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Introduction



Semantic Web Stack / Layer Cake

I Each layer builds on the
layers below

I Standardization in progress
and driven by W3C

I Hypertext Web technologies
and some Semantic Web
technologies already
standardized



Two Different Paradigms

I Ontologies: OWL

I Rules: RIF, SWRL

Investigation towards a Unifying
Logic



OWL 2 DL (SROIQ(D)+. . . )

Basic Language Constructs

I Classes (concepts) – unary predicates

Person, Woman, Mother, Uncle

I Properties (roles) – binary predicates

hasChild, hasParent, hasWife

I Individuals – constants

Mary, John, Bill



OWL 2 DL (SROIQ(D)+. . . )

Axioms

I Assertions of named individuals to (complex) classes and
properties

Woman(Mary) hasMother(Bill,Mary)

I (Sub)class and property hierarchies (v)

Woman v Person hasMother v hasParent

I Equivalent classes (≡ – shortcut for v and w)

Person ≡ Human



OWL 2 DL (SROIQ(D)+. . . )

Complex Classes

I Class intersection (u)

Mother ≡ Person uWoman

I Class union (t)

Parent ≡ Mother t Father

I Class complement (¬)

ChildlessPerson ≡ Person u ¬Parent



OWL 2 DL (SROIQ(D)+. . . )

Complex Classes

I owl:Thing (>) and owl:Nothing (⊥)

Man uWoman v ⊥

I Existential quantification (∃)

Parent ≡ ∃hasChild.Person ∃hasWife.> v Man

I Universal quantification (∀)

NoDaughters ≡ ∀hasChild.Male > v ∀hasWife.Woman



OWL 2 DL (SROIQ(D)+. . . )

Complex Classes

I Qualified cardinality constraints (≤ and ≥)

≤ 2hasChild.Parent(John) ≥ 4hasChild.>(John)

I Nominals/enumerations of individuals (owl:oneOf)

{William} ≡ {Bill} SiblingsOfJohn ≡ {Mary, Tom}

I Self

{NarcisticPerson} ≡ ∃loves.Self



OWL 2 DL (SROIQ(D)+. . . )

Property Characteristics

I Inverse – hasChild− instead of hasParent

I Symmetric – hasSpouse

I Asymmetric – hasChild

I Disjoint – hasParent and hasChild

I Reflexive – hasRelative

I Irreflexive – hasChild

I Functional – hasSpouse

I Inverse functional – hasSpouse

I Transitive – hasDescendent



OWL 2 DL (SROIQ(D)+. . . )

And also . . .

I Property chains

hasParent ◦ hasParent v hasGrandparent

I Top property (U universal role)

I Bottom property (not part of SROIQ(D))

I Datatypes (with facets) (D)

I Keys (not part of SROIQ(D))

HasKey(: Person()(: hasSSN))



OWL 2 Profiles

fragments of OWL 2 for better computational properties

I OWL 2 EL:
I Corresponds to SROEL(D) /EL++

I Allows u, ∃, >, ⊥, nominals, property chains and hierarchies,
and datatypes

I Also allows: reflexive and transitive properties, keys
I Used in large biomedicine ontologies, such as SNOMED CT, or

GALEN (containing complex structural descriptions)



OWL 2 Profiles

I OWL 2 QL:
I Corresponds to DL-Lite
I Left of v only allows: ∃ limited to >
I Right of v only allows: u, ¬, ∃
I Allows property inclusions but not property chains
I Closely related to database technology, query answering can be

realized by rewriting queries

I OWL 2 RL:
I Corresponds to DLP, a rule fragment of OWL 2 DL
I Well-suited for enriching RDF data
I Details follow later



What we can(not) do with OWL

I Describe schema level knowledge: class hierarchy, properties
about classes, relationships between classes, etc.

I Consistency and class subsumption checking

I Classifying individuals to classes

I Assert the existence of unknown individuals (i.e., those that
must exist but cannot be named)

I Cannot specify arbitrary relationships between
instances/individuals; due to the inherent tree structure of DLs

I Cannot express n-ary relationships between individuals with
n > 2; DL extensions with n-ary predicates exist, but not part
of OWL



Rules

I Prominent alternative to OWL modeling:
I Rule-based expert systems
I Logic Programming/Prolog
I F-Logic [Kifer et al., 1995]
I W3C Rule Interchange Format RIF (standard since 2010)

I Often argued to be more intuitive for modeling:

worksAt(x,y),university(y), supervises(x,z),PhDstudent(z)

→ ProfessorOf (x , z)



Rules

I Rules can be divided into 3 categories:
I First-order rules: logical implication F → G

I Closely related to RIF-BLD (Basic Logic Dialect)
I “Open world”, declarative (first-order) semantics, monotonic

I Logic Programming/PROLOG rules:
I Close to first-order rules but with optional procedural aspects

and possible built-ins
I Covered by RIF-FLD (Framework for Logic Dialects)
I “Closed world”, (semi-)declarative, non-monotonic

I Production rules:
I IF condition THEN action
I Roughly corresponds to RIF-PRD (Production Rule Dialect)
I Semantics varies, sometimes defined as ad hoc computational

mechanisms



First-order rules (Horn clauses)

I

body︷ ︸︸ ︷
A1 ∧ A2 ∧ · · · ∧ Ak →

head︷︸︸︷
H

I Each Ai and H is a first-order atomic formula P(t1, . . . , tm)
with P a predicate symbol with arity m

I Each tj is a term: a variable or an expression f (s1, . . . , sk)
where f is a function symbol of arity k and s1, . . . , sk are terms

I No quantifiers; no negation

I Datalog rules: first-order rules without function symbols
I First used for deductive databases
I Complexity: PTime data complexity (ExpTime combined)
I Suitable for large datasets (and relatively small/fixed rule set)



What we can(not) do with Rules

I Specify and infer arbitrary relationships between individuals,
including n-ary relationships with n > 2

I Many people find rules more natural for modeling

I Non-monotonic extensions are very well-studied, more than
that of OWL (ASP solvers, etc.)

