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Abstract. A hybrid of two novel methods - additive fuzzy spectral clustering
and lifting method over a taxonomy - is applied to analyse the research activities
of a department. To be specific, we concentrate on the Computer Sciences area
represented by the ACM Computing Classification System (ACM-CCS), but the
approach is applicable also to other taxonomies. Clusters of the taxonomy sub-
jects are extracted using an original additive spectral clustering method involving
a number of model-based stopping conditions. The clusters are parsimoniously
lifted then to higher ranks of the taxonomy by minimizing the count of “head
subjects” along with their “gaps” and “offshoots”. An example is given illustrat-
ing the method applied to real-world data.

1 Introduction

The last decade has witnessed an unprecedented rise of the concept of ontology as
a computationally feasible tool for knowledge maintenance. For example, the usage
of Gene Ontology [5] for interpretation and annotation of various gene sets and gene
expression data is becoming a matter of routine in bioinformatics (see, for example,
[13] and references therein).

To apply similar approaches to less digitalized domains, such as activities of orga-
nizations in a field of science or knowledge supplied by teaching courses in a university
school, one needs to distinguish between different levels of data and knowledge, and
build techniques for deriving and transforming corresponding bits of knowledge within
a comprehensible framework.

The goal of this paper is to present such a framework, utilizing a pre-specified taxon-
omy of the domain under consideration as the base. In general, a taxonomy is a rooted-
tree-like structure whose nodes correspond to individual topics in such a way that the
parental node’s topic generalizes the topics of its children’s nodes. We concentrate on
the issue of representing an organization or any other system under consideration, in
terms of the taxonomy topics. We first build profiles for its constituent entities in terms
of the taxonomy and then thematically generalize them.

To represent a functioning structure over a taxonomy is to indicate those topics in
the taxonomy that most fully express the structure’s working in its relation to the taxon-
omy. It may seem that conventionally mapping the system to all nodes related to topics
involved in the profiles within the structure would do the job, but it is not the case -



such a mapping typically represents a fragmentary set of many nodes without any clear
picture of thematic interrelation among them. Therefore, to make the representation
thematically consistent and parsimonious, we propose a two-phase generalization ap-
proach. The first phase generalizes over the structure by building clusters of taxonomy
topics according to the functioning of the system. The second phase generalizes over the
clusters by parsimoniously mapping them to higher ranks of the taxonomy determined
by a special parsimonious “lift” procedure. It should be pointed out that both building
fuzzy profiles and finding fuzzy clusters are research activities well documented in the
literature; yet the issues involved in this project led us to develop some original schemes
of our own including an efficient method for fuzzy clustering combining the approaches
of spectral and approximation clustering [10].

We apply these constructions to visualize activities of Computer Science research
organizations. We take the popular ACM Computing Classification System (ACM-
CCS), a conceptual four-level classification of the Computer Science subject area as
a pre-specified taxonomy for that. An earlier stage of this project is described in [11].
This work extends the additive clustering model described in [11] to fuzzy additive
clustering by using the spectral decomposition of our similarity matrix and extracting
clusters one by one, which allows to draw a number of model-based stopping condi-
tions. Found clusters are lifted to higher ranks in the ACM taxonomy and visualised via
a novel recursive parsimonious lift method.

The rest of the paper is organized as follows: Section 2 introduces taxonomy-based
profiles, Section 3 describes a new spectral fuzzy clustering method for deriving fuzzy
clusters from the profiles, Section 4 introduces our parsimonious lift method to general-
ize found clusters to higher ranks in a taxonomy tree. Section 5 presents the application
of the proposed cluster-lift method to a real world case.

2 Taxonomy-based profiles: why representing over the ACM-CCS
taxonomy?

In the case of investigation of activities of a university department or center, a research
team’s profile can be defined as a fuzzy membership function on the set of leaf-nodes
of the taxonomy under consideration so that the memberships reflect the extent of the
team’s effort put into corresponding research topics.

