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Abstract Many applications (such as system and user monitoring, runtime
verification, diagnosis, observation-based decision making, intention recogni-
tion) all require to detect the occurrence of an event in a system, which entails
the ability to observe the system. Observation can be costly, so it makes sense
to try and reduce the number of observations, without losing full certainty
about the event’s actual occurrence. In this paper, we propose a formalization
of this problem. We formally show that, whenever the event to be detected
follows a discrete spatial or temporal pattern, then it is possible to reduce
the number of observations. We discuss exact and approximate algorithms to
solve the problem, and provide an experimental evaluation of them. We ap-
ply the resulting algorithms to verification of linear temporal logics formulæ.
Finally, we discuss possible generalizations and extensions, and, in particular,
how event detection can benefit from logic programming techniques.

Keywords Event detection · Runtime verification · Temporal logic · Logic
programming · Complexity

1 Introduction

An event can be defined as a combination of observable states in a system,
that may occur at some points in space and time, in known configurations.
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Event detection is a crucial process in many applications. For instance, in
system and user monitoring [CDPT10], events need to be detected in order
to check the correct functioning of the system or even the user’s behavior; in
runtime verification [LS09], observation is necessary to verify whether the sys-
tem’s behavior is exhibiting specified desirable properties; in diagnosis [LP06,
PL07], events must be observed before an explanation for them is sought;
in observation-based decision making [PR10], event detection decidedly influ-
ences the decision making process.

In order to detect events, it is of course necessary to observe the very
system where the event may occur, and to try and match observations to the
available knowledge about the events. Generally speaking, a system will be
observable at some given points in a set of spatial/temporal coordinates, and
not in others; each observation will consist in giving a description of the state
of the system at a particular spatial/temporal point.

For example, in a system to monitor a patient’s temperature, the event
being monitored for detection might be the temperature being higher than
37◦C, and the coordinate points would represent time points, each observation
being the pair consisting of a time point and a temperature value. The designer
may choose to represent time points by a discrete (say, one point for each
minute) or a continuous sequence. As another example, consider the widely
studied problem of intention recognition, defined as the process of becoming
aware of the intention of another agent and, more technically, as the problem
of inferring an agent’s intention through the observation of some of its actions
and their effects on the environment [KA86,HSB09]. In this case, what is
detected are performed actions, events being collections of actions that accord
with possible plans or action sequences known to achieve some goal.

However, observation may be a costly process: for instance, because of re-
quired instruments, because of needed analytical resources, of logging deluge,
or because of time constraints on observations requiring fast or impossible to
meet demands, or because of excessive and swamping logging. In these cases,
observing the system at all spatial or temporal points may be undesirable or
unfeasible, and the question naturally arises whether it is possible, whenever
events follow a known spatial/temporal pattern, to reduce the number of re-
quired observations, without losing certainty about an event’s occurrence. In
other words, can a portion of system states be safely ignored without loss of
significant knowledge? For example, in a monitoring system, such a possibility
would let the designer employ cheaper hardware, required to support milder
operation frequencies, and also to reduce excessive communication traffic, as
well as logging storage and related costs.

Such considerations are relevant to the aforementioned applications. In
intention recognition, for instance, not all actions required to achieve a goal
need to have been observed in order to conclude about possible intentions. Nor
are all actions necessarily observable; which underscores our point of concern
about efficacy and efficiency of observation attempts, and correspondent re-
source allocation. In the last decade, as agent systems have been increasingly
used in several real-world applications (see [FBHT07] and the many references
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therein), the issue of runtime verification of properties, which express the cor-
rect functioning of the system with respect to its specification, has become
increasingly important. In previous work, Costantini et al. developed a frame-
work for logic evolving agents (cf. [CTTT07,CDP08]), where every agent is
seen as the composition of an object level program plus one or more meta-
levels. In this framework, agents interact with the environment and are able to
modify themselves and evolve according to both external and internal stimuli.
To address this issue, in [CDPT09] the authors introduced an approach to
runtime verification of properties of agent behavior, wherein they adopted a
temporal logic representation of such properties. The proposed framework was
employed to develop suitable case-studies in significant application realms in
ambient intelligence, like for example surveillance systems for elderly people
or those with disabilities, where the system is intended to monitor their on-
going behavior. In such application it is often possible to reduce the run time
monitoring effort by making use of the available knowledge about behavior
patterns; as a simple example, if it is known that a behavior is observable for
at least ten consecutive time points, it is possible to detect it by observing the
system only every tenth time point, instead of at all time points. A desire to
formally prove and generalize such an intuitive result originally inspired the
present work. And since the other applications mentioned at the beginning of
this introduction also require event detection, we believe that they too can
potentially benefit from the work presented herein.

Indeed, in this paper we formalize the problem of whether it is possible
to safely reduce the number of necessary observations in the general case,
and show that the answer is yes for the simple, but sufficiently significant
case where the observation space can be modeled as a set of (not necessar-
ily consecutive) natural numbers. This being the case in the aforementioned
temperature monitoring or ambient intelligence examples, or, more generally,
in domains where events occur in systems of discrete spatial or temporal co-
ordinates, such as those in which events can be observed at a sequence of
temporal instants, or at points in a spatial curve. We prove that, in this case,
the problem of finding a smaller set of observation points can be reduced to a
well known NP-complete problem (minimum hitting set); and we show exper-
imentally that solving it by means of a polynomial approximation algorithm
yields noteworthy reductions in the number of necessary observation points.
We also show that the results proven here can be expressed in the formalism of
Linear Temporal Logics [Pnu77], widely utilized in model checking and, more
recently, in runtime verification [BLS11], thereby opening a wider application
range.

A considerable effort has been spent to develop techniques for discovering
patterns in time series data. For instance, [GS99] proposes an iterative algo-
rithm for discovering events in time series data by means of point of change
detection (that is, a change in the parameters of the system), while [HKM+96]
and [MTV97] focus on discovering episodes (defined as a collection of events
that occur relatively close to each other) in event sequences, by data min-
ing; [PT96] extends those works, in applying a temporal logic programming
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approach to pattern discovery. [JDtL06] uses data mining to learn spatial-
temporal traffic patterns, in order to identify possible accidents, by comparing
real-time data with the historical models. Our contribution can be regarded
as downstream of those on pattern discovery, in that it uses knowledge about
patterns to sparingly strive to detect the events that follow those patterns.

In this paper, we distinctly focus on the problem of reducing the number of
necessary observations to detect an event of already known pattern (by design
or by prior discovery, say). This distinguishes the setting of our work from
that of previous work on spatial-temporal cluster detection, such as [Iye04] and
[NMSD05], because, in those works, the knowledge about the cluster pattern
is not complete (in [NMSD05] clusters are rectangles of unknown length and
width, and in [Iye04] they can expand or shrink over time). Moreover, in a
particular case we study in more detail (of a coordinate system that can be
represented as a set of natural numbers) we do not assume the observation
points for the event to be contiguous.