I Rules are usually only applied to known constants

I Cannot express the existence of unknown/unnamed individuals
(unlike OWL)



Can’t we bring them together?



Our Agenda . . .

This tutorial provides a condensed exposition of the recent efforts
to answer the previous main question by focusing on the following
issues:

I What kind of rules are readily expressible in OWL?

I What is DL-safety notion for rules? Why does it allow one to
combine rules and OWL ontologies without losing decidability?

I Can we integrate DL-safe rules seamlessly within OWL
framework by some small syntactic extension to OWL?

I Can we add non-monotonic flavor to such integration between
DLs and rules?



Some historical bits (not complete...)

I 2001-2004: Description Logics (DLs) turn into the W3C OWL
standard (logic programming still used for modeling ontologies);

I 2003: Description Logic Programs (DLP) [Grosof et al., WWW03] –
intersection of OWL 1 DL and Datalog;

I 2004: Semantic Web Rules Language (SWRL) – OWL plus
unbounded first-order rules, yet undecidable;

I 2004: dl-programs [Eiter et al., KR04] – OWL + non-monotonic
rules modularly with limited interaction;

I 2005: DL-safety [Motik et al., JWS05] – DL-safe SWRL is
decidable;

I 2006: DL+log [Rosati, KR06] – weakly-DL-safe (non-monotonic)
rules plus OWL, still separate semantics for each part;



Some historical bits (not complete...)

I 2007: Hybrid MKNF by [Motik and Rosati, IJCAI07] – seamless
integration of OWL and non-monotonic (DL-safe) rules;

I 2006-09: standardization effort of OWL 2 by W3C;

I 2008-10: Description Logic Rules and ELP [Krötzsch et al., ECAI08;
ISWC08] and [Rudolph et al., JELIA08] – significantly extended
DLP;

I 2011: Well-founded Semantics for Hybrid MKNF [Knorr et al.,
AI11] – tractable for polynomial DLs;

I 2011: Nominal schemas by [Krötzsch et al., WWW11] – strongly
integrate OWL 2 and DL-safe SWRL;

I 2012: Extending DL rules [Carral and Hitzler, ESWC12];

I 2012: Nominal schemas with non-monotonic extensions [Knorr et
al., ECAI12].



Rules readily expressible in OWL



Reasoning Needs

z newsFrom rome .
rome locadedIn italy .

We want to conclude

z newsFrom italy .

Rule:

newsFrom(x , y) ∧ locatedIn(y , z)→ newsFrom(x , z)

In OWL:
newsFrom ◦ locatedIn v newsFrom

(using owl:propertyChainAxiom)
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Reasoning Needs

e.g. knowledge base of authors and papers

<paper> hasAuthor <Author>

insufficient because author order is missing

use of RDF-lists not satisfactory due to the lack of formal
semantics.

better:

<paper> hasAuthorNumbered :x ;
:x authorNumber nˆˆxsd:positiveInteger ;

authorName <author>.
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Reasoning Needs

<paper> hasAuthorNumbered :x ;
:x authorNumber nˆˆxsd:positiveInteger ;

authorName <author>.

In OWL:

Paper v∃hasAuthorNumbered.NumberedAuthor

NumberedAuthor v = 1 authorNumber. < xsd:positiveInteger >

NumberedAuthor v = 1 authorName.Name

hasAuthorNumbered ◦ authorName v hasAuthor



Reasoning Needs

<paper> hasAuthorNumbered :x ;
:x authorNumber nˆˆxsd:positiveInteger ;

authorName <author>.

In OWL:

Paper v∃hasAuthorNumbered.NumberedAuthor

NumberedAuthor v = 1 authorNumber. < xsd:positiveInteger >

NumberedAuthor v = 1 authorName.Name

hasAuthorNumbered ◦ authorName v hasAuthor



Reasoning Needs
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Reasoning Needs

Property hasFirstAuthor:

Paper(x) ∧ hasAuthorNumbered(x , y) ∧ authorNumber(y , 1)

∧authorName(y , z)→ hasFirstAuthor(x , z)

in OWL:

Paper v ∃reflexivePaper.Self

∃authorNumber.{1} v FirstAuthor

FirstAuthor v ∃reflexiveFirstAuthor.Self

reflexivePaper ◦ hasAuthorNumbered◦
reflexiveFirstAuthor ◦ authorName v hasFirstAuthor
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Graphical Example



Graphical Example

Paper v ∃reflexivePaper.Self



Graphical Example

∃authorNumber.{1} v FirstAuthor



Graphical Example

FirstAuthor v ∃reflexiveFirstAuthor.Self



Graphical Example

reflexivePaper ◦ hasAuthorNumbered◦
reflexiveFirstAuthor ◦ authorName v hasFirstAuthor



Reasoning as first-class citizen

Why would we want to have knowledge/rules such as

newFrom(x, y) ∧ locatedIn(y, z)→ newsFrom(x, z)

if we can also just do this with some software code?

