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Abstract

Innovation, creativity, and competition are some of the fundamental underlying forces driving

the advances in Artificial Intelligence (AI). This race for technological supremacy creates a

complex ecology of choices that may lead to negative consequences, in particular, when ethical

and safety procedures are underestimated or even ignored. Here we resort to a novel game the-

oretical framework to describe the ongoing AI bidding war, also allowing for the identification

of procedures on how to influence this race to achieve desirable outcomes. By exploring the

similarities between the ongoing competition in AI and evolutionary systems, we show that the

timelines in which AI supremacy can be achieved play a crucial role for the evolution of safety

prone behaviour and whether influencing procedures are required. When this supremacy can be

achieved in a short term (near AI), the significant advantage gained from winning a race leads

to the dominance of those who completely ignore the safety precautions to gain extra speed,

rendering of the presence of reciprocal behavior irrelevant. On the other hand, when such a

supremacy is a distant future, reciprocating on others’ safety behaviour provides in itself an

efficient solution, even when monitoring of unsafe development is hard. Our results suggest un-

der what conditions AI safety behaviour requires additional supporting procedures and provide

a basic framework to model them.

Keywords: AI race modelling, emergence, cooperation, evolutionary game theory.
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1 Introduction1

Interest in Artificial intelligence (AI) has exploded in academia and businesses in the last few2

years. This excitement is, on one hand, due to a series of superhuman performances9,10,32,33
3

which have been exhibited. Although mostly successful in highly specialised tasks, exceed-4

ing human ability and precision, these AI success stories appear often in the imagination of5

the general public as Hollywood-like Artificial General Intelligence (AGI), able to perform a6

broad set of intellectual tasks while continuously improving itself. Large scale surveys show7

that AI researchers expect that AI systems will eventually reach and then exceed human-level8

performance in many of the surveyed tasks, although the timelines are quite diverse16,34. On9

the other hand, the excitement is promoted by business leaders as they anticipate important10

gains from turning their previously idle data into active assets within business plans29. All11

these (un)announced business and political ambitions indicate that an AI race or bidding war12

has been triggered1,2,11, where stake-holders in private and public sectors are competing to be13

the first to cross the finish line and hence the leader in the development and deployment of14

powerful, transformative AI3,6,7,11.15

Irrespectively of the anticipated benefits, many actors have urged for due diligence as i)16

these AI systems can also be employed for more nefarious activities, e.g. espionage and cy-17

berterrorism36 and ii) when trying to be the first/best then some ethical consequences as well18

as safety procedures may be underestimated or even ignored3,11, notwithstanding the issue that19

certain claims about achieving AGI may be overly optimistic or just oversold. These concerns20

are highlighted by the many letters of scientists against the use of AI in military applications26,27
21

and the proclamations on ethical use of AI in the world12,30,35.22

While potential AI disaster scenarios are many3,28,34, the uncertainties in accurately predict-23

ing these risks and outcomes are high4. As insufficient data is available, the essential approach24
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to clearly grasp what can be expected is to create models, i.e. dynamic descriptions of the25

key features (of parts thereof) of this race in order to understand what outcomes are possible26

under certain conditions and what crucial factors play an essential role. The Future of Life In-27

stitute (FLI) as well as other similar institutes have therefore launched open calls for projects28

to foster research on the topic of AI safety and the exploration of the AI race dynamics we are29

currently witnessing. This manuscript provides a baseline model established within one of the30

FLI awarded projects in 2018, discussing under what conditions unsafe versus safe AI develop-31

ments may lead to disastrous outcomes, in races involving two or many more participants. This32

baseline model resorts to the framework of evolutionary game theory19,31 to study the dynamics33

and emergent behaviours within an AI development race.34

Concretely, the model assumes that in order to achieve AI supremacy (AIS) in a domainX , a35

number of development steps or rounds (W ) are required. Distinct values ofW capture different36

regimes of AIS: in the limit of small W , AIS can be expected to happen in the near future (near37

AIS regime) while when W is large, AIS will only be achieved far away in time (distant AIS38

regime). Large-scale surveys and analysis of AI experts on their beliefs and predictions about39

progress in AI suggest that the perceived timeline for AIS is highly diverse across domains and40

regions4,16. Because this is a race, each participant acts by herself during each step in order to41

reach the target and differs in the speed (s) with which they can complete each of the subtasks42

at each round. A fast participant will, therefore, reap benefits (b) at each step, winning the43

ultimate prize (B) once it carries out the final step achieving AIS in the domain X . If multiple44

participants reach the end of intermediate steps or the final target at the same time they share the45

benefits b and B. Yet, one can also assume that higher s also implies that some ethical/safety46

procedures might be ignored. It takes time and effort to comply to precautionary requirements47

or acquire ethical approvals. Following a safe development process is thus not only more costly48