Attempts to reduce the number of observations have been applied to prob-
lems, such as string matching [SCC05]), which are different from ours, although
related (as we shall discuss in the sequel).

The paper is structured as follows. In Section 2, we provide a general
formulation of the problem. In Section 3, we study the problem for the special
case where the temporal or spatial event structure can be described by a set of
natural numbers; for this case, we show the reduction of the problem to a well
known NP-complete problem (minimum hitting set). In Section 4, we discuss
and compare experimentally an exact and an approximation algorithm to solve
the problem. In Section 5, we consider the problem in the context of runtime
verification of Linear Temporal Logic formulæ, and we apply the results proved
in Section 3 to this setting. In Section 6, we discuss possible extensions and
generalizations of our approach, and the application of techniques borrowed
from logic programming to problems beyond plain event detection.

2 Event detection in general

In this section, we introduce the definitions of the basic concepts, and a general
formulation of the problem we address.

2.1 Coordinate system

A coordinate system defines points where events can happen. Coordinates can
be interpreted, for instance, as spatial, temporal, or both. We only require the
operation of sum (used in Definition 3, of event) to be defined over coordinates.

Definition 1 A coordinate system S is the cartesian product of N sets,
closed under the sum operation.

Each of the sets can be continuous (e.g., the set R of real numbers), or
discrete (e.g., the sets N of natural numbers or Z of integer numbers).
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2.2 Patterns and events

A pattern associates a value taken from a value set V to (some) points in the
coordinate system.

We do not impose any restriction on admissible value sets. In the simplest
case, the value set will have only one element; this representation is satisfactory
in cases where the value is not significant, and the relevant information is the
set of points where the pattern is defined.

Definition 2 Given a coordinate system S, a pattern P over S is a partial
function from S to some value set V.

As usual, a pattern P’s domain (dom P) is the set of points where P is
defined, in general a subset of S.

S V P dom P
N {1} {〈0, 1〉, 〈4, 1〉, 〈5, 1〉} {0, 4, 5}
R2 R {〈〈0, 0〉, 0〉} {〈0, 0〉}
R2 R {〈〈x, y〉, x〉 | x ∈ R ∧ y ∈ R} R2

R2 R {〈〈x, y〉, 1〉 | 0 ≤ x ≤ 1 ∧ 0 ≤ y ≤ 1} {〈x, y〉 | 0 ≤ x ≤ 1 ∧ 0 ≤ y ≤ 1}

Table 1 Example patterns

An event is an association of values to points in a coordinate system, that
follows a given pattern. It is defined as the translation of its pattern by an
offset.

Definition 3 Given a pattern P and τ ∈ S, the event EP(τ) of pattern P
and offset τ is the set {〈τ + p,P(p)〉 | p ∈ dom P}.

We call unfolding the set of all possible events of a given pattern.

Definition 4 Given a pattern P in a coordinate system S, the unfolding UP
of P is the set {EP(τ) | τ ∈ S}.

The observability set of an event e is the set of points in the coordinate
system where e can be observed.

Definition 5 For any event e, the observability set of e, denoted by O(e),
is the projection of e over S.

Example 1 If P is the first pattern in Table 1, the event EP(5) is
{〈5, 1〉, 〈9, 1〉, 〈10, 1〉}, and its observability set is {5, 9, 10}.

A set of points in the coordinate system that is guaranteed to intersect
the observability set of any event with a given pattern can be understood as
a suitable set of points to observe in order to decide about the occurrence of
that event. We say that such a set covers the pattern, or is one of the pattern’s
covering sets. For example, if the coordinate system represents a spatial area,
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a covering set can be understood as a set of positions to deploy sensors (for
example, in wireless sensor networks applications). Note that the covering of
a pattern by a set does not depend on the pattern’s value set.

Definition 6 A set C ⊆ S covers a pattern P (or, equivalently, is a cov-
ering set of P’s) if and only if for each τ ∈ S there exists an element of
O(EP(τ)) that belongs to C.

Example 2 Consider a pattern P, whose domain is {0, 1, 2}, on the coordinate
system of the set N of natural numbers. {3n | n ∈ N} covers P. C = {1, 2}
does not cover P, because, for instance, 3 belongs to the observability set of
the event of pattern P and offset 3 and does not belong to C. For the same
reason, {4n | n ∈ N} does not cover P.

Example 3 C = Z×Z covers the last pattern in Table 1. Indeed, the observ-
ability set of a generic event of offset τ = 〈τx, τy〉 is
{〈x, y〉 | τx ≤ x ≤ τx + 1 ∧ τy ≤ y ≤ τy + 1}; it contains 〈bτxc + 1, bτyc + 1〉
(an element of C), because, for any α ∈ R, α ≤ bαc+ 1 ≤ α+ 1.

2.3 The sampling problem

If the application requires to determine the occurrence of an event with a given
pattern, it is of interest to determine a set of points in the coordinate system
that guarantees that, if an event occurs, its occurrence will be detected1.

Definition 7 Given a pattern P over S, the sampling problem consists of
finding a set C ⊆ S that covers P.

The problem has a trivial solution (S itself, i.e., to observe the system
at all points), but the solution may be required to satisfy some property. A
reasonable requirement is for it to minimize a cost function; if the cost of
observation is a constant, that translates to minimum cardinality. However,
applications can impose further or different requirements. For instance, if the
points in the coordinate system represent time points, then it may be required
for the covering set to intersect observability sets at or near their minimum,
in order to detect events as soon as possible.

Comparison with string matching String matching consists of finding one or
all the occurrences of a string P , called a pattern, in a text T . String matching
is an important problem, it has been studied for decades, and has many ap-
plication areas. The string-matching algorithms developed can be divided into
four categories, depending on the order of comparisons of the characters in P
and T : (i) from left to right, (ii) from right to left, (iii) in a specific order,
and (iv) in any order.

1 Note that detecting the occurrence is different from observing the whole event. For
example, if the event consists in a red light staying on for a continuous interval in time, to
detect the event it is sufficient to observe the light at any one time point in the interval.
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Event detection, at first sight, may appear to be similar to a string matching
problem where P is given before T , and comparisons can be done in any
order. However, it differs substantially from string matching, since our aim
(using string matching terminology) is to determine whether a character in P
occurs in T , knowing that T fulfills some property. For instance, the problem
of detecting an event of pattern P={〈0, a〉, 〈1, a〉, . . . , 〈M,a〉} in a stream T
can be formulated as follows: given an alphabet Σ = {a, x}, let T be described
by a regular expression of the form x∗(aM+1xn)∗, and determine whether
the character a occurs in T . In other words, in our problem we can exploit
knowledge about T , which is not assumed in string matching.

For this reason, techniques to reduce the number of observations devel-
oped for string matching (see, for instance, [SCC05]) cannot be applied to the
problem studied here.

3 Sampling problem for natural patterns

In this section, we consider the case where the coordinate system is the set N
of natural numbers, and we discuss the concomitant sampling problem.

