
The Potential of Logic Programming
as a Computational Tool to Model Morality?

Ari Saptawijaya?? and Luı́s Moniz Pereira

Centro de Inteligência Artificial (CENTRIA), Departamento de Informática
Faculdade de Ciências e Tecnologia, Univ. Nova de Lisboa, 2829-516 Caparica, Portugal

ar.saptawijaya@campus.fct.unl.pt, lmp@fct.unl.pt

Abstract. We investigate the potential of logic programming (LP) to computa-
tionally model morality aspects studied in philosophy and psychology. We do so
by identifying three morality aspects that appear in our view amenable to com-
putational modeling by appropriately exploiting LP features: dual-process model
(reactive and deliberative) in moral judgments; justification of moral judgments
by contractualism; and intention in moral permissibility. The research aims at de-
veloping an LP-based system with features needed in modeling moral settings,
putting emphasis on modeling these above mentioned morality aspects. We have
currently co-developed two essential ingredients of the LP system, i.e., abduc-
tion and logic program updates, by exploiting the benefits of tabling features in
logic programs. They serve as the basis for our whole system, into which other
reasoning facets will be integrated, to model the surmised morality aspects. We
exemplify two applications pertaining moral updating and moral reasoning under
uncertainty and detail their implementation. Moreover, we touch upon the poten-
tial of our ongoing studies of LP based cognitive features for the emergence of
computational morality, in populations of agents enabled with the capacity for
intention recognition, commitment and apology. We conclude with a ”message in
a bottle” pertaining to this bridging of individual and population computational
morality via cognitive abilities.

Keywords: abduction, updates, argumentation, reactive behavior, deliberative
reasoning, morality, emergence.

1 Introduction

The importance of imbuing agents more or less autonomous, with some capacity for
moral decision making has recently gained a resurgence of interest from the artificial
intelligence community, bringing together perspectives from philosophy and psychol-
ogy. A new field of enquiry, computational morality (also known as machine ethics,
machine morality, artificial morality and computational ethics) has emerged from their

? Invited position chapter issuing from the Austrian Research Institute for Artificial Intelligence
(OFAI) workshop on “A Construction Manual for Robots’ Ethical Systems: Requirements,
Methods, Implementation, Tests”, Vienna, 27-28 September 2013.

?? Affiliated with Fakultas Ilmu Komputer at Universitas Indonesia, Depok, Indonesia.

interaction, as emphasized e.g., in [10, 26, 90]. Research in artificial intelligence partic-
ularly focuses on how employing various techniques, namely from computational logic,
machine learning and multi-agent systems, in order to computationally model, to some
improved extent, moral decision making. The overall result is therefore not only im-
portant for equipping agents with the capacity for moral decision making, but also for
helping us better understand morality, through the creation and testing of computational
models of ethical theories.

Recent results in computational morality have mainly focused on equipping agents
with particular ethical theories, cf. [11] and [76] for modeling utilitarianism and de-
ontological ethics, respectively. Another line of work attempts to provide a general
framework to encode moral rules, in favor of deontological ethics, without resorting
to a set of specific moral rules, e.g., [18]. The techniques employed include machine
learning techniques, e.g., case-based reasoning [56], artificial neural networks [34], in-
ductive logic programming [8, 12], and logic-based formalisms, e.g., deontic logic [18]
and nonmonotonic logics [76]. The use of these latter formalisms has only been pro-
posed rather abstractly, with no further investigation on its use pursued in detail and
implemented.

Apart from the use of inductive logic programming in [8, 12], there has not much
been a serious attempt to employ the Logic Programming (LP) paradigm in computa-
tional morality. Notwithstanding, we have preliminarily shown in [40, 67–71] that LP,
with its currently available ingredients and features, lends itself well to the modeling of
moral decision making. In these works, we particularly benefited from abduction [46],
stable model [30] and well-founded model [89] semantics, preferences [22], and prob-
ability [16], on top of evolving logic programs [6], amenable to both self and external
updating. LP-based modeling of morality is addressed at length, e.g., in [49].

Our research further investigates the appropriateness of LP to model morality, em-
phasizing morality aspects studied in philosophy and psychology, thereby providing an
improved LP-based system as a testing ground for understanding and experimentation
of such aspects and their applications. We particularly consider only some – rather than
tackle all morality aspects – namely those pertinent to moral decision making, and, in
our view, those particularly amenable to computational modeling by exploring and ex-
ploiting the appropriate LP features. Our research does not aim to propose some new
moral theory, the task naturally belonging to philosophers and psychologists, but we
simply uptake their known results off-the-shelf.

We identify henceforth three morality aspects for the purpose of our work: dual-
process model (reactive and deliberative) in moral judgments [20, 55], justification of
moral judgments by contractualism [83, 84], and the significance of intention in regard
to moral permissibility [85].

In order to model the first aspect, that of multiple system of moral judgments, which
corresponds to the two contrasting psychological processes: intuitive/affective vs. ratio-
nal/cognitive, we consider in the system the dual mode of decision making – reactive
vs. deliberative – and how they interact with each other in delivering moral decisions.
With regard to this aspect, we shall look into recent approaches in combining deliber-
ative and reactive logic-based systems [50, 51]. Inspired by these approaches, we have
started to work on two features which will be the basis for our system: abduction and

knowledge updates. Both features benefit from tabling mechanisms in LP, now sup-
ported by a number of Prolog systems, to different extent, e.g., Ciao [1], XSB [3], Yap
[4]. The second aspect views moral judgments as those about the adequacy of the justi-
fication and reasons for accepting or rejecting the situated employment, with accepted
exceptions, of broad consensual principles. We are looking into the applicability of ar-
gumentative frameworks, such as [23–25, 65, 77, 87], to deal with this specific aspect.
Finally, we employ results on intention recognition [37, 38, 63] and exploit their use for
the third aspect, about intention in regard to moral permissibility. Counterfactuals also
play some role in uncovering possible implicit intentions, as well as “What if?” ques-
tions. We explore causal models [59, 60] for counterfactual reasoning. Additionally, we
also consider the extension of inspection points [66] to examine the contextual side ef-
fects of counterfactual abduction [73], meaning foreseeable extraneous consequences
in hypothetical scenarios.

The remainder of the paper is organized as follows. Section 2 discusses the state-of-
the-art, covering the three above mentioned morality aspects from the philosophy and
psychology viewpoints and approaches that have been sought in computational moral-
ity. In Section 3 we detail the potential of exploiting LP for computational morality in
the context of our research goal, and recap a logic programming framework that has
been employed to model individual centered morality. Section 4 presents the current
status of our research with its results, viz., two novel implementation techniques for
abduction and knowledge updates, which serve as basic ingredients of the system be-
ing developed. Section 5 summarizes two applications concerning moral updating and
moral reasoning under uncertainty. We point out, in Section 6, the importance of cogni-
tive abilities in what regards the emergence of cooperation and morality in populations
of individuals, as fostered and detailed in our own published work (surveyed in [74]),
and mention directions for the future in this respect. We deliver the message of summary
for the whole discussion of the paper, in Section 7.

2 Morality Background and Computational Morality

In this section we summarize (1) published work on three morality aspects that we con-
sider modeling, highlighting some relevant results from the perspective of moral psy-
chology and moral philosophy, and (2) documented approaches that have been followed
in equipping machines with morality and the trends in the topic.

2.1 Morality Aspects: Dual-Process, Justification, Intention

We overview three aspects that are involved in deliberating about or in delivering moral
judgments, viz., dual-process model in moral judgments, justification of moral judg-
ments by contractualism, and intention as it affects moral permissibility. The first as-
pect comes from the results of moral psychology, whereas the second and the third
ones mainly come forth from moral philosophy. The reader is referred to [52] for more
morality background, particularly on the evolutionary account.

The Dual-Process of Moral Judgments One focus from recent research in moral
psychology is to study the interaction and competition between different psychological
systems in moral judgments [20]. The two contrasting systems that raise challenges in
understanding moral judgments are:

• intuitive versus rational; that is, whether moral judgment is intuition-based and
accomplished by rapid, automatic and unconscious psychological processes, or if
is a result of conscious, effortful reasoning.

• affective versus cognitive; that is, whether moral judgment is driven primarily by
affective response, or by deliberative reasoning sustained on moral theories and
principles.

They can be construed as somehow related: the cognitive system operates by controlled
psychological processes whereby explicit principles are consciously applied, whereas
the affective system operates by automatic psychological processes that are not entirely
accessible to conscious reflection.

The division between a cognitive system and an affective system of moral judgment
is evidenced by numerous psychological empirical tests, cf. [32, 33], by examining
the neural activity of people responding to various moral dilemmas involving physi-
cally harmful behavior, e.g. the classic trolley dilemmas [29, 86].1 These neuroimaging
experiments characteristically suggest that consequentialist judgment (“maximize the
number of lives saved”) is driven by cognitive processes, whereas characteristically
deontological judgment (“harming is wrong, no matter what the consequences are”)
is driven by affective processes. Moreover, they show that the two processes some-
times compete in delivering moral judgment. This theory of moral judgment is known
as the dual-process model. In essence, this model supports the idea that moral judg-
ment is not accomplished exclusively by intuitive/affective response as opposed to con-
scious/cognitive response. Instead, it is a product of complex interaction between them.
This complex interaction, in cases involving tradeoffs between avoiding larger harms
and causing smaller ones, turns them into difficult moral dilemmas, i.e. the output of
the two systems needs to be reconciled.