(c), it also results in a slower development speed. One can therefore consider that participants in49
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the AI race that act safely (SAFE) pay a cost c > 0, which is not paid by participants that ignore50

ethical/safety procedures (UNSAFE) and ii) the speed of development of UNSAFE participants51

is faster (s > 1), compared to the speed of SAFE participants being normalised to s = 1. So52

essentially a SAFE player needs W rounds to complete the task, whereas an UNSAFE player53

will only need W/s. Yet, UNSAFE strategists may suffer a disaster, which is assumed here to54

increase with the number of times the safety requirements have been skirted. The probability55

that disaster occurs is denoted by pr and assumed to increase linearly with the frequency the56

participant violates the safety precautions. For example, if a participant always plays SAFE57

then pr = 0, while the participant that only follows it half of the time has a total probability58

of pr/2 over all rounds. Moreover, if some sort of institutional or peer monitoring comes into59

place, we assume that with some probability pfo those playing UNSAFE might be found out and60

disclosed concerning their unsafe development and their products will therefore not be used,61

leading to 0 benefit for the current round.62

Let us consider a population of size Z in which players engage in a pairwise or N-player63

race, where they can choose to consistently follow safety precautions (denoted by AS, the SAFE64

players) or completely ignore them (denoted by AU, the UNSAFE players). Additionally, we65

assume that, upon realising that UNSAFE players ignore safety precautions to gain a greater66

development speed leading to the wining of the prize B (and a larger share of the intermediate67

benefit in each round, b, especially in the regime of hard monitoring or low pfo), SAFE players68

might adopt the same course of actions to avoid further disadvantage. It is indeed observed69

that competing countries or companies might engage in such a safety-cutting corner behaviour70

in deploying unsafe AI to avoid falling behind2. We therefore consider, in line with previous71

literature of repeated games5,31, an alternative strategy (denoted by CS, the conditionally safe72

strategy), which plays SAFE in the first round and then adopts the move its co-player used73

in the previous round. This so-called direct reciprocity strategy has been shown to promote74
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cooperation in the context of repeated social dilemmas, outperforming consistently defective75

individuals5,31. In the following, we will examine, across different regimes of the AIS, under76

which conditions (for instance, regarding the disaster probability), safety behaviour should to77

be promoted or externally enforced. Similarly, we shall address when one should omit the78

safety precautions for a larger social welfare and when the benefits gained in doing so exceeds79

the disaster risk. Moreover, given the first-mover advantage of UNSAFE players in the race80

to AI supremacy (i.e., acquire B), we will examine whether (and under what regime of the81

AIS) conditional behaviours can still act as a promoting mechanism to achieve safety when82

required, or otherwise other mechanisms are needed. For the sake of presentation, we start by83

describing the pairwise race model and go on to describe the general N -player (N ≥ 2) race84

results afterwards.85

2 Results86

We calculate the long-term frequency of each possible behavioural composition of the popula-87

tion, the so-called stationary distribution (cf. Methods). The stochastic evolutionary dynamics88

of the population occurs in the presence of errors, both in terms of errors of imitation and of be-89

havioural mutations, the latter representing an open exploration of the possible strategies19,31.90

Figure 1 shows the frequencies of the three strategies AS, AU and CS across a spectrum of91

regimes of AIS: i) near AIS: in this regime, AIS will be achieved after a limited number of92

development steps, making the ultimate prize of winning the race B highly significant (i.e.93

B/W � b) ; ii) distant AIS (very large W ): in this regime, AIS will not be achieved in a94

foreseeable future, making the ultimate prize of winning the race B insignificant compared to95

the cost and benefit at each step of the race (i.e. B/W � b, c). We observe that in the near96

AIS regime, AU dominates the population whenever the probability that an AI disaster occurs97
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Figure 1. Different regimes of AIS: when W is small (near AIS) vs when W is large
(distant AIS). Panels (a) and (b) show the frequency of each strategy in a population of AS,
AU and CS (pr = 0.75). In the near AIS regime, AU dominates the population, while AS and
CS outperform AU in the distant AIS regime. This observation is valid for sufficiently small
pr, see panel (c) (pfo = 0.1). For a high risk probability of disaster occurring due to ignoring
safety precautions (high pr), AU has a low frequency in both regimes. Parameters: c = 1,
b = 4, W = 100, B = 10000, β = 0.01, population size, Z = 100.

due to unsafe development (pr) is not too high (Figure 1c; in panels a and b, pr = 0.75). In98

the distant AI regime, all strategies are present in the population, where AS and CS are slightly99

more frequent (Figure 1a-b). When an AI disaster is more likely to occur due to unsafe devel-100

opments (i.e. large pr, see Figure 1c), AU has a low frequency in both regimes. Moreover, AU101

frequency increases much more dramatically from high risk to low risk in the near AIS regime,102

compared to the distant AIS one (also see SI Figure 9 for other values of pfo). It implies that103

more efforts and care are needed in the near AIS regime, since that can dramatically change the104

safety outcome of the race. Below we elaborate on each regime of AIS in greater detail.105

