a formula if it belongs to the minimal model of the theory”

i.e.
if T j=min F then BF (introspection):

Example 4 The program of example 1 translates into T :Eb ) EaE �a
whose least model is fE �ag: Thus an agent with knowledge T believes all of BE �a,B �Ea; B �Eb; and B �E �b.

Moreover we insist on the principle that, for rational agents,

if T j= EL then B �E �L (coherence).

Coherence states that whenever L is provenly true then it is mandatory to believe
that L is not provenly false5. The coherence principle introduced for extended logic
programming in [PA92] is an instance of it. In the above example absence of coherence
does not interfere with the result. This is not in general the case:

Example 5 Consider T = fEa; E �ag whose least model is fEa; E �ag: BEa andBE �a hold by introspection. Moreover, by coherence, an agent must sustain bothB �E �a and B �Ea:
This kind of reasoning may seem strange since the agent must believe in comple-

mentary formulae (e.g. in Ea and in �Ea:). But, as shown below, when the axioms
for B are introduced, we’ll see, these will detect inconsistency out from the intuitively
inconsistent theory T; i.e. belief cannot be held of proven complements.

As for E ; little is assumed about B, both for the sake of flexibility and because
it is indeed enough for characterizing WFSX. More precisely, we assume the axioms
introduced in [Prz93] for the belief operator:� For any tautologically false formula F : �BF:� For any formulae F and G: B(F ^G) � BF ^ BG:

5Note that B�E �L � BML.
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As proven in [Prz93], from these axioms it follows for every formula F thatBF )�B �F 6

. Consequently, from believing two complementary formulae, BF and B � F ,
inconsistency follows because B �F )�BF:

In summary, for a theory T resulting from a definite extended program, the set of
beliefs of an agent is the closure, under the above axioms, of:fBF j T j=min Fg [ fB �E �F j T j= EFg
as required by introspection and coherence, respectively.

In order to enlarge the logic K with a nonmonotonic belief operator we proceed as
above, but now consider the case where formulae of the form BF or �BF (hereafter
called belief formulae) occur in theories. In this case it is not adequate to obtain the
belief closure as above. To deal with belief formulae in theories we must consider, as
usual in AEL, the expansions of a theory.

An expansion T � of a theory T is a fixpoint of the equation:T � = T [ Bel
where Bel is a set of belief formulae depending on T �: Intuitively, each expansion
stands for a belief state of a rational agent. One issue arises: which kind of nonmono-
tonicity to introduce in such theories?

In this respect two main approaches have been followed in the literature:� One, present in Moore’s AEL and in reflexive AEL, is based on CWA – an agent
believes in F in an expansion T � iff T � j= F , and does not believe in F iffT � 6j= F – and it captures two–valued (or total) logic program semantics, i.e.
those where whenever A does not belong to a model then not A belongs to it.� The other approach is based on GCWA – an agent believes in F in an expansionT � iff T � j=min F , and does not believe in F iff T � j=min�F – and captures
three–valued (or partial) logic program semantics. This approach is followed in
the AEL of closed beliefs [Prz91a], and in his static semantics [Prz93]7.

Here we adopt the second approach too. The reasons for prefering a logic based
on GCWA rather than on CWA are tantamount to those that prefer semantics based
on WFS rather than on stable models, and are extensively discussed in the literature
(e.g. in [AP92, Bon92, GRS91, Prz91a, Prz93]). In this paper we do not go into the
details for this preference, but summarize [Prz91a]: With CWA quite “reasonable”

6In fact, this implication is equivalent to �(BF ^ B �F ), by the second axiom it is equivalent to�B(F^ �F ), which is true because F^ �F is tautologically false.
7Note that the question of distinguishing between these two approaches is not relevant for definite

programs, since in them nonderivability coincides with deriving the complement in the (single) minimal
model.
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theories are often inconsistent; expansions are non–cumulative,non–rational, and non–
relevant even for theories resulting from normal logic programs8; expansions cannot
be effectively computed (even for propositional logic programs); the insistance on total
models often lacks expressivity. Non of this occurs with GCWA based expansions.

In the sequel we formally define our epistemic logic. We begin by extending the
language of propositional logic with modal operators EandB; standing for “provability”
and “belief”. Theories are recursively defined as usual. Moreover we assume every
theory contains all axioms of logic K for E; and the above two axioms for B.

Definition 1.1 A minimal model of a theory T is a model M of T such that there is
no smaller model N of T coinciding with M on belief propositions.