In this case, the ACM Computing Classification System (ACM-CCS)[1] is used as
the taxonomy. ACM-CCS comprises eleven major partitions (first-level subjects) such
as B. Hardware, D. Software, E. Data, G. Mathematics of Computing, H. Informa-
tion Systems, etc. These are subdivided into 81 second-level subjects. For example,
item I. Computing Methodologies consists of eight subjects including I.1 SYMBOLIC
AND ALGEBRAIC MANIPULATION, I.2 ARTIFICIAL INTELLIGENCE, I.5 PAT-
TERN RECOGNITION, etc. They are further subdivided into third-layer topics as, for
instance, I.5 PATTERN RECOGNITION which is represented by seven topics including
I.5.3 Clustering, I.5.4 Applications, etc.

Taxonomy structures such as the ACM-CCS are used, mainly, as devices for anno-
tation and search for documents or publications in collections such as that on the ACM



portal [1]. The ACM-CCS tree has been applied also as: a gold standard for ontolo-
gies derived by web mining systems such as the CORDER engine [16]; a device for
determining the semantic similarity in information retrieval [8] and e-learning appli-
cations [17, 4]; and a device for matching software practitioners’ needs and software
researchers’ activities [3].

Here we concentrate on a different application of ACM-CCS – a generalized repre-
sentation of a Computer Science research organization which can be utilized for analy-
sis and planning purposes. Obviously, an ACM-CCS visualized image can be used for
overviewing scientific subjects that are being developed in the organization, assessing
the scientific issues in which the character of activities in organizations does not fit
well onto the classification – these can potentially be the growth points, and help with
planning the restructuring of research and investment.

In our work, fuzzy profiles are derived from either automatic analysis of documents
posted on the web by the teams or by explicitly surveying the members of the depart-
ment. To tackle this, and also to allow for expert evaluations, we developed an interac-
tive E-Survey tool of Scientific Activities-ESSA (available at https://copsro.di.fct.unl.pt/),
that provides two types of functionality: i) collection of data about ACM-CCS based
research profiles of individual members; ii) statistical analysis and visualization of the
data and results of the survey on the level of a department. The respondent is asked
to select up to six topics among the leaf nodes of the ACM-CCS tree and assign each
with a percentage expressing the proportion of the topic in the total of the respondent’s
research activity for, say, the past four years. The set of profiles supplied by respon-
dents forms an N ×M matrix F where N is the number of ACM-CCS topics involved
in the profiles and M the number of respondents. Each column of F is a fuzzy mem-
bership function, rather sharply delineated because only six topics may have positive
memberships in each of the columns.

3 Representing research organization by fuzzy clusters of
ACM-CCS topics

3.1 Deriving similarity between ACM-CCS research topics

We represent a research organization by clusters of ACM-CCS topics to reflect thematic
communalities between activity profiles of members or teams working on these topics.
The clusters are found by analyzing similarities between topics according to their ap-
pearances in the profiles. The more profiles contain a pair of topics i and j and the
greater the memberships of these topics, the greater is the similarity score for the pair.

There is a specific branch of clustering applied to similarity data, the so-called rela-
tional fuzzy clustering [2]. In the framework of ‘usage profiling’ relational fuzzy clus-
tering is a widely used technique for discovering different interests and trends among
users from Web log records. In bioinformatics several clustering techniques have been
successfully applied in the analysis of gene expression profiles and gene function pre-
diction by incorporating gene ontology information into clustering algorithms [6].

In spite of the fact that many fuzzy clustering algorithms have been developed al-
ready, the situation remains rather uncertain because they all involve manually specified



parameters such as the number of clusters or threshold of similarity, which are subject
to arbitrary choices. This is why we come up with a version of approximate clustering
modified with the spectral clustering approach to make use of the Laplacian data trans-
formation, which has proven an effective tool to sharpen the cluster structure hidden in
the data [7]. This combination leads to a number of model-based parameters as aids for
choosing the right number of clusters.