Near AIS regime: speedy development overcomes the risk106

First of all, we describe the conditions under which a population of individuals closely fol-107

lowing safety precautions actually has a greater social welfare or average payoff than that of a108
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population of players never following safety precautions, that is, when ΠAS,AS > ΠAU,AU . In109

the near AIS regime, it is equivalent to (see SI for the proof)110

pr > 1− 1

s
. (1)

That is, when the risk probability of AI disaster occurring due to the omission of safety precau-111

tions is large enough compared to the gain of a greater development speed by doing so, safety112

development is the preferred collective outcome for the population. On the other hand, when113

this risk is shallow compared to the gain of omitting safety precautions, UNSAFE is the more114

beneficial collective outcome. It would be detrimental however, to prevent this outcome from115

emerging (i.e. over-regulation of AI development).116

On the other hand, we found that both the safety complying strategies, AS and CS, are117

preferred over AU by natural selection (i.e. see risk-dominance analysis in SI) when118

pr > 1− 1

3s
. (2)

Thus, the two boundary conditions in Equations 1 and 2 divide the parameter space s-pr into119

three regions, see Figure 2a: (I) when pr > 1 − 1
3s

: safety development is both the preferred120

collective outcome and selected by evolution (see Figure 2b for an example: for s = 1.5 the121

condition becomes pr > 0.78); (II) when 1 − 1
3s
> pr > 1 − 1

s
: although it is more desirable122

to ensure safety development as the collective outcome, natural selection/social learning would123

nevertheless drive the population to the state where safety precaution is mostly ignored (see124

Figure 2c for an example: for s = 1.5 the condition becomes 0.78 > pr > 0.33); (III) when125

pr < 1 − 1
s
, unsafe development is both the preferred collective outcome and the one selected126

by evolution. Numerical results (cf. Methods below) in Figure 2 confirm this division of the127

regions. In SI, we show that these observations are also robust for other intensities of selection,128
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Figure 2. Near AIG regime. (a) Frequency of AU as a function of the speed gained, s, and
the probability of AI disaster occurring, pr, when ignoring safety. In general, we observe that
when the risk probability is small, AU is dominant. The larger s is, AU dominates for a larger
range. Region (II): The two solid lines inside the plots indicate the boundaries
pr ∈ [1− 1/s, 1− 1/(3s)] where safety development is the preferred collective outcome but
unsafe development is selected by evolution. Regions (I) and (III) indicate where safe (resp.,
unsafe) development is both the preferred collective outcome and the one selected by
evolution. Panels (b) (pr = 0.9) and (c) (pr = 0.75): transition probabilities and stationary
distribution in a population of AS, AU, and CS, with s = 1.5. AU dominates in panel (c),
corresponding to region (II), while AS and CS dominate in panel (b), corresponding to region
(I). We only show the stronger directions. Parameters: c = 1, b = 4, W = 100, pfo = 0.5,
B = 10000, β = 0.01, population size, Z = 100.
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see Figure 7.129

In regions (I) and (III), the preferred collective outcomes are selected by evolution. In the130

latter, a significant speed gained by unsafe development actually compensates for the risk due131

to ignoring safety precautions: taking risks (AI innovation) is better off because of high gain.132

Region (II) is the most important one to study as additional mechanisms are needed to promote133

safety behaviour against the unsafe one.134

Note that the boundaries established in Equations 1 and 2 are applicable for both CS and AS135

when playing against AU. Thus, similar results are obtained if we consider a population of just136

two strategies AS and AU (see SI, Figure 8). Adding CS does not change the overall outcome137

and conditions for safety development to be selected.138

In short, we have seen that in the near AIS regime, conditionally safe behaviours cannot139

overcome the speedy development advantage gained by completely ignoring the safety precau-140

tions. This points to the fact that external interference such as institution incentives need to be141

established, in order to effectively regulate safety behaviour in this regime. Moreover, sufficient142

care needs to be put in place to avoid over-regulation preventing a beneficial extra-speedy de-143

velopment (in region (III)). It is noteworthy that our this result is robust when we consider the144

AI race with among N teams (for all N ≥ 2, see SI). The main difference when increasing the145

group size is that the upper bound of region (II) would increase. That is, unsafe behaviour is146

selected by natural selection for a larger range of the parameter space s-pr. The reason is, the147

larger the group size, the greater the chance that there is at least one AU player in the group148

(with other AS and CS players), who would then win the development race.149
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development being found out, pfo , and the probability of AI disaster occurring pr, when the
number of development steps to reach AIS is very large (W = 106). AU has a low frequency
whenever pfo or pr are sufficiently high. (b-c): transition probabilities and stationary
distribution (pr = 0.75). Against AU, AS performs better than CS when pfo is large, which is
reversed when pfo is small. Parameters: c = 1, b = 4, s = 1.5, B = 10000, β = 0.01,
population size, Z = 100.