Regarding the dual-process model, the following related issues seem relevant to
consider from the computational perspective:

• The intuitive/affective system in moral judgment is supported by several studies,
amongst them [35], that show moral judgments are generated by rapid, automatic,

1 The trolley dilemmas, adapted from [43]: “There is a trolley and its conductor has fainted.
The trolley is headed toward five people walking on the track. The banks of the track are so
steep that they will not be able to get off the track in time.” The two main cases of the trolley
dilemmas:
Bystander: Hank is standing next to a switch that can turn the trolley onto a side track, thereby
preventing it from killing the five people. However, there is a man standing on the side track.
Hank can throw the switch, killing him; or he can refrain from doing so, letting the five die. Is
it morally permissible for Hank to throw the switch?
Footbridge. Ian is on the bridge over the trolley track, next to a heavy man, which he can
shove onto the track in the path of the trolley to stop it, preventing the killing of five people.
Ian can shove the man onto the track, resulting in death; or he can refrain from doing so, letting
the five die. Is it morally permissible for Ian to shove the man?

unconscious processes – intuitions, for short – and no explicit reasoning based on
moral principles is involved, evidenced by the difficulty people experience in trying
to justify them. On the other hand, some other results, as reported in [55], stipulate
that moral rules may play an important causal role in inferences without the process
being consciously accessible, hence without being ‘reasoned’ in the sense of [35].
This stipulation might relate to the suggestion made in [20] that the evaluative pro-
cess of the intuitive/affective system mirrors some moral rules. For example, in the
trolley dilemma, one component of the evaluative process of the intuitive/affective
system mirrors the well-known doctrine of double effect [14].2

• Though the experimental data show that ordinary people typically reason from a
principle favoring welfare maximizing choices (i.e. delivering utilitarian or con-
sequentialist judgment), some other experiments suggest that reasoning also takes
place from deontological principles. In other words, reasoning via moral rules also
plays some role in non-utilitarian moral judgment (in contrast to the mere role of
emotion/intuition), as likewise argued in [55].

Justification of Moral Judgments It is an important ability for an agent to be able
to justify its behavior by making explicit which acceptable moral principles it has em-
ployed to determine its behavior, and this capability is desirable when one wants to
equip machines with morality [13]. Moral principles or moral rules are central in the
discussion of ascribing justification to moral judgments, as one wants to provide prin-
ciples enabling them to resolve moral dilemmas, thereby justifying (or even arguing)
their moral judgment.

Apart from the two positions, Kantianism and consequentialism, which have long
traditions in moral philosophy, contractualism [83] has also become one of the major
schools currently joining the first two. It can be summarized as follows [84]:

An act is wrong if its performance under the circumstances would be disal-
lowed by any chosen set of principles for the general regulation of behavior
that no one could reasonably reject as a basis for informed, unforced, general
agreement.

Contractualism provides flexibility on the set of principles to justify moral judgments so
long as no one could reasonably reject them. Reasoning is an important aspect here, as
argued in [84], in that making judgments does not seem to be merely relying on internal
observations but is achieved through reasoning. Method of reasoning is one of primary
concerns of contractualism in providing justification to others, by looking for some
common ground that others could not reasonably reject. In this way, morality can be
viewed as (possibly defeasible) argumentative consensus, which is why contractualism
is interesting from a computational and artificial intelligence perspective.

Intention in Moral Permissibility In [43, 57], the doctrine of double effect has been
used to explain consistency of moral judgments people made in various cases of the

2 The doctrine of double effect states that doing harms to another individual is permissible if it
is the foreseen consequence of an action that will lead to a greater good, but is impermissible
as an intended means to such greater good [43].

trolley dilemmas [29, 86], i.e. to distinguish between permissible and impermissible
actions. The impermissibility of actions is, in this case, tightly linked with the question
of whether they are conducted with any intention of doing harm behind them.

The illusory appeal of the doctrine of double effect to explain moral judgments
in such dilemmas, i.e. that intention determines the impermissibility of actions, has
recently been discussed in detail [85]. Its appeal stems from a confusion between two
closely forms of moral judgment which can be based on the same moral principles, viz.:

• Deliberative employment: It concerns answering the question on permissibility of
actions, by identifying the justified but defeasible argumentative considerations,
and their exceptions, that make actions permissible or impermissible.

• Critical employment: It concerns assessing the correctness of the way in which an
agent actually went about deciding what to do, in some real or imagined situation.
The action of an agent may even be theoretically permissible but nevertheless per-
formed for the wrong reasons or intentions.

As argued in [85], by overlooking the distinction between these two employments
of moral judgment, intention may appear to be relevant in determining permissibility
where in fact it is not. The trolley dilemmas and other similar dilemmas typically have
the same structure: (1) they concern general principles that in some cases admit excep-
tions, and (2) they raise questions about when those exceptions apply. An action can be
determined impermissible through deliberative employment when there is no counter-
vailing consideration that would justify an exception to the applied general principle,
and not because of the agent’s view on the consideration; the latter being determined
via critical employment of moral judgment. The use of a deliberative form of moral
judgment to determine permissibility of actions is interesting from the computational
viewpoint, in particular the need to model exceptions to principles or rules, and the pos-
sible role of argumentation in reaching an agreement on whether or not countervailing
considerations can be justified.

Nevertheless, there are also cases where intention can be relevant in determining
permissibility of actions, as identified and discussed in [85]. For example, an agent’s
intention can render his/her action impermissible when it is a part of a larger course of
action that is impermissible. Other cases include the class of attempts – cases in which
agents set out to do something impermissible but fail to bring about the harmful results
that they intend –, plus those of discrimination, and those of threats. Modeling these
cases computationally will help us better understand the significance of intention in the
determination of moral permissibility.

2.2 Computational Morality

The field of computational morality, known too as machine ethics [10], has started
growing, motivated by various objectives, e.g., to equip machines with the capability
of moral decision making in certain domains, to aid (or even train) humans in moral
decision making, to provide a general modeling framework for moral decision making,
and to understand morality better by experimental model simulation.

The purpose of ‘artificial morality’ in [21] is somewhat different. The aim is to show
that moral agents successfully solve social problems that amoral agents cannot solve.

This work is based on the techniques from game theory and evolutionary game theory,
where social problems are abstracted into social dilemmas, such as Prisoner’s Dilemma
and Chicken, and where agents and their interaction in games are implemented using
Prolog.

The systems TruthTeller and SIROCCO were developed by focusing reasoning on
cases, viz. case-based reasoning [56]. Both systems implement aspects of the ethical ap-
proach known as casuistry [45]. TruthTeller is designed to accept a pair of ethical dilem-
mas and describe the salient similarities and differences between the cases, from both
an ethical and a pragmatic perspective. On the other hand, SIROCCO is constructed to
accept an ethical dilemma and to retrieve similar cases and ethical principles relevant
to the ethical dilemma presented.

In [34], artificial neural networks, i.e., simple recurrent networks, are used with the
main purpose of understanding morality from the philosophy of ethics viewpoint, and
in particular to explore the dispute between moral particularism and generalism. The
learning mechanism of neural networks is used to classify moral situations by train-
ing such networks with a number of cases, involving actions concerning killing and
allowing to die, and then using the trained networks to classify test cases.

Besides case-based reasoning and artificial neural networks, another machine learn-
ing technique that is also used in the field is inductive logic programming, as evidenced
by two systems: MedEthEx [12] and EthEl [8]. Both systems are advisor systems in the
domain of biomedicine, based on prima facie duty theory [78] from biomedical ethics.
MedEthEx is dedicated to give advice for dilemmas in biomedical fields, while EthEl
serves as a medication-reminder system for the elderly and as a notifier to an overseer
if the patient refuses to take the medication. The latter system has been implemented in
a real robot, the Nao robot, being capable to find and walk toward a patient who needs
to be reminded of medication, to bring the medication to the patient, to engage in a
natural-language exchange, and to notify an overseer by email when necessary [9].

Jeremy is another advisor system [11], which is based upon Jeremy Bentham’s act
utilitarianism. The moral decision is made in a straightforward manner. For each pos-
sible decision d, there are three components to consider with respect to each person p af-
fected: the intensity of pleasure/displeasure (Ip), the duration of the pleasure/displeasure
(Dp) and the probability that this pleasure/displeasure will occur (Pp). Total net plea-
sure for each decision is then computed: totald = Σp∈Person(Ip×Dp×Pp). The right
decision is the one giving the highest total net pleasure.

Apart from the adoption of utilitarianism, like in the Jeremy system, in [76] the
deontological tradition is considered having modeling potential, where the first formu-
lation of Kant’s categorical imperative [48] is concerned. Three views are taken into ac-
count in reformulating Kant’s categorical imperative for the purpose of machine ethics:
mere consistency, common-sense practical reasoning, and coherency. To realize the first
view, a form of deontic logic is adopted. The second view benefits from nonmonotonic
logic, and the third view presumes ethical deliberation to follow a logic similar to that
of belief revision. All of them are considered abstractly and there seems to exist no
implementation on top of these formalisms.

Deontic logic is envisaged in [18], as a framework to encode moral rules. The work
resorts to Murakami’s axiomatized deontic logic, an axiomatized utilitarian formulation

of multiagent deontic logic, that is used to decide operative moral rule to attempt to ar-
rive at an expected moral decision. This is achieved by seeking a proof for the expected
moral outcome that follows from candidate operative moral rules.

The use of category theory in the field appears in [19]. In this work, category theory
is used as the formal framework to reason over logical systems, taking the view that
logical systems are being deployed to formalize ethical codes. The work is strongly
based on Piaget’s position [44]. As argued in [19], this idea of reasoning over – instead
of reasoning in – logical systems, favors post-formal Piaget’s stages beyond his well-
known fourth stage. In other words, category theory is used as the meta-level of moral
reasoning.

Belief-Desire-Intention (BDI) model [17] is adopted in SophoLab [91], a frame-
work for experimental computational philosophy, which is implemented with JACK
agent programming language. In this framework, the BDI model is extended with the
deontic-epistemic-action logic [88] to make it suitable for modeling moral agents. Sopho-
Lab is used, for example, to study negative moral commands and two different utilitar-
ian theories, viz. act and rule utilitarianism.

We have preliminarily shown, in [67, 68], the use of integrated LP features to model
the classic trolley dilemmas and the double effect as the basis of moral decisions on
these dilemmas. In particular, possible decisions in a moral dilemma are modeled as
abducibles, and abductive stable models are computed to capture abduced decisions
and their consequences. Models violating integrity constraints, i.e., those that contain
actions violating the double effect principle, are ruled out. A posteriori preferences, in-
cluding the use of utility functions, are eventually applied to prefer models that charac-
terize more preferred moral decisions. The computational models, based on the prospec-
tive logic agent architecture [64] and developed on top of XSB Prolog [3], successfully
deliver moral decisions in accordance with the double effect principle. They conform to
the results of empirical experiments conducted in cognitive science [43] and law [57].
In [69–71], the computational models of the trolley dilemmas are extended, using the
same LP system, by considering another moral principle, viz. the triple effect principle
[47]. The work is further extended, in [40], by introducing various aspects of uncer-
tainty, achieved using P-log [16], into trolley dilemmas, both from the view of oneself
and from that of others; the latter by tackling the case of jury trials to proffer rulings
beyond reasonable doubt.