Consider a set of V individuals (v = 1, 2, · · · , V ), engaged in research over some
topics t ∈ T where T is a pre-specified set of scientific subjects. The level of research
effort by individual v in developing topic t is evaluated by the membership f tv in profile
fv (v = 1, 2, · · · , V ).

Then the similarity wtt′ between topics t and t′ can be defined as the inner product
of profiles ft = (ftv) and ft′ = (ft′v), v = 1, 2, · · · , V , modified by individual
weights.

To make the cluster structure in the similarity matrix sharper, we apply the spectral
clustering approach to pre-process the similarity matrix W using the so-called Lapla-
cian transformation [7]. First, an N × N diagonal matrix D is defined, with (t, t) entry
equal to dt =

∑
t′∈T wtt′ , the sum of t’s row of W. Then unnormalized Laplacian and

normalized Laplacian are defined by equations L = D−W and Ln = D−1/2LD−1/2,
respectively. Both matrices are semipositive definite and have zero as the minimum
eigenvalue. The minimum non-zero eigenvalues and corresponding eigenvectors of the
Laplacian matrices are utilized then as relaxations of combinatorial partition problems
[15, 7]. Of comparative properties of these two normalizations, the normalized Lapla-
cian, in general, is considered superior [7].

Yet the Laplacian normalization by itself cannot be used in our approach below
because our method relies on maximum rather than minimum eigenvalues. To pass over
this issue, the authors of [12] utilized a complementary matrix Mn = D−1/2WD−1/2

which relates to Ln with equation Ln = I − Mn where I is the identity matrix. This
means that Mn has the same eigenvectors as Ln, whereas the respective eigenvalues
relate to each other as λ and 1 − λ, so that the matrix Mn can be utilized for our
purposes as well. We prefer using the Laplacian pseudoinverse transformation, Lapin
for short, defined by

L−
n (W ) = Z̃Λ̃−1Z̃ ′

where Λ̃ and Z̃ are defined by the spectral decomposition Ln = ZΛZ ′ of matrix Ln =
D−1/2(D − W )D−1/2. To specify these matrices, first, set T ′ of indices of elements
corresponding to non-zero elements of Λ is determined, after which the matrices are
taken as Λ̃ = Λ(T ′, T ′) and Z̃ = Z(:, T ′). The choice of the Lapin transformation can
be explained by the fact that it leaves the eigenvectors of Ln unchanged while inverting
the non-zero eigenvalues λ �= 0 to those 1/λ of L−

n . Then the maximum eigenvalue of
L−

n is the inverse of the minimum non-zero eigenvalue λ1 of Ln, corresponding to the
same eigenvector. The inverse of a λ near 0 could make the value of 1/λ quite large and
greatly separate it from the inverses of other near zero eigenvalues of L n. Therefore, the
Lapin transformation generates larger gaps between the eigen-values of interest, which
suits our one-by-one approach described in the next section well.

Thus, we utilize further on the transformed similarity matrix A = L−
n (W ).



3.2 Additive fuzzy clusters using a spectral method

We assume that a thematic fuzzy cluster is represented by a membership vector u =
(ut), t ∈ T , such that 0 ≤ ut ≤ 1 for all t ∈ T , and an intensity μ > 0 that expresses the
extent of significance of the pattern corresponding to the cluster, within the organization
under consideration. With the introduction of the intensity, applied as a scaling factor
to u, it is the product μu that is a solution rather than its individual co-factors.

Our additive fuzzy clustering model involves K fuzzy clusters that reproduce the
pseudo-inverted Laplacian similarities att′ up to additive errors according to the fol-
lowing equations:

att′ =
K∑

k=1

μ2
kuktukt′ + ett′ , (1)

where uk = (ukt) is the membership vector of cluster k, and μk its intensity.
The item μ2

kuktukt′ expresses the contribution of cluster k to the similarity a tt′ be-
tween topics t and t′, which depends on both the cluster’s intensity and the membership
values. The value μ2 summarizes the contribution of intensity and will be referred to as
the cluster’s weight.