I It declaratively describes what you do.

I It separates knowledge (as knowledge base) from
programming.

I It makes knowledge shareable.

I It makes knowledge easier to maintain.
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Translating OWL Axioms

Which OWL axioms can be encoded as rules?

Let’s see some examples
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Rules in OWL

Which OWL axioms can be encoded as rules?

A v ¬B t C becomes A(x) ∧ B(x)→ C (x)

A v ¬B becomes A(x) ∧ B(x)→ f

> v≤ 1R.> becomes R(x , y) ∧ R(x , z)→ y = z

A u ∃R.{b} v C becomes A(x) ∧ R(x , b)→ C (x)
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Rules in OWL

A DL axiom α can be translated into rules if, after translating α
into a first-order predicate logic expression α′, and after
normalizing this expression into a set of clauses M, each formula in
M is a Horn clause (i.e., a rule).

Issue: How complicated a translation is allowed?

Naive translation: DLP plus some more (OWL 2)
e.g.,

R ◦ S v T becomes R(x , y) ∧ S(y , z)→ T (x , z)

This essentially results in OWL RL
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Which rules can be translated into OWL axioms?

I Rolification

I Examples

I Formal definition: Rule Graphs



Rolification

Elephant(x) ∧Mouse(y)→ biggerThan(x, y)

Rolification of a concept A: A v ∃RA.Self

Elephant v ∃RElephant.Self

Mouse v ∃RMouse.Self

RElephant ◦ U ◦ RMouse v biggerThan
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Rolification

A(x) ∧ R(x, y)→ S(x, y) becomes RA ◦ R v S

A(y) ∧ R(x, y)→ S(x, y) becomes R ◦ RA v S

A(x) ∧ B(y) ∧ R(x, y)→ S(x, y) becomes RA ◦ R ◦ RB v S

Woman(x) ∧marriedTo(x, y) ∧Man(y)→ hasHusband(x, y)

RWoman ◦marriedTo ◦ RMan v hasHusband

careful - role regularity needs to be preserved

hasHusband v marriedTo
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Rolification

worksAt(x, y) ∧ University(y) ∧ supervises(x, z)

∧PhDStudent(z)→ professorOf(x, z)

R∃worksAt.University ◦ supervises ◦ RPhDStudent v professorOf



Rules in OWL 2

Man(x) ∧ hasBrother(x , y) ∧ hasChild(y, z)→ Uncle(x)

Man u ∃hasBrother.∃hasChild.> v Uncle

NutAllergic(x) ∧ NutProdcut(y)→ dislikes(x, y)

NutAllergic v ∃nutAllergic.Self

NutProduct v ∃nutProduct.Self

nutAllergic ◦ U ◦ nutProduct v dislikes

dislikes(x, z) ∧ Dish(y) ∧ contains(y, z)→ dislikes(x, y)

Dish v ∃dish.Self

dislikes ◦ contains− ◦ dish v dislikes



So how can we pinpoint this?

I Tree-shaped bodies (variables)

I First argument of the conclusion is the root

C (x) ∧ R(x , a) ∧ S(x , y) ∧ D(y) ∧ T (y, a)→ E (x)

C u ∃R.{a} u ∃S .(D u ∃T .{a}) v E



So how can we pinpoint this?

C (x) ∧ R(x , a) ∧ S(x , y) ∧ D(y) ∧ T (y, a)→ V (x , y)

C u ∃R.{a} v ∃R1.Self

D u ∃T .{a} v ∃R2.Self

R1 ◦ S ◦ R2 v V



So how can we pinpoint this?

C (x) ∧ R(x , a) ∧ S(x , y) ∧ D(y) ∧ T (y, a)→ V (x , y)

C u ∃R.{a} v ∃R1.Self

D u ∃T .{a} v ∃R2.Self

R1 ◦ S ◦ R2 v V



So how can we pinpoint this?

Rule graph: C(x) ∧ R(x, a) ∧ S(x, y) ∧ D(y) ∧ T(y, a) → P(x, y)

Graph analysis: determine whether a rule is expressible within a
given profile
Automatic Transformation



DLs Rules: EL++

R1(x , y) ∧ C1(y) ∧ R2(y ,w) ∧ R3(y , z) ∧ C2(z) ∧ R4(x , x)→ C3(x)

∃R1.(C1 u ∃R2.> u ∃R3.C2) u ∃R4.Self v C3
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Extending DL Rules

Extended Description Logic Rules
[ Carral and Hitzler, ESWC12 ]

Conjunction over complex roles?