Definition 8 A natural pattern is a pattern over the set N of natural num-
bers.

A natural interpretation for this case is that the coordinate system repre-
sents a sequence of time points at which the system can be observed. However,
other interpretations are possible: for instance, spatial points, or states in a
path on a Kripke structure (see Section 5).

For applications, it seems reasonable to consider patterns whose domain
has 0 as its minimum: after all, the representation of the pattern domain is
the designer’s choice. However, the following result lets us reduce to this case,
for generic pattern domains, by means of a translation.

Definition 9 Given a natural pattern P, let m = min dom P.
Then the normalization of P is the pattern
P = {〈p,P(p+m)〉 | p+m ∈ dom P}.

Obviously, for any natural pattern P, dom P is dom P translated by −m,
and min dom P = 0.

Theorem 1 Let P be a natural pattern. Then an event of pattern P is also
an event of pattern P.

Proof EP(τ) = {〈τ + p,P(p)〉 | p ∈ dom P} which, by substituting q + m
for p, where m = min dom P, is equal to
{〈τ + q +m,P(q +m)〉 | q +m ∈ dom P} = EP(τ +m).

Therefore, the unfolding of the original pattern is a subset of the unfolding
of the normalized pattern, and a set that covers the normalized pattern also



8

covers the original pattern. This lets us solve the sampling problem for the
normalized pattern, whose domain’s maximum element is in general smaller,
and thus reduce complexity and the approximation ratio, if an approximation
algorithm is used (see Section 4).

The following (intuitive) result shows that the covering set for a natural
pattern cannot be finite.

Theorem 2 A natural pattern cannot be covered by a finite set.

Proof Let P be a pattern and I a generic finite subset of N. If I is finite,
it has a maximum M . Since dom P is composed of natural numbers, all the
elements of the observablility set of the event e of pattern P and offset M + 1
are strictly greater than M ; therefore, none of them belongs to I. Since I does
not intersect the observability set of an event of pattern P, I does not cover
P.

The covering set must be infinite, which makes it dubious how to approach
its computation, depending on the properties that it is required to satisfy (such
as minimum cardinality).

To address this issue, we now prove a result that shows how the sampling
problem for natural patterns can be reduced to finding a finite set.

First, two definitions are provided.

Definition 10 Let I be a finite set of natural numbers, and let M = max I.
For an integer k, let σk = {(p+ k) mod (M + 1) | p ∈ I}.
I’s circular repetition is the collection of sets
Z = {σk | k ∈ [0 .. M ]}, where [0 .. M ] is the interval of integers from

0 to M .

Definition 11 Let P be a natural pattern.
Then a set with non-empty intersection with each element of the circular

repetition of dom P is a covering shape of P’s.

Theorem 3 Let P be a natural pattern and let M = max dom P.
Let SC be a covering shape of P’s. Then the set

C = {q + k(M + 1) | q ∈ SC ∧ k ∈ N} covers P.

Proof Consider a generic event e of pattern P and offset τ .
Let R = τ mod (M + 1). Consider σR. By hypothesis, it intersects SC in

(at least) a natural number q. Since q ∈ σR, there exists p ∈ dom P such
that q = (p+R) mod (M + 1). Since p ∈ dom P, τ + p ∈ O(e). Since τ is
equal to R modulo M + 1, τ + p is equal to R + p modulo M + 1, which is
equal to q modulo M+1. Besides, since for any natural numbers a and b (with
b ≥ 0), a mod b ≤ a, R ≤ τ , so R+p ≤ τ+p, thus (R+ p) mod (M + 1) ≤ τ+p,
i.e., q ≤ τ + p. Summarizing, (i) τ + p is equal to q modulo M + 1, and (ii)
q ≤ τ +p; thus, ∃k ∈ N | τ + p = q + k(M + 1). Therefore, also τ + p ∈ C.

In conclusion, the observability set of a generic event of pattern P intersects
C; that is, C covers P.
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Therefore, the sampling problem can be reduced to finding a finite set SC ,
the pattern’s covering shape, that intersects a collection of M + 1 subsets of
[0 .. M ]. The periodic repetition of SC , with period (M+1), covers the pattern.
A trivial, and uninteresting, solution is [0 .. M ] itself (which corresponds to
observing the system at all time points). However, finding such a set with
minimum cardinality is a well known NP-hard problem: the minimum hitting
set problem. In Section 4 we discuss exact and approximate solutions to this
problem.

The following definition gives a measure of how much the number of nec-
essary observations is reduced by observing the system only at the periodic
repetition of a pattern’s covering set, instead of at all points.

Definition 12 Given a normalized pattern P and a covering shape SC of P’s,

the corresponding sampling ratio is defined as RSC ,P = |SC |
1+max dom P .

|dom P| 2 4 6 8 10 12 14 16 18 20
RSC ,P 0.52 0.32 0.24 0.19 0.15 0.14 0.12 0.1 0.1 0.1

Table 2 Sampling ratios.

Example 4 Table 2 shows average sampling ratios for random patterns with
domain maximum of 20, for different values of the domain cardinality. In par-
ticular, for each random pattern, a covering shape of minimum cardinality
was computed with the exact algorithm introduced in Section 4.1, and the
sampling ratio was computed per its definition.

Example 5 Let [0 .. M ]be the domain of a pattern P. By Definition 10, dom P’s
circular repetition is Z = {σ0, . . . , σM}, where for i ∈ [0 .. M ] σi = [0 .. M ].
A minimum hitting set for Z is {i}, for any i ∈ [0 .. M ]. Therefore, for each
i, by Theorem 3 a covering set for P is {i+ k(M + 1) | k ∈ N}. The corre-
sponding sampling ratio, by Definition 12 is 1

M+1 , confirming the intuitive idea
that, if an event lasts M + 1 points, it is sufficient to observe every (M + 1)-th
point to detect its occurrence.

Example 6 Consider a system that has to monitor whether a user is pressing a
button, and to take some action in response; for instance, a piece of equipment
that should be reset when the user pushes the reset button, and that checks
the status of the reset button by periodic polling. Let the system clock be
1MHz. At each clock step, the signal corresponding to the button will be 1 if
the button is pressed, and 0 if the button is not pressed. It is known that the
releasing of the button, once it has been pressed, takes at least 1 ms (1000
clock cycles); is it worth checking the signal at each clock cycle? Of course
not. With reference to Example 5, the pressing is an event whose pattern has
domain [0 .. M ] with M = 999; and in order to decide about the button having
been pressed, it is sufficient to observe the signal every 1000-th clock cycle,
saving computing and communication resources.
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Example 7 Consider a pattern P whose domain is {8, 10, 13}. Then dom P =
{0, 2, 5}.

Fig. 1 Circular repetition of dom P.

By Definition 10, dom P’s circular repetition is Z = {σ0, . . . , σ5}, where
σ0 = {0, 2, 5}, σ1 = {0, 1, 3}, σ2 = {1, 2, 4}, σ3 = {2, 3, 5}, σ4 = {0, 3, 4},
and σ5 = {1, 4, 5} (see Figure 1).