Distant AIS regime: conditional behaviour prevails even under weak mon-150

itoring151

When AIS is unachievable in the short term, the effect of increasing pr (from low to high risk)152

on the frequency of safe and unsafe behaviours is less dramatic than in the near AIS regime,153

see Figure 3. In general, all strategies are present, where the frequency of AU decreases as a154

function of pfo and pr. In contrast to the near AIS regime, the conditionally safe strategy, CS,155

contributes significantly to enhancing the safety behaviour outcome. Indeed, CS outperforms156

AS when the probability of uncovering an unsafe development in each round pfo is small (which157

is is reversed for larger pfo) (see Figure 1a-b; see also SI Figure 6). That is, when monitoring158

of unsafe development is highly efficient (i.e. large pfo), it is best to follow closely the safety159

precautions to avoid AI disaster by all means, even when facing unsafe opponents. However,160

when this monitoring is not efficient, acting conditionally provides the more efficient solution to161
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prevent unsafe behaviour as it can avoid being disadvantageous after the first round. These ob-162

servations can also be studied analytically (see SI). Namely, we derive conditions under which163

AS and CS are selected over AU by natural selection, as well as when safety behaviour is the164

preferred collective outcome than the unsafe one (see SI, Figure 4). For a greater efficiency of165

monitoring (the larger pfo) or a lower speed gained by omitting safety precaution (the smaller166

s), we show that a lower threshold for the disaster risk pr is required for those conditions to167

hold. Moreover, this threshold for AS is higher than that for CS when pfo is small, which is168

reversed when it is large. As shown in the SI, all these observations remain valid if, instead of169

pairwise interactions, we consider a general N -team AI race.170

3 Discussion171

Our results suggest that it is significantly more challenging to achieve safety behaviour in the172

regime where AI supremacy is achievable within a limited number of development steps (near173

AIS) than when it is only feasible at a distant future (distant AIS). In the former regime, the174

extra development speed gained by ignoring safety precautions gives the unsafe players the175

first-mover advantage that could not be overcome by a conditionally safe strategy (CS). To176

the contrary, in the latter regime, such a conditional strategy provides an efficient pathway to177

achieve safety behavior, especially when the monitoring of unsafe development is difficult.178

Our results thus point out that it is essential to provide in the near AIS regime the necessary179

supporting mechanisms (such as suitable rewards and sanctions)17,34 to control the speed of180

AI development of rogue teams, in order to drive the AI development dynamics towards more181

beneficial directions and outcomes. Without such mechanisms, the unconditional unsafe players182

(AU) would always win the race against any other strategies that play SAFE at any development183

round (such as CS players in our analysis, which only does so only in the first round), achieving184
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a significant payoff advantage. On the other hand, in the distant AIS regime, because reciprocal185

behaviour by itself is sufficient to ensure high levels of beneficial safe behaviour, less effort186

would be needed to ensure sustainable AI systems. This observation is in line with the response187

to the risk of AGI by many researchers that ’no action needed’ because AGI development will188

take a long time or will not be possible at all8,13 (see also a survey of responses in ref.34).189

Moreover, our results imply that by advertising that AGI is about to arrive might lead to an190

acceleration of the AI race, and to a decrease of safety precautions. In other words, our results191

thus support the argument that the rhetoric and framing of the AI development race and how192

close it is to achieve the AGI might strongly influence the dynamics and outcome of the AI193

race6,11.194

In the current models we assume that an AI disaster might occur only when a true AI or AGI195

has been achieved, i.e. after the W development steps have been completed. However, it might196

be the case that some smaller scaled disasters might occur before that milestone, especially197

when it is not clear whether and when AGI will or has been be achieved, and there might even198

be false beliefs regarding its presence. What is more, parties may release over simplistic AI but199

deliberatively advertise more than it can achieve, thereby leading to unforeseen usage disasters.200

We will analyse these scenarios in future works.201

Last but not least, it is noteworthy that despite focusing on AI development race in this202

paper, our results are generally applicable to any kind of racing situations such as technological203

innovation problems where there is a significant advantage to be achieved when reaching a204

target first.205
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4 Methods206

AI race model definition. The AI development race is modeled as a repeated two-player207

game, consisting ofW development rounds. In each round, the players can collect benefits from208

their intermediate AI products, depending on whether they choose to play SAFE or UNSAFE.209

Assuming a fixed benefit, b, from the AI market, teams will share this benefit proportionally210

to their development speed. Moreover, we assume that with some probability pfo those playing211