I Some cyclic rules
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Extending DLs: SROIQ(u)

Middle rule:

hasUncle(x , z) ∧ hasTeacher(x , z)→ TaughtbyUncle(x)

Equivalent Translation:

hasUncle(x , z) ∧ hasTeacher(x , z)→ hasUncleAndTeacher(x , z)

hasUncleAndTeacher(x , z)→ TaughtbyUncle(x)

hasUncle u hasTeacher v hasUncle

∃hasUncleAndTeacher .> v TaughtByUncle



Extending DLs: SROIQ(u)

hasFather(x , y) ∧ hasBrother(y , z) ∧ hasTeacher(x , z)→
TaughtByUncle(x)

hasFather ◦ hasBrother v hasUncle

hasUncle u hasTeacher v hasUncle

∃hasTeacherAndUncle.> v TaughtByUncle



Conclusions and Future Work

I Definition of DL Rules

I Automatic Transformation: implementation

I Extending DL Rules: u



Nominal Schemas



What we learned about rules expressible in OWL

I Rules with tree-shaped body can be expressed in DL,

I role conjunction allows DLs to express some rules with
non-tree-shaped body, but

I many rules are not covered.
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Nominal Schemas

A Better Uncle for OWL
[ Krötzsch et al; WWW 2011 ]

hasParent(x , y) ∧married(y , z) ∧ hasParent(x , z)→ C (x)

∃hasParent.∃married.{z} u ∃hasParent.{z} v C

{z} only binds to known/named individuals!

Covers DL-safe datalog (arbitrary arity of predicates)



Nominal Schemas

A Better Uncle for OWL
[ Krötzsch et al; WWW 2011 ]

hasParent(x , y) ∧married(y , z) ∧ hasParent(x , z)→ C (x)

∃hasParent.∃married.{z} u ∃hasParent.{z} v C

{z} only binds to known/named individuals!

Covers DL-safe datalog (arbitrary arity of predicates)



Complex Rules to OWL

Theorem
Any rule R containing m different free variables, where m > 3, can
be directly expressed in DL using n nominal schemas s.t.
n ≤ m − 2.



DL-safe Rules

I How about simply adding rules “as-is” to the ontology?

I Problem: although the DL-part and rule-part are both
decidable, the combination is undecidable!

I Work around: weaken the rule semantics?
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DL-safety

I Decidability guaranteed if rules only operate on named
individuals

I Named individuals are finite.

I DL-safety: variables in the rules refer to only named
individuals in the OWL ontology.

I In the rule:

R(u, x)∧A(x)∧S(u, y)∧T (x , z)∧T (y , z)∧R(u, z)∧S(x , y)→ B(u)

the variables u, x , y , z refer only to named individuals.

I Approach taken by DL-safe SWRL.
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R(u, x)∧A(x)∧S(u, y)∧T (x , z)∧T (y , z)∧R(u, z)∧S(x , y)→ B(u)

the variables u, x , y , z refer only to named individuals.

I Approach taken by DL-safe SWRL.



Revisiting DL-safety: can it be relaxed?

R(u, x) ∧ A(x) ∧ S(u, y) ∧ T (x , z) ∧ T (y , z) ∧ R(u, z) ∧ S(x , y)→ B(u)

Rule body forms complicated graph:

u

x

y

z

A

R

S

R

T

T

S



Revisiting DL-safety: can it be relaxed?

R(u, x) ∧ A(x) ∧ S(u, y) ∧ T (x , z) ∧ T (y , z) ∧ R(u, z) ∧ S(x , y)→ B(u)

If y and z refer to named individuals, say a, b, it represents:

R(u, x) ∧ A(x) ∧ S(u, a) ∧ T (x , a) ∧ T (a, a) ∧ R(u, a) ∧ S(x , a)→ B(u)

R(u, x) ∧ A(x) ∧ S(u, a) ∧ T (x , b) ∧ T (a, b) ∧ R(u, b) ∧ S(x , a)→ B(u)

R(u, x) ∧ A(x) ∧ S(u, b) ∧ T (x , a) ∧ T (b, a) ∧ R(u, a) ∧ S(x , b)→ B(u)

R(u, x) ∧ A(x) ∧ S(u, b) ∧ T (x , b) ∧ T (b, b) ∧ R(u, b) ∧ S(x , b)→ B(u)



Revisiting DL-safety: can it be relaxed?

R(u, x) ∧ A(x) ∧ S(u, y) ∧ T (x , z) ∧ T (y , z) ∧ R(u, z) ∧ S(x , y)→ B(u)

R(u, x) ∧ A(x) ∧ S(u, a) ∧ T (x , a) ∧ T (a, a) ∧ R(u, a) ∧ S(x , a)→ B(u)

R(u, x) ∧ A(x) ∧ S(u, a) ∧ T (x , b) ∧ T (a, b) ∧ R(u, b) ∧ S(x , a)→ B(u)

R(u, x) ∧ A(x) ∧ S(u, b) ∧ T (x , a) ∧ T (b, a) ∧ R(u, a) ∧ S(x , b)→ B(u)

R(u, x) ∧ A(x) ∧ S(u, b) ∧ T (x , b) ∧ T (b, b) ∧ R(u, b) ∧ S(x , b)→ B(u)

I Only y and z need to be DL-safe.

I Expressible in OWL EL.