If F is true in all minimal models of T then we write T j=min F:
An expansion T � corresponds to a belief state where the agent believes in F ifT � j=min F , and does not believe in F if T � j=min�F: With the axioms introduced

for B, the second statement is subsumed by the first. Indeed, by the first statement, ifT � j=min�F then B �F; and from the axioms for B it follows, so we’ve seen, that�BF:
Just as argued for definite extended programs, when considering theories with

provability and belief one new form of belief obtention (coherence) is in place, namely
if T � j= EG then B �E �G: Thus, expansions should formalize the following notion
of belief B:BF � F is minimally entailed; or F =�E �G and EG is entailed:
Definition 1.2 An expansion of a theory T is a consistent theory T � satisfying the
fixed point condition:T � = T [ fBF j T � j=min Fg [ fB �E �G j T � j= EGg
Example 6 9 Consider an agent with the following knowledge:� Peter is a bachelor;� a man is not married if he is a bachelor;� Susan is married to Peter, if we don’t believe she’s married to Tom;� Susan is married to Tom, if we don’t believe she’s married to Peter;� no one is married to oneself;

8By cumulativity [Dix91] we refer to the efficiency related ability of using lemmas. By rationality
[Dix91] we refer to the ability to add the negation of a non–provable conclusion without changing the
semantics. By relevance [Dix92] we mean that the top–down evaluation of a literal’s truth–value requires
only the call–graph below it

9This example first appeared in [Wag93], in the form of a logic program.
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rendered by the autoepistemic theory T (with obvious abbreviations):Eb(p)Eb(X)) E �m(X;Y )B �Em(t; s)) Em(p; s)B �Em(p; s)) Em(t; s)E �m(X;X)
The only expansion of T contains, among others, the belief propositions:fBEb(p);BE �m(p; s);B �Em(p; s);BEm(t; s)g
In this example all of an agent’s beliefs are completely decided, in the sense that

for any proposition A the agent either believes or disbelieves A: This is not in general
the case.

Example 7 Consider the statements:� it is proven or it is believed that the car can be fixed;� if it is not believed that one can fix the car then an expert is called for;� an expert is not called for;

rendered by the autoepistemic theory T :Ecan fix car _ BEcan fix carB �Ecan fix car) Ecall expertE �call expert
The only expansion of T is:T [ fBE �call expert;B �Ecall expertg

stating that an agent believes that an expert is not called and that he disbelieves an
expert is called for.

Note that about Ecan fix car the agent remains undefined. This is due to, on the
one hand, believing it true is impossible since it is not a consequence in all minimal
models; on the other hand, believing it false leads to an inconsistency.

Like Moore’s autoepistemic theories EB theories might have several expansions:

Example 8 Consider the theory T; describing the so–called Nixon diamond situation:Erepublican(nixon)Equaker(nixon)Erepublican(X);B �Epacifist(X) ) E �pacifist(X)Equaker(X);B�E �pacifist(X) ) Epacifist(X)
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T has three expansions, namely:T [ fBEr(n);BEq(n);BEp(n); B �E �r(n);B �E �q(n);B �E �p(n)gT [ fBEr(n);BEq(n);BE �p(n);B �E �r(n);B �E �q(n);B �Ep(n)gT [ fBEr(n);BEq(n); B �E �r(n);B �E �q(n)g
The first states that it is believed that Nixon is a pacisfist; the second that it is believed
that Nixon is not a pacifist; and the third remains undefined in what concerns Nixon
being a pacisfist or not.

When confronted with several expansions (i.e. several possible states of beliefs) a
sceptical reasoner should only conclude what is common to all. Here that means the
third expansion.

1.3 Relation to extended logic programs

An extended logic program is as set of rules of the form:L0  L1; : : : ; Lm; not Lm+1; : : : ; not Ln (3)

where each Li is an objective literal, i.e. an atom A or its :–negation :A:
As argued above, an atom A is translated into EA; and an explicitly negated atom:A into E �A: In [LS93b, MT93] literals of the form not L (default literals) are

translated into L �LL in reflexive AEL. [MT93] gives an intuitive reading of this
formula:“it is known that L is not known”. In our approach we translate not L intoB �EL; i.e. “it is believed (or it is assumed) that L is not proven”. So, each rule of
the form (3) is translated into:EL1; : : : ; ELm;B �ELm+1; : : : ;B �ELn ) EL0 (4)

Definition 1.3 A WFSX partial stable model M of an extended logic program P
corresponds to an expansion T � when:� For an objective literal L : L 2M iff BEL 2 T �:� For a default literal not L : not L 2M iff B �EL 2 T �:
Theorem 1.2 Let T be the theory obtained from an extended logic program P by
means of translation (4). Then there is a one–to–one correspondence between the
WFSX partial stable models of P and the expansions of T:

This relationship brings mutual benefits to both WFSX and the EB logic. On the one
hand, the logic allows for a more intuitive view of WFSX, specially in what concerns its
understanding as modeling provability and belief in a rational agent. This allows for a
clearer formulation within WFSX of some problems in knowledge representation and
reasoning, and for a better understanding of WFSX’s results. In particular, it shows that
explicit negation stands for proving falsity of a literal, default negation for believing
that a literal is not provable, and undefinedness for believing neither the falsity nor the
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verity of a literal. The relationship also sheds light on several extensions of WFSX (cf.
section 3).

On the other hand, for the class of theories resulting from some extended pro-
grams, the logic can be implemented using the top–down procedures defined for
WFSX[ADP94]. Moreover, for this class, the logic enjoys the properties of cumulativ-
ity, rationality, relevance [Dix92], and others proven for WFSX in [Alf93]. In addition,
the relationship also raises new issues in epistemic logics, and points towards their
solution via the techniques in use in extended logic programming (cf. section 3).

2 Provability versus Knowledge

Above we claimed logic EB is flexible and general. Next we express with it different
meanings for E; and hence a variety of semantics for extended logic programs.

The logic K introduced for E is the simplest normal modal system, contained in
any other. With additional axioms to our theories we can define other meanings forE : In particular, with the axioms of logic SW510 E represents “knowledge”, as in
[Sch91, MT93]. Other formalizations of knowledge, such as that of logic S4.211, are
similarly obtained.

Using the SW5 meaning of E; but keeping with the same translation, a different
semantics for extended logic programs is obtained:

Theorem 2.1 Let T be the theory obtained from an extended logic program P by
means of translation (4), augmented with the SW5 axioms for E : Then there is a
one–to–one correspondence between expansions of T and the partial stable models ofP of WFS with strong negation, as defined in [AP92].

Comparisons between WFS with strong negation and WFSX, found in [AP92,
Alf93], prove the former is less suitable for implementation (as it does not enjoy
relevance [Dix92]), is more credulous, and assigns semantics to less programs.

Example 9 Program P : :aa  not bb  not b
translates into the theory:T = fE �a; B �Eb) Ea; B �Eb) Ebg:

Using logic K, there is one expansion:T � = T [ fBE �a;B �Ea;B �E �bg:
10I.e. axioms T: EF ) F; 4: EF ) EEF; and W5: �E �F ) (F ) EF ):
11[LS93a] uses S4.2 to formalize knowledge in a logic which also includes belief. We intend to compare

this logic with ours when their final version becomes available to us.
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If logic SW5 is used instead, there is no expansion. This happens because, by axiom
T, E �a entails �Ea; and by the contrapositive of the second clause of T �Ea entails�B �Eb: Thus, by the third clause, every minimal model of every possible expansion
has �Eb; and so B �Eb must be added. This is inconsistent with having �B �Eb
in all models, and so no expansion exists. WFSX assigns a meaning to P , namelyf:a; not a; not :bg; because axiom T is not assumed.

From theorem 2.1 and the results of [AP92] it follows that:

Theorem 2.2 Let T be the theory obtained from an extended logic program P by
means of translation (4), augmented with the SW5 axioms for E ; and the axiom�EF ) E �F . Then there is a one–to–one correspondence between the expansions
of T and the partial stable models of P of the “stationary semantics with classical
negation” of [Prz91b].

Since answers–sets are the total stable models of WFS with strong negation [AP92]:

Definition 2.1 An expansion T � is total iff for every formula F :T � 6j= BF ) T � j= B �F
Theorem 2.3 Let T be the theory obtained from an extended logic program P by
means of translation (4), augmented with the SW5 axioms for E : Then there is a
one–to–one correspondence between the total expansions of T and the answer–sets ofP .

3 Further developments

Since the language of EB is more general than that of extended logic programs, our
logic is a tool for further generalizations of extended logic programming, for instance
disjunction. All that is required is to define a translation of disjunctive extended
logic programs into the logic. The study of possible translations, and the relationship
between the resulting and extant semantics for disjunctive programs is the subject of
ongoing investigations by us.

Another possible direct generalization of extended logic programming is with the
modal operators of the logic, allowing for conjunction and disjunction within their
scope. Examples of the use and usefulness of the belief operator for normal disjunc-
tive programs can be found in [Prz93].

With the relationship between EB logic and extended logic programming now
established some issues already tackled in the latter can also be raised in the former.
Furthermore, the former can profit from adapting techniques employed in the latter.
One of the issues presented here in more detail is contradiction removal, or belief
revision.