To fit the model in (1), we apply the least-squares approach, thus minimizing the
sum of all e2

tt′ . Since A is definite semi-positive, its first K eigenvalues and correspond-
ing eigenvectors form a solution to this if no constraints on vectors u k are imposed. On
the other hand, if vectors uk are constrained to be just 1/0 binary vectors, the model (1)
becomes of the so-called additive clustering [14, 9].

We apply the one-by-one principal component analysis strategy for finding one clus-
ter at a time. Specifically, at each step, we consider the problem of minimization of a
reduced to one fuzzy cluster least-squares criterion

E =
∑

t,t′∈T

(btt′ − ξutut′)2 (2)

with respect to unknown positive ξ weight (so that the intensity μ is the square root of
ξ) and fuzzy membership vector u = (u t), given similarity matrix B = (btt′).

At the first step, B is taken to be equal to A. Each found cluster changes B by
subtracting the contribution of the found cluster (which is additive according to model
(1)), so that the residual similarity matrix for obtaining the next cluster will be B −
μ2uuT where μ and u are the intensity and membership vector of the found cluster. In
this way, A indeed is additively decomposed according to formula (1) and the number
of clusters K can be determined in the process.

Let us specify an arbitrary membership vector u and find the value of ξ minimizing
criterion (2) at this u by using the first-order condition of optimality:

ξ =

∑
t,t′∈T btt′utut′∑

t∈T u2
t

∑
t′∈T u2

t′
,

so that the optimal ξ is



ξ =
u′Bu

(u′u)2
(3)

which is obviously non-negative if B is semi-positive definite.
By putting this ξ in equation (2), we arrive at

E =
∑

t,t′∈T

b2
tt′ − ξ2

∑
t∈T

u2
t

∑
t′∈T

u2
t′ = S(B) − ξ2 (u′u)2 ,

where S(B) =
∑

t,t′∈T b2
tt′ is the similarity data scatter.

Let us denote the last item by

G(u) = ξ2 (u′u)2 =
(

u′Bu
u′u

)2

, (4)

so that the similarity data scatter is the sum:

S(B) = G(u) + E (5)

of two parts, G(u), which is explained by cluster (μ, u), and E, which remains unex-
plained.

An optimal cluster, according to (5), is to maximize the explained part G(u) in (4)
or its square root

g(u) = ξu′u =
u′Bu
u′u

, (6)

which is the celebrated Rayleigh quotient, whose maximum value is the maximum
eigenvalue of matrix B, which is reached at its corresponding eigenvector, in the un-
constrained problem.

This shows that the spectral clustering approach is appropriate for our problem. Ac-
cording to this approach, one should find the maximum eigenvalue λ and corresponding
normed eigenvector z for B, [λ, z] = Λ(B), and take its projection to the set of admis-
sible fuzzy membership vectors.

According to this approach, there can be a number of model-based criteria for halt-
ing the process of sequential extraction of fuzzy clusters:

1. The optimal value of ξ (3) for the spectral fuzzy cluster becomes negative.
2. The contribution of a single extracted cluster becomes too low, less than a pre-

specified τ > 0 value.
3. The residual scatter E becomes smaller than a pre-specified ε value, say less than

5% of the original similarity data scatter.

More details on the method referred to as ADDI–FS, including its application to
affinity and community structure data along with experimental comparisons with other
fuzzy clustering methods, are described in [10].



4 Parsimonious lifting method

To generalize the contents of a thematic cluster, we lift it to higher ranks of the taxon-
omy so that if all or almost all children of a node in an upper layer belong to the cluster,
then the node itself is taken to represent the cluster at this higher level of the ACM-
CCS taxonomy. Such lifting can be done differently, leading to different portrayals of
the cluster on ACM-CCS tree depending on the relative weights of the events taken
into account. A major event is the so-called “head subject”, a taxonomy node covering
(some of) leaves belonging to the cluster, so that the cluster is represented by a set of
head subjects. The penalty of the representation to be minimized is proportional to the
number of head subjects so that the smaller that number the better. Yet the head subjects
cannot be lifted too high in the tree because of the penalties for associated events, the
cluster“gaps” and “offshoots”.