UNSAFE might be found out about their unsafe development and their products won’t be used,212

leading to 0 benefit. Thus, in each round of the race, we can write the payoff matrix as follows213

(with respect to the row player)214

π =


SAFE UNSAFE

SAFE −c+ b
2 −c+ (1− pfo) b

s+1 + pfob

UNSAFE (1− pfo) sb
s+1 (1− p2fo) b2

. (3)

For instance, when two SAFE players interact, each needs to pay the cost c and they share the215

benefit b. When a SAFE player interacts with an UNSAFE one the SAFE player pays a cost c216

and obtains the full benefit b in case the UNSAFE co-player is found out (with probability pfo),217

and obtains a small part of the benefit b/(s+ 1) otherwise (i.e. with probability 1− pfo). When218

playing with a SAFE player, the UNSAFE does not have to pay any cost and obtains a larger219

share bs/(s + 1) when not found out. Finally, when an UNSAFE player interacts with another220

UNSAFE, it obtains the shared benefit b/2 when both are not found out and the full benefit b221

when it is not found out while the co-player is found out, and 0 otherwise. The payoff is thus:222

(1 − pfo) [(1− pfo)(b/2) + pfob] = (1 − p2fo) b2 . The payoff matrix defining averaged payoffs223
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for the three strategies reads224

Π =



AS AU CS

AS B
2W + π11 π12

B
2W + π11

AU (1− pr)
(
sB
W + π21

)
(1− pr)

(
sB
2W + π22

)
(1− pr)

[
sB
W + s

W

(
π21 + (Ws − 1)π22

)]
CS B

2W + π11
s
W

(
π12 + (Ws − 1)π22

)
B
2W + π11

.
(4)

225

Evolutionary Dynamics in Finite Populations. We adopt here Evolutionary Game The-226

ory (EGT) methods for finite populations to derive analytical results and numerical observa-227

tions20,23,24. In a repeated games, players’ average payoff over all the game rounds (see the228

payoff matrix in Equation 4) represents their fitness or social success, and evolutionary dy-229

namics is shaped by social learning19,31, whereby the most successful players will tend to be230

imitated more often by the other players. In the current work, social learning is modeled us-231

ing the so-called pairwise comparison rule37, assuming that a player A with fitness fA adopts232

the strategy of another player B with fitness fB with probability given by the Fermi function,233 (
1 + e−β(fB−fA)

)−1, where β conveniently describes the selection intensity (β = 0 represents234

neutral drift while β →∞ represents increasingly deterministic selection). For convenience of235

numerical computations, but without affecting analytical results, we assume here small muta-236

tion limit14,20,24. As such, at most two strategies are present in the population simultaneously,237

and the behavioural dynamics can thus be described by a Markov Chain, where each state rep-238

resents a homogeneous population and the transition probabilities between any two states are239

given by the fixation probability of a single mutant14,20,24. The resulting Markov Chain has a240

stationary distribution, which describes the average time the population spends in an end state.241

In two-player game, the average payoffs in a population of k A players and (Z − k) B players242
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can be given as below (recall that Z is the population size), respectively,243

PA(k) =
(k − 1)ΠA,A + (Z − k)ΠA,B

Z − 1
, PB(k) =

kΠB,A + (Z − k − 1)ΠB,B

Z − 1
. (5)

The fixation probability that a single mutant A taking over a whole population with (Z − 1) B244

players is as follows22,24,37
245

ρB,A =

(
1 +

Z−1∑
i=1

i∏
j=1

T−(j)

T+(j)

)−1
, (6)

where T±(k) = Z−k
Z

k
Z

[
1 + e∓β[PA(k)−PB(k)]

]−1 describes the probability to change the number246

of A players by ± one in a time step. Specifically, when β = 0, ρB,A = 1/Z, representing the247

transition probability at neural limit.248

Having obtained the fixation probabilities between any two states of a Markov chain, we249

can now describe its stationary distribution14,20. Namely, considering a set of s strategies,250

{1, ..., s}, their stationary distribution is given by the normalised eigenvector associated with251

the eigenvalue 1 of the transposed of a matrix M = {Tij}si,j=1, where Tij,j 6=i = ρji/(s− 1) and252

Tii = 1−
∑s

j=1,j 6=i Tij .253

Risk-dominant conditions. We can determine which selection direction is more probable: an254

A mutant fixating in a homogeneous population of individuals playing B or a B mutant fixating255

in a homogeneous population of individuals playing A. When the first is more likely than the256

latter, A is said to be risk-dominant against B15,21,25, which holds for any intensity of selection257

and in the limit of large N when258

πA,A + πA,B > πB,A + πB,B. (7)
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6 Supporting Information (SI)344