Recently, several authors have studied this issue in extended logic programming
[DR91, Jon91, PA93, PAA91a]. The basic idea behind these approaches is that not L
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literals be viewed as assumptions, so that if an assumption partakes in a contradiction
then its revision is in order. In epistemic logics this idea translates into: “If the results
of introspection lead to the inexistence of expansions then revise your beliefs”.

Example 10 The theory T : B �Eab ) EflyE �fly
is consistent but has no expansion. This is so because �Eab is true in all minimal
models and thus, by introspection, B �Eab must be added causing a contradiction. In
fact, this is a typical case where the result of introspection leads to contradiction12.

In order to assign a meaning to consistent theories without expansions two ap-
proaches are possible: to define a more sceptical notion of expansion, introducing less
belief propositions by introspection; or to minimally revise the theory in order to pro-
vide for expansions. [AP94] contrast these two approaches in the logic programming
setting, dubbing the first “contradiction avoidance”, and the second “contradiction re-
moval”, and showing them equivalent under certain conditions. The techniques used
there to deal with this issue in logic programming can readily be employed in our
epistemic logic:

Contradiction avoidance in the EB logic amounts to weakening the condition for
introspection. This can be accomplished by allowing introduction of belief proposi-
tions solely for some chosen subset of the formulae minimally entailed by the theory.
Of course, not all subsets are allowed. In particular, we are only interested in maximal
subsets compatible with consistency. The study of additional preference conditions
among these subsets is tantamount to the one in extended logic programming examined
in [PA93].

Contradiction removal in the EB logic amounts to minimally adjoining, to some
consistent theory without expansions, new clauses to inhibit the addition by introspec-
tion of belief propositions responsible for contradiction.

Example 11 The theory T 0 resulting from adjoining the “inhibiting clause”B �Eab) Eab
to the theory of example 10 has one expansionT � = T 0 [ fBE �fly;B �Eflyg:
The extra clause states that believing�Eab is impossible, since it directly implies Eab;
and in this way inhibits the otherwise inevitable addition of B �Eab:

In extended logic programs the inhibition clause above translates toab not ab
12Note this problem is not peculiar to our logic. The same occurs as well in e.g. AEL and reflexive AEL.
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and is called an inhibition rule for ab [PAA91a]. Similarly to what is done in [PAA91a]
for extended logic programming, also for the EB logic we can define the revisions of
a theory as those obtained by minimal additions of inhibiting clauses which achieve
contradiction removal (i.e. allow the resulting theory to have an expansion). Thus,
the revisions of a theory T are those theoriesT 0 = T [ InR
where InR is a minimal set of clauses of the form B �EA ) EA; such that T 0 has
at least one expansion. Given the similarities of this approach and the contradiction
removal techniques in extended logic programs, the procedures [AP94] and imple-
mentations of the latter, developed in order to avoid generating all possible revisions,
are also applicable to the former.

Further discussion, and results, on this topic can be found in a recent paper by us
an Teodor Przymusinski [APP94].

Conclusions

To start, we’ve provided a first embedding, in a two-modality AEL, of well–founded
semantics based extensions of logic programs, either with explicit or strong negation
[AP92], and shown how they differ in that setting.

Second, we’ve contrasted this embedding with recent ones for stable semantics
based extensions of logic programs with a second kind of negation [Che93, LS93b,
MT93, Pea93].

Third, we’ve shown the usefulness of employing the combination of the two natural
epistemic modalities of provability and belief for explicating the semantics of logic
programs in AEL.

Fourth, we’ve introduced into epistemic logics the issue of belief revision in the
face of inexistance of expansions, and how to tackle it inspired by similar questions
and attending techniques previously developed, in the logic programmming context,
for contradiction removal [Jon91, PAA91a, AP94].

Fifth, we’ve shown how (via the procedures and implementations of the extended
logic programs we’ve embedded in our AEL) an important subset of this AEL can be
employed to represent and solve a variety of nonmonotonic reasoning problems, al-
ready captured in and dealt with by extended logic programs: namely taxonomies, rea-
soning about actions, diagnosis, updates, and debugging [PAA91b, PAA93, PDA93].