Nominal schemas: DL-safety only to some variables

I In the rule

R(u, x)∧A(x)∧S(u, y)∧T (x , z)∧T (y , z)∧R(u, z)∧S(x , y)→ B(u)

only y and z need to be DL-safe to be expressible in OWL EL.
I Expressing it in OWL EL need multiple axioms:

∃R.{a} u ∃R.(A u ∃S .{a} u ∃T .{a}) u ∃S .({a} u ∃T .{a}) v B

∃R.{b} u ∃R.(A u ∃S .{a} u ∃T .{b}) u ∃S .({a} u ∃T .{b}) v B

∃R.{a} u ∃R.(A u ∃S .{b} u ∃T .{a}) u ∃S .({b} u ∃T .{a}) v B

∃R.{b} u ∃R.(A u ∃S .{b} u ∃T .{b}) u ∃S .({b} u ∃T .{b}) v B

I With nominal schemas, the above 4 axioms can be condensed:
∃R.{z} u ∃R.(A u ∃S .{y} u ∃T .{z}) u ∃S .({y} u ∃T .{z}) v B



Nominal schemas: syntax and semantics

I Nominal schemas: a “variable nominal” construct in the form
of {x} where x is a variable.

I Semantically, each occurrence of a nominal schema represents
all possible nominals in the ontology.

I If an axiom α contains n different nominal schemas (each may
occur more than once) while the ontology has m different
named individuals, then α represents mn different axioms,
each is obtained by substituting nominal schemas with named
individuals.

I All those mn axioms are called groundings of α.
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What can we express with nominal schemas?

I Let SROELV(×,u) = SROEL(×,u) + nominal schemas.

I SROELV(u,×) covers:
I DL-safe Datalog rules with predicates of arbitrary arity is also

in SROELV.
I OWL 2 EL without datatypes
I DL-safe OWL 2 RL without datatypes — but, preserves only

ABox entailments (the main inference task for OWL 2 RL)
I most of OWL 2 QL
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Complexity bounds

I Reasoning for SROIQV = SROIQ + nominal schemas, is
theoretically no worse than SROIQ [Krötzsch et al.,
WWW11]

I Reasoning for SROELV is:
I still polynomial (like SROEL) if the number of occurrences of

different nominal schemas in an axiom is bounded by a fixed
constant;

I in general, it is exponential (c.f., combined complexity of
Datalog is ExpTime)
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An Efficient Implementation for
Nominal Schemas



Naive grounding

I Naive reasoning directly from the semantics:

I Ground each axiom containing nominal schemas into
exponentially many axioms without nominal schemas.

I The resulting ontology is in standard DL or OWL and
equivalent to the original one.

I Use any existing reasoning algorithm for the corresponding
standard DL on the resulting ontology.

I Practically inefficient.
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Naive grounding example

∃hParent.∃married.{z} u ∃hParent.{z} v C

Full grounding:

∃hParent.∃married.{a} u ∃hParent.{a} v C

∃hParent.∃married.{b} u ∃hParent.{b} v C

∃hParent.∃married.{c} u ∃hParent.{c} v C

where a, b, and c are the only individuals in the knowledge base
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Naive grounding example

∃R1.(∃R4.{z} u ∃R5.({w} u ∃R6.{z})) u ∃R2.{z} u ∃R3.{w} v C

Full grounding:

∃R1.(∃R4.{a} u ∃R5.({a} u ∃R6.{a})) u ∃R2.{a} u ∃R3.{a} v C

∃R1.(∃R4.{a} u ∃R5.({b} u ∃R6.{a})) u ∃R2.{a} u ∃R3.{b} v C

∃R1.(∃R4.{a} u ∃R5.({c} u ∃R6.{a})) u ∃R2.{a} u ∃R3.{c} v C

∃R1.(∃R4.{a} u ∃R5.({b} u ∃R6.{a})) u ∃R2.{a} u ∃R3.{b} v C

∃R1.(∃R4.{b} u ∃R5.({c} u ∃R6.{b})) u ∃R2.{a} u ∃R3.{c} v C
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Defining Optimizations

I Delayed grounding: [ Cong et al. at JIST 2012 ]

I Ordered Resolution: [ Adila et al. at RR 2012 ]



Towards an Efficient Algorithm for DL Extended with
Nominal Schemas

Algorithm extension presented at [ Markus Krotzsch at Jelia 2010 ]

I Define a mapping from a normalized OWL EL knowledge base
to a Datalog program.

I Make use of an existing Datalog engine to derive all inferences.



OWL EL Normal Form Transformation



Input Transformation



Input Transformation: some mappings

A v C 7→ subClass(a,C )

R v S 7→ subRole(R,T )

A× B v R 7→ subProd(A,B,R)
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Set of Rules



Set of Rules: some mappings

subClass(y , z) ∧ inst(x , y)→ inst(x , z)

subRole(v ,w) ∧ triple(x , v , x ′)→ inst(v ,w)

subProd(y1, y2,w) ∧ inst(x , y1) ∧ inst(z , y2)→ triple(x ,w , x ′)
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Set of Rules: some mappings

subClass(y , z) ∧ inst(x , y)→ inst(x , z)

subRole(v ,w) ∧ triple(x , v , x ′)→ inst(v ,w)

subProd(y1, y2,w) ∧ inst(x , y1) ∧ inst(z , y2)→ triple(x ,w , x ′)



Extending the Algorithm: Nominal Schemas

I Normalization and Input Transformation.

I Set of Rules.

I Set of facts + Set of Rules +
Set of Rules derived from axioms with nominal schemas.