3 Potential of Logic Programming for Computational Morality

Logic programming (LP) offers a formalism for declarative knowledge representation
and reasoning. It thus has been used to solve problems in diverse areas of artificial
intelligence (AI), e.g., planning, diagnosis, decision making, hypothetical reasoning,
natural language processing, machine learning, etc. The reader is referred to [49] for a
good introduction to LP and its use in AI.

Our research aims at developing an LP-based system with features needed in model-
ing moral settings, to represent agents’ knowledge in those settings, and to allow moral
reasoning under morality aspects studied in moral philosophy, moral psychology, and
other related fields.

The choice of the LP paradigm is due to its potential to model morality. For one
thing, it allows moral rules, being employed when modeling some particular aspects,
to be specified declaratively. For another, research in LP has provided us with nec-
essary ingredients that are promising enough at being adept to model morality, e.g.
contradiction may represent moral dilemmas and contradiction removal to resolve such
dilemmas, defeasible reasoning is suitable for reasoning over moral rules with excep-
tions (and exceptions to exceptions), abductive logic programming [46] and (say) stable
model semantics [30] can be used to generate moral hypotheticals and decisions along
with their moral consequences, preferences [22] are appropriate for enabling to choose
among moral decisions or moral rules, and argumentation [23–25, 65, 77, 87] for pro-
viding reasons and justifications to moral decisions in reaching a consensus about their
(im)permissibility. Moreover, probabilistic logic programming can be employed to cap-
ture uncertainty of intentions, actions, or moral consequences.

The following LP features, being an integral part of the agent’s observe-think-
decide-act life cycle, serve as basic ingredients for the system to bring about moral
reasoning:

1. Knowledge updates, be they external or internal. This is important due to con-
stantly changing environment. It is also particularly relevant in moral settings where
an agent’s moral rules are susceptible to updating, and again when considering
judgments about others, which are often made in spite of incomplete, or even con-
tradictory, information.

2. Deliberative and reactive decision making. These two modes of decision making
correspond to the dual-process model of moral judgments, as discussed in Section
2.1. Furthermore, reactive behavior can be employed for fast and frugal decision
making with pre-compiled moral rules, thereby avoiding costly deliberative rea-
soning to be performed every time.

Given these basic ingredients, the whole process of moral decision making are par-
ticularly supported with the following capabilities of the system, justified by our need
of modeling morality:

• To exclude undesirable actions. This is important when we must rule out actions
that are morally impermissible under the moral rules being considered.

• To recognize intentions behind available actions, particularly in cases where inten-
tion is considered a significant aspect when addressing permissibility of actions.

• To generate alternatives of actions along with their consequences. In moral dilem-
mas agents are confronted with more than one course of action. They should be
made available, along with their moral consequences, for an agent to ultimately
decide about them.

• To prefer amongst alternatives of actions based on some measures. Preferences are
relevant in moral settings, e.g. in case of several actions being permissible, prefer-
ences can be exercised to prefer one of them on the grounds of some criteria. More-
over, it is realistic to consider uncertainty of intentions, actions or consequences,
including to perform counterfactual reasoning, in which cases preferences based on
probability measures play a role.

• To inspect consequences of an action without deliberate imposition of the action
itself as a goal. This is needed for instance to distinguish moral consequences of
actions performed by an agent to satisfy its goals from those of its actions and
side-effects performed unwittingly, not being part of the agent’s goals.

• To provide an action with reasons for it (not) to be done. Reasons are used to justify
permissibility of an action on grounds that one expects others to accept. In other
words, morality in this way is viewed as striving towards argumentative consensus.

The remaining part of this section discusses a logic programming framework that
has been developed and employed in modeling morality (Section 3.1), and the direction
in this line of work that we are currently pursuing (Section 3.2), in order to arrive at
ever more advanced systems.

3.1 Prospective Logic Programming

We recap Prospective Logic Programming, a logic programming framework employed
in our initial work to model morality [40, 54, 67–71].

Prospective logic programming enables an evolving program to look ahead prospec-
tively into its possible future states and to prefer among them to satisfy goals [53, 64].
This paradigm is particularly beneficial to the agents community, since it can be used
to predict an agent’s future by employing the methodologies from abductive logic pro-
gramming [46] in order to synthesize and maintain abductive hypotheses.

Fig. 1. Prospective logic agent architecture.

Figure 1 shows the architecture of agents that are based on prospective logic. Each
prospective logic agent is equipped with a knowledge base and a moral theory as its ini-

tial updatable state. The problem of prospection is then of finding abductive extensions
to this initial and subsequent states which are both relevant (under the agent’s current
goals) and preferred (with respect to preference rules in its initial overall theory). The
first step is to select the goals that the agent will possibly attend to during the prospec-
tion part of its cycle. Integrity constraints are also considered here to ensure the agent
always performs transitions into valid evolution states. Once the set of active goals for
the current state is known, the next step is to find out which are the relevant abduc-
tive hypotheses. This step may include the application of a priori preferences, in the
form of contextual preference rules, among available hypotheses to generate possible
abductive scenarios. Forward reasoning can then be applied to the abducibles in those
scenarios to obtain relevant consequences, which can then be used to enact a posteri-
ori preferences. These preferences can be enforced by employing utility theory and, in
a moral situation, also moral theory. In case additional information is needed to enact
preferences, the agent may consult external oracles. This greatly benefits agents in giv-
ing them the ability to probe the outside environment, thus providing better informed
choices, including the making of experiments. The mechanism to consult oracles is re-
alized by posing questions to external systems, be they other agents, actuators, sensors
or ancillary procedures. Each oracle mechanism may have certain conditions speci-
fying whether it is available for questioning. Whenever the agent acquires additional
information, it is possible that ensuing side-effects affect its original search, e.g. some
already considered abducibles may now be disconfirmed and some new abducibles are
triggered. To account for all possible side-effects, a second round of prospection takes
place.

ACORDA [53] is a system that implements Prospective Logic Programming and
is based on the above architecture. ACORDA is implemented based on the implemen-
tation of EVOLP [6] and is further developed on top of XSB Prolog [3]. In order to
compute abductive stable models [22], ACORDA also benefits from the XSB-XASP
interface to Smodels [2]. ACORDA was further developed into Evolution Prospection
Agent (EPA) system [62], distinguishing itself from ACORDA, among others: by con-
sidering a different abduction mechanism and improving a posteriori preference repre-
sentation.

We discuss briefly the main constructs from ACORDA and EPA systems, that are
relevant for our discussion in Section 5, and point out their differences.

Language Let L be a first order language. A domain literal in L is a domain atom A
or its default negation not A. The latter is to express that the atom is false by default
(close world assumption). A domain rule in L is a rule of the form:

A← L1, . . . , Lt. (t ≥ 0)

where A is a domain atom and L1, . . . , Lt are domain literals. A rule in the form of a
denial, i.e. with empty head, or equivalently with false as head, is an integrity constraint:

← L1, . . . , Lt. (t > 0)

A (logic) program P over L is a set of domain rules and integrity constraints, stand-
ing for all their ground instances.3

Active Goals In each cycle of its evolution the agent has a set of active goals or desires.
Active goals may be triggered by integrity constraints or observations. In ACORDA, an
observation is a quaternary relation amongst the observer; the reporter; the observation
name; and the truth value associated with it:

observe(Observer,Reporter,Observation, V alue)

The observe/4 literals are meant to represent observations reported by the environment
into the agent or from one agent to another, which can also be itself (self-triggered
goals). Additionally, the corresponding on observe/4 predicate is introduced. It rep-
resents active goals or desires that, once triggered, cause the agent to attempt their
satisfaction by launching the queries standing for the observations contained inside. In
the EPA system, a simplified on observe/1 is introduced, where the rule for an active
goal G is of the form (L1,...,Lt are domain literals, t ≥ 0):

on observe(G)← L1, ..., Lt.

Despite different representation, the prospection mechanism is the same. That is, when
starting a cycle, the agent collects its active goals by finding all on observe(G) (for
EPA, or on observe(agent, agent,G, true) for ACORDA), that hold under the ini-
tial theory without performing any abduction, then finds abductive solutions for their
conjunction.

Abducibles Every program P is associated with a set of abduciblesA ⊆ L. Abducibles
can be seen as hypotheses that provide hypothetical solutions or possible explanations
of given queries.

An abducible A can be assumed only if it is a considered one, i.e. it is expected in
the given situation, and moreover there is no expectation to the contrary.

• In ACORDA, this is represented as follows:

consider(A)← expect(A), not expect not(A), abduce(A).

The rules about expectations are domain-specific knowledge contained in the the-
ory of the program, and effectively constrain the hypotheses which are available.
ACORDA implements an ad hoc abduction by means of even loop over negation
for every abducible A:

abduce(A) ← not abduce not(A).
abduce not(A)← not abduce(A).

3 In Section 5, whenever Prolog program codes are shown, <- is used to represent← symbol in
rules and integrity constraints.

• In the EPA system, consider/1 is represented as follows:

consider(A)← A, expect(A), not expect not(A).

Differently from ACORDA, abduction is no longer implemented ad hoc in the EPA
system. Instead, an abduction system NEGABDUAL [5] is employed to abduce A
in the body of rule consider(A), by a search attempt for a query’s abductive solu-
tion whenever this rule is used. NEGABDUAL is an abductive logic programming
system with constructive negation. NEGABDUAL is based on its predecessor ab-
duction system ABDUAL, but in addition to use abduction for its own purpose (like
in ABDUAL), NEGABDUAL also uses abduction to provide constructive negation,
by making the disunification predicate an abducible. For illustration, consider pro-
gram P , with no abducibles, just to illustrate the point of constructive negation:

p(X)← q(Y). q(1).

In NEGABDUAL, the query not p(X) will return a qualified ‘yes’, because it is
always possible to solve the constraint Y 6= 1, as long as one assumes there are at
least two constants in the Herbrand Universe.

A Priori Preferences To express preference criteria among abducibles, we envisage
an extended language L?. A preference atom in L? is of the form a / b, where a and b
are abducibles. It means that if b can be assumed (i.e., considered), then a / b forces a
to be assumed too if it may be allowed for consideration. A preference rule in L? is of
the form:

a / b← L1, ..., Lt.

where L1, ..., Lt (t ≥ 0) are domain literals over L?.
A priori preferences are used to produce the most interesting or relevant considered

conjectures about possible future states. They are taken into account when generating
possible scenarios (abductive solutions), which will subsequently be preferred amongst
each other a posteriori, after having been generated, and specified consequences of
interest taken into account.