6.1 Analytical conditions for viability of safety behaviour345

6.1.1 When safety behaviour is the preferred collective outcome346

We derive analytical condition for which a population of players always following safety pre-347

cautions has a greater social welfare or average payoff than that of a population of players never348

following safety precautions, that is, ΠAS,AS > ΠAU,AU :349

B

2W
+ π11 > (1− pr)

(
sB

2W
+ π21

)
. (8)

Following the definitions of different AIS regimes in the main texts, we simplify this condition350

for the two regimes. First, in the near AI regime where B/W � b, Equation 8 is equivalent to351

352

pr > 1− 1

s
. (9)

Now, in the distant AIS regime where W →∞ (i.e. B/W � c), Equation 8 is equivalent to:353

π11 > (1− pr)π21. (10)

which is equivalent to354

pfo > 1− (b− 2c)(s+ 1)

2sb(1− pr)
. (11)

or equivalently355

pr > 1− (b− 2c)(s+ 1)

2sb(1− pfo)
. (12)
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6.1.2 When safety behaviour is selected by evolution356

We now derive conditions for which AS and CS are risk-dominant against AU, which are the357

case if and only if, respectively,358

B

2W
+ π11 + π12 > (1− pr)

(
3sB

2W
+ π21 + π22

)
. (13)

359

s

W

(
π12 + (

W

s
− 1)π22

)
+
B

2W
+π11 > (1−pr)

[
sB

2W
+
sB

W
+

s

W

(
π21 + (

W

s
− 1)π22

)
+ π22

]
.

(14)

In the near AI regime where B/W � b, both equations are simplified to360

pr > 1− 1

3s
. (15)

On the other hand, in the distant AIS regime where W → ∞ (i.e. B/W � c), they are361

simplified to, respectively362

π11 + π12 > (1− pr)(π21 + π22). (16)

363

π11 > (1− 2pr)π22. (17)

which are equivalent to, respectively364

pr >
4c(1 + s)− b

(
2 + p2fo + (−2 + pfo(4 + pfo))s

)
b(1− pfo)(1 + pfo + (3 + pfo)s)

(18)
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pr >
1

2
− b− 2c

2b(1− p2fo)
. (19)

Thus, for safety behaviour to be both selected and the preferred outcome, all the pr must satisfy365

all the Eqs (19), (18) and (12).366

It is clear to see that the left hand sides of Eqs (19) and (12) are decreasing functions of pfo

whenever b ≥ 2c. We now show that it is also the case for the left hand side of Eq 18. Indeed,

its first order derivative by pfo gives

−
2(1 + s)

[
b
(
4s+ p2fos+ pfo(3 + s)

)
− 4c(pfo + s+ pfos)

]
b(1− pfo)2(1 + pfo + 3s+ pfos)2

which is negative whenever b ≥ 2c because

(
4s+ p2fos+ pfo(3 + s)

)
− 2(pfo + s+ pfos) = 2s+ p2fos+ p− pfos > 0

In short, we have shown that for b ≥ c, the larger pfo the easier the conditions for the safety367

behaviour to be both selected and the preferred outcome. Figure 4 validates these observations368

numerically. Similarly, we also can show that these conditions are harder to achieve the larger369

s is.370

Thus, the hardest conditions are obtained when pfo = 0, which is equivalent to371

pr > max{1− (b− 2c)(s+ 1)

2sb
,

4c(s+ 1) + 2b(s− 1)

b(1 + 3s)
,
c

b
}}. (20)

It is easily seen that the right hand side is greater than 1 iff b < 2c, i.e. this condition would372

not be achieved (since pr ≤ 1) in that case. Assuming b ≥ 2c, since 4c(s+1)+2b(s−1)
b(1+3s)

> 1 −373
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Figure 4. Distant AIS regime (W = 106). The lines (panel a) and curves (panel c) indicate
the conditions above which safety behavior is the preferred collective outcome (black ones)
and when AS and CS are risk-dominant against AU (green and blue ones, respectively). The
threshold for AS is greater than than CS when pfo is small, which is reversed when pfo is large.
(b-d) Frequency of AU as a function of pr and pfo (panel b; s = 1.5) or s (panel d; pfo = 0),
respectively. Parameters: c = 1, b = 4, B = 10000, β = 0.01, population size, Z = 100.
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varying pr and s, for β = 0.01 (left panel) and β = 0.1 (right panel). The solid lines indicate
the conditions for varying pfo, so that if pr is above the lines safety behavior is the preferred
collective outcome (black line), AS and CS are risk-dominant against AU (green and blue
lines, respectively). When there is no monitoring or weak monitoring, CS is more efficient
than AS in dealing with AU (green line is always below blue line). Parameters: c = 1, b = 4,
B = 10000, W = 106, population size, Z = 100.
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Figure 6. Distant AIS regime. Frequency of AU, AS and CS as a function of the probability
of unsafe development being found out, pfo , and the probability of AI disaster occurring pr,
when the number of development steps to reach AIS is very large (W = 106). AU has a low
frequency whenever pfo or pr are sufficiently high. AS performs best when pfo is large.
Parameters: c = 1, b = 4, s = 1.5, B = 10000, β = 0.01, population size, Z = 100.