Mapping for Axioms Containing Nominal Schemas

hasParent(x , y) ∧married(y , z) ∧ hasParent(x , z)→ C (x)

∃hasParent.∃married.{z} u ∃hasParent.{z} v C

triple(x , hasParent, y) ∧ triple(y ,married, z) ∧ triple(x , hasParent, z)∧
nom(z)→ inst(x ,C )
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Mapping for Axioms Containing Nominal Schemas

hasParent(x , y) ∧married(y , z) ∧ hasParent(x , z)→ C (x)

∃hasParent.∃married.{z} u ∃hasParent.{z} v C

triple(x , hasParent, y) ∧ triple(y ,married, z) ∧ triple(x , hasParent, z)∧
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Execution Example

hasFather(Mike, Joe)

hasParent(Mike, Mary)

married(Joe, Mary)

hasFather v hasParent

hasParent(x , y) ∧married(y , z) ∧ hasParent(x , z)→ C (x)



Execution Example

triple(Mike, hasFather, Joe)

triple(Mike, hasParent, Mary)

triple(Joe, married, Mary)

subRole(hasFather, hasParent)

subRole(v ,w) ∧ triple(x , v , x ′)→ triple(x ,w , x ′)

triple(x , hasParent, y) ∧ triple(y ,married, z) ∧ triple(x , hasParent, z)∧
nom(z)→ inst(x ,C )



Experimental Results



Conclusions

I DL Logic Rules
I Allows to express simple rules
I Push the DL fragments

I Nominal Schemas
I Convoluted Rules
I Efficient implementations



Non-monotonic rule extension to
OWL



Why Non-monotonic Extensions?

I Open World Assumption (OWA) in general preferable on the
Web

I Without clinical test, no assumptions can be made on outcome

I But with complete knowledge, Closed World Assumption
(CWA) is better

I Patient’s medication is fully known

I Requirement for local closure of certain information



Why Non-monotonic Extensions?

Person v HeartLeft t HeartRight

HeartLeft u HeartRight v ⊥
Person v ∃has.SpinalColumn

∃has.SpinalColumn v Vertebrate

Person(Bob)

⇒ Vertebrate(Bob), Person v Vertebrate, and
∃x .SpinalColumn(x) derivable



Why Non-monotonic Extensions?

Person v HeartLeft t HeartRight

HeartLeft u HeartRight v ⊥
Person v ∃has.SpinalColumn

∃has.SpinalColumn v Vertebrate

Person(Bob)

SSN OK (x)← hasSSN(x , y)

f ← Person(x),notSSN OK (x)

HeartLeft(x)← Vertebrate(x),notHeartRight(x)

⇒ HeartLeft(Bob); hasSSN(Bob, y) for ground y required

Model defaults and exceptions, and integrity constraints



Why focus on Rules?

I Non-monotonic extensions have been studied directly for DLs

I Extensions for, e.g., default logic, epistemic logic, and
circumscription

I But non-trivial and few results in terms of implementations
(apart from ad-hoc solutions in, e.g., recommender systems)

I Rules easily extended to non-monotonic features

I Well-studied field Logic Programming including fast reasoners

I Leverage the Knowledge and Reasoners available



Ways to Combine Ontologies and Rules

Non-trivial matter because of Non-monotonicity

I Rules “on top” of ontologies
I First define concepts then define rules “on top”
I Rules deal with ontologies as external code
I Separate rule and ontology predicates

I Tight (full) integration
I Allow for “defining” predicates both in the ontology and the

rule layer
I Rules may use concepts defined in the ontology
I Ontology can use predicates of the rules

I Modular combination
I Trades some expressiveness for an easier to implement

interface integration



Difficulties of Tight Integration

I Rule languages (LP) use CWA

I Ontology languages (DL) use OWA
I What if a predicate is “defined” using both DL and LP?

I Should its negation be assumed by default?
I Or should it be kept open?
I How exactly can one define what is CWA or OWA in this

context?



Hybrid MKNF Knowledge Bases

I Seamless integration, expressive, yet competitive w.r.t.
computational complexity

I Introduced in [Motik and Rosati, IJCAI07] (extended in
[Motik and Rosati, JACM10])

I Based on Logics of Minimal Knowledge and Negation as
Failure: first-order logics with equality and modal operators K
and not [Lifschitz, IJCAI91]

I Consist of a (decidable) DL knowledge base O and a finite set
of rules, P, of the form

KH1 ∨ . . . ∨KHl ← KA1, . . . ,KAn,notB1, . . . ,notBm

I Combined decidability ensured by DL-safety (restriction of
application of rules to known individuals)



MKNF KB Example

PortCity(Barcelona) OnSea(Barcelona,Mediterranean)

PortCity(Hamburg) NonSeaSideCity(Hamburg)

RainyCity(Manchester) Has(Manchester ,AquaticsCenter)

Recreational(AquaticsCenter)

SeaSideCity v ∃Has.Beach

Beach v Recreational

∃Has.Recreational v RecreationalCity

KSeaSideCity(x)← KPortCity(x),notNonSeaSideCity(x)

KinterestingCity(x)← KRecreationalCity(x),notRainyCity(x)

KhasOnSea(x)← KOnSea(x , y)

Kfalse ← KSeaSideCity(x),nothasOnSea(x)

KsummerDestination(x)← KinterestingCity(x),KOnSea(x , y)