A Posteriori Preferences Having computed possible scenarios, represented by abduc-
tive solutions, more favorable scenarios can be preferred a posteriori. Typically, a poste-
riori preferences are performed by evaluating consequences of abducibles in abductive
solutions. The evaluation can be done quantitatively (for instance by utility functions)
or qualitatively (for instance by enforcing some rules to hold). When currently available
knowledge is insufficient to prefer among abductive stable models, additional informa-
tion can be gathered, e.g., by performing experiments or consulting an oracle.

To realize a posteriori preferences, ACORDA provides predicate select/2 that can
be defined by users following some domain-specific mechanism for selecting favored
abductive stable models. The use of this predicate to perform a posteriori preferences
in a moral domain will be discussed in Section 5.

On the other hand, an a posteriori preference in the EPA system has the form:

Ai � Aj ← holds given(Li, Ai), holds given(Lj , Aj).

where Ai, Aj are abductive solutions and Li, Lj are domain literals. This means that
Ai is preferred to Aj a posteriori if Li and Lj are true as the side-effects of abductive
solutions Ai and Aj , respectively, without any further abduction being permitted when
just testing for the side-effects. If an a posteriori preference is based on decision rules,
e.g., using expected utility maximization decision rule, then the preference rules have
the form:

Ai � Aj ← expected utility(Ai, Ui), expected utility(Aj , Uj), Ui > Uj .

whereAi,Aj are abductive solutions. This means thatAi is preferred toAj a posteriori
if the expected utility of relevant consequences of Ai is greater than the expected utility
of the ones of Aj .

3.2 The Road Ahead

In our current state of research, we focus on three important morality aspects, over-
viewed in Section 2.1, that in our view are amenable to computational model by exploit-
ing appropriate LP features, namely (1) the dual-process of moral judgments [20, 55],
(2) justification of moral judgments [83, 84], and (3) the significance of intention in
regard to moral permissibility [85]. The choice of these aspects is made due to their
conceptual closeness with existing logic-based formalisms under available LP features
as listed previously. The choice is not meant to be exhaustive (as morality is itself a
complex subject), in the sense that there may be other aspects that can be modeled
computationally, particularly in LP. On the other hand, some aspects are not directly
amenable to model in LP (at least for now), e.g., to model the role of emotions in moral
decision making.

Like in Prospective Logic Programming systems, the new system is based on ab-
ductive logic programming and knowledge updates, and its development is driven by
the three considered morality aspects. With respect to the first aspect, we look into re-
cent approaches in combining deliberative and reactive logic-based systems [50, 51].
Inspired by these approaches, we have proposed two implementation techniques which
develop further abductive logic programming and knowledge updates subsystems (both
are the basis of a Prospective Logic Programming based system). First, we have im-
proved the abduction system ABDUAL [7], on which NEGABDUAL is based, and em-
ployed for deliberative moral decision making in our previous work [40, 67–71]. We
particularly explored the benefit of LP tabling mechanisms in abduction, to table ab-
ductive solutions for future reuse, resulting in a tabled abduction system TABDUAL
[72, 79]. Second, we have adapted evolving logic programs (EVOLP) [6], a formalism
to model evolving agents, i.e., agents whose knowledge may dynamically change due
to some (internal or external) updates. In EVOLP, updates are made possible by intro-
ducing the reserved predicate assert/1 into its language, whether in rule heads or rule
bodies, which updates the program by the ruleR, appearing in its only argument, when-
ever the assertion assert(R) is true in a model; or retractsR in case assert(not R) ob-
tains in the model under consideration. We simplified EVOLP, in an approach termed
EVOLP/R [80, 81], by restricting assertions to fluents only, whether internal or external
world ones. We discuss both TABDUAL and EVOLP/R in Section 4.

The lighter conceptual and implementation advantages of EVOLP/R help in com-
bining with TABDUAL, to model both reactive and deliberative reasoning. Their com-
bination also provides the basis for other reasoning facets needed in modeling other
morality aspects, notably: argumentative frameworks (e.g., [23, 24, 77, 87]) and inten-
tion recognition (e.g., [37, 38]) to deal with the second and the third aspects, respec-
tively. Furthermore, in line with the third aspect, counterfactuals also play some role
in uncovering possible implicit intentions, and “What if?” questions in order to reason
retrospectively about past decisions. With regard to counterfactuals, both causal models
[15, 59] and the extension of inspection points [66] to examine contextual side effects
of counterfactual abduction are considered. That is, to examine foreseeable extraneous
consequences, either in future or past hypothetical scenarios. Contextual side effects
and other variants of contextual abductive explanations (e.g., contextual relevant con-
sequences, jointly supported contextual relevant consequences, contestable contextual
side-effects) are recently studied and formalized in [73], with inspection points used to
express all these variants. Moreover, these various abductive context definitions have
been employed in [73] to model belief-bias effect in psychology [73]. The definitions
and techniques detailed in [27, 28] are also relevant to afford the modeling of belief-bias
in moral reasoning.

4 TABDUAL and EVOLP/R

We recently proposed novel implementation techniques, both in abduction and knowl-
edge updates (i.e., logic program updates), by employing tabling mechanisms in LP.
Tabling mechanisms in LP, known as the tabled logic programming paradigm, is cur-
rently supported by a number of Prolog systems, to different extent, e.g., Ciao [1], XSB
[3], Yap [4]. Tabling affords solutions reuse, rather than recomputing them, by keeping
in tables subgoals and their answers obtained by query evaluation. Our techniques are
realized in XSB Prolog [3], one of the most advanced tabled LP systems, with features
such as tabling over default negation, incremental tabling, answer subsumption, call
subsumption, and threads with shared tables.

4.1 Tabled Abduction (TABDUAL)

The basic idea behind tabled abduction (its prototype is termed TABDUAL) is to em-
ploy tabling mechanisms in logic programs in order to reuse priorly obtained abductive
solutions, from one abductive context to another. It is realized via a program transfor-
mation of abductive normal logic programs. Abduction is subsequently enacted on the
transformed program.

The core transformation of TABDUAL consists of an innovative re-uptake of prior
abductive solution entries in tabled predicates and relies on the dual transformation [7].
The dual transformation, initially employed in ABDUAL [7], allows to more efficiently
handle the problem of abduction under negative goals, by introducing their positive dual
counterparts. It does not concern itself with programs having variables. In TABDUAL,
the dual transformation is refined, to allow it dealing with such programs. The first

refinement helps ground (dualized) negative subgoals. The second one allows to deal
with non-ground negative goals.

As TABDUAL is implemented in XSB, it employs XSB’s tabling as much as possible
to deal with loops. Nevertheless, tabled abduction introduces a complication concerning
some varieties of loops. Therefore, the core TABDUAL transformation has been adapted,
resorting to a pragmatic approach, to cater to all varieties of loops in normal logic
programs, which are now complicated by abduction.

From the implementation viewpoint, several pragmatic aspects have been exam-
ined. First, because TABDUAL allows for modular mixes between abductive and non-
abductive program parts, one can benefit in the latter part by enacting a simpler trans-
lation of predicates in the program comprised just of facts. It particularly helps avoid
superfluous transformation of facts, which would hinder the use of large factual data.
Second, we address the issue of potentially heavy transformation load due to produc-
ing the complete dual rules (i.e., all dual rules regardless of their need), if these are
constructed in advance by the transformation (which is the case in ABDUAL). Such
a heavy dual transformation makes it a bottleneck of the whole abduction process.
Two approaches are provided to realizing the dual transformation by-need: creating
and tabling all dual rules for a predicate only on the first invocation of its negation,
or, in contrast, lazily generating and storing its dual rules in a trie (instead of tabling),
only as new alternatives are required. The former leads to an eager (albeit by-need)
tabling of dual rules construction (under local table scheduling), whereas the latter per-
mits a by-need-driven lazy one (in lieu of batched table scheduling). Third, TABDUAL
provides a system predicate that permits accessing ongoing abductive solutions. This
is a useful feature and extends TABDUAL’s flexibility, as it allows manipulating abduc-
tive solutions dynamically, e.g., preferring or filtering ongoing abductive solutions, e.g.,
checking them explicitly against nogoods at predefined program points.

We conducted evaluations of TABDUAL with various objectives, where we examine
five TABDUAL variants of the same underlying implementation by separately factoring
out TABDUAL’s most important distinguishing features. They include the evaluations
of: (1) the benefit of tabling abductive solutions, where we employ an example from
declarative debugging, now characterized as abduction [82], to debug incorrect solu-
tions of logic programs; (2) the three dual transformation variants: complete, eager
by-need, and lazy by-need, where the other case of declarative debugging, that of de-
bugging missing solutions, is employed; (3) tabling so-called nogoods of subproblems
in the context of abduction (i.e., abductive solution candidates that violate constraints),
where it can be shown that tabling abductive solutions can be appropriate for tabling
nogoods of subproblems; (4) programs with loops, where the results are compared with
ABDUAL, showing that TABDUAL provides more correct and complete results. Ad-
ditionally, we show how TABDUAL can be applied in action decision making under
hypothetical reasoning, and in a real medical diagnosis case [82].

4.2 Restricted Evolving Logic Programs (EVOLP/R)

We have defined the language of EVOLP/R in [81], adapted from that of Evolving Logic
Programs (EVOLP) [6], by restricting updates at first to fluents only. More precisely,
every fluent F is accompanied by its fluent complement ∼F . Retraction of F is thus

achieved by asserting its complement ∼F at the next timestamp, which renders F su-
pervened by ∼F at later time; thereby making F false. Nevertheless, it allows paracon-
sistency, i.e., both F and ∼F may hold at the same timestamp, to be dealt with by the
user as desired, e.g., with integrity constraints or preferences.

In order to update the program with rules, special fluents (termed rule name fluents)
are introduced to identify rules uniquely. Such a fluent is placed in the body of a rule, al-
lowing to turn the rule on and off, cf. Poole’s “naming device” [75]; this being achieved
by asserting or retracting the rule name fluent. The restriction thus requires that all rules
be known at the start.

EVOLP/R is realized by a program transformation and a library of system predi-
cates. The transformation adds some extra information, e.g., timestamps, for internal
processing. Rule name fluents are also system generated and added in the transform.
System predicates are defined to operate on the transform by combining the usage of
incremental and answer subsumption tabling.