Fig. 2 A covering shape of P is {0, 1, 3}, which intersects the element of the circular repe-
tition of dom P in the red (darker in grayscale) circles.

By Definition 11, P’s covering shape SC is required to have non-empty
intersection with all the sets in Z; for instance, a possible covering shape
is SC = {0, 1, 3} (Figure 2). It can be easily verified that its cardinality is
minimal.

Fig. 3 A covering set for P.
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By Theorem 3, the corresponding covering set of P’s is
C = {q + 6k | q ∈ {0, 1, 3} ∧ k ∈ N} = {0, 1, 3, 6, 7, 9, 12, . . .} (Figure 3),
which also covers P.

The sampling ratio, by Definition 12, is RSC ,P = 3/6 = 1/2, which corre-
sponds to a reduction in necessary observation points of 50%.

Example 8 With reference to Example 7, consider an event that is known to
activate a sensor

– at the beginning of the event;
– again after 2 time steps;
– again after 3 more time steps.

It is also known that nothing else can cause the activation of the sensor.

In order to detect the event, one can of course observe the sensor at each
time step; or one can note that the activation of the sensor is an event whose
pattern has domain {0, 2, 5} and exploit the result of Example 7, and so observe
the sensor at the time steps in the set C = {q + 6k | q ∈ {0, 1, 3} ∧ k ∈ N},
thus saving half of the observations.

Example 9 Consider again Example 6, but suppose now that, in order to save
energy, the signal from the reset button has a duty-cycle of 1/100 (i.e., while
the button is pressed, the signal is 1 for 1 microsecond and 0 for 99 mi-
croseconds). Suppose, moreover, that it can be safely assumed that the button
stays pressed for 1 millisecond. Then the domain of the pattern of the reset
signal is {0, 100, 200, 300, 400, 500, 600, 700, 800, 900}. The sampling ratio of a
corresponding covering shape (computed with the approximation algorithm
described in Section 4.22) is 1/10; this means that the number of observations
necessary to detect whether the reset button is being pressed can be safely
reduced by 90%.

4 Algorithms and experimental evaluation

In this section, we discuss solution methods for the minimum hitting set prob-
lem to which the sampling problem can be reduced, for natural patterns, as
shown in section 3. We describe an exact algorithm for the minimum hitting
set problem, and we discuss reduction of the minimum hitting set problem
to the set cover problem, and the solution of the latter by means of a well-
known approximation polynomial algorithm. We compare experimentally the
two algorithms.
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input : A natural pattern P’s domain D
output : A covering shape of P’s with minimal cardinality
begin

circ rep ← circular repetition(D)

best ← [0 .. max D]
candidate ← ∅
while candidate ← gen next set(candidate,cardinality(best)− 1) do

if hits(candidate,circ rep) then
best ← candidate

end

end
return best

end

Algorithm 1: Algorithm to compute a natural pattern’s covering shape
with minimal cardinality.

4.1 Exact algorithm

Algorithm 1 is based on a total order of all the elements of 2[0 .. max dom P];
one of these elements is returned as a minimal hitting set.

The algorithm tries, as a first attempt, the full integer interval from 0 to
max dom P, which obviously hits the pattern domain’s circular repetition.
Then, at each iteration, it tests for hitting the next set with lesser cardinality
than the current best, according to the aforementioned order.

The algorithm uses the following functions:

– cardinality takes a set as an argument, and returns its cardinality;
– circular repetition takes a finite natural set as an argument, and com-

putes its circular repetition (see Definition 10);
– gen next set takes a set I and a natural number n as arguments, and

returns the first set of natural numbers with at most n elements that follows
I in the chosen enumeration of 2[0 .. max dom P], or false if no such set
exists;

– hits takes a set I and a collection Z of sets as arguments, and returns
true if I has non-empty intersection with all elements of Z.

4.2 Reduction to set cover and approximate solution

Each minimum hitting set problem can be transformed into a set cover prob-
lem: given a collection S ⊆ 2[1 .. n], find a subset of S of minimal cardinality
whose union is [1 .. n].

Given a collection R = r1 . . . rn of sets, whose union is [1 .. k], the min-
imum hitting set problem for R can be formulated as a set cover problem as

2 Such covering shape is {0, 1, 2, 3, 32, 33, 34, 35, 64, 65, 66, 67, 96, 97, 98, 99, 128, 129, 130,
131, 160, 161, 162, 163, 192, 193, 194, 195, 224, 225, 226, 227, 256, 257, 258, 259, 288, 289, 290,
291, 320, 321, 322, 323, 352, 353, 354, 355, 384, 385, 386, 387, 416, 417, 418, 419, 448, 449, 450,
451, 480, 481, 482, 483, 512, 513, 514, 515, 544, 545, 546, 547, 576, 577, 578, 579, 608, 609, 610,
611, 640, 641, 642, 643, 672, 673, 674, 675, 704, 705, 706, 707, 736, 737, 738, 739, 768, 769, 770, 771}.



13

follows. For each e ∈ [1 .. k], let se = {i | e ∈ ri}, and let S be the collec-
tion of all such sets. The union of each subset T of S is the set of indices of the
sets in R which contain one of the indices of the sets in T . Thus, the indices
of a solution T of a set cover problem for S form a minimal hitting set for R,
because T ’s union is [1 .. n], so all elements of R have non-empty intersection
with the set of T ’s indices, and the union of no proper subset of T is [1 .. n],
or T would not be minimal.

The set cover problem has been widely studied in the literature; in particu-
lar, approximation algorithms have been proposed for it. A very simple greedy
algorithm, at each step, chooses the set with higher cardinality, and it deletes
such set’s elements from the other sets, until the universe is covered.

Its performance (expressed as the ratio between the cardinality of the out-
put and of the minimal covering collection) is lnn− ln lnn+ Θ(1) [Sla96]: in
particular, as shown in that paper, it will not be worse than lnn−ln lnn+0.78,
and it cannot be guaranteed to be better than lnn− ln lnn− 0.31.

Several inapproximability results for set cover have been established: to
the best of our knowledge, the best lower bound for the performance ratio
has been proved by Alon et al. [AMS06], who proved that set cover cannot be
approximated efficiently to less than c lnn, for a constant c, unless P = NP .
Therefore, the greedy algorithm performance is close to the best one can hope
for, among polynomial algorithms.

In our case, for the aforementioned reduction of minimum hitting set to
set cover, given a natural pattern P, n is equal to max dom P + 1.

4.3 Experimental results

In the following, we show experimental results. All experiments were run on a
2GHz dual-core CPU, 4GB RAM laptop.

Comparison of exact and approximation algorithms In order to assess per-
formance for our application, we experimented with the two aforementioned
solution methods: the exact algorithm for minimum hitting set, and the trans-
lation to set cover and solution with the greedy algorithm.