Properties of Hybrid MKNF

I Generalizes/captures (sometimes not entirely) quite a number
of different approaches

I Faithful w.r.t. Stable Models for empty O and w.r.t. OWL for
empty P

I Data complexity of instance checking in MKNF:

rules DL = ∅ DL ∈ P DL ∈ coNP

definite P P coNP

stratified P P ∆p
2

normal coNP coNP Πp
2

disjunctive Πp
2 Πp

2 Πp
2



Problems of two-valued Hybrid MKNF

I Models have to be guessed and checked

I Unrestricted rules increase computational complexity

I Queries for particular information require computation of the
entire model

I Limited robustness, e.g., w.r.t. merging of KBs (Ku ← notu)

[Knorr et al., AI11] provides alternative based on well-founded
semantics for non-disjunctive logic programs



Stable Models vs. Well-Founded Model in LP

p ← notq q ← notp a← notb b ←

has two stable models {p, b} and {q, b}, while the unique
well-founded model assigns t to b, f to a, and u to both p and q.
For

p ← notp q ← notq a← notb b ←

the well-founded model is the same, but there are no stable models!



Stable Models vs. Well-Founded Model in LP

Stable Models/Answer Sets

I More expressive language

I More derivable information

I Fast ASP solvers available

Well-founded Model

I Lower computational complexity

I always exists

I top-down derivations possible

Similar for combinations of rules and ontologies



Properties of Well-Founded MKNF

I Sound w.r.t. two-valued MKNF semantics

I Faithful w.r.t. first-order semantics for empty P and w.r.t. the
Well-Founded Semantics for empty O

I given complexity C for instance checking in O we obtain a
data complexity PC ; for C =P, polynomial data complexity

I Top-down procedure SLG(O) [Alferes et al., ACM TOCL13]
combining a DL reasoner and XSB Prolog, special procedures
defined for OWL 2 QL and a large fragment of OWL 2 EL



Non-monotonic DL Extension with MKNF

ALCKNF [Donini et al., ACM TOCL02]

ALC with MKNF logic-style modal operators K – minimal
knowledge – and A – autoepistemic assumption (corresponds to
¬not)

K can be used to derive new information, A to verify if information
is already known

Different expressiveness compared to Hybrid MKNF



Non-monotonic Features of ALCKNF

from [Donini et al., ACM TOCL02]

I Defaults:

KI uK(employee u ∃belongsTo.programmingDept)u
¬Amanager v K(engineer tmathematican)

I Integrity Constraints:

Kemployee v (Amale t Afemale)

Kemployee v ∃ASSN.Avalid



Non-monotonic Features of ALCKNF

I Concept and Role Closure

¬UScitizen(Paula) Manages(Ann,Marc)

¬UScitizen(Carl) UScitizen(Marc)

adding (∀KManages.KUScitizen)(Ann) closes the role

adding ∃KManages.A¬UScitizen(Ann) closes the concept



Can We find a joint formalism for both MKNF extensions?

I Contribute towards a unifying logic

I Reconcile OWL and Datalog together with CWA extensions
(on both sides)

I Usage of one (DL-style) syntax in opposite to common hybrid
languages

I Coverage of many different previous approaches



SROIQV(Bs ,×)KNF

I OWL 2 DL (SROIQ) with concept products (× - [Krötzsch,
SSW10]) and Boolean constructors over simple roles (Bs -
[Rudolph et al., JELIA08])

I Nominal schemas (V - [Krötzsch et al., WWW11]) - variable
nominals that can only bind to known individuals

I MKNF logic-style modal operators K – minimal knowledge –
and A – autoepistemic assumption – (KNF - from ALCKNF
[Donini et al., ACM TOCL02])



Syntax

signature Σ = 〈NI ,NC ,NR ,NV 〉

Definition
The set of SROIQV(Bs ,×)KNF concepts C and
(simple/non-simple) SROIQV(Bs ,×)KNF roles R (Rs/Rn) are
defined by the following grammar.

Rs ::=Ns
R | (Ns

R)− | U | NC × NC | ¬Rs | Rs u Rs | Rs t Rs |
KRs | ARs

Rn ::=Nn
R | (Nn

R)− | U | NC × NC | KRn | ARn

R ::=Rs | Rn

C ::=> | ⊥ | NC | {NI} | {NV } | ¬C | C u C | C t C |
∃R.C | ∀R.C | ∃Rs .Self | 6k Rs .C | >k Rs .C | KC | AC



Semantics – Principal Notions

I Based on interpretations I = (∆I , ·I) plus variable
assignments (for nominal variables) mapping each variable to
the interpretation of one element in NI

I Variant of Standard Name Assumption applied: essentially I
is a bijective function on NI while still allowing that elements
of NI may be identified ( → only one ∆)

An MKNF structure is a triple (I,M,N ) where I is an
interpretation, M and N are sets of interpretations, and I and all
interpretations in M and N are defined over ∆. For any such
(I,M,N ) and assignment Z, the function ·(I,M,N ),Z is defined.