In [81], we exploited two features of XSB Prolog in implementing EVOLP/R: incre-
mental and answer subsumption tabling. Incremental tabling of fluents allows to auto-
matically maintain the consistency of program states, analogously to assumption based
truth-maintenance system in artificial intelligence, due to assertion and retraction of flu-
ents, by relevantly propagating their consequences. Answer subsumption of fluents, on
the other hand, allows to address the frame problem by automatically keeping track of
their latest assertion or retraction, whether obtained as updated facts or concluded by
rules. Despite being pragmatic, employing these tabling features has profound conse-
quences in modeling agents, i.e., it permits separating higher-level declarative represen-
tation and reasoning, as a mechanism pertinent to agents, from a world’s inbuilt reactive
laws of operation. The latter are relegated to engine-level enacted tabling features (in
this case, the incremental and answer subsumption tabling); they are of no operational
concern to the problem representation level.

Recently, in [80], we refined the implementation technique by fostering further in-
cremental tabling, but leaving out the problematic use of the answer subsumption fea-
ture. The main idea is the perspective that knowledge updates (either self or world
wrought changes) occur whether or not they are queried, i.e., the former take place in-
dependently of the latter. That is, when a fluent is true at a particular time, its truth
lingers on independently of when it is queried.

Figure 2 captures the main idea of the implementation. The input program is first
transformed and then, an initial query is given to set a predefined upper global time
limit in order to avoid potential iterative non-termination of updates propagation. The
initial query additionally creates and initializes the table for every fluent. Fluent updates
are initially kept pending in the database, and on the initiative of top-goal queries, i.e.,
by need only, incremental assertions make these pending updates become active (if not
already so), but only those with timestamps up to an actual query time. Such asser-
tions automatically trigger system-implemented incremental upwards propagation and
tabling of fluent updates. Though foregoing answer subsumption, recursion through the
frame axiom can thus still be avoided, and a direct access to the latest time a fluent is
true is made possible by means of existing table inspection predicates. Benefiting from
the automatic upwards propagation of fluent updates, the program transformation in the

Compiled)Program)

Pending)
Updates)

Input)Program)

Updates)

Ini4alizer:)set)
upper)4me)limit,)
create)table)for)

fluents.)

Top>goal)query)

BoBom>up)
)fluents)

propaga4on)

))
transforms)

ac4vates)

inspects)

Table)
of)

fluents)

ini4alizes)

incrementally))
stores)
)

!

Fig. 2. The main idea of EVOLP/R implementation.

new implementation technique becomes simpler than our previous one, in [81]. More-
over, it demonstrates how the dual program transformation, introduced in the context of
abduction and used in TABDUAL, is employed for helping propagate the dual negation
complement of a fluent incrementally, in order to establish whether the fluent is still true
at some time point or if rather its complement is. In summary, the refinement affords us
a form of controlled, though automatic, system level truth-maintenance, up to the actual
query time. It reconciles high-level top-down deliberative reasoning about a query, with
autonomous low-level bottom-up world reactivity to ongoing updates.

4.3 LP Implementation Remarks: Further Development

Departing from the current state of our research, the integration of TABDUAL and
EVOLP/R becomes naturally the next step. We shall define how reactive behavior (de-
scribed as maintenance goals in [50, 51]) can be achieved in the integrated system. An
idea would be to use integrity constraints as sketched below:

assert(trigger(conclusion))← condition
← trigger(conclusion), not do(conclusion)
do(conclusion)← some actions

Accordingly, fluents of the form trigger(conclusion) can enact the launch of mainte-
nance goals, in the next program update state, by satisfying any corresponding integrity
constraints. Fluents of the form ∼trigger(conclusion), when asserted, will refrain any
such launching, in the next program update state. In line with such reactive behavior, is
fast and frugal moral decision making, which can be achieved via pre-compiled moral
rules (cf. heuristics for decision making in law [31]).

Once TABDUAL and EVOLP/R are integrated, we are ready to model moral dilem-
mas, focusing on the first morality aspect, starting from easy scenarios (low-conflict) to
difficult scenarios (high-conflict). In essence, moral dilemmas will serve as vehicles to
model and to test this morality aspect (and also others). The integrated system can then

be framed in the same architecture of prospective logic agent (Figure 1). The inclusion
of other ingredients into the system, notably argumentation and intention recognition
(including counterfactuals), is in our research agenda, and the choice of their appropri-
ate formalisms still need to be defined, driven by the salient features of the second and
the third morality aspects to model.

5 Applications

We exemplify two applications of logic programming to model morality. The first ap-
plication is in interactive storytelling, where it shows how knowledge updates are em-
ployed for moral updating, i.e., the adoption of new (possibly overriding) moral rules
on top of those an agent currently follows. The second one is in modeling the trolley
dilemmas with various aspects of uncertainty taken into account, including when there
is no full and certain information about actions (as in courts). Note that for these two
applications, ACORDA [53] and Evolution Prospection Agent (EPA) system [62] are
used in their previous LP implementation, without exploiting tabling’s combination of
deliberative and reactive features. From that experience, we currently pursue our on-
going work of a new single integrated system, as described in Section 4.3, that fully
exploits tabling technology.

5.1 Interactive Storytelling: a Princess Savior Moral Robot

Apart from dealing with incomplete information, knowledge updates (as realized by
EVOLP/R) are essential to account for moral updating and evolution. It concerns the
adoption of new (possibly overriding) moral rules on top of those an agent currently
follows. Such adoption is often necessary when the moral rules one follows have to be
revised in the light of situations faced by the agent, e.g., when other moral rules are
contextually imposed by an authority.

This is not only relevant in a real world setting, but also in imaginary ones, e.g., in
interactive storytelling; cf. [54], where the robot in the story must save the princess in
distress while it should also follow (possibly conflicting) moral rules that may change
dynamically as imposed by the princess in distress and may conflict with the robot’s
survival.

It does so by employing Prospective Logic Programming, which supports the speci-
fication of autonomous agents capable of anticipating and reasoning about hypothetical
future scenarios. This capability for prediction is essential for proactive agents working
with partial information in dynamically changing environments. The work explores the
use of state-of-the-art declarative non-monotonic reasoning in the field of interactive
storytelling and emergent narratives and how it is possible to build an integrated archi-
tecture for embedding these reasoning techniques in the simulation of embodied agents
in virtual three-dimensional worlds. A concrete graphics supported application proto-
type was engineered, in order to enact the story of a princess saved by a robot imbued
with moral reasoning.

In order to test the basic Prospective Logic Programming framework (ACORDA
[53] is used for this application) and the integration of a virtual environment for in-
teractive storytelling, a simplified scenario was developed. In this fantasy setting, an

archetypal princess is held in a castle awaiting rescue. The unlikely hero is an advanced
robot, imbued with a set of declarative rules for decision making and moral reasoning.
As the robot is asked to save the princess in distress, he is confronted with an ordeal.
The path to the castle is blocked by a river, crossed by two bridges. Standing guard at
each of the bridges are minions of the wizard which originally imprisoned the princess.
In order to rescue the princess, he will have to defeat one of the minions to proceed.4

Recall that prospective reasoning is the combination of a priori preference hypo-
thetical scenario generation into the future plus a posteriori preference choices taking
into account the imagined consequences of each preferred scenario. By reasoning back-
wards from the goal to save the princess, the agent (i.e., the robot) generates three pos-
sible hypothetical scenarios for action. Either it crosses one of the bridges, or it does not
cross the river at all, thus negating satisfaction of the rescue goal. In order to derive the
consequences for each scenario, the agent has to reason forwards from each available
hypothesis. As soon as these consequences are known, meta-reasoning techniques can
be applied to prefer amongst the partial scenarios.

We recap from [54] several plots of this interactive moral storytelling. The above
initial setting of this princess savior moral robot story can be modeled in ACORDA as
follows:

save(princess,after(X)) <- cross(X).
cross(X) <- cross_using(X,Y).

cross_using(X,wood_bridge) <- wood_bridge(X),
neg_barred(wood_bridge(X)).

cross_using(X,stone_bridge) <- stone_bridge(X),
neg_barred(stone_bridge(X)).

neg_barred(L) <- not enemy(L).
neg_barred(L) <- enemy(X,L), consider(kill(X)).
enemy(L) <- enemy(_,L).

enemy(ninja,stone_bridge(gap)). enemy(spider,wood_bridge(gap)).
wood_bridge(gap). stone_bridge(gap).
in_distress(princess,after(gap)).

The goal of the robot to save the princess is expressed as save(princess, after(gap)),
which can be satisfied ether by abducing kill(ninja) or kill(spider), cf. Figure 3.
Several plots can be built thereon:

1. In the first plot, the robot is utilitarian. That is, the decision of the robot for choosing
which minion to defeat (i.e., to kill), in order to save the princess, is purely driven by
maximizing its survival utility. The goal of the robot, i.e., save(princess, after(gap)),
is triggered by an integrity constraint:

<- reasonable rescue(princess,X),not save(princess,X). %ic0

4 Online demo at: http://centria.di.fct.unl.pt/˜lmp/publications/
slides/padl10/quick_moral_robot.avi

http://centria.di.fct.unl.pt/~lmp/publications/slides/padl10/quick_moral_robot.avi
http://centria.di.fct.unl.pt/~lmp/publications/slides/padl10/quick_moral_robot.avi

Fig. 3. The initial plot of the interactive moral storytelling.

where reasonable rescue/2 expresses that the robot will prefer the scenario with
its likelihood of survival does not fall below a specified threshold (set here to 0.6):

reasonable <- utility(survival,U), prolog(U > 0.6).
reasonable_rescue(P,X) <- in_distress(P,X), reasonable.

Given the likelihood of survival between fighting the ninja (0.7) and the giant spider
(0.3), the decision is clearly to fight the ninja (Figure 4).

2. Following the first plot, the princess becomes angry because the robot decides
to kill a man (the ninja) in order to save her. She then asks the robot to adopt
a moral conduct that no man should be harmed in saving her (referred below as
gandhi moral). This is captured by rule updates as follows:

<- angry princess, not consider(solving conflict). %ic1

angry princess <- not consider(follow(gandhi moral)).

At this point, since angry princess is true, the integrity constraint ic1 causes
solving conflict to be abduced, which makes both abducibles kill(ninja) and
kill(spider) available. Later, the robot learns about gandhi moral, by being told,
which is expressed by the update literal knows about gandhi moral. This recent
update allows follow(gandhi moral) to be abduced:

expect(follow(gandhi_moral)) <- knows_about_gandhi_moral.
expect_not(follow(gandhi_moral)) <- consider(solving_conflict).