We fixed max dom P = 20; |dom P| varies. For each parameter value, we
generated a random pattern and we computed a covering shape with the two
methods; the performance of the approximation algorithm on each experiment
is the ratio between the cardinality of the covering shape computed by the
approximation algorithm, and the cardinality of the minimal covering shape,
computed by the exact algorithm.

We repeated each such computation 50 times, every time with a different
random pattern. Of course, performance ratio may vary for different patterns;
we are interested in the average and worst-case performance. Results are shown
in Table 3. In each line, we show the average and maximum performance
ratio (greater ratio corresponds to worse performance), as well as the average
computation times for the two algorithms.
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|dom P| Ratio Ratio Time Time
(average) (max) (exact) (greedy)

2 1.0 1.0 23534.002 1.02
4 1.063 1.333 1472.15 1.204
6 1.04 1.2 251.889 1.276
8 1.032 1.333 59.132 1.744
10 1.047 1.333 25.887 1.649
12 1.0 1.0 8.152 1.992
14 1.0 1.0 7.203 2.458
16 1.0 1.0 1.852 2.152
18 1.0 1.0 2.148 2.743
20 1.0 1.0 1.776 2.173

Table 3 Comparison of the exact and greedy algorithms (times are in milliseconds). For
each pattern domain’s cardinality, we show the average and maximum performance ratio,
and computation times for the exact and the approximation algorithms.

As expected, computation time for the exact algorithm grows exponentially
with max dom P − |dom P|, which suggests it is not applicable to bigger
problems. The greedy algorithm is obviously faster; and its performance ratio
appears to be better than its lower bound which, for M = 20, would be
ln 21− ln ln 21− 0.31 = 1.62.

Scalability of the greedy algorithm We also performed experiments on random
patterns to assess the approximation algorithm’s scalability and the reduction
of observation points that can be expected, for increasing values of the pattern
domain’s maximum and the pattern’s cardinality. Results (average over 50
computations) are shown in Table 4. Note that some cells are empty because
|dom P| cannot be greater than max dom P + 1.

Computation times increase with both |dom P| and max dom P, but they
appear to scale reasonably (as is to be expected for a polynomial algorithm), as
shown in Figure 4. Sampling ratios become lesser (corresponding to a bigger
reduction in necessary observation points) for denser pattern domains (i.e.,
for smaller values of max dom P − |dom P|). For the same value of |dom P|,
sampling ratios vary slightly for different values of max dom P.

5 Runtime verification of Linear Temporal Logic formulæ

Intuitively described, runtime verification is the problem of checking if an
execution trace of some system (or a finite set of execution traces) satisfies
some property [LS09]. Compared with static verification techniques such as
model checking, runtime verification is computationally less costly (essentially
because only the execution traces that actually occur, rather than all the pos-
sible execution traces, are considered), although, in principle, less conclusive
(precisely because the results hold for the actual traces, rather than for all
the possible ones). However, static and runtime verification are not necessar-
ily mutually exclusive: a statically verified system may need to be verified at
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max dom P
|dom P| 100 200 300 400 500

20 90.59%, 54 90.58%, 237 90.59%, 527 90.62%, 975 90.57%, 1480
40 94.79%, 79 94.58%, 377 94.56%, 890 94.6%, 1640 94.56%, 2666
60 96.16%, 100 96.08%, 513 96.05%, 1267 96.04%, 2365 96.04%, 3739
80 97.17%, 113 97.02%, 605 96.94%, 1557 96.89%, 2768 96.86%, 4454
100 98.02%, 114 97.52%, 641 97.4%, 1685 97.42%, 3278 97.41%, 5259
120 98.01%, 686 97.87%, 1856 97.78%, 3625 97.8%, 6013
140 98.5%, 729 98.12%, 2015 98.04%, 4010 98.03%, 6695
160 98.51%, 760 98.35%, 2149 98.27%, 4338 98.25%, 7337
180 99.0%, 795 98.66%, 2263 98.5%, 4624 98.42%, 7922
200 99.0%, 830 98.68%, 2359 98.68%, 4894 98.6%, 8437
220 98.99%, 2442 98.75%, 5117 98.75%, 8914
240 99.0%, 2516 98.91%, 5318 98.81%, 9357
260 99.08%, 2596 99.0%, 5508 98.94%, 9693
280 99.34%, 2665 99.02%, 5645 99.0%, 10041
300 99.34%, 2748 99.25%, 5803 99.02%, 10327
320 99.25%, 5948 99.2%, 10946
340 99.25%, 6487 99.2%, 12302
360 99.48%, 7144 99.2%, 11960
380 99.5%, 6523 99.39%, 11293
400 99.5%, 6515 99.4%, 11501
420 99.4%, 11717
440 99.42%, 11914
460 99.6%, 12121
480 99.6%, 12328
500 99.6%, 12584

Table 4 Greedy algorithm performance. For each combination of max dom P and |dom P|
the percentage of observations saved corresponding to the average sampling ratio and the
average computation time (in milliseconds) are shown.

runtime, for example because the assumptions used in static verification may
turn out not to be verified at runtime.

Runtime verification approaches usually compute a monitor for each prop-
erty, i.e., a procedure that tells whether a given execution trace satisfies the
property. The monitor is applied while the system is executing (online verifi-
cation) or to a finite set of observed execution traces (offline verification).

A common choice for a formalism to express temporal properties of a sys-
tem’s execution traces is temporal logics and, in particular, Linear Temporal
Logics (LTL) [Pnu77]. LTL is appropriate to express significant properties of
execution traces, because it provides operators for existential and universal
quantification over time points, among others; for instance, it is possible to
express properties such as “it is never the case that the temperature is too
high” or “if the temperature was too high, the cooling system will be acti-
vated at the next time step and the temperature will be normal within three
time steps”.

For this reason, many runtime verification systems for properties expressed
in LTL have been proposed [Bod04,GCZ08]. Recently, suitable semantics of
LTL for runtime verification have been considered [BLS10], and a variant of
LTL has been proposed to express properties in runtime verification [BLS11];
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Fig. 4 Computation times, from Table 4. |dom P| is represented on the X axis, max dom P
is on the Y axis, and computation time (in milliseconds) on the Z axis.

a related temporal formalism, I-METATEM, oriented to express properties of
autonomous evolving agents, has been proposed in [CDPT09].

Event detection can be understood as a special case of runtime verification,
where the property to be verified is a description of the state of affairs that
defines the event, quantified existentially over time points (diamond operator
in LTL, see Section 5.1). In the former of the previous example instances, the
property would be verified if the temperature were too high at one time point
at least.

To the best of our knowledge, such approaches assume observation of the
whole execution traces to be given as input to the monitor. What if observation
is costly, as discussed in the introduction to this article, or not even feasible?
For instance, the property could be specified over a finer temporal grain than
the available sampling system can support. In such cases, runtime verification
could benefit from our contribution towards reducing the number of necessary
observations. Even when complete execution traces are available, considering
only part of them without losing certainty about property satisfaction is gen-
erally beneficial, in that it reduces computational and communication costs.