Function ·(I,M,N ),Z (parts of it)

Syntax Semantics

a aI ∈ ∆

x Z(x) ∈ ∆

¬C ∆ \ C (I,M,N ),Z

{t} {a | a ≈ t(I,M,N ),Z}
KC

⋂
J∈M C (J ,M,N ),Z

AC
⋂
J∈N C (J ,M,N ),Z

KR
⋂
J∈M R(J ,M,N ),Z

AR
⋂
J∈N R(J ,M,N ),Z

C v D C (I,M,N ),Z ⊆ D(I,M,N ),Z



(Monotonic) Semantics

Definition
(I,M,N ) satisfies axiom α, written (I,M,N ) |= α, if
(I,M,N ),Z |= α for all variable assignments Z.

A (non-empty) set of interpretations M satisfies α, written
M |= α, if (I,M,M) |= α holds for all I ∈ M.

M satisfies a SROIQV(Bs ,×)KNF knowledge base KB, written
M |= KB, if M |= α for all axioms α ∈ KB.



(Non-monotonic) Semantics

Definition
Given a SROIQV(Bs ,×)KNF knowledge base KB, a
(non-empty) set of interpretations M is an MKNF model of KB if

(1) M |= KB, and

(2) for each M′ with M⊂M′, (I ′,M′,M) 6|= KB for some
I ′ ∈M′.



Example

C Persons whose parents are married

HasParent(mary, john) (1)

(∃HasParent.∃Married.{john})(mary) (2)

∃HasParent.{z} u ∃HasParent.∃Married.{z} v C (3)

We can substitute (3) by

K∃HasParent.{z} uK∃HasParent.∃Married.{z} v KC



Example

C Persons whose parents are married

HasParent(mary, john) (1)

(∃HasParent.∃Married.{john})(mary) (2)

∃HasParent.{z} u ∃HasParent.∃Married.{z} v C (3)

We can also substitute (3) by

K∃HasParent.{z} uK∃HasParent.∃Married.{z} v AC



Example

C Persons whose parents are married

HasParent(mary, john) (1)

(∃HasParent.∃Married.{john})(mary) (2)

∃HasParent.{z} u ∃HasParent.∃Married.{z} v C (3)

We can also substitute (3) by

∃HasParent.{z} u ∃HasParent.∃¬AMarried.{z} v C

Now C are Persons that are known to be not married



Decidability

I First, reduce reasoning in SROIQV(Bs ,×)KNF to reasoning
in SROIQ(Bs)KNF by grounding and by simulating concept
products

I Then, follow approach for ALCKNK:
I each model of a knowledge base in SROIQ(Bs)KNF is cast

into a SROIQ(Bs) KB. Consequently, reasoning in
SROIQ(Bs)KNF is reduced to a number of reasoning tasks
in the non-modal SROIQ(Bs)

I For simplicity, appearance of modal operators restricted to
simple KBs as in ALCKNF (finitely many, finite
representations of models)



(Monotonic) Coverage

I SROIQ (a.k.a. OWL 2 DL);

I The tractable profiles OWL 2 EL, OWL 2 RL, OWL 2 QL;

I RIF-Core, i.e., n-ary Datalog, interpreted as DL-safe Rules
(general case new result in [Knorr et al., ECAI12]);

I DL-safe SWRL [Motik et al., JWS05], AL-log [Donini et al.,
JIIS98], and CARIN [Levy and Rousset, AI98].



(Non-monotonic) Coverage

I ALCKNF [Donini et al., ACM TOCL02]; includes notions of
concept and role closure present in this formalism;

I Closed Reiter defaults covered through the coverage of
ALCKNF ; includes coverage of DLs extended with default
rules [Baader and Hollunder, JAR95];

I Hybrid MKNF [Motik and Rosati, JACM10];

I Answer Set Programming, i.e., disjunctive Datalog with
classical negation and non-monotonic negation under the
answer set semantics; follows from the coverage of Hybrid
MKNF.



N-nary Datalog

NR = NP,2 ∪ {U} ∪ S , where S is a special set of roles: If
P ∈ NP,>2 has arity k , then P1, . . . ,Pk ∈ S are unique binary
predicates associated with P;

Translation: dl(P(t1, . . . , tk)) := ∃U.(∃P1.{t1} u . . . u ∃Pk .{tk});

Family of interpretations of J for interpretation I of Datalog RB:

(a) To each (d1, . . . , dk) ∈ PI , assign a unique element e in ∆
(i.e., we define a total, injective function from the set of
tuples to ∆).

(d) For each P ∈ NP,>2, if (d1, . . . , dk) ∈ PI , then (e, di ) ∈ PJi ,
where e is the element assigned to (d1, . . . , dk) in point (a).



Hybrid MKNF

Seamless integration of DL ontology O and rules of the form

KH1 ∨KHl ← KA1, . . . ,KAn,notB1, . . . ,notBm

Based on the n-nary Datalog embedding, additionally:

dl(KH1 ∨KHl ← KA1, . . . ,KAn,notB1, . . . ,notBm) :=
Kdl(A1) u . . . uKdl(An) u ¬Adl(B1) u . . . u ¬Adl(Bm)
v Kdl(H1) t . . . tKdl(Hl)



Example

KC (x)←KHasParent(x , y),KHasParent(x , z),K(y 6≈ z),

notMarried(y , z).

can be translated into

K∃U.({x} u ∃HasParent.{y}) uK∃U.({x} u
∃HasParent.{z}) uK∃U.({y} u ∃ 6≈ .{z}) u ¬A∃U.({y} u
∃Married.{z}) v K∃U.({x} u C )



Thank you!
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