The gaps are head subject’s children topics that are not included in the cluster. An
offshoot is a taxonomy leaf node that is a head subject (not lifted).

The total count of head subjects, gaps and offshoots, each weighted by both the
penalties and leaf memberships, is used for scoring the extent of the cluster misfit
needed for lifting a grouping of research topics over the classification tree. The smaller
the score, the more parsimonious the lift and the better the fit. Depending on the relative
weighting of gaps, offshoots and multiple head subjects, different lifts can minimize the
total misfit.

5 An application to a real world case

Let us illustrate the approach by using the data from a survey conducted at the Centre
of Artificial Intelligence, Faculty of Science & Technology, New University of Lisboa
(CENTRIA-UNL). The survey involved 16 members of the academic staff of the Centre
who covered 46 topics of the third layer of the ACM-CCS.

With the algorithm ADDI-FS applied to the 46 × 46 similarity matrix, two clusters
have been sequentially extracted, after which the residual matrix has become definite
negative (stopping condition (1)). The contributions of two clusters total to about 50%.
It should be noted that the contributions reflect the tightness of the clusters rather than
their priority stand. Cluster 1 is of pattern recognition and its applications to physical
sciences and engineering including images and languages, with offshoots to general
aspects of information systems. In cluster 2, all major aspects of computational math-
ematics are covered, with an emphasis on reliability and testing, and with applications
in the areas of life sciences. Overall these results are consistent with the informal as-
sessment of the research conducted in the research organization. Moreover, the sets of
research topics chosen by individual members at the ESSA survey follow the cluster
structure rather closely, falling mostly within one of the two.

Figure 1 shows the representation of CENTRIA’s cluster 2 in the ACM-CCS tax-
onomy with penalties of h = 1, o = 0.8, and g = 0.1. Increasing the gap penalty
g from 0.1 to 0.2 would lead to a different parsimonious generalization in which the
head subject ’G’ is decomposed into a number of head subjects on lower ranks of the
hierarchy.
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Fig. 1. Mapping of CENTRIA cluster 2 onto the ACM-CCS tree with penalties h = 1, o = 0.8
and g = 0.1.

6 Conclusion

We have described a hybrid method for representing aggregated research activities over
a taxonomy. The method constructs fuzzy profiles of the entities constituting the struc-
ture under consideration and then generalizes them in two steps. These steps are:

(i) fuzzy clustering research topics according to their thematic similarities, ignoring
the topology of the taxonomy, and

(ii) lifting clusters mapped to the taxonomy to higher ranked categories in the tree.
These generalization steps thus cover both sides of the representation process: the

empirical – related to the structure under consideration – and the conceptual – related
to the taxonomy hierarchy.

This work is part of the research project Computational Ontology Profiling of Sci-
entific Research Organization (COPSRO), main goal of which is to develop a method
for representing a Computer Science organization, such as a university department, over
the ACM-CCS classification tree.

In principle, the approach can be extended to other areas of science or engineering,
provided that such an area has been systemised in the form of a comprehensive concept
tree. Potentially, this approach could lead to a useful instrument for comprehensive
visual representation of developments in any field of organized human activities.

The research described in this paper raises a number of issues related to all main as-
pects of the project: data collection, thematic clustering and lifting. On the data collec-



tion side, the mainly manual e-survey ESSA tool should be supported by an automated
analysis and rating of relevant research documents including those on the internet. The
ADDI-FS method, although already experimentally proven competitive to a number of
existing methods, should be further explored and more thoroughly investigated. The is-
sue of defining right penalty weights for cluster lifting should be addressed. Moreover,
further investigation should be carried out with respect to the extension of this approach
to more complex than taxonomy, ontology structures.
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