
OWL + Rules = .. ?

David Carral1 Matthias Knorr2 Adila Krisnadhi1

1Kno.e.sis Center, Wright State University, USA

2CENTRIA, Universidade Nova de Lisboa, Portugal

10th Extended Semantic Web Conference (ESWC) 2013

Support

David Carral and Adila Krisnadhi:

At Kno.e.sis Center, supported by NSF grant
III: Small: TROn - Tractable Reasoning with Ontologies

Matthias Knorr:

At Centria, supported by FCT grant

ERRO.
 efficient reasoning with rules and ontologies

Slides

Latest version available from

http://centria.di.fct.unl.pt/~mknorr/tutorialESWC2013/

http://centria.di.fct.unl.pt/~mknorr/tutorialESWC2013/

Introduction

Semantic Web Stack / Layer Cake

I Each layer builds on the
layers below

I Standardization in progress
and driven by W3C

I Hypertext Web technologies
and some Semantic Web
technologies already
standardized

Two Different Paradigms

I Ontologies: OWL

I Rules: RIF, SWRL

Investigation towards a Unifying
Logic

OWL 2 DL (SROIQ(D)+. . .)

Basic Language Constructs

I Classes (concepts) – unary predicates

Person, Woman, Mother, Uncle

I Properties (roles) – binary predicates

hasChild, hasParent, hasWife

I Individuals – constants

Mary, John, Bill

OWL 2 DL (SROIQ(D)+. . .)

Axioms

I Assertions of named individuals to (complex) classes and
properties

Woman(Mary) hasMother(Bill,Mary)

I (Sub)class and property hierarchies (v)

Woman v Person hasMother v hasParent

I Equivalent classes (≡ – shortcut for v and w)

Person ≡ Human

OWL 2 DL (SROIQ(D)+. . .)

Complex Classes

I Class intersection (u)

Mother ≡ Person uWoman

I Class union (t)

Parent ≡ Mother t Father

I Class complement (¬)

ChildlessPerson ≡ Person u ¬Parent

OWL 2 DL (SROIQ(D)+. . .)

Complex Classes

I owl:Thing (>) and owl:Nothing (⊥)

Man uWoman v ⊥

I Existential quantification (∃)

Parent ≡ ∃hasChild.Person ∃hasWife.> v Man

I Universal quantification (∀)

NoDaughters ≡ ∀hasChild.Male > v ∀hasWife.Woman

OWL 2 DL (SROIQ(D)+. . .)

Complex Classes

I Qualified cardinality constraints (≤ and ≥)

≤ 2hasChild.Parent(John) ≥ 4hasChild.>(John)

I Nominals/enumerations of individuals (owl:oneOf)

{William} ≡ {Bill} SiblingsOfJohn ≡ {Mary, Tom}

I Self

{NarcisticPerson} ≡ ∃loves.Self

OWL 2 DL (SROIQ(D)+. . .)

Property Characteristics

I Inverse – hasChild− instead of hasParent

I Symmetric – hasSpouse

I Asymmetric – hasChild

I Disjoint – hasParent and hasChild

I Reflexive – hasRelative

I Irreflexive – hasChild

I Functional – hasSpouse

I Inverse functional – hasSpouse

I Transitive – hasDescendent

OWL 2 DL (SROIQ(D)+. . .)

And also . . .

I Property chains

hasParent ◦ hasParent v hasGrandparent

I Top property (U universal role)

I Bottom property (not part of SROIQ(D))

I Datatypes (with facets) (D)

I Keys (not part of SROIQ(D))

HasKey(: Person()(: hasSSN))

OWL 2 Profiles

fragments of OWL 2 for better computational properties

I OWL 2 EL:
I Corresponds to SROEL(D) /EL++

I Allows u, ∃, >, ⊥, nominals, property chains and hierarchies,
and datatypes

I Also allows: reflexive and transitive properties, keys
I Used in large biomedicine ontologies, such as SNOMED CT, or

GALEN (containing complex structural descriptions)

OWL 2 Profiles

I OWL 2 QL:
I Corresponds to DL-Lite
I Left of v only allows: ∃ limited to >
I Right of v only allows: u, ¬, ∃
I Allows property inclusions but not property chains
I Closely related to database technology, query answering can be

realized by rewriting queries

I OWL 2 RL:
I Corresponds to DLP, a rule fragment of OWL 2 DL
I Well-suited for enriching RDF data
I Details follow later

What we can(not) do with OWL

I Describe schema level knowledge: class hierarchy, properties
about classes, relationships between classes, etc.

I Consistency and class subsumption checking

I Classifying individuals to classes

I Assert the existence of unknown individuals (i.e., those that
must exist but cannot be named)

I Cannot specify arbitrary relationships between
instances/individuals; due to the inherent tree structure of DLs

I Cannot express n-ary relationships between individuals with
n > 2; DL extensions with n-ary predicates exist, but not part
of OWL

Rules

I Prominent alternative to OWL modeling:
I Rule-based expert systems
I Logic Programming/Prolog
I F-Logic [Kifer et al., 1995]
I W3C Rule Interchange Format RIF (standard since 2010)

I Often argued to be more intuitive for modeling:

worksAt(x,y),university(y), supervises(x,z),PhDstudent(z)

→ ProfessorOf (x , z)

Rules

I Rules can be divided into 3 categories:
I First-order rules: logical implication F → G

I Closely related to RIF-BLD (Basic Logic Dialect)
I “Open world”, declarative (first-order) semantics, monotonic

I Logic Programming/PROLOG rules:
I Close to first-order rules but with optional procedural aspects

and possible built-ins
I Covered by RIF-FLD (Framework for Logic Dialects)
I “Closed world”, (semi-)declarative, non-monotonic

I Production rules:
I IF condition THEN action
I Roughly corresponds to RIF-PRD (Production Rule Dialect)
I Semantics varies, sometimes defined as ad hoc computational

mechanisms

First-order rules (Horn clauses)

I

body︷ ︸︸ ︷
A1 ∧ A2 ∧ · · · ∧ Ak →

head︷︸︸︷
H

I Each Ai and H is a first-order atomic formula P(t1, . . . , tm)
with P a predicate symbol with arity m

I Each tj is a term: a variable or an expression f (s1, . . . , sk)
where f is a function symbol of arity k and s1, . . . , sk are terms

I No quantifiers; no negation

I Datalog rules: first-order rules without function symbols
I First used for deductive databases
I Complexity: PTime data complexity (ExpTime combined)
I Suitable for large datasets (and relatively small/fixed rule set)

What we can(not) do with Rules

I Specify and infer arbitrary relationships between individuals,
including n-ary relationships with n > 2

I Many people find rules more natural for modeling

I Non-monotonic extensions are very well-studied, more than
that of OWL (ASP solvers, etc.)

I Rules are usually only applied to known constants

I Cannot express the existence of unknown/unnamed individuals
(unlike OWL)

Can’t we bring them together?

Our Agenda . . .

This tutorial provides a condensed exposition of the recent efforts
to answer the previous main question by focusing on the following
issues:

I What kind of rules are readily expressible in OWL?

I What is DL-safety notion for rules? Why does it allow one to
combine rules and OWL ontologies without losing decidability?

I Can we integrate DL-safe rules seamlessly within OWL
framework by some small syntactic extension to OWL?

I Can we add non-monotonic flavor to such integration between
DLs and rules?

Some historical bits (not complete...)

I 2001-2004: Description Logics (DLs) turn into the W3C OWL
standard (logic programming still used for modeling ontologies);

I 2003: Description Logic Programs (DLP) [Grosof et al., WWW03] –
intersection of OWL 1 DL and Datalog;

I 2004: Semantic Web Rules Language (SWRL) – OWL plus
unbounded first-order rules, yet undecidable;

I 2004: dl-programs [Eiter et al., KR04] – OWL + non-monotonic
rules modularly with limited interaction;

I 2005: DL-safety [Motik et al., JWS05] – DL-safe SWRL is
decidable;

I 2006: DL+log [Rosati, KR06] – weakly-DL-safe (non-monotonic)
rules plus OWL, still separate semantics for each part;

Some historical bits (not complete...)