Fig. 4. A plot where a utilitarian robot saves the princess.

and consequently ic1 is no longer triggered.5 Now, since the robot’s knowledge
contains:

expect(kill(X)) <- enemy(X,_).
expect_not(kill(X)) <- consider(follow(gandhi_moral)),human(X).

abducing kill(ninja) is disallowed, leaving only kill(spider) as the only remain-
ing abducible. Moreover, the knowledge base of the robot also contains:

<- unreasonable rescue(princess,X),
not consider(follow(knight moral)), save(princess,X). %ic2

unreasonable rescue(P,X) <- in distress(P,X), not reasonable.

Note that the literal knight moral represents still another moral conduct that the
princess has to be saved whatever it takes (cf. subsequent plots). Since kill(spider)
satisfies unreasonable rescue(princess, after(gap)), i.e., killing the spider is
considered an unreasonable rescue, and the knight moral is not yet imposed, then
the integrity constraint ic2 makes not save(princes, after(gap)) the active goal.
This means, the robot decides not to kill any minions and just aborts its mission to
save the princess (Figure 5).

5 In fact, another abductive scenario with solving conflict being abduced also exists, but with-
out follow(gandhi moral) in it. This scenario is ruled out by a posteriori preference rules,
which prioritize scenarios that uphold moral conducts, as shown by select/2 definition (cf.
plot 4).

Fig. 5. A plot where the robot does not save the princess because killing the ninja is immoral.
On the other hand, its survival utility is also below the threshold when it decides killing the giant
spider.

3. In the next plot, the princess becomes angry again (now, because she is not saved).
She imposes another moral conduct that she has to be saved no matter what it takes
(referred as knight moral). This is captured by the following rule update:

angry_princess <- not consider(follow(knight_moral)).

By the integrity constraint ic1 in plot 2, solving conflict is again abduced, making
both abducibles kill(ninja) and kill(spider) available again. Next, the robot is be-
ing told about knight moral, which is expressed by update adopt knight moral
and results in abducing follow(knight moral). Similar to plot 2, the latter abduc-
tion no longer triggers ic1. Recall that in plot 2, gandhi moral has been adopted,
which leaves only kill spider as the only abducible. That is, the a posteriori pref-
erence chooses the scenario with both gandhi moral and knight moral, followed
(cf. select/2 definition in plot 4). Note that the robot’s knowledge also contains:

<- knightly rescue(princess,X), not save(princess,X). %ic3

announce knight moral <- adopt knight moral.
knight posture(P,X) <- in distress(P,X), announce knight moral.
knightly rescue(P,X) <- knight posture(P,X),

consider(follow(knight moral)).

By the integrity constraint ic3 and adopting knight moral in the most recent up-
date, the goal save(princess, after(gap)) becomes true, i.e., the princess has to
be saved. That is, the robot has no other way to save the princess other than killing
the giant spider. This means it follows both gandhi moral and knight moral that
were adopted before. As a result, the robot fails saving the princess (the robot’s
survival is lower than the survival threshold, thus it was killed by the spider), cf.
Figure 6.

Fig. 6. A plot where the robot has to save the princess by prioritizing the moral conducts it adopted
rather than its own survival, which results in choosing the giant spider to kill but failed, being
killed instead.

4. In the final plot, the story restarts, now with the two minions being ninjas with
different strength, i.e., the giant spider is replaced by another ninja, referred below
as elite ninja who is stronger than the other ninja. This is reflected in that the
robot’s survival against ninja is higher than elite ninja (0.7 versus 0.4), where
the survival threshold remains the same (0.6). As the robot adopted gandhi moral
earlier, both kill(ninja) and kill(elite ninja) are disallowed. On the other hand,
by its knight moral, the robot is obliged to save the princess, which means killing
any one of the minions. Consequently there is a conflict, i.e., there is no abductive
scenario with both moral conducts being followed. This conflict is resolved by a
posteriori preference, expressed in the following select/2 definition:

1. select(Ms,SMs) :- select(Ms,Ms,SMs).
2. select([],_,[]).

3. select([M1|Ms],AMs,SMs) :- count_morals(M1,NM1),
member(M2,AMs),
count_morals(M2,NM2), NM2 > NM1,
select(Ms,AMs,SMs).

4. select([M1|Ms],AMs,SMs) :- not member(solving_conflict,M1),
member(M2,AMs),
member(solving_conflict,M2),
select(Ms,AMs,SMs).

5. select([M|Ms],AMs,[M|SMs]) :- select(Ms,AMs,SMs).
6. count_morals(Ms,N) :- count_morals(Ms,0,N).
7. count_morals([],N,N).
8. count_morals([follow(_)|Ms],A,N) :- !, NA is A + 1,

count_morals(Ms,NA,N).
9. count_morals([_|Ms],A,N) :- count_morals(Ms,A,N).

Note that lines 1-5 define which abductive scenarios (abductive stable models) are pre-
ferred. The predicate count morals/2 and count morals/3 are just auxiliary predi-
cates used in the a posteriori preference predicate select/2, viz., to count the number
of moral conducts in an abductive stable model. We can observe that in line 3, the ab-
ductive scenario with both moral conducts followed are more preferred (cf. plot 3). The
final plot, where there is no abductive scenario with both moral conducts being followed
(it results in a conflict), benefits from line 4, i.e., by preferring the abductive stable
model with solving conflict being abduced. In this scenario, follow(knight moral)
is also abduced, but not follow(gandhi moral) – recall the definition of the rule
expect not(follow(gandhi moral)), in plot 2. In other words, knight moral super-
venes gandhi moral satisfying ic3 (that princess has to be saved), and due to ic0, the
utilitarianism resurfaces with the robot chose to kill ninja rather than elite ninja, as
it brings better survival utility (Figure 7).

This simple scenario already illustrates the interplay between different logic pro-
gramming techniques and demonstrates the advantages gained by combining their dis-
tinct strengths. Namely, the integration of top-down, bottom-up, hypothetical, moral
updating, and utility-based reasoning procedures results in a flexible framework for dy-
namic agent specification. The open nature of the framework embraces the possibility
of expanding its use to yet other useful models of cognition such as counterfactual rea-
soning and theories of mind.

5.2 Moral Reasoning under Uncertainty

For the second application [40], we show how evolution prospection of conceivable
scenarios can be extended to handle moral judgments under uncertainty, by employing
a combination of the Evolution Prospection Agent (EPA) system with P-log [16, 39]
for computing scenarios’ probabilities and utilities. It extends our previous work [71]
in now further enabling judgmental reasoning under uncertainty concerning the facts,
the effects, and even the actual actions performed. For illustration, these extensions
effectively show in detail how to declaratively model and computationally deal with
uncertainty in prototypical classic moral situations arising from the trolley dilemmas
[29].

Fig. 7. A plot where the robot has conflicting moral conducts to follow and solves the conflict
by supervening gandhi moral with the later adopted knight moral. Its decision to save the
princess is compatible with the utilitarianism principle it followed initially, thus preferring to kill
the ninja rather than the elite ninja.

The theory’s implemented system can thus prospectively consider moral judgments,
under hypothetical and uncertain situations, to decide on the most likely appropriate
one. The overall moral reasoning is accomplished via a priori constraints and a poste-
riori preferences on abductive solutions tagged with uncertainty and utility measures,
features henceforth made available in Prospective Logic Programming.

The trolley dilemmas are modified by introducing different aspects of uncertainty.
Undoubtedly, real moral problems might contain several aspects of uncertainty, and
decision makers need to take them into account when reasoning. In moral situations the
uncertainty of the decision makers about different aspects such as the actual external
environment, beliefs and behaviors of other agents involved in the situation, as well
as the success in performing different actual or hypothesized actions, are inescapable.
We show that the levels of uncertainty of several such combined aspects may affect the
moral decision, reflecting that, with different levels of uncertainty with respect to the de
facto environment and success of actions involved, the moral decision makers—such as
juries—may consider different choices and verdicts.

We recap from [40] how moral reasoning with uncertainty in the trolley dilemmas
is modeled with EPA system (plus P-log). We begin by summarizing relevant P-log
constructs for our discussion.

5.2.1 P-log: Probabilistic Logic Programming

The P-log system in its original form [16] uses answer set programming (ASP) as a tool
for computing all stable models of the logical part of P-log. Although ASP has proven
a useful paradigm for solving a variety of combinatorial problems, its non-relevance
property makes the P-log system sometimes computationally redundant. Another im-
plementation of P-log [39], referred as P-log(XSB), which is deployed in this appli-
cation, uses the XASP package of XSB Prolog for interfacing with Smodels [2], an
answer set solver.

In general, a P-log program Π consists of a sorted signature, declarations, a regu-
lar part, a set of random selection rules, a probabilistic information part, and a set of
observations and actions.
Sorted signature and Declaration The sorted signature Σ of Π contains a set of con-
stant symbols and term-building function symbols, which are used to form terms in the
usual way. Additionally, the signature contains a collection of special function symbols
called attributes. Attribute terms are expressions of the form a(t̄), where a is an attribute
and t̄ is a vector of terms of the sorts required by a. A literal is an atomic expression, p,
or its explicit negation, neg p.

The declaration part of a P-log program can be defined as a collection of sorts and
sort declarations of attributes. A sort c can be defined by listing all the elements c =
{x1, ..., xn} or by specifying the range of values c = {L..U} where L and U are the
integer lower bound and upper bound of the sort c. Attribute a with domain c1× ...×cn
and range c0 is represented as follows:

a : c1 × ...× cn --> c0

If attribute a has no domain parameter, we simply write a : c0. The range of attribute a
is denoted by range(a).
Regular part This part of a P-log program consists of a collection of XSB Prolog rules,
facts and integrity constraints formed using literals of Σ.
Random Selection Rule This is a rule for attribute a having the form:

random(RandomName, a(t̄), DynamicRange)← Body

This means that the attribute instance a(t̄) is random if the conditions in Body are sat-
isfied. The DynamicRange allows to restrict the default range for random attributes.
The RandomName is a syntactic mechanism used to link random attributes to the
corresponding probabilities. A constant full can be used in DynamicRange to signal
that the dynamic range is equal to range(a).
Probabilistic Information Information about probabilities of random attribute instances
a(t̄) taking a particular value y is given by probability atoms (or simply pa-atoms)
which have the following form:

pa(RandomName, a(t̄, y), d (A,B))← Body

meaning that if theBody were true, and the value of a(t̄) were selected by a rule named
RandomName, then Body would cause a(t̄) = y with probability A

B . Note that the

probability of an atom a(t̄, y) will be directly assigned if the corresponding pa/3 atom
is the head of some pa-rule with a true body. To define probabilities of the remaining
atoms we assume that, by default, all values of a given attribute which are not assigned
a probability are equally likely.
Observations and Actions These are, respectively, statements of the forms obs(l) and
do(l), where l is a literal. Observations obs(a(t̄, y)) are used to record the outcomes y of
random events a(t̄), i.e. random attributes and attributes dependent on them. Statement
do(a(t̄, y)) indicates a(t̄) = y is enforced as the result of a deliberate action.