In the following, we discuss runtime verification of LTL formulæ by observ-
ing partial, rather than complete, execution traces.

We show that the results proved in Section 3 (in particular, Theorem 3) can
be applied: in the special case of existential quantification over time, which,
as we mentioned above, is arguably the most relevant to event detection, it is
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possible to draw conclusions about the complete execution trace by observing
certain partial traces.

5.1 Background

In this section, we briefly recall standard definitions of syntax and semantics
for LTL.

Definition 13 Let A be a countable set of atomic propositions, > represent
truth and ⊥ represent falsity. Then a formula is defined recursively as follows:

– > and ⊥ are formulæ;
– if ϕ ∈ A, ϕ is a formula;
– if ϕ is a formula, ¬ϕ, Xϕ, �ϕ, and ♦ϕ are formulæ;
– if ϕ and ψ are formulæ, then ϕ ∧ ψ, ϕ ∨ ψ, and ϕUψ are formulæ.

¬, ∧ , and ∨ represent, respectively, negation, conjunction, and disjunc-
tion.

The informal meaning of the temporal operators is as usual in the litera-
ture. Consider a system evolving through states (formally defined below), each
at one time point. Then

– Xϕ is the next operator applied to ϕ, true iff ϕ is true at the next time
point;

– �ϕ is the necessity of ϕ, true iff ϕ is true at all time points;
– ♦ϕ is the possibility of ϕ, true iff ϕ is true at least at one time point;
– and ϕUψ (ϕ until ψ) is true iff ϕ is true until the first time point when ψ

is true.

Formally, a formula’s truth value is defined on a path in a Kripke structure.

Definition 14 A Kripke structure is a tuple 〈S, S0, R,A, V 〉, where S is
a finite set of states, S0 ⊆ S is a set of initial states, R ⊆ S×S is a
transition relation, A is a countable set of atomic propositions, and
V : S → 2A is a labeling function.

Definition 15 Given a Kripke structure K = 〈S, S0, R,A, V 〉, a path on K
is a sequence of states π = s0s1 . . . sn . . . such that
∀i ∈ N | (si+1 ∈ π → 〈si, si+1〉 ∈ R).

Definition 16 Given a path π = s0s1 . . . sn, . . . on a Kripke structure K,
the k-th postfix of π is the sequence πk of states sksk+1 . . . sn, . . ..

Definition 17 For LTL formulæ ϕ and ψ, a Kripke structure
K = 〈S, S0, R,A, V 〉 and a path π = s0s1 . . . sn in K,

– if ϕ ∈ A ∪ {>,⊥}, π |= ϕ iff ϕ ∈ V (s0) or ϕ = >;
– π |= ϕ ∨ ψ iff π |= ϕ or π |= ψ;
– π |= ϕ ∧ ψ iff π |= ϕ and π |= ψ;
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– π |= ¬ϕ iff π 6|= ϕ;
– π |= Xϕ iff π1 |= ϕ;
– π |= ϕUψ iff π |= ψ, or
∃k > 0 | (πk |= ψ ∧ (∀i ∈ [0 .. k − 1] πi |= ϕ));

– π |= ♦ϕ iff ∃k ≥ 0 | πk |= ϕ;
– π |= �ϕ iff ∀k ≥ 0 | πk |= ϕ.

Definition 18 Given a state s in a Kripke structure and a formula ϕ, s |= ϕ
if and only if there exists a path π in K whose first state is s and π |= ϕ.

5.2 Partial paths

In this section, we introduce definitions for partial paths, which formalize the
idea of incomplete execution traces. Partial paths are relevant to our work,
because we want to characterize partial paths that allow to draw conclusions
about the full path.

Definition 19 Given a Kripke structure K and a path π in K, a sub-path
η of π (in symbols, η @ π) is a sub-sequence (i.e., the sequence obtained
possibly removing some states, but maintaining the order) of π; η is called a
partial path on K.

In general, a partial path is not a path in the original Kripke structure
(whenever two consecutive states in the partial path are not in the original
transition relation). Therefore, in order to give semantics to formulæ on the
partial path, an associated Kripke structure can be defined as follows.

Definition 20 Let K = 〈S, S0, R,A, V 〉 be a Kripke structure and π a path
in K. Then, for each partial path η = s0s1 . . . sn, with η @ π, the associ-
ated Kripke structure Kη = 〈Sη, S0η, Rη,Aη, Vη〉 is defined, where Sη is
the set of states in η, S0η = {s0}, Rη = {〈si, si+1〉 | 0 ≤ i < n}, Aη = A,
and Vη is the restriction of V to Sη.

The semantics of formulæ on a partial path can then be defined as in Defi-
nitions 17 and 18, where the relevant Kripke structure is the one associated
with the partial path.

Definition 21 Given a Kripke structure K, a path π = s0s1 . . . sn . . . on K,
and a finite set I of natural numbers whose maximum is M , π’s sampling of
shape I, πI , is the sequence of states si such that si is a state in π and, for
some k ∈ N and q ∈ I, i = q + k(M + 1).

Example 10 The sampling of a path π = s0s1 . . . s16
3 of shape I = {0, 1, 3, 6}

is s0s1s3s6s7s8s10s13s14s15. Using the symbols in Definition 21, M = 6, and
the index i of each state in the sampling results from a choice of q ∈ I and
k ∈ N, as shown in this table:

3 Note that paths in Kripke structures may be finite, depending on the transition relation.
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q k i
0 0 0
1 0 1
3 0 3
6 0 6
0 1 7
1 1 8
3 1 10
6 1 13
0 2 14
1 2 15

Graphical representation of paths In the following, we represent paths graph-
ically: a state s is represented as a node with label s; the set of atomic propo-
sitions satisfied by each state is written above the corresponding node; solid
edges represent the sequence in the full path, and dashed edges represent the
sequence in the partial path.

s0

{a}

s1

{a, b}

s2

{b}

Fig. 5 Example path representation.

For example, in Figure 5 the complete path is composed of the states s0,
s1 and s2, while the partial path is composed of the states s0 and s2. State s0
satisfies the atomic proposition a, s1 satisfies a and b, and s2 satisfies b.

5.3 Formula entailment in partial and full paths

In this section, we discuss logical relations between entailment of a LTL for-
mula in full and partial paths.

We consider the fundamental LTL operators (�, ♦, X, U); we prove general
positive results for the (few, as is to be expected) cases where it is possible,
and provide counterexamples for the other cases.

Box operator (�) If a formula is always true in a full path, it will be true in
any partial path.

Theorem 4 If η @ π, then π |= �ϕ → η |= �ϕ.

Proof Let s be a state in η; then, by η @ π, s ∈ π. By hypothesis, s |= ϕ.
The same holds for any state in η.
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The opposite does not hold:

s0

{a}

s1

{}

s2

{a}

η |= �a, but π 6|= �a.

Diamond operator (♦) If a formula is true in at least one state in a partial
path, it will be true in at least one state in the full path.