I 2007: Hybrid MKNF by [Motik and Rosati, IJCAI07] – seamless
integration of OWL and non-monotonic (DL-safe) rules;

I 2006-09: standardization effort of OWL 2 by W3C;

I 2008-10: Description Logic Rules and ELP [Krötzsch et al., ECAI08;
ISWC08] and [Rudolph et al., JELIA08] – significantly extended
DLP;

I 2011: Well-founded Semantics for Hybrid MKNF [Knorr et al.,
AI11] – tractable for polynomial DLs;

I 2011: Nominal schemas by [Krötzsch et al., WWW11] – strongly
integrate OWL 2 and DL-safe SWRL;

I 2012: Extending DL rules [Carral and Hitzler, ESWC12];

I 2012: Nominal schemas with non-monotonic extensions [Knorr et
al., ECAI12].

Rules readily expressible in OWL

Reasoning Needs

z newsFrom rome .
rome locadedIn italy .

We want to conclude

z newsFrom italy .

Rule:

newsFrom(x , y) ∧ locatedIn(y , z)→ newsFrom(x , z)

In OWL:
newsFrom ◦ locatedIn v newsFrom

(using owl:propertyChainAxiom)

Reasoning Needs

z newsFrom rome .
rome locadedIn italy .

We want to conclude

z newsFrom italy .

Rule:

newsFrom(x , y) ∧ locatedIn(y , z)→ newsFrom(x , z)

In OWL:
newsFrom ◦ locatedIn v newsFrom

(using owl:propertyChainAxiom)

Reasoning Needs

z newsFrom rome .
rome locadedIn italy .

We want to conclude

z newsFrom italy .

Rule:

newsFrom(x , y) ∧ locatedIn(y , z)→ newsFrom(x , z)

In OWL:
newsFrom ◦ locatedIn v newsFrom

(using owl:propertyChainAxiom)

Reasoning Needs

z newsFrom rome .
rome locadedIn italy .

We want to conclude

z newsFrom italy .

Rule:

newsFrom(x , y) ∧ locatedIn(y , z)→ newsFrom(x , z)

In OWL:
newsFrom ◦ locatedIn v newsFrom

(using owl:propertyChainAxiom)

Reasoning Needs

e.g. knowledge base of authors and papers

<paper> hasAuthor <Author>

insufficient because author order is missing

use of RDF-lists not satisfactory due to the lack of formal
semantics.

better:

<paper> hasAuthorNumbered :x ;
:x authorNumber nˆˆxsd:positiveInteger ;

authorName <author>.

Reasoning Needs

e.g. knowledge base of authors and papers

<paper> hasAuthor <Author>

insufficient because author order is missing

use of RDF-lists not satisfactory due to the lack of formal
semantics.

better:

<paper> hasAuthorNumbered :x ;
:x authorNumber nˆˆxsd:positiveInteger ;

authorName <author>.

Reasoning Needs

e.g. knowledge base of authors and papers

<paper> hasAuthor <Author>

insufficient because author order is missing

use of RDF-lists not satisfactory due to the lack of formal
semantics.

better:

<paper> hasAuthorNumbered :x ;
:x authorNumber nˆˆxsd:positiveInteger ;

authorName <author>.

Reasoning Needs

<paper> hasAuthorNumbered :x ;
:x authorNumber nˆˆxsd:positiveInteger ;

authorName <author>.

In OWL:

Paper v∃hasAuthorNumbered.NumberedAuthor

NumberedAuthor v = 1 authorNumber. < xsd:positiveInteger >

NumberedAuthor v = 1 authorName.Name

hasAuthorNumbered ◦ authorName v hasAuthor

Reasoning Needs

<paper> hasAuthorNumbered :x ;
:x authorNumber nˆˆxsd:positiveInteger ;

authorName <author>.

In OWL:

Paper v∃hasAuthorNumbered.NumberedAuthor

NumberedAuthor v = 1 authorNumber. < xsd:positiveInteger >

NumberedAuthor v = 1 authorName.Name

hasAuthorNumbered ◦ authorName v hasAuthor

Reasoning Needs

<paper> hasAuthorNumbered :x ;
:x authorNumber nˆˆxsd:positiveInteger ;

authorName <author>.

In OWL:

Paper v∃hasAuthorNumbered.NumberedAuthor

NumberedAuthor v = 1 authorNumber. < xsd:positiveInteger >

NumberedAuthor v = 1 authorName.Name

hasAuthorNumbered ◦ authorName v hasAuthor

Reasoning Needs

Property hasFirstAuthor:

Paper(x) ∧ hasAuthorNumbered(x , y) ∧ authorNumber(y , 1)

∧authorName(y , z)→ hasFirstAuthor(x , z)

in OWL:

Paper v ∃reflexivePaper.Self

∃authorNumber.{1} v FirstAuthor

FirstAuthor v ∃reflexiveFirstAuthor.Self

reflexivePaper ◦ hasAuthorNumbered◦
reflexiveFirstAuthor ◦ authorName v hasFirstAuthor

Reasoning Needs

Property hasFirstAuthor:

Paper(x) ∧ hasAuthorNumbered(x , y) ∧ authorNumber(y , 1)

∧authorName(y , z)→ hasFirstAuthor(x , z)

in OWL:

Paper v ∃reflexivePaper.Self

∃authorNumber.{1} v FirstAuthor

FirstAuthor v ∃reflexiveFirstAuthor.Self

reflexivePaper ◦ hasAuthorNumbered◦
reflexiveFirstAuthor ◦ authorName v hasFirstAuthor

Reasoning Needs

Property hasFirstAuthor:

Paper(x) ∧ hasAuthorNumbered(x , y) ∧ authorNumber(y , 1)

∧authorName(y , z)→ hasFirstAuthor(x , z)

in OWL:

Paper v ∃reflexivePaper.Self

∃authorNumber.{1} v FirstAuthor

FirstAuthor v ∃reflexiveFirstAuthor.Self

reflexivePaper ◦ hasAuthorNumbered◦
reflexiveFirstAuthor ◦ authorName v hasFirstAuthor

Graphical Example

Graphical Example

Paper v ∃reflexivePaper.Self

Graphical Example

∃authorNumber.{1} v FirstAuthor

Graphical Example

FirstAuthor v ∃reflexiveFirstAuthor.Self

Graphical Example

reflexivePaper ◦ hasAuthorNumbered◦
reflexiveFirstAuthor ◦ authorName v hasFirstAuthor

Reasoning as first-class citizen

Why would we want to have knowledge/rules such as

newFrom(x, y) ∧ locatedIn(y, z)→ newsFrom(x, z)

if we can also just do this with some software code?

I It declaratively describes what you do.

I It separates knowledge (as knowledge base) from
programming.

I It makes knowledge shareable.

I It makes knowledge easier to maintain.

Reasoning as first-class citizen

Why would we want to have knowledge/rules such as

newFrom(x, y) ∧ locatedIn(y, z)→ newsFrom(x, z)

if we can also just do this with some software code?

I It declaratively describes what you do.

I It separates knowledge (as knowledge base) from
programming.

I It makes knowledge shareable.

I It makes knowledge easier to maintain.

Reasoning as first-class citizen

Why would we want to have knowledge/rules such as

newFrom(x, y) ∧ locatedIn(y, z)→ newsFrom(x, z)

if we can also just do this with some software code?

I It declaratively describes what you do.

I It separates knowledge (as knowledge base) from
programming.

I It makes knowledge shareable.

I It makes knowledge easier to maintain.

Reasoning as first-class citizen

Why would we want to have knowledge/rules such as

newFrom(x, y) ∧ locatedIn(y, z)→ newsFrom(x, z)

if we can also just do this with some software code?

I It declaratively describes what you do.

I It separates knowledge (as knowledge base) from
programming.

I It makes knowledge shareable.

I It makes knowledge easier to maintain.

Reasoning as first-class citizen

Why would we want to have knowledge/rules such as

newFrom(x, y) ∧ locatedIn(y, z)→ newsFrom(x, z)

if we can also just do this with some software code?