In an EPA program, P-log code is embedded by putting it between reserved key-
words, beginPlog and endPlog. In P-log, probabilistic information can be obtained
using the XSB Prolog built-in predicate pr/2. Its first argument is the query, the prob-
ability of which is needed to compute. The second argument captures the result. Thus,
probabilistic information can be easily embedded by using pr/2 like a usual Prolog
predicate, in any constructs of EPA programs, including active goals, preferences, and
integrity constraints. What is more, since P-log(XSB) allows to code Prolog probabilis-
tic meta-predicates (Prolog predicates that depend on pr/2 predicates), we also can
directly use probabilistic meta-information in EPA programs.

5.2.2 Revised Bystander Case

The first aspect present in every trolley dilemma where we can introduce uncertainty
is that of how probable the five people walking will die when the trolley is let head
on to them without outside intervention, or there is intervention though unsuccessful.
People can help each other get off the track. Maybe they would not have enough time
in order for all to get out and survive. That is, the moral decision makers now need to
account for how probable the five people, or only some of them, might die. It is reason-
able to assume that the probability of a person dying depends on whether he gets help
from others; and, more elaborately, on how many people help him. The P-log program
modeling this scenario is as follows:

beginPlog.
1. person = {1..5}. bool = {t,f}.
2. die : person --> bool. random(rd(P), die(P), full).
3. helped : person --> bool. random(rh(P), helped(P), full).
4. pa(rh(P), helped(P,t), d_(3,5)) :- person(P).
5. pa(rd(P), die(P,t), d_(1,1)) :- helped(P,f).

pa(rd(P), die(P,t), d_(4,10)) :- helped(P,t).
6. die_5(V):-pr(die(1,t)&die(2,t)&die(3,t)&die(4,t)&die(5,t),V).
endPlog.

Two sorts person and bool are declared in line 1. There are two random attributes,
die and helped. Both of them map a person to a boolean value, saying if a person either
dies or does not die, and, if a person either gets help or does not get any, respectively
(lines 2-3). The pa-rule in line 4 says that a person might get help from someone with
probability 3/5. In line 5, it is said that a person who does not get any help will surely
die (first rule) and the one who gets help dies with probability 4/10 (second rule in

line 5). This rule represents the degree of conviction of the decision maker about how
probable a person can survive provided that he is helped. Undoubtedly, this degree
affects the final decision to be made. The meta-probabilistic predicate die 5/1 in line 6
is used to compute the probability of all five people dying. Note that in P-log, the joint
probability of two events A and B is obtained by the query pr(A&B, V).

We can see this modeling is not elaborate enough. It is reasonable to assume that
the more help a person gets, the more the chance he has to succeed in getting off the
track on time. For the sake of clearness of representation, we use a simplified version.

Consider now the Bystander Case with this uncertainty aspect being taken into ac-
count, i.e. the uncertainty of five people dying when merely watching the trolley head
for them. It can be coded as follows:

expect(watching). trolley_straight <- watching.
end(die(5), Pr) <- trolley_straight, prolog(die_5(Pr)).

The abducible of throwing the switch and its consequence is modeled as:

expect(throwing_switch). kill(1) <- throwing_switch.
end(save_men,ni_kill(N)) <- kill(N).

The a posteriori preferences, which model the double effect principle, are provided by:

Ai << Aj <- holds_given(end(die(N),Pr),Ai), U is N*Pr,
holds_given(end(save_men,ni_kill(K)),Aj), U < K.

Ai << Aj <- holds_given(end(save_men,ni_kill(N)),Ai),
holds_given(end(die(K),Pr), Aj), U is K*Pr, N < U.

There are two abductive solutions in this trolley case, either watching or throwing
the switch. In the next stage, the a posteriori preferences are taken into account. It is
easily seen that the final decision directly depends on the probability of five people
dying, namely, whether that probability is greater than 1/5.

Let PrD denote the probability that a person dies when he gets help, coded in the
second pa-rule (line 5) of the above P-log program. If PrD = 0.4 (as currently in the
P-log code), the probability of five people dying is 0.107. Hence, the final choice is to
merely watch. If PrD is changed to 0.6, the probability of five people dying is 0.254.
Hence, the final best choice is to throw the switch. That is, in a real world situation
where uncertainty is unavoidable, in order to appropriately provide a moral decision,
the system needs to take into account the uncertainty level of relevant factors.

5.2.3 Revised Footbridge Case

Consider now the following revised version of the Footbridge Case.

Example 1 (Revised Footbridge Case). Ian is on the footbridge over the trolley track
and a switch there. He is next to a man, which he can shove so that the man falls near
the switch and can turn the trolley onto a parallel empty side track, thereby preventing
it from killing the five people. However, the man can die because the bridge is high and
he can also fall on the side track, thus very probably getting killed by the trolley due to

not being able to get off the track, having been injured from the drop. Also, as a side
effect, the fallen man’s body might stop the trolley, though this not being Ian’s actual
intention. In addition, if he is not dead, he may take revenge on Ian.

Ian can shove the man from the bridge, possibly resulting in death or in being
avenged; or he can refrain from doing so, possibly letting the five die. Is it morally
permissible for Ian to shove the man? One may consider the analysis below either as
Ian’s own decision making deliberation before he acts, or else that of an outside ob-
server’s evaluation of Ian’s actions after the fact; a jury’s, say.

There are several aspects in this scenario where uncertainty might emerge. First, sim-
ilarly to the Revised Bystander case, the five people may help each other to escape.
Second, how probably does the shoved man fall near the switch? How probably does
the fallen man die because the bridge is high? And if the man falls on the sidetrack, how
probably can the trolley be stopped by his body? These can be programmed in P-log as:

beginPlog.
1. bool = {t,f}. fallen_position = {on_track, near_switch}.
2. shove : fallen_position. random(rs, shove, full).

pa(rs, shove(near_switch), d_(7,10)).
3. shoved_die : bool. random(rsd, shoved_die, full).

pa(rsd, shoved_die(t), d_(1,1)) :- shove(on_track).
pa(rsd, shoved_die(t), d_(5,10)) :- shove(near_switch).

4. body_stop_trolley : bool.
random(rbs, body_stop_trolley, full).
pa(rbs, body_stop_trolley(t), d_(4,10)).

endPlog.

The sort fallen position declared in line 1 represents possible positions the man can
fall at: on the track (on track) or near the switch (near switch). The random attribute
shove declared in line 2 has no domain parameter and gets a value of fallen position
sort. The fallen position of shoving is biased to near switchwith probability 7/10 (pa-
rule in line 2). The probability of its range complement, on track, is implicitly taken
by P-log to be the probability complement of 3/10. The random attribute shoved die
declared in line 3 encodes how probable the man dies after being shoved, depending on
which position he fell at (two pa-rules in line 3). If he fell on the track, he would surely
die (first pa-rule); otherwise, if he fell near the switch, he would die with probability
0.5 (second pa-rule). The random attribute body stop trolley is declared in line 4 to
encode the probability of a body successfully stopping the trolley. Based on this P-log
modeling, the Revised Footbridge Case can be represented as:

1. abds([watching/0, shove_heavy_man/0]).
2. on_observe(decide).

decide <- watching. decide <- shove_heavy_man.
<- watching, shove_heavy_man.

3. expect(watching). trolley_straight <- watching.
end(die(5),Pr) <- trolley_straight, prolog(die_5(Pr)).

4. expect(shove_heavy_man).
5. stop_trolley(on_track, Pr) <- shove_heavy_man,

prolog(pr(body_stop_trolley(t)&shove(on_track), Pr)).
6. not_stop_trolley(on_track, Pr) <- shove_heavy_man,

prolog(pr(body_stop_trolley(f)&shove(on_track), Pr1)),
prolog(die_5(V)), prolog(Pr is Pr1*V).

7. redirect_trolley(near_switch, Pr) <- throwing_switch(Pr).
throwing_switch(Pr) <- shove_heavy_man,

prolog(pr(shoved_die(f)&shove(near_switch), Pr)).
8. not_redirect_trolley(near_switch, Pr) <- shove_heavy_man,

prolog(pr(shoved_die(t)’|’shove(near_switch), Pr1)),
prolog(die_5(V)), prolog(Pr is Pr1*V).

9. revenge(shove, Pr) <- shove_heavy_man,
prolog(pr(shoved_die(f), PrShovedAlive)),
prolog(Pr is 0.01*PrShovedAlive).

10.Ai ’|<’ Aj <- expected_utility(Ai, U1),
expected_utility(Aj,U2), U1 > U2.

beginProlog. % beginning of just Prolog code
11.consequences([stop_trolley(on_track,_),

not_stop_trolley(on_track,_),
redirect_trolley(near_switch,_),
not_redirect_trolley(near_switch,_),
revenge(shove,_),end(die(_),_)]).

12.utility(stop_trolley(on_track,_),-1).
utility(not_stop_trolley(on_track,_),-6).
utility(redirect_trolley(near_switch,_),0).
utility(not_redirect_trolley(near_switch,_),-5).
utility(revenge(shove,_),-10). utility(end(die(N),_),-N).

13.prc(C, P) :- arg(2,C,P).
endProlog. % end of just Prolog code

There are two abducibles, watching and shove heavy man, declared in line 1.
Both are a priori expected (lines 3 and 4) and have no expectation to the contrary.
Furthermore, only one can be chosen for the only active goal decide of the program
(the integrity constraint in line 2). Thus, there are two possible abductive solutions:
[watching, not shove heavy man] and [shove heavy man, not watching].

In the next stage, the a posteriori preference in line 10 is taken into account, in
order to rule out the abductive solution with smaller expected utility. Let us look at the
relevant consequences of each abductive solution. The list of relevant consequences of
the program is declared in line 11.