(b−2c)(s+1)
2sb

> c
b
, it can be further simplified to374

pr >
4c(s+ 1) + 2b(s− 1)

b(1 + 3s)
(21)

which is the condition for AS to be risk-dominant against AU (see Figure 4 for an example375

when s = 1.5).376
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Figure 7. Frequency of AU in a population of three strategies, AS, AU, and CS, as a
function of the speed gained when ignoring safety, s, and the the risk probability pr. In
general, we observe that when the risk probability is small, AU is dominant. Also, the larger B
and s, AU dominates for a larger range. The two solid lines inside the plots indicate the
boundaries pr ∈ [1− 1/(3s), 1− 1/s] where safety development is preferred but non-safety
development is preferable (risk-dominant against CS and AS). The observations are valid for
varying the selection intensities: β = 0.001, 0.01, 0.1 for panels (a), (b) and (c), respectively.
Other parameters: c = 1, b = 4, W = 100, pfo = 0.5, B = 10000, population size, Z = 100.

6.2 Multiplayer AI race377

In this section we describe the N-team model of the AI race, extending the two-team model in378

the main text. We then describe the Methods used for analysing multi-player games.379

6.2.1 N-player AI Race definition380

The AI development race is modeled as a repeated N -player game, consisting of W develop-381

ment rounds. In each round, the players can collect benefits from their intermediate AI products,382

depending on whether they choose to play SAFE or UNSAFE. Assuming a fixed benefit, b, from383

the AI market, teams will share this benefit proportionally to their development speed. More-384

over, we assume that with some probability pfo those playing UNSAFE might be found out385
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Figure 8. Frequency of AU in a population of two strategies, AS and AU, as a function of
the speed gained when ignoring safety, s, and the the risk probability pr. In general, we
observe that when the risk probability is small, AU is dominant. Also, the larger B and s, AU
dominates for a larger range. The two solid lines inside the plots indicate the boundaries
pr ∈ [1− 1/(3s), 1− 1/s] where safety development is preferred but non-safety development
is preferable (risk-dominant against CS and AS). The observations are valid for varying the
selection intensities: β = 0.001, 0.01, 0.1 for panels (a), (b) and (c), respectively. Other
parameters: c = 1, b = 4, W = 100, pfo = 0.5, B = 10000, population size, Z = 100.
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1about their unsafe development and their products won’t be used, leading to 0 benefit.386

In a group of where k players choosing SAFE and (N − k) choosing UNSAFE, the payoffs387

for players adopting SAFE and UNSAFE in each round of the race are, respectively388

π(k)SAFE =


−c+ (1− pfo)

b
k+s(N−k) + pfo

b
k

if 1 ≤ k < N

c+ b
N

if k = N

π(k)UNSAFE = (1− pfo)
sb

k + s(N − k)
for 0 ≤ k < N

We consider a well-mixed, finite population of size Z, where players repeatedly interact389

with each other in the AI development process, using one of the following three strategies :390

• AS (always complies with safety precaution)391

• AU (never complies with safety precaution)392

• CS (conditionally safe, plays SAFE in the first round; then plays SAFE if everyone in the393

group plays SAFE in the previous round and plays UNSAFE otherwise)394

The average payoffs for the repeated games (k denotes the number of AS or CS when playing395

with AU)396

ΠAS,AU(k) =


π(k)SAFE if 1 ≤ k < N

B
NW

+ π(k)SAFE if k = N

ΠAU,AS(k) = p

(
sB

W (N − k)
+ π(k)UNSAFE

)
for 0 ≤ k < N

1For simplicity of calculation, we assume that all the UNSAFE players will be found out or not together, e.g.
whenever investigation is done then they are found out; otherwise they are not.
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Figure 10. Different regimes of AGI: near AI (small W ) vs distant AGI (large W ).
Frequency of AS, AU and CS in a population of the three strategies in co-presence. Other
parameters: c = 1, b = 4, W = 100, s = 1.5, pr = 0.75, B = 10000, N = 5, Z = 100,
β = 0.1.