Theorem 5 If η @ π, then π |= ♦ϕ ⇐ η |= ♦ϕ.

Proof Let s be the state in η such that s |= ϕ(such a state exists by hypothe-
sis). Since η @ π, s ∈ π; i.e., ∃s ∈ π | s |= ϕ.

The opposite does not hold:

s0

{a}

s1

{a, b}

s2

{a}

π |= ♦b, but η 6|= ♦b.

Next operator (X) No general result can be proved about X: if a formula is
true in the next state in a full path, it might not be in the next state in a
partial path, and vice-versa, as exemplified in the following.

s0

{}

s1

{a}

s2

{b}
– π |= Xa, but η 6|= Xa
– η |= Xb, but π 6|= Xb.

Until operator (U) In general, no implication can be proved about U: ϕ can
be true until ψ in the full path but not in a partial path, and vice-versa.

s0

{a, b}

s1

{b}

s2

{b, c}

s3

{d}
– π |= bUd, but η 6|= bUd
– η |= aUc, but π 6|= aUc

5.4 Event detection in LTL

The positive results in Section 5.3 (Theorems 4 and 5) only cover a small
portion of the possible LTL formulæ. The counter-examples provided for the
other logical relations between entailment in partial and full paths exclude
that conclusions about the full path can be drawn from the partial path, in
the general case.

Of course, stronger results can be proved in special cases.
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One significant such case is an application where (i) it is of interest to
detect if a formula ϕ is entailed by at least one state in a path (that is, to
verify ♦ϕ4), and (ii) it is known that ϕ’s truth follows a given pattern (e.g., ϕ
is entailed by a number of consecutive states, or it is entailed by a state, then
by the following state, then by the state that comes after four more states).
In this case, the result of Theorem 3 can be applied.

First, we define formally what it means for a LTL formula’s truth to follow
a given (natural) pattern. For this case, the value set is not relevant; the
formula is true in all states whose position in the path is an element of the
pattern domain, plus an offset.

Definition 22 Given a natural pattern P, a formula ϕ is an LTL-event of
pattern P in a Kripke structureK if and only if for any path π = s0s1 . . . sn . . .
in K,

(∃k | sk |= ϕ) → ∃τ(∀j ∈ dom P | sτ+j |= ϕ)

The following results allow to verify the occurrence of a LTL formula by
observing a sampling of a path, rather than the full path.

Theorem 6 Let ϕ be a LTL-event of pattern P on a Kripke structure K. Let
SC be a covering shape of P’s. Then, for each path π = s0s1 . . . sn . . . on K,
π |= ♦ϕ if and only if πSC |= ♦ϕ, where πSC is π’s sampling of shape SC
(Definition 21).

Proof If: by Theorem 5, because πSC is a subpath of π.
Only if: π |= ♦ϕ, so ∃m | sm |= ϕ. By Definition 22,

∃i | (∀j ∈ dom P | sl |= ϕ, l = i+ j). Such ls are the observability set of
an event of pattern P and offset i (see Definition 5). Since SC is P’s cover-
ing shape, by Theorem 3 the set C = {q + k(M + 1) | q ∈ SC ∧ k ∈ N},
where M = maxSC , intersects the observability sets of all the events of shape
P, that is, it contains at least one of the aforementioned ls.

Summarizing, there exists some l with the following properties: (i) sl ∈ π,
(ii) l = q + k(M + 1), for some q ∈ SC and k ∈ N, and (iii) sl |= ϕ. But
properties (i) and (ii) define indices of states that belong to πSC , so sl ∈ πSC ;
and because of property (iii), πSC |= ♦ϕ.

Example 11 Suppose that a formula ϕ is known to remain true for 5 consec-
utive states. Then it is a LTL-event of pattern
P = {〈0, 1〉, 〈1, 1〉, 〈2, 1〉, 〈3, 1〉, 〈4, 1〉}. Since {0} is a covering shape of P’s
(to see why, consider Example 5, with M = 1), to verify ♦ϕ on a path
s0s1. . . sn. . . , it is sufficient to observe the states in the set {s5k | k ∈ N}.

Example 12 If we represent as the LTL formula ϕ the fact that the button of
Example 6 is being pressed, then it is an event of pattern
{〈0, 1〉, 〈1, 1〉, . . . 〈999, 1〉}. By Theorem 6, ♦ϕ, which represent in LTL the fact
that the button has been pushed at least once, can be verified observing the
system at states in a path s0s1. . . sn. . . whose index is a multiple of 1000.

4 If the formula is understood as a logical representation of an event, this amounts to
verifying the event’s occurrence.
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Example 13 Suppose that a is true at a state if and only if b is true 2 states
later, and if and only if c is true 5 states later. Then the formula ϕ = a ∨ b ∨ c
is a LTL-event of pattern P = {〈0, 1〉, 〈2, 1〉, 〈5, 1〉}.

By Theorem 6 and the results of Example 7, {0, 1, 3} is a covering shape of
P’s. Then, to detect that a or b or c become true at a state (that is, to verify
♦ϕ), it is sufficient to observe the system at states s0, s1, s3, s6, s7, s9 and so
on.

Example 14 In the scenario of Example 9, the formula ϕ representing that
the button is being pushed is an LTL-event of pattern P, where dom P =
{0, 100, 200, 300, 400, 500, 600, 700, 800, 900}. Then, by Theorem 6, and exploit-
ing the result of Example 9, ♦ϕ can be verified by observing only 1/10th of
the states in any path.

Example 15 Consider the example in [GCZ08], where the output phase must
be followed (possibly not immediately) by an input phase. The property to
be verified can be written in LTL as �(SyncOutput → ♦SyncInput), which
is equivalent to ¬♦¬(SyncOutput → ♦SyncInput), or
¬♦(SyncOutput ∧ ¬♦SyncInput)

Therefore, if the formula ϕ = SyncOutput ∧ ¬♦SyncInput is detected
true at at least one state, the property does not hold.

Suppose that the output phase lasts for at least M consecutive states, and
that only afterwards can the input be on. Therefore, if ϕ is true at a state, it
is true for at least M consecutive states, and, by Definition 22, ϕ is an LTL-
event of pattern P, with dom P = {0, 1, . . . ,M − 1}. Since, by the result in
Example 5, {0} is a covering shape for P, ♦ϕ can be detected observing the
system only every M -th state.

6 Beyond plain event detection: future research lines

In this section, we discuss possible generalizations and extensions of the re-
search issues presented in this paper.

6.1 Generalizations

Multi-dimensional patterns The definition of coordinate system in Section
2.1 is very general. In this paper, we focussed and proved results on one-
dimensional natural patterns, but other classes of coordinate systems can be
considered. For instance, it seems reasonable that the results of this paper can
be generalized to multi-dimensional natural coordinate systems, which could
represent more complex spatial-temporal patterns.