Sixth, as the language of our epistemic logic is more general than that of extended
programs, the former can now be used as a tool for further generalizations of the latter,
for instance wrt disjunction and modalities.
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A Answer-sets, and WFSX definitions

An extended program is a set of rules of the form:L0  L1; : : : ; Lm; not Lm+1; : : : ; not Ln (0 � m � n)
where each Li is an objective literal. An objective literal is either an atom A or its
explicit negation :A: We also use : to denote complementary literal wrt. the explicit
negation, so that ::A = A. The set of all objective literals of a program P is called
the extended Herbrand base of P and denoted by H(P ): The symbol not stands for
negation by default. not L is called a default literal. Literals are either objective
or default literals. By not fa1; : : : ; an; : : :g we mean fnot a1; : : : ; not an; : : :g: An
interpretation of an extended program P is denoted by T [ not F , where T and F
are disjoint subsets of H(P ): Objective literals in T are said to be true in I, objective
literals in F false by default in I, and in H(P )� I undefined in I.

We begin by recalling the definition of answer-sets semantics:

Definition A.1 (The Γ–operator) LetP be an extended program,T a set of objective
literals, and let P 0 (resp. T 0) be obtained from P (resp. T ) by denoting every literal:A by a new atom, say: A. The GL–transformation P 0T 0 is the program obtained fromP 0 by removing all rules containing a default literal not A such that A 2 T 0, and by
then removing all the remaining default literals from P . Let J be the least model ofP 0T 0 . ΓPT is obtained from J by replacing the introduced atoms : A by :A.

Definition A.2 (Answer-sets semantics) Let P be an extended program. An inter-
pretation I = T [ not F is an answer-set of P iff:T = ΓPT and F = H(P )� T

The answer-sets semantics of P is determined by the intersection of all answer-sets
of P .

For similarity with the definition of answer-sets semantics, here we present WFSX
in a distinctly different manner with respect to its original definition. This presentation
is based on alternating fix-points of Gelfond–Lifschitz Γ–like operators [GL88, GL90].
The proof of equivalence between both definitions, as well as proofs of other results
in this section, can be found in [Alf93].

To impose the coherence requirement in WFS we introduce:

Definition A.3 (Semi-normal version of a program) The semi-normal version of a
programP is the programPs obtained fromP by adding to the (possibly empty)Body
of each rule L Body the default literal not :L; where :L is the complement of L
wrt. explicit negation.

Below we use Γ(S) to denote ΓP (S); and Γs(S) to denote ΓPs(S):
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Definition A.4 (Partial stable model) A set of objective literals T generates a partial
stable model (PSM) of an extended programP iff:(1) T = ΓΓsT ; and(2) T � ΓsT:
The partial stable model generated by T is the interpretation:T [ not (H(P )� ΓsT )

In other words, partial stable models are determined by the fix-points of ΓΓs.
Given a fix-point T , objective literals in T are true in the PSM, objective literals not
in ΓsT are false by default, and all others are undefined. Thus, objective literals in
ΓsT are all the true or undefined ones. Note that condition (2) imposes that a literal
cannot be both true and false by default (viz. if it belongs to T it does not belong toH(P )� ΓsT , and vice-versa). Moreover note how the use of Γs imposes coherence:
if :L is true, i.e. it belongs to T , then in ΓsT , via semi-normality, all rules for L are
removed and, consequently, L 62 ΓsT , i.e. L is false by default.

Example 12 Program P = fa; :ag has no partial stable models. Indeed, the only
fix-point of ΓΓs is fa;:ag, and fa;:ag 6� Γsfa;:ag = fg. Thus it is not a PSM.

Programs without partial stable models are said contradictory.

Theorem A.1 (WFSX semantics) Every non-contradictory program P has a least
(wrt. �) partial stable model, the well-founded model of P (WFM(P )).

To obtain an iterative “bottom-up” definition forWFM(P )we define the following
transfinite sequence fI�g:I0 = fgI�+1 = ΓΓsI�I� = S fI� j � < �g for limit ordinal �

There exists a smallest ordinal� for the sequence above, such that I� is the smallest
fix-point of ΓΓs, and WFM(P ) = I� [ not (H(P )� ΓsI�).

In this constructive definition literals obtained after an application of ΓΓs (i.e. in
some I�) are true in WFM(P ), and literals not obtained after an application of Γs
(i.e. not in ΓsI�, for some �) are false by default in WFM(P ).
Theorem A.2 (Relation to WFS) For normal logic programs (i.e. without explicit
negation) WFSX coincides with the well–founded semantics of [GRS91].

Theorem A.3 (Relation to Answer-sets) Let P be an extended logic program with
at least one answer-set. Every answer-set of P is also a PSM of P . Moreover, for any
objective literal L:� If L 2WFM(P ) then L belongs to all answer-sets of P .� If not L 2 WFM(P ) then L does not belong to any answer-set of P .
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