ΠCS,AU(k) =


s
W

(
π(k)SAFE + (W

s
− 1)π(0)UNSAFE

)
if 1 ≤ k < N

B
NW

+ π(k)SAFE if k = N

ΠAU,CS(k) = p

[
sB

W (N − k)
+

s

W

(
π(k)UNSAFE + (

W

s
− 1)π(0)UNSAFE

)]
for 0 ≤ k < N

6.2.2 Evolutionary dynamics for different AIS regimes in multiplayer game397

In Figures 11 and 10 we show that the results for multi-player games are qualitatively the same398

as in two-player game, across different regimes of AIS (i.e. varying W ).399

6.2.3 Near AIS regime: multiplayer games conditions400

Condition for ΠAS,AU(N) > ΠAU,AU(0), ensuring that a population of players always following

safety precautions has a greater social welfare or average payoff than that of a population of
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Figure 11. Different regimes of AGI: near AI (small W ) vs distant AGI (large W ).
Frequency AU in a population of the three strategies AS, AU and CS in co-presence, as a
function of pr and W . Other parameters: c = 1, b = 4, W = 100, s = 1.5, pr = 0.75,
B = 10000, N = 5, Z = 100, β = 0.1.
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players never following safety precautions:

B

NW
+ π(N)SAFE > (1− pr)

(
sB

NW
+ π(0)UNSAFE

)
.

Assuming that B � b, it is equivalent to:401

pr > 1− 1

s
. (22)

On the other hand, AS is risk-dominant against both AU iff402

N−1∑
k=0

π(k)AU,AS <
N∑
k=1

π(k)AS,AU (23)

For B � b, it is equivalent to403

pr > 1− 1

(NHN)s
. (24)

where HN =
∑N

i=1 1/i. The same condition is obtained for CS to be risk-dominant against AU.404

Thus, the two boundary conditions in Equations 22 and 24 divide the parameter space s-pr405

into three regions, see Figure 12a: (I) when pr > 1 − 1
(NHN )s

: safety development is both406

the preferred collective outcome and selected by evolution (see Figure 12b for an example: for407

s = 1.5 the condition becomes pr > 0.94); (II) when 1− 1
(NHN )s

> pr > 1− 1
s
: although it is408

more desirable to ensure safety development as the collective outcome, natural selection/social409

learning would drive the population to the state where safety precaution is mostly ignored (see410

Figure 12c for an example: for s = 1.5 the condition becomes 0.94 > pr > 0.33); (III)411

when pr < 1 − 1
s
, unsafe development is both the preferred collective outcome and selected412

by evolution. Numerical results (cf. Methods below) in Figure 12 confirm this division of the413

regions.414
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We observed that, the larger s is, the greater the threshold for pr. Moreover, a larger group415

size leads to a larger region (II) – AU is selected for a larger range of the parameter space s-pr.416

The reason is that, the larger the group size, the greater the chance that there is at least one AU417

player in the group (with other AS/CS players), who would win the development race.418

6.2.4 Methods: Payoffs over group samplings419

In finite populations, the groups engaging in a N-player game are given by multivariate hyper-

geometric sampling. For transition between two pure states (small mutation), this reduces to

sampling (without replacement) from a hypergeometric distribution18,31. Namely, in a popula-

tion of size Z with x individuals of type i and Z − x individuals of type j, the probability to

select k individuals of type i and N − k individuals of type j in N trials is18

H(k,N, x, Z) =

(
x

k

)(
Z − x
N − k

)
(
Z

N

) .

Recall that Πij(k) and Πji(k) (see the section above) denote the payoff of a strategist of type i420

and j, respectively, when the random sampling consists of k players of type i and N−k players421

of type j (as derived above). Hence, in a population of x i-strategists and (Z − x) j-strategists,422
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the average payoffs to i and j strategists are18,31:423

Pij(x) =
N−1∑
k=0

H(k,N − 1, x− 1, Z − 1) Πij(k + 1)

=
N−1∑
k=0

(
x− 1

k

)(
Z − x

N − 1− k

)
(
Z − 1

N − 1

) Πij(k + 1),

Pji(x) =
N−1∑
k=0

H(k,N − 1, x, Z − 1) Πji(k)

=
N−1∑
k=0

(
x

k

)(
Z − 1− x
N − 1− k

)
(
Z − 1

N − 1

) Πji(k).

(25)

Now, the probability to change the number k of agents using strategy i by ±1 in each time step424

can be written as425

T±(k) =
Z − k
Z

k

Z

[
1 + e∓β[Pij(k)−Pji(k)]

]−1
, (26)

with T+ corresponding to an increase from k tot k + 1 and T− corresponding to the opposite.426

Fixation probability and stationary distribution are calculated in the same way as in two-427

player games.428

Risk-dominance condition429

An important analytical criteria to determine the evolutionary viability of a given strategy is430

whether it is risk-dominant with respect to other strategies15,25. Namely, one considers which431

selection direction is more probable: an i mutant fixating in a homogeneous population of432

agents playing j or a j mutant fixating in a homogeneous population of agents playing i. When433

the first is more likely than the latter, i is said to be risk-dominant against j 15, which holds for434
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any intensity of selection and in the limit of large population size Z when435

N∑
k=1

Πij(k) ≥
N−1∑
k=0

Πji(k). (27)
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