The one comprising the action of merely watching has just one relevant conse-
quence: five people dying, i.e. end(die(5),) (line 3). The other, that of shoving the
heavy man, has these possible relevant consequences: the heavy man falls on the track
and his body either stops the trolley (line 5) or does not stop it (line 6); the man falls
near the switch, does not die and thus, can throw the switch to redirect the trolley (line
7). But if he too may die, he consequently cannot redirect the trolley (line 8); one other
possible consequence needed to be taken into account is that if the man is not dead, he
might take revenge on Ian afterwards (line 9).

The utility of the relevant consequences are given in line 12. Their occurrence prob-
ability distribution is captured in line 13, using reserved predicate prc/2, the first argu-
ment of which is a consequence being instantiated during the computation of the built-in
predicate expected utility/2 and the second argument the corresponding probability
value, encoded as second argument of each relevant consequence (line 3 and lines 5-9).

Now we can see how the final decision given by our system varies depending on the
uncertainty levels of the decision maker with respect to the aspects considered above.
Let us denote PrNS, PrDNS, and PrRV the probabilities of shoving the man to fall
near the switch, of the shoved man dying given that he fell near the switch, and of Ian
being avenged given that the shoved man is alive, respectively. In the current encoding,
PrNS = 7/10, PrDNS = 5/10 (lines 2-3 of the P-log code) and PrRV = 0.01.

Table 1 shows the final decision made with respect to different levels of uncertainty
aspects, encoded with the above variables. Columns E(watch) and E(shove) record
the expected utilities of choices watching and shoving, respectively. The last column
records the final decision – the one having greater utility, i.e. less people dying. The

Table 1. Decisions made with different levels of uncertainty.

PrNS PrDNS PrD PrRV E(watch) E(shove) Final
1 0.7 0.5 0.4 0.01 -0.8404 -0.7567 shove
2 0.7 0.5 0.2 0.01 -0.3888 -0.4334 watch
3 0.7 0.5 0.4 0.2 -0.8404 -1.4217 watch
4 0.9 0.1 0.4 0.2 -0.8404 -1.8045 watch
5 0.9 0.1 0.2 0.01 -0.3888 -0.1879 shove
6 0.9 0.5 0.2 0.01 -0.3888 -1.1624 watch
7 1.0 0 0 0.01 -0.1562 -0.1 shove
8 1.0 0 0 0.02 -0.1562 -0.2 watch
9 1.0 0 1.0 0.02 -5 -0.2 shove

10 1.0 0 1.0 0.2 -5 -2 shove
11 1.0 0 1.0 0.6 -5 -6 watch

table gives rise to these (reasonable) interpretations: the stronger Ian believes five people
can get off the track by helping each other (i.e. the smaller PrD is), the more the chance
he decides to merely watch the trolley go (experiment 2 vs. 1; 8 vs. 9); the more Ian
believes the shoved man dies (thus he cannot throw the switch), the greater the chance
he decides to merely watch the trolley go (experiment 6 vs. 5); the more Ian believes
that the shoved person, or his acquaintances, will take revenge on him, the more the
chance he decides to merely watch the trolley go (experiment 3 vs. 1; 8 vs. 7; 11 vs.
10); even in the worst case of watching (PrD = 1) and in best chance of the trolley
being redirected (the shoved man surely falls near the switch, i.e. PrNS = 1.0, and does
not die, i.e. PrDNS = 0), then, if Ian really believes that the shoved person will take
revenge (e.g. PrRV ≥ 0.6), he will just watch (experiment 11 vs. 9 and 10). The latter
interpretation means the decision maker’s benefit and safety precede other factors.

In short, although the table is not big enough to thoroughly cover all the cases, it
manages to show that our approach to modeling morality under uncertainty succeeds in
reasonably reflecting that a decision maker, or a jury pronouncing a verdict, comes up
with differently weighed moral decisions, depending on the levels of uncertainty with
respect to the different aspects and circumstances of the moral problem.

5.2.4 Moral Reasoning Concerning Uncertain Actions

Usually moral reasoning is performed upon conceptual knowledge of the actions. But
it often happens that one has to pass a moral judgment on a situation without actually
observing the situation, i.e. there is no full, certain information about the actions. In
this case, it is important to be able to reason about the actions, under uncertainty, that
might have occurred, and thence provide judgment adhering to moral rules within some
prescribed uncertainty level. Courts, for example, are required to proffer rulings beyond
reasonable doubt. There is a vast body of research on proof beyond reasonable doubt
within the legal community, e.g. [58]. The following example is not intended to capture
the full complexity found in a court. Consider this variant of the Footbridge case.

Example 2. Suppose a board of juries in a court is faced with the case where the action
of Ian shoving the man onto the track was not observed. Instead, they are only presented
with the fact that the man died on the side-track and Ian was seen on the bridge at the
occasion. Is Ian guilty (beyond reasonable doubt), i.e. does he violate the double effect
principle, of shoving the man onto the track intentionally?

To answer this question, one should be able to reason about the possible explanations
of the observations, on the available evidence. The following code shows a model for
this example. Given the active goal judge (line 2), two abducibles are available, i.e. ver-
dict(guilty beyond reasonable doubt) and verdict(not guilty). Depending on how prob-
able each of possible verdicts, either verdict(guilty beyond reasonable doubt) or ver-
dict(not guilty) is expected a priori (line 3 and 9). The sort intentionality in line 4
represents the possibilities of an action being performed intentionally (int) or non-
intentionally (not int). Random attributes df run and br slip in line 5 and 6 denote two
kinds of evidence: Ian was definitely running on the bridge in a hurry (df run) and the
bridge was slippery at the time (br slip), respectively. Each has prior probability of
4/10. The probability with which shoving is performed intentionally is captured by the
random attribute shoved (line 7), which is causally influenced by both evidence. Line 9
defines when the verdicts (guilty and not guilty) are considered highly probable using
the meta-probabilistic predicate pr iShv/1, shown by line 8. It denotes the probability
of intentional shoving, whose value is determined by the existence of evidence that
Ian was running in a hurry past the man (signaled by predicate evd run/1) and that the
bridge was slippery (signaled by predicate evd slip/1).

1. abds([verdict/1]).
2. on_observe(judge).

judge <- verdict(guilty_beyond_reasonable_doubt).
judge <- verdict(not_guilty).

3. expect(verdict(X)) <- prolog(highly_probable(X)).
beginPlog.
4. bool = {t, f}. intentionality = {int, not_int}.
5. df_run : bool. random(rdr,df_run,full).

pa(rdr,df_run(t),d_(4, 10)).
6. br_slip : bool. random(rsb,br_slip,full).

pa(rsb,br_slip(t),d_(4, 10)).
7. shoved : intentionality. random(rs, shoved, full).

pa(rs,shoved(int),d_(97,100)) :- df_run(f),br_slip(f).
pa(rs,shoved(int),d_(45,100)) :- df_run(f),br_slip(t).
pa(rs,shoved(int),d_(55,100)) :- df_run(t),br_slip(f).
pa(rs,shoved(int),d_(5,100)) :- df_run(t),br_slip(t).

:- dynamic evd_run/1, evd_slip/1.
8. pr_iShv(Pr) :- evd_run(X), evd_slip(Y), !,

pr(shoved(int) ’|’ obs(df_run(X)) & obs(br_slip(Y)), Pr).
pr_iShv(Pr) :- evd_run(X), !,
pr(shoved(int) ’|’ obs(df_run(X)), Pr).

pr_iShv(Pr) :- evd_slip(Y), !,
pr(shoved(int) ’|’ obs(br_slip(Y)), Pr).

pr_iShv(Pr) :- pr(shoved(int), Pr).
9. highly_probable(guilty_beyond_reasonable_doubt) :-

pr_iShv(PrG), PrG > 0.95.
highly_probable(not_guilty) :- pr_iShv(PrG), PrG < 0.6.

endPlog.

Using the above model, different judgments can be delivered by our system, subject
to available evidence and attending truth value. We exemplify some cases in the sequel.
If both evidence are available, where it is known that Ian was running in a hurry on
the slippery bridge, then he may have bumped the man accidentally, shoving him un-
intentionally onto the track. This case is captured by the first pr iShv rule (line 8): the
probability of intentional shoving is 0.05. Thus, the atom highly probable(not guilty)
holds (line 9). Hence, verdict(not guilty) is the preferred final abductive solution (line
3). The same abductive solution is obtained if it is observed that the bridge was slip-
pery, but whether Ian was running in a hurry was not observable. The probability of
intentional shoving, captured by pr iShv, is 0.29.

On the other hand, if the evidence shows that Ian was not running in a hurry and
the bridge was also not slippery, then they do not support the explanation that the man
was shoved unintentionally, e.g., by accidental bumping. The action of shoving is more
likely to have been performed intentionally. Using the model, the probability of 0.97
is returned and, being greater than 0.95, verdict(guilty beyond reasonable doubt) be-
comes the sole abductive solution. In another case, if it is only known the bridge was not
slippery and no other evidence is available, then the probability of intentional shoving
becomes 0.80, and, by lines 3 and 9, no abductive solution is preferred. This translates
into the need for more evidence as the available one is not enough to issue judgment.

6 Emergence and Computational Morality

The mechanisms of emergence and evolution of cooperation in populations of abstract
individuals with diverse behavioral strategies in co-presence have been undergoing
mathematical study via Evolutionary Game Theory, inspired in part on Evolutionary
Psychology. Their systematic study resorts as well to implementation and simulation
techniques, thus enabling the study of aforesaid mechanisms under a variety of condi-
tions, parameters, and alternative virtual games. The theoretical and experimental re-
sults have continually been surprising, rewarding, and promising.

Recently, in our own work we have initiated the introduction, in such groups of
individuals, of cognitive abilities inspired on techniques and theories of Artificial In-

telligence, namely those pertaining to both Intention Recognition and to Commitment
(separately and jointly), encompassing errors in decision-making and communication
noise. As a result, both the emergence and stability of cooperation become reinforced
comparatively to the absence of such cognitive abilities. This holds separately for Inten-
tion Recognition and for Commitment, and even more when they are engaged jointly.

From the viewpoint of population morality, the modeling of morality in individu-
als using appropriate LP features (like abduction, knowledge updates, argumentation,
counterfactual reasoning, and others touched upon our research) within a networked
population shall allow them to dynamically choose