I It declaratively describes what you do.

I It separates knowledge (as knowledge base) from
programming.

I It makes knowledge shareable.

I It makes knowledge easier to maintain.

Translating OWL Axioms

Which OWL axioms can be encoded as rules?

Let’s see some examples

Translating OWL Axioms

Which OWL axioms can be encoded as rules?

A v B becomes A(x)→ B(x)

R v S becomes R(x , y)→ S(x , y)

A u ∃R.∃S .B v C becomes A(x) ∧ R(x , y) ∧ S(y , z) ∧ B(z)→ C (x)

A v ∀R.B becomes A(x) ∧ R(x , y)→ B(y)

Translating OWL Axioms

Which OWL axioms can be encoded as rules?

A v B becomes A(x)→ B(x)

R v S becomes R(x , y)→ S(x , y)

A u ∃R.∃S .B v C becomes A(x) ∧ R(x , y) ∧ S(y , z) ∧ B(z)→ C (x)

A v ∀R.B becomes A(x) ∧ R(x , y)→ B(y)

Translating OWL Axioms

Which OWL axioms can be encoded as rules?

A v B becomes A(x)→ B(x)

R v S becomes R(x , y)→ S(x , y)

A u ∃R.∃S .B v C becomes A(x) ∧ R(x , y) ∧ S(y , z) ∧ B(z)→ C (x)

A v ∀R.B becomes A(x) ∧ R(x , y)→ B(y)

Translating OWL Axioms

Which OWL axioms can be encoded as rules?

A v B becomes A(x)→ B(x)

R v S becomes R(x , y)→ S(x , y)

A u ∃R.∃S .B v C becomes A(x) ∧ R(x , y) ∧ S(y , z) ∧ B(z)→ C (x)

A v ∀R.B becomes A(x) ∧ R(x , y)→ B(y)

Rules in OWL

Which OWL axioms can be encoded as rules?

A v ¬B t C becomes A(x) ∧ B(x)→ C (x)

A v ¬B becomes A(x) ∧ B(x)→ f

> v≤ 1R.> becomes R(x , y) ∧ R(x , z)→ y = z

A u ∃R.{b} v C becomes A(x) ∧ R(x , b)→ C (x)

Rules in OWL

Which OWL axioms can be encoded as rules?

A v ¬B t C becomes A(x) ∧ B(x)→ C (x)

A v ¬B becomes A(x) ∧ B(x)→ f

> v≤ 1R.> becomes R(x , y) ∧ R(x , z)→ y = z

A u ∃R.{b} v C becomes A(x) ∧ R(x , b)→ C (x)

Rules in OWL

Which OWL axioms can be encoded as rules?

A v ¬B t C becomes A(x) ∧ B(x)→ C (x)

A v ¬B becomes A(x) ∧ B(x)→ f

> v≤ 1R.> becomes R(x , y) ∧ R(x , z)→ y = z

A u ∃R.{b} v C becomes A(x) ∧ R(x , b)→ C (x)

Rules in OWL

Which OWL axioms can be encoded as rules?

A v ¬B t C becomes A(x) ∧ B(x)→ C (x)

A v ¬B becomes A(x) ∧ B(x)→ f

> v≤ 1R.> becomes R(x , y) ∧ R(x , z)→ y = z

A u ∃R.{b} v C becomes A(x) ∧ R(x , b)→ C (x)

Rules in OWL

Which OWL axioms can be encoded as rules?

A v ¬B t C becomes A(x) ∧ B(x)→ C (x)

A v ¬B becomes A(x) ∧ B(x)→ f

> v≤ 1R.> becomes R(x , y) ∧ R(x , z)→ y = z

A u ∃R.{b} v C becomes A(x) ∧ R(x , b)→ C (x)

Rules in OWL

Which OWL axioms can be encoded as rules?

{a} ≡ {b} becomes → a = b

A u B v ⊥ becomes A(x) ∧ B(x)→ f

A v B u C becomes A(x)→ B(x) and A(x)→ C (x)

A t B v C becomes A(x)→ C (x) and B(x)→ C (x)

Rules in OWL

Which OWL axioms can be encoded as rules?

{a} ≡ {b} becomes → a = b

A u B v ⊥ becomes A(x) ∧ B(x)→ f

A v B u C becomes A(x)→ B(x) and A(x)→ C (x)

A t B v C becomes A(x)→ C (x) and B(x)→ C (x)

Rules in OWL

Which OWL axioms can be encoded as rules?

{a} ≡ {b} becomes → a = b

A u B v ⊥ becomes A(x) ∧ B(x)→ f

A v B u C becomes A(x)→ B(x) and A(x)→ C (x)

A t B v C becomes A(x)→ C (x) and B(x)→ C (x)

Rules in OWL

A DL axiom α can be translated into rules if, after translating α
into a first-order predicate logic expression α′, and after
normalizing this expression into a set of clauses M, each formula in
M is a Horn clause (i.e., a rule).

Issue: How complicated a translation is allowed?

Naive translation: DLP plus some more (OWL 2)
e.g.,

R ◦ S v T becomes R(x , y) ∧ S(y , z)→ T (x , z)

This essentially results in OWL RL

Rules in OWL

A DL axiom α can be translated into rules if, after translating α
into a first-order predicate logic expression α′, and after
normalizing this expression into a set of clauses M, each formula in
M is a Horn clause (i.e., a rule).

Issue: How complicated a translation is allowed?

Naive translation: DLP plus some more (OWL 2)
e.g.,

R ◦ S v T becomes R(x , y) ∧ S(y , z)→ T (x , z)

This essentially results in OWL RL

Which rules can be translated into OWL axioms?

I Rolification

I Examples

I Formal definition: Rule Graphs

Rolification

Elephant(x) ∧Mouse(y)→ biggerThan(x, y)

Rolification of a concept A: A v ∃RA.Self

Elephant v ∃RElephant.Self

Mouse v ∃RMouse.Self

RElephant ◦ U ◦ RMouse v biggerThan

Rolification

Elephant(x) ∧Mouse(y)→ biggerThan(x, y)

Rolification of a concept A: A v ∃RA.Self

Elephant v ∃RElephant.Self

Mouse v ∃RMouse.Self

RElephant ◦ U ◦ RMouse v biggerThan

Rolification

Elephant(x) ∧Mouse(y)→ biggerThan(x, y)

Rolification of a concept A: A v ∃RA.Self

Elephant v ∃RElephant.Self

Mouse v ∃RMouse.Self

RElephant ◦ U ◦ RMouse v biggerThan

Rolification

A(x) ∧ R(x, y)→ S(x, y) becomes RA ◦ R v S

A(y) ∧ R(x, y)→ S(x, y) becomes R ◦ RA v S

A(x) ∧ B(y) ∧ R(x, y)→ S(x, y) becomes RA ◦ R ◦ RB v S

Woman(x) ∧marriedTo(x, y) ∧Man(y)→ hasHusband(x, y)

RWoman ◦marriedTo ◦ RMan v hasHusband

careful - role regularity needs to be preserved

hasHusband v marriedTo

Rolification

A(x) ∧ R(x, y)→ S(x, y) becomes RA ◦ R v S

A(y) ∧ R(x, y)→ S(x, y) becomes R ◦ RA v S

A(x) ∧ B(y) ∧ R(x, y)→ S(x, y) becomes RA ◦ R ◦ RB v S

Woman(x) ∧marriedTo(x, y) ∧Man(y)→ hasHusband(x, y)

RWoman ◦marriedTo ◦ RMan v hasHusband

careful - role regularity needs to be preserved

hasHusband v marriedTo

Rolification

worksAt(x, y) ∧ University(y) ∧ supervises(x, z)

∧PhDStudent(z)→ professorOf(x, z)

R∃worksAt.University ◦ supervises ◦ RPhDStudent v professorOf

Rules in OWL 2

Man(x) ∧ hasBrother(x , y) ∧ hasChild(y, z)→ Uncle(x)

Man u ∃hasBrother.∃hasChild.> v Uncle

NutAllergic(x) ∧ NutProdcut(y)→ dislikes(x, y)

NutAllergic v ∃nutAllergic.Self

NutProduct v ∃nutProduct.Self

nutAllergic ◦ U ◦ nutProduct v dislikes

dislikes(x, z) ∧ Dish(y) ∧ contains(y, z)→ dislikes(x, y)

Dish v ∃dish.Self

dislikes ◦ contains− ◦ dish v dislikes

So how can we pinpoint this?