Multiple events We assumed that applications require detection of events of
only one pattern. In future work, we want to generalize to the case of different
possible patterns. In this circumstance, we can distinguish two cases: one where
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the value sets of the patterns are disjoint (so an event can be immediately
recognized), and the other where, once an event is detected, more observations
are required in order to determine its pattern. Which further observations best
discriminate amongst the still standing competing patterns is a germane issue,
which can benefit from existing probabilistic approaches, such as Bayesian
networks, as already applied to intention recognition in [AP10].

6.2 Complex events

In this paper, we considered simple, atomic events with a given pattern. De-
tection of complex events (composed of atomic ones) can benefit from logic
programming techniques, as we argue in the following.

Representation of complex events An episode has been defined in the literature
[MTV97] as “a collection of events that occur relatively close to each other in
a given partial order.”

More generally, complex events can be composed from simple ones by con-
junction, disjunction, sequence or negation (as in event algebras [CL04]). A
suitable approach would be to describe a complex event by means of a gram-
mar, for instance DCGs [Per81], well supported in logic programming, allowing
for a more compact and declarative representation, supporting recursiveness,
and incremental processing. Also, if an observed sub-pattern has a certain
form, the grammar might immediately distinguish what are the full pattern
candidates still possible, i.e., still under consideration according to the gram-
mar, and even make proactive observations looking for events that discriminate
between the still outstanding patterns, e.g. to rule out patterns. For instance,
if a pattern is known to be symmetric and with a certain length, the grammar
can predict what should come as the second half of the pattern given the first
half, and rule out the pattern if the symmetry is broken. Also an LP grammar
can tie recognition to other elaborate LP techniques, including the semantic
compilation of justifications of pattern detection, say for debugging.

This brings out the opportunity to employ model-based diagnosis tech-
niques in general, namely efficient kernel diagnosis algorithms that detect
maximal intersections of hitting sets [dKMR92], and allow for detection of
multiple persistent and intermittent diagnosis [dK09].

6.3 Focussing detection efforts

Tools and techniques developed in the field of logic programming can be used
to guide event detection at a higher level, determining which atomic events to
look for in an execution trace, thereby further saving observation effort.
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Application of Abductive Logic Programming In particular, approaches based
on abductive logic programming [KKT93] and its efficient implementation
[APS04] appear appropriate, as abduction can be used to formulate hypotheses
on the state of the system at points not yet observed.

In applications where more than one type of event can occur, the occurrence
of each event can be represented by an abducible predicate. It can be of interest
to express permissible combinations of events, which may be expressed by
means of integrity constraints; or to express relations of expectancy of an
event depending on the detection of another.

For instance, the SCIFF abductive logic language [ACG+08] supports spe-
cial predicate H(a), meaning that event a happened, and abducible predicates
E(a) and EN(a), meaning, respectively, that event a is expected to happen, or
expected not to happen. Integrity constraints as H(a) → E(b) ∨ E(c) can
be used as a guidance mechanism to perform detection: a’s occurrence would
trigger an attempt to detect the occurrence of b or c, in order to satisfy the
integrity constraint.

Side-effects More generally, events sometimes have tell-tale side-effects, but
which are not guaranteed to happen – i.e., the side-effects either don’t always
follow if the event happens, or they may be side-effects of only a subset of
the whole event, so that while the side-effects may actually happen (and even
then with a probability) the complete event might not be there.

Also, if detected they may assure us the event occurred (though not being
formally part of the event) or simply allow to hypothesize (abduce) that event
or some other event. The classical example in this case, framed using abduc-
tion, is ”the grass is wet”: did it rain during the night or was the sprinkler left
on or both? On the other hand, it may have rained but the grass no longer
being wet.

These tell-tale side-effects can be used heuristically as triggers to direct
attention, and speed up event detection by going for the more likely events first,
given the side-effects. A Bayesian net could be employed to code such heuristic
and probabilistic information. In particular, side-effects can be tell-tale signs
of intentions, which in turn lead to actions and events. This connects the event
detection issues to intention recognition, combining Bayesian nets with plan
recognition, and combining uncertainty in KR and rule KR in general [PA10,
PA09]. [KNF03] reports on a logic programming based system which infers
team of agents’ intentions from traces of agents’ action events and observations.

Similar to side-effects, in a mirror-like way, one may have premonitions,
that is tell-tale prior-effects that may be omens of (sub-)events to follow, for
which all of the above can likewise be re-stated, with consequences for heuris-
tics leading to faster or priority event recognition.

The importance of the tell-tale signs, prior or posterior, can be evaluated
for significance and preferential compatibility. A case in point might be the
tell-tale signs concerning a possible natural disaster or deliberate attack, with
consequences for preventive or palliative measures. This raises the issue of
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how can events be countered or forestalled. On the other hand, positive events
might be leveraged for greater benefit.

In summary, the topic of runtime verification and event detection can ben-
efit from declarative logic programming because of the natural use of logic
programming and abduction for representing observations and actions, as well
as its implementation tools in general, in order to support the topic’s ramifi-
cations and applications. The latter two concern not just opening declarative
programming to the new areas of monitoring and control, but also the very
use of runtime verification in program correctness and runtime safety.

6.4 Further developments

Finally, we mention developments of our research that we would like to pursue
in the long-term.

Tradeoff between accuracy and observation cost In case detection of all events
is not critical, one may consider further reducing the number of observations,
and estimate the probability of missing an event; decision theory can be applied
to find a trade-off between the costs of observation and of failed detection.

Uncertainty In case execution traces are being observed, but there is uncer-
tainty about observations, predictive lookahead can be used to remove uncer-
tainty. Same goes, regarding uncertainty removal, for retrospective hindsight
(by making observations about the past, cf. astronomy) in order to confirm
or disconfirm hypotheses about traces. Feature extraction techniques, such as
the wavelet-based approach of [WA01], can be used to de-noise and cluster
uncertain data.

Synthesis If the system being discussed can be controlled (such as a logic
program that can be evolved [DLP06]), the problem can be viewed in the
other direction, i.e., how to update the system in order to have it generate the
desired traces.

Such problems can have more than one solution. Preferences (now well
understood in the context of logic programming [PDL09]) can be used to rank
among solutions, or as a heuristics along with abduction or evolution [DP07].

Implementation Thanks to the recent advances in logic programming technol-
ogy, one may also think about trying to confirm and disconfirm an event at the
same time (using multi-threaded computations) and take decisions depending
on the first goal that succeeds.
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7 Conclusions

In this paper, we considered the problem of reducing the number of obser-
vations necessary for event detection when the event’s pattern is known, by
design or by previous discovery.

We showed that, when the observation space can be modeled as the set
of natural numbers, the number of observations required can be significantly
reduced. In this case, the problem can be reduced to a NP-hard problem, but
we showed that a polynomial approximation algorithm with good (theoretical
and experimental) performance can be applied.

We showed too how the result can be applied to runtime verification of
temporal logic formulæ.

Finally, we also discussed possible extensions and generalizations of the
problem, and argued for the use of logic programming techniques and systems
to handle increased problem sophistication.
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