I Tree-shaped bodies (variables)

I First argument of the conclusion is the root

C (x) ∧ R(x , a) ∧ S(x , y) ∧ D(y) ∧ T (y, a)→ E (x)

C u ∃R.{a} u ∃S .(D u ∃T .{a}) v E

So how can we pinpoint this?

C (x) ∧ R(x , a) ∧ S(x , y) ∧ D(y) ∧ T (y, a)→ V (x , y)

C u ∃R.{a} v ∃R1.Self

D u ∃T .{a} v ∃R2.Self

R1 ◦ S ◦ R2 v V

So how can we pinpoint this?

C (x) ∧ R(x , a) ∧ S(x , y) ∧ D(y) ∧ T (y, a)→ V (x , y)

C u ∃R.{a} v ∃R1.Self

D u ∃T .{a} v ∃R2.Self

R1 ◦ S ◦ R2 v V

So how can we pinpoint this?

Rule graph: C(x) ∧ R(x, a) ∧ S(x, y) ∧ D(y) ∧ T(y, a) → P(x, y)

Graph analysis: determine whether a rule is expressible within a
given profile
Automatic Transformation

DLs Rules: EL++

R1(x , y) ∧ C1(y) ∧ R2(y ,w) ∧ R3(y , z) ∧ C2(z) ∧ R4(x , x)→ C3(x)

∃R1.(C1 u ∃R2.> u ∃R3.C2) u ∃R4.Self v C3

DLs Rules: EL++

R1(x , y) ∧ C1(y) ∧ R2(y ,w) ∧ R3(y , z) ∧ C2(z) ∧ R4(x , x)→ C3(x)

∃R1.(C1 u ∃R2.> u ∃R3.C2) u ∃R4.Self v C3

DLs Rules: EL++

R1(x , y) ∧ C1(y) ∧ R2(y ,w) ∧ R3(y , z) ∧ C2(z) ∧ R4(x , x)→ C3(x)

∃R1.(C1 u ∃R2.> u ∃R3.C2) u ∃R4.Self v C3

DLs Rules: SROIQ

R1(y , x) ∧ C1(y) ∧ R2(w , y) ∧ R3(y , z) ∧ C2(z) ∧ R4(x , x)→ C3(x)

∃R−1 .(C1 u ∃R−2 .> u ∃R3.C2) u ∃R4.Self v C3

DLs Rules: SROIQ

R1(y , x) ∧ C1(y) ∧ R2(w , y) ∧ R3(y , z) ∧ C2(z) ∧ R4(x , x)→ C3(x)

∃R−1 .(C1 u ∃R−2 .> u ∃R3.C2) u ∃R4.Self v C3

DLs Rules: SROIQ

R1(y , x) ∧ C1(y) ∧ R2(w , y) ∧ R3(y , z) ∧ C2(z) ∧ R4(x , x)→ C3(x)

∃R−1 .(C1 u ∃R−2 .> u ∃R3.C2) u ∃R4.Self v C3

Extending DL Rules

Extended Description Logic Rules
[Carral and Hitzler, ESWC12]

Conjunction over complex roles?

I Some cyclic rules

Extending DL: SROIQ(u)

hasFather(x , y) ∧ hasBrother(y , z) ∧ hasTeacher(x , z)→
TaughtByUncle(x)

Extending DLs: SROIQ(u)

hasFather(x , y) ∧ hasBrother(y , z) ∧ hasTeacher(x , z)→
TaughtByUncle(x)

Extending DLs: SROIQ(u)
hasFather(x , y) ∧ hasBrother(y , z) ∧ hasTeacher(x , z)→
TaughtByUncle(x)

Equivalent Translation:

hasFather(x , y) ∧ hasBrother(y , z)→ hasUncle(x , z)

hasUncle(x , z) ∧ hasTeacher(x , z)→ TaughtbyUncle(x)

hasFather ◦ hasBrother v hasUncle

Extending DLs: SROIQ(u)

Middle rule:

hasUncle(x , z) ∧ hasTeacher(x , z)→ TaughtbyUncle(x)

Equivalent Translation:

hasUncle(x , z) ∧ hasTeacher(x , z)→ hasUncleAndTeacher(x , z)

hasUncleAndTeacher(x , z)→ TaughtbyUncle(x)

hasUncle u hasTeacher v hasUncle

∃hasUncleAndTeacher .> v TaughtByUncle

Extending DLs: SROIQ(u)

hasFather(x , y) ∧ hasBrother(y , z) ∧ hasTeacher(x , z)→
TaughtByUncle(x)

hasFather ◦ hasBrother v hasUncle

hasUncle u hasTeacher v hasUncle

∃hasTeacherAndUncle.> v TaughtByUncle

Conclusions and Future Work

I Definition of DL Rules

I Automatic Transformation: implementation

I Extending DL Rules: u

Nominal Schemas

What we learned about rules expressible in OWL

I Rules with tree-shaped body can be expressed in DL,

I role conjunction allows DLs to express some rules with
non-tree-shaped body, but

I many rules are not covered.

Clique of 4

R1(x , y)∧R2(x , z)∧R3(x ,w)∧R4(y , z)∧R5(y ,w)∧R6(w , z)→ C (x)

Clique of 4

R1(x , y)∧R2(x , z)∧R3(x ,w)∧R4(y , z)∧R5(y ,w)∧R6(w , z)→ C (x)

Nominal Schemas

A Better Uncle for OWL
[Krötzsch et al; WWW 2011]

hasParent(x , y) ∧married(y , z) ∧ hasParent(x , z)→ C (x)

∃hasParent.∃married.{z} u ∃hasParent.{z} v C

{z} only binds to known/named individuals!

Covers DL-safe datalog (arbitrary arity of predicates)

Nominal Schemas

A Better Uncle for OWL
[Krötzsch et al; WWW 2011]

hasParent(x , y) ∧married(y , z) ∧ hasParent(x , z)→ C (x)

∃hasParent.∃married.{z} u ∃hasParent.{z} v C

{z} only binds to known/named individuals!

Covers DL-safe datalog (arbitrary arity of predicates)

Complex Rules to OWL

Theorem
Any rule R containing m different free variables, where m > 3, can
be directly expressed in DL using n nominal schemas s.t.
n ≤ m − 2.

DL-safe Rules

I How about simply adding rules “as-is” to the ontology?

I Problem: although the DL-part and rule-part are both
decidable, the combination is undecidable!

I Work around: weaken the rule semantics?

DL-safe Rules

I How about simply adding rules “as-is” to the ontology?

I Problem: although the DL-part and rule-part are both
decidable, the combination is undecidable!

I Work around: weaken the rule semantics?

DL-safe Rules

I How about simply adding rules “as-is” to the ontology?

I Problem: although the DL-part and rule-part are both
decidable, the combination is undecidable!

I Work around: weaken the rule semantics?

DL-safety

I Decidability guaranteed if rules only operate on named
individuals

I Named individuals are finite.

I DL-safety: variables in the rules refer to only named
individuals in the OWL ontology.

I In the rule:

R(u, x)∧A(x)∧S(u, y)∧T (x , z)∧T (y , z)∧R(u, z)∧S(x , y)→ B(u)

the variables u, x , y , z refer only to named individuals.

I Approach taken by DL-safe SWRL.

DL-safety

I Decidability guaranteed if rules only operate on named
individuals

I Named individuals are finite.

I DL-safety: variables in the rules refer to only named
individuals in the OWL ontology.

I In the rule:

R(u, x)∧A(x)∧S(u, y)∧T (x , z)∧T (y , z)∧R(u, z)∧S(x , y)→ B(u)

the variables u, x , y , z refer only to named individuals.

I Approach taken by DL-safe SWRL.

DL-safety

I Decidability guaranteed if rules only operate on named
individuals

I Named individuals are finite.

I DL-safety: variables in the rules refer to only named
individuals in the OWL ontology.

I In the rule:

R(u, x)∧A(x)∧S(u, y)∧T (x , z)∧T (y , z)∧R(u, z)∧S(x , y)→ B(u)

the variables u, x , y , z refer only to named individuals.

I Approach taken by DL-safe SWRL.

DL-safety

I Decidability guaranteed if rules only operate on named
individuals

I Named individuals are finite.

I DL-safety: variables in the rules refer to only named
individuals in the OWL ontology.

I In the rule:

R(u, x)∧A(x)∧S(u, y)∧T (x , z)∧T (y , z)∧R(u, z)∧S(x , y)→ B(u)

the variables u, x , y , z refer only to named individuals.

I Approach taken by DL-safe SWRL.

Revisiting DL-safety: can it be relaxed?

R(u, x) ∧ A(x) ∧ S(u, y) ∧ T (x , z) ∧ T (y , z) ∧ R(u, z) ∧ S(x , y)→ B(u)

Rule body forms complicated graph:

u

x

y

z

A

R

S

R

T

T

S

Revisiting DL-safety: can it be relaxed?

R(u, x) ∧ A(x) ∧ S(u, y) ∧ T (x , z) ∧ T (y , z) ∧ R(u, z) ∧ S(x , y)→ B(u)

If y and z refer to named individuals, say a, b, it represents:

R(u, x) ∧ A(x) ∧ S(u, a) ∧ T (x , a) ∧ T (a, a) ∧ R(u, a) ∧ S(x , a)→ B(u)

R(u, x) ∧ A(x) ∧ S(u, a) ∧ T (x , b) ∧ T (a, b) ∧ R(u, b) ∧ S(x , a)→ B(u)

R(u, x) ∧ A(x) ∧ S(u, b) ∧ T (x , a) ∧ T (b, a) ∧ R(u, a) ∧ S(x , b)→ B(u)

R(u, x) ∧ A(x) ∧ S(u, b) ∧ T (x , b) ∧ T (b, b) ∧ R(u, b) ∧ S(x , b)→ B(u)

Revisiting DL-safety: can it be relaxed?

R(u, x) ∧ A(x) ∧ S(u, y) ∧ T (x , z) ∧ T (y , z) ∧ R(u, z) ∧ S(x , y)→ B(u)

R(u, x) ∧ A(x) ∧ S(u, a) ∧ T (x , a) ∧ T (a, a) ∧ R(u, a) ∧ S(x , a)→ B(u)

R(u, x) ∧ A(x) ∧ S(u, a) ∧ T (x , b) ∧ T (a, b) ∧ R(u, b) ∧ S(x , a)→ B(u)

R(u, x) ∧ A(x) ∧ S(u, b) ∧ T (x , a) ∧ T (b, a) ∧ R(u, a) ∧ S(x , b)→ B(u)

R(u, x) ∧ A(x) ∧ S(u, b) ∧ T (x , b) ∧ T (b, b) ∧ R(u, b) ∧ S(x , b)→ B(u)

I Only y and z need to be DL-safe.

I Expressible in OWL EL.

Nominal schemas: DL-safety only to some variables

I In the rule

R(u, x)∧A(x)∧S(u, y)∧T (x , z)∧T (y , z)∧R(u, z)∧S(x , y)→ B(u)

only y and z need to be DL-safe to be expressible in OWL EL.
I Expressing it in OWL EL need multiple axioms:

∃R.{a} u ∃R.(A u ∃S .{a} u ∃T .{a}) u ∃S .({a} u ∃T .{a}) v B

∃R.{b} u ∃R.(A u ∃S .{a} u ∃T .{b}) u ∃S .({a} u ∃T .{b}) v B

∃R.{a} u ∃R.(A u ∃S .{b} u ∃T .{a}) u ∃S .({b} u ∃T .{a}) v B

∃R.{b} u ∃R.(A u ∃S .{b} u ∃T .{b}) u ∃S .({b} u ∃T .{b}) v B

I With nominal schemas, the above 4 axioms can be condensed:
∃R.{z} u ∃R.(A u ∃S .{y} u ∃T .{z}) u ∃S .({y} u ∃T .{z}) v B

Nominal schemas: syntax and semantics

I Nominal schemas: a “variable nominal” construct in the form
of {x} where x is a variable.

I Semantically, each occurrence of a nominal schema represents
all possible nominals in the ontology.

I If an axiom α contains n different nominal schemas (each may
occur more than once) while the ontology has m different
named individuals, then α represents mn different axioms,
each is obtained by substituting nominal schemas with named
individuals.

I All those mn axioms are called groundings of α.

Nominal schemas: syntax and semantics

I Nominal schemas: a “variable nominal” construct in the form
of {x} where x is a variable.

I Semantically, each occurrence of a nominal schema represents
all possible nominals in the ontology.

I If an axiom α contains n different nominal schemas (each may
occur more than once) while the ontology has m different
named individuals, then α represents mn different axioms,
each is obtained by substituting nominal schemas with named
individuals.

I All those mn axioms are called groundings of α.

Nominal schemas: syntax and semantics

I Nominal schemas: a “variable nominal” construct in the form
of {x} where x is a variable.

I Semantically, each occurrence of a nominal schema represents
all possible nominals in the ontology.

I If an axiom α contains n different nominal schemas (each may
occur more than once) while the ontology has m different
named individuals, then α represents mn different axioms,
each is obtained by substituting nominal schemas with named
individuals.

I All those mn axioms are called groundings of α.

Nominal schemas: syntax and semantics

I Nominal schemas: a “variable nominal” construct in the form
of {x} where x is a variable.

I Semantically, each occurrence of a nominal schema represents
all possible nominals in the ontology.

I If an axiom α contains n different nominal schemas (each may
occur more than once) while the ontology has m different
named individuals, then α represents mn different axioms,
each is obtained by substituting nominal schemas with named
individuals.

I All those mn axioms are called groundings of α.

What can we express with nominal schemas?

I Let SROELV(×,u) = SROEL(×,u) + nominal schemas.

I SROELV(u,×) covers:
I DL-safe Datalog rules with predicates of arbitrary arity is also

in SROELV.
I OWL 2 EL without datatypes
I DL-safe OWL 2 RL without datatypes — but, preserves only

ABox entailments (the main inference task for OWL 2 RL)
I most of OWL 2 QL

What can we express with nominal schemas?

I Let SROELV(×,u) = SROEL(×,u) + nominal schemas.
I SROELV(u,×) covers:

I DL-safe Datalog rules with predicates of arbitrary arity is also
in SROELV.

I OWL 2 EL without datatypes
I DL-safe OWL 2 RL without datatypes — but, preserves only

ABox entailments (the main inference task for OWL 2 RL)
I most of OWL 2 QL

Complexity bounds

I Reasoning for SROIQV = SROIQ + nominal schemas, is
theoretically no worse than SROIQ [Krötzsch et al.,
WWW11]

I Reasoning for SROELV is:
I still polynomial (like SROEL) if the number of occurrences of

different nominal schemas in an axiom is bounded by a fixed
constant;

I in general, it is exponential (c.f., combined complexity of
Datalog is ExpTime)

Complexity bounds

I Reasoning for SROIQV = SROIQ + nominal schemas, is
theoretically no worse than SROIQ [Krötzsch et al.,
WWW11]

I Reasoning for SROELV is:
I still polynomial (like SROEL) if the number of occurrences of

different nominal schemas in an axiom is bounded by a fixed
constant;

I in general, it is exponential (c.f., combined complexity of
Datalog is ExpTime)

An Efficient Implementation for
Nominal Schemas

Naive grounding

I Naive reasoning directly from the semantics:

I Ground each axiom containing nominal schemas into
exponentially many axioms without nominal schemas.

I The resulting ontology is in standard DL or OWL and
equivalent to the original one.

I Use any existing reasoning algorithm for the corresponding
standard DL on the resulting ontology.

I Practically inefficient.

Naive grounding

I Naive reasoning directly from the semantics:
I Ground each axiom containing nominal schemas into

exponentially many axioms without nominal schemas.
I The resulting ontology is in standard DL or OWL and

equivalent to the original one.
I Use any existing reasoning algorithm for the corresponding

standard DL on the resulting ontology.

I Practically inefficient.

Naive grounding

I Naive reasoning directly from the semantics:
I Ground each axiom containing nominal schemas into

exponentially many axioms without nominal schemas.
I The resulting ontology is in standard DL or OWL and

equivalent to the original one.
I Use any existing reasoning algorithm for the corresponding

standard DL on the resulting ontology.

I Practically inefficient.

Naive grounding example

∃hParent.∃married.{z} u ∃hParent.{z} v C

Full grounding:

∃hParent.∃married.{a} u ∃hParent.{a} v C

∃hParent.∃married.{b} u ∃hParent.{b} v C

∃hParent.∃married.{c} u ∃hParent.{c} v C

where a, b, and c are the only individuals in the knowledge base

Naive grounding example

∃hParent.∃married.{z} u ∃hParent.{z} v C

Full grounding:

∃hParent.∃married.{a} u ∃hParent.{a} v C

∃hParent.∃married.{b} u ∃hParent.{b} v C

∃hParent.∃married.{c} u ∃hParent.{c} v C

where a, b, and c are the only individuals in the knowledge base

Naive grounding example

∃R1.(∃R4.{z} u ∃R5.({w} u ∃R6.{z})) u ∃R2.{z} u ∃R3.{w} v C

Full grounding:

∃R1.(∃R4.{a} u ∃R5.({a} u ∃R6.{a})) u ∃R2.{a} u ∃R3.{a} v C

∃R1.(∃R4.{a} u ∃R5.({b} u ∃R6.{a})) u ∃R2.{a} u ∃R3.{b} v C

∃R1.(∃R4.{a} u ∃R5.({c} u ∃R6.{a})) u ∃R2.{a} u ∃R3.{c} v C

∃R1.(∃R4.{a} u ∃R5.({b} u ∃R6.{a})) u ∃R2.{a} u ∃R3.{b} v C

∃R1.(∃R4.{b} u ∃R5.({c} u ∃R6.{b})) u ∃R2.{a} u ∃R3.{c} v C

. .

where a, b, and c are the only individuals in the knowledge base

Naive grounding example

∃R1.(∃R4.{z} u ∃R5.({w} u ∃R6.{z})) u ∃R2.{z} u ∃R3.{w} v C

Full grounding:

∃R1.(∃R4.{a} u ∃R5.({a} u ∃R6.{a})) u ∃R2.{a} u ∃R3.{a} v C

∃R1.(∃R4.{a} u ∃R5.({b} u ∃R6.{a})) u ∃R2.{a} u ∃R3.{b} v C

∃R1.(∃R4.{a} u ∃R5.({c} u ∃R6.{a})) u ∃R2.{a} u ∃R3.{c} v C

∃R1.(∃R4.{a} u ∃R5.({b} u ∃R6.{a})) u ∃R2.{a} u ∃R3.{b} v C

∃R1.(∃R4.{b} u ∃R5.({c} u ∃R6.{b})) u ∃R2.{a} u ∃R3.{c} v C

. .

where a, b, and c are the only individuals in the knowledge base

Defining Optimizations

I Delayed grounding: [Cong et al. at JIST 2012]

I Ordered Resolution: [Adila et al. at RR 2012]

Towards an Efficient Algorithm for DL Extended with
Nominal Schemas

Algorithm extension presented at [Markus Krotzsch at Jelia 2010]

I Define a mapping from a normalized OWL EL knowledge base
to a Datalog program.

I Make use of an existing Datalog engine to derive all inferences.

OWL EL Normal Form Transformation

Input Transformation

Input Transformation: some mappings

A v C 7→ subClass(a,C)

R v S 7→ subRole(R,T)

A× B v R 7→ subProd(A,B,R)

Input Transformation: some mappings

A v C 7→ subClass(a,C)

R v S 7→ subRole(R,T)

A× B v R 7→ subProd(A,B,R)

Input Transformation: some mappings

A v C 7→ subClass(a,C)

R v S 7→ subRole(R,T)

A× B v R 7→ subProd(A,B,R)

Set of Rules

Set of Rules: some mappings

subClass(y , z) ∧ inst(x , y)→ inst(x , z)

subRole(v ,w) ∧ triple(x , v , x ′)→ inst(v ,w)

subProd(y1, y2,w) ∧ inst(x , y1) ∧ inst(z , y2)→ triple(x ,w , x ′)

Set of Rules: some mappings

subClass(y , z) ∧ inst(x , y)→ inst(x , z)

subRole(v ,w) ∧ triple(x , v , x ′)→ inst(v ,w)

subProd(y1, y2,w) ∧ inst(x , y1) ∧ inst(z , y2)→ triple(x ,w , x ′)

Set of Rules: some mappings

subClass(y , z) ∧ inst(x , y)→ inst(x , z)

subRole(v ,w) ∧ triple(x , v , x ′)→ inst(v ,w)

subProd(y1, y2,w) ∧ inst(x , y1) ∧ inst(z , y2)→ triple(x ,w , x ′)

Extending the Algorithm: Nominal Schemas

I Normalization and Input Transformation.

I Set of Rules.

I Set of facts + Set of Rules +
Set of Rules derived from axioms with nominal schemas.

Mapping for Axioms Containing Nominal Schemas

hasParent(x , y) ∧married(y , z) ∧ hasParent(x , z)→ C (x)

∃hasParent.∃married.{z} u ∃hasParent.{z} v C

triple(x , hasParent, y) ∧ triple(y ,married, z) ∧ triple(x , hasParent, z)∧
nom(z)→ inst(x ,C)

Mapping for Axioms Containing Nominal Schemas

hasParent(x , y) ∧married(y , z) ∧ hasParent(x , z)→ C (x)

∃hasParent.∃married.{z} u ∃hasParent.{z} v C

triple(x , hasParent, y) ∧ triple(y ,married, z) ∧ triple(x , hasParent, z)∧
nom(z)→ inst(x ,C)

Mapping for Axioms Containing Nominal Schemas

hasParent(x , y) ∧married(y , z) ∧ hasParent(x , z)→ C (x)

∃hasParent.∃married.{z} u ∃hasParent.{z} v C

triple(x , hasParent, y) ∧ triple(y ,married, z) ∧ triple(x , hasParent, z)∧
nom(z)→ inst(x ,C)

Execution Example

hasFather(Mike, Joe)

hasParent(Mike, Mary)

married(Joe, Mary)

hasFather v hasParent

hasParent(x , y) ∧married(y , z) ∧ hasParent(x , z)→ C (x)

Execution Example

triple(Mike, hasFather, Joe)

triple(Mike, hasParent, Mary)

triple(Joe, married, Mary)

subRole(hasFather, hasParent)

subRole(v ,w) ∧ triple(x , v , x ′)→ triple(x ,w , x ′)

triple(x , hasParent, y) ∧ triple(y ,married, z) ∧ triple(x , hasParent, z)∧
nom(z)→ inst(x ,C)

Experimental Results

Conclusions

I DL Logic Rules
I Allows to express simple rules
I Push the DL fragments

I Nominal Schemas
I Convoluted Rules
I Efficient implementations

Non-monotonic rule extension to
OWL

Why Non-monotonic Extensions?

I Open World Assumption (OWA) in general preferable on the
Web

I Without clinical test, no assumptions can be made on outcome

I But with complete knowledge, Closed World Assumption
(CWA) is better

I Patient’s medication is fully known

I Requirement for local closure of certain information

Why Non-monotonic Extensions?

Person v HeartLeft t HeartRight

HeartLeft u HeartRight v ⊥
Person v ∃has.SpinalColumn

∃has.SpinalColumn v Vertebrate

Person(Bob)

⇒ Vertebrate(Bob), Person v Vertebrate, and
∃x .SpinalColumn(x) derivable

Why Non-monotonic Extensions?

Person v HeartLeft t HeartRight

HeartLeft u HeartRight v ⊥
Person v ∃has.SpinalColumn

∃has.SpinalColumn v Vertebrate

Person(Bob)

SSN OK (x)← hasSSN(x , y)

f ← Person(x),notSSN OK (x)

HeartLeft(x)← Vertebrate(x),notHeartRight(x)

⇒ HeartLeft(Bob); hasSSN(Bob, y) for ground y required

Model defaults and exceptions, and integrity constraints

Why focus on Rules?

I Non-monotonic extensions have been studied directly for DLs

I Extensions for, e.g., default logic, epistemic logic, and
circumscription

I But non-trivial and few results in terms of implementations
(apart from ad-hoc solutions in, e.g., recommender systems)

I Rules easily extended to non-monotonic features

I Well-studied field Logic Programming including fast reasoners

I Leverage the Knowledge and Reasoners available

Ways to Combine Ontologies and Rules

Non-trivial matter because of Non-monotonicity

I Rules “on top” of ontologies
I First define concepts then define rules “on top”
I Rules deal with ontologies as external code
I Separate rule and ontology predicates

I Tight (full) integration
I Allow for “defining” predicates both in the ontology and the

rule layer
I Rules may use concepts defined in the ontology
I Ontology can use predicates of the rules

I Modular combination
I Trades some expressiveness for an easier to implement

interface integration

Difficulties of Tight Integration

I Rule languages (LP) use CWA

I Ontology languages (DL) use OWA
I What if a predicate is “defined” using both DL and LP?

I Should its negation be assumed by default?
I Or should it be kept open?
I How exactly can one define what is CWA or OWA in this

context?

Hybrid MKNF Knowledge Bases

I Seamless integration, expressive, yet competitive w.r.t.
computational complexity

I Introduced in [Motik and Rosati, IJCAI07] (extended in
[Motik and Rosati, JACM10])

I Based on Logics of Minimal Knowledge and Negation as
Failure: first-order logics with equality and modal operators K
and not [Lifschitz, IJCAI91]

I Consist of a (decidable) DL knowledge base O and a finite set
of rules, P, of the form

KH1 ∨ . . . ∨KHl ← KA1, . . . ,KAn,notB1, . . . ,notBm

I Combined decidability ensured by DL-safety (restriction of
application of rules to known individuals)

MKNF KB Example

PortCity(Barcelona) OnSea(Barcelona,Mediterranean)

PortCity(Hamburg) NonSeaSideCity(Hamburg)

RainyCity(Manchester) Has(Manchester ,AquaticsCenter)

Recreational(AquaticsCenter)

SeaSideCity v ∃Has.Beach

Beach v Recreational

∃Has.Recreational v RecreationalCity

KSeaSideCity(x)← KPortCity(x),notNonSeaSideCity(x)

KinterestingCity(x)← KRecreationalCity(x),notRainyCity(x)

KhasOnSea(x)← KOnSea(x , y)

Kfalse ← KSeaSideCity(x),nothasOnSea(x)

KsummerDestination(x)← KinterestingCity(x),KOnSea(x , y)

Properties of Hybrid MKNF

I Generalizes/captures (sometimes not entirely) quite a number
of different approaches

I Faithful w.r.t. Stable Models for empty O and w.r.t. OWL for
empty P

I Data complexity of instance checking in MKNF:

rules DL = ∅ DL ∈ P DL ∈ coNP

definite P P coNP

stratified P P ∆p
2

normal coNP coNP Πp
2

disjunctive Πp
2 Πp

2 Πp
2

Problems of two-valued Hybrid MKNF

I Models have to be guessed and checked

I Unrestricted rules increase computational complexity

I Queries for particular information require computation of the
entire model

I Limited robustness, e.g., w.r.t. merging of KBs (Ku ← notu)

[Knorr et al., AI11] provides alternative based on well-founded
semantics for non-disjunctive logic programs

Stable Models vs. Well-Founded Model in LP

p ← notq q ← notp a← notb b ←

has two stable models {p, b} and {q, b}, while the unique
well-founded model assigns t to b, f to a, and u to both p and q.
For

p ← notp q ← notq a← notb b ←

the well-founded model is the same, but there are no stable models!

Stable Models vs. Well-Founded Model in LP

Stable Models/Answer Sets

I More expressive language

I More derivable information

I Fast ASP solvers available

Well-founded Model

I Lower computational complexity

I always exists

I top-down derivations possible

Similar for combinations of rules and ontologies

Properties of Well-Founded MKNF

I Sound w.r.t. two-valued MKNF semantics

I Faithful w.r.t. first-order semantics for empty P and w.r.t. the
Well-Founded Semantics for empty O

I given complexity C for instance checking in O we obtain a
data complexity PC ; for C =P, polynomial data complexity

I Top-down procedure SLG(O) [Alferes et al., ACM TOCL13]
combining a DL reasoner and XSB Prolog, special procedures
defined for OWL 2 QL and a large fragment of OWL 2 EL

Non-monotonic DL Extension with MKNF

ALCKNF [Donini et al., ACM TOCL02]

ALC with MKNF logic-style modal operators K – minimal
knowledge – and A – autoepistemic assumption (corresponds to
¬not)

K can be used to derive new information, A to verify if information
is already known

Different expressiveness compared to Hybrid MKNF

Non-monotonic Features of ALCKNF

from [Donini et al., ACM TOCL02]

I Defaults:

KI uK(employee u ∃belongsTo.programmingDept)u
¬Amanager v K(engineer tmathematican)

I Integrity Constraints:

Kemployee v (Amale t Afemale)

Kemployee v ∃ASSN.Avalid

Non-monotonic Features of ALCKNF

I Concept and Role Closure

¬UScitizen(Paula) Manages(Ann,Marc)

¬UScitizen(Carl) UScitizen(Marc)

adding (∀KManages.KUScitizen)(Ann) closes the role

adding ∃KManages.A¬UScitizen(Ann) closes the concept

Can We find a joint formalism for both MKNF extensions?

I Contribute towards a unifying logic

I Reconcile OWL and Datalog together with CWA extensions
(on both sides)

I Usage of one (DL-style) syntax in opposite to common hybrid
languages

I Coverage of many different previous approaches

SROIQV(Bs ,×)KNF

I OWL 2 DL (SROIQ) with concept products (× - [Krötzsch,
SSW10]) and Boolean constructors over simple roles (Bs -
[Rudolph et al., JELIA08])

I Nominal schemas (V - [Krötzsch et al., WWW11]) - variable
nominals that can only bind to known individuals

I MKNF logic-style modal operators K – minimal knowledge –
and A – autoepistemic assumption – (KNF - from ALCKNF
[Donini et al., ACM TOCL02])

Syntax

signature Σ = 〈NI ,NC ,NR ,NV 〉

Definition
The set of SROIQV(Bs ,×)KNF concepts C and
(simple/non-simple) SROIQV(Bs ,×)KNF roles R (Rs/Rn) are
defined by the following grammar.

Rs ::=Ns
R | (Ns

R)− | U | NC × NC | ¬Rs | Rs u Rs | Rs t Rs |
KRs | ARs

Rn ::=Nn
R | (Nn

R)− | U | NC × NC | KRn | ARn

R ::=Rs | Rn

C ::=> | ⊥ | NC | {NI} | {NV } | ¬C | C u C | C t C |
∃R.C | ∀R.C | ∃Rs .Self | 6k Rs .C | >k Rs .C | KC | AC

Semantics – Principal Notions

I Based on interpretations I = (∆I , ·I) plus variable
assignments (for nominal variables) mapping each variable to
the interpretation of one element in NI

I Variant of Standard Name Assumption applied: essentially I
is a bijective function on NI while still allowing that elements
of NI may be identified (→ only one ∆)

An MKNF structure is a triple (I,M,N) where I is an
interpretation, M and N are sets of interpretations, and I and all
interpretations in M and N are defined over ∆. For any such
(I,M,N) and assignment Z, the function ·(I,M,N),Z is defined.

Function ·(I,M,N),Z (parts of it)

Syntax Semantics

a aI ∈ ∆

x Z(x) ∈ ∆

¬C ∆ \ C (I,M,N),Z

{t} {a | a ≈ t(I,M,N),Z}
KC

⋂
J∈M C (J ,M,N),Z

AC
⋂
J∈N C (J ,M,N),Z

KR
⋂
J∈M R(J ,M,N),Z

AR
⋂
J∈N R(J ,M,N),Z

C v D C (I,M,N),Z ⊆ D(I,M,N),Z

(Monotonic) Semantics

Definition
(I,M,N) satisfies axiom α, written (I,M,N) |= α, if
(I,M,N),Z |= α for all variable assignments Z.

A (non-empty) set of interpretations M satisfies α, written
M |= α, if (I,M,M) |= α holds for all I ∈ M.

M satisfies a SROIQV(Bs ,×)KNF knowledge base KB, written
M |= KB, if M |= α for all axioms α ∈ KB.

(Non-monotonic) Semantics

Definition
Given a SROIQV(Bs ,×)KNF knowledge base KB, a
(non-empty) set of interpretations M is an MKNF model of KB if

(1) M |= KB, and

(2) for each M′ with M⊂M′, (I ′,M′,M) 6|= KB for some
I ′ ∈M′.

Example

C Persons whose parents are married

HasParent(mary, john) (1)

(∃HasParent.∃Married.{john})(mary) (2)

∃HasParent.{z} u ∃HasParent.∃Married.{z} v C (3)

We can substitute (3) by

K∃HasParent.{z} uK∃HasParent.∃Married.{z} v KC

Example

C Persons whose parents are married

HasParent(mary, john) (1)

(∃HasParent.∃Married.{john})(mary) (2)

∃HasParent.{z} u ∃HasParent.∃Married.{z} v C (3)

We can also substitute (3) by

K∃HasParent.{z} uK∃HasParent.∃Married.{z} v AC

Example

C Persons whose parents are married

HasParent(mary, john) (1)

(∃HasParent.∃Married.{john})(mary) (2)

∃HasParent.{z} u ∃HasParent.∃Married.{z} v C (3)

We can also substitute (3) by

∃HasParent.{z} u ∃HasParent.∃¬AMarried.{z} v C

Now C are Persons that are known to be not married

Decidability

I First, reduce reasoning in SROIQV(Bs ,×)KNF to reasoning
in SROIQ(Bs)KNF by grounding and by simulating concept
products

I Then, follow approach for ALCKNK:
I each model of a knowledge base in SROIQ(Bs)KNF is cast

into a SROIQ(Bs) KB. Consequently, reasoning in
SROIQ(Bs)KNF is reduced to a number of reasoning tasks
in the non-modal SROIQ(Bs)

I For simplicity, appearance of modal operators restricted to
simple KBs as in ALCKNF (finitely many, finite
representations of models)

(Monotonic) Coverage

I SROIQ (a.k.a. OWL 2 DL);

I The tractable profiles OWL 2 EL, OWL 2 RL, OWL 2 QL;

I RIF-Core, i.e., n-ary Datalog, interpreted as DL-safe Rules
(general case new result in [Knorr et al., ECAI12]);

I DL-safe SWRL [Motik et al., JWS05], AL-log [Donini et al.,
JIIS98], and CARIN [Levy and Rousset, AI98].

(Non-monotonic) Coverage

I ALCKNF [Donini et al., ACM TOCL02]; includes notions of
concept and role closure present in this formalism;

I Closed Reiter defaults covered through the coverage of
ALCKNF ; includes coverage of DLs extended with default
rules [Baader and Hollunder, JAR95];

I Hybrid MKNF [Motik and Rosati, JACM10];

I Answer Set Programming, i.e., disjunctive Datalog with
classical negation and non-monotonic negation under the
answer set semantics; follows from the coverage of Hybrid
MKNF.

N-nary Datalog

NR = NP,2 ∪ {U} ∪ S , where S is a special set of roles: If
P ∈ NP,>2 has arity k , then P1, . . . ,Pk ∈ S are unique binary
predicates associated with P;

Translation: dl(P(t1, . . . , tk)) := ∃U.(∃P1.{t1} u . . . u ∃Pk .{tk});

Family of interpretations of J for interpretation I of Datalog RB:

(a) To each (d1, . . . , dk) ∈ PI , assign a unique element e in ∆
(i.e., we define a total, injective function from the set of
tuples to ∆).

(d) For each P ∈ NP,>2, if (d1, . . . , dk) ∈ PI , then (e, di) ∈ PJi ,
where e is the element assigned to (d1, . . . , dk) in point (a).

Hybrid MKNF

Seamless integration of DL ontology O and rules of the form

KH1 ∨KHl ← KA1, . . . ,KAn,notB1, . . . ,notBm

Based on the n-nary Datalog embedding, additionally:

dl(KH1 ∨KHl ← KA1, . . . ,KAn,notB1, . . . ,notBm) :=
Kdl(A1) u . . . uKdl(An) u ¬Adl(B1) u . . . u ¬Adl(Bm)
v Kdl(H1) t . . . tKdl(Hl)

Example

KC (x)←KHasParent(x , y),KHasParent(x , z),K(y 6≈ z),

notMarried(y , z).

can be translated into

K∃U.({x} u ∃HasParent.{y}) uK∃U.({x} u
∃HasParent.{z}) uK∃U.({y} u ∃ 6≈ .{z}) u ¬A∃U.({y} u
∃Married.{z}) v K∃U.({x} u C)

Thank you!

References

Rules expressible in OWL:

I Description logic programs: combining logic programs with
description logic. Benjamin Grosof, Ian Horrocks, Raphael
Volz, and Stefan Decker, WWW 2003, 48–57.

I Description logic rules. Markus Krötzsch, Sebastian Rudolph,
and Pascal Hitzler, ECAI 2008, 80–84.

I ELP: tractable rules for OWL 2. Markus Krötzsch, Sebastian
Rudolph, and Pascal Hitzler, ISWC 2008, 649–664.

I Cheap boolean role constructors for description logics.
Sebastian Rudolph, Markus Krötzsch, and Pascal Hitzler,
JELIA 2008, 362–374.

I Description logic rules. Markus Krötzsch, Studies on the
Semantic Web, Vol. 08, 2010.

References

Rules expressible in OWL and with nominal schemas:

I A better uncle for OWL: nominal schemas for integrating rules
and ontologies. Markus Krötzsch, Frederick Maier, Adila A.
Krisnadhi, and Pascal Hitzler, WWW 2011, 645–654.

I Extending description logic rules. David Carral Mart́ınez and
Pascal Hitzler, ESWC 2012, 345–359.

I A tableau algorithm for description logics with nominal
schemas. Adila Krisnadhi and Pascal Hitzler, RR2012,
234-237.

I A resolution procedure for description logics with nominal
schemas. Cong Wang and Pascal Hitzler, JIST 2012, 1-16.

References

Nonmonotonic Extensions:

I Description logics of minimal knowledge and negation as
failure. Francesco M. Donini, Daniele Nardi, and Riccardo
Rosati, ACM Transactions on Computational Logic, 3(2),
2002, 227–252.

I Reconciling Description Logics and Rules. Boris Motik and
Riccardo Rosati, Journal of the ACM, 57(5), 2010, 1–62.

I Local closed world reasoning with description logics under the
well-founded semantics. Matthias Knorr, José J. Alferes, and
Pascal Hitzler, Artificial Intelligence, 175(9-10), 2011,
1528–1544.

I Reconciling OWL and non-monotonic rules for the Semantic
Web. Matthias Knorr, Pascal Hitzler, and Frederick Maier,
ECAI 2012, 474–479.

	Introduction
	Rules readily expressible in OWL
	Nominal Schemas
	DL-safe Rules
	Nominal Schemas: Definition
	Reasoning with Nominal Schemas

	An Efficient Implementation for Nominal Schemas
	Non-monotonic rule extension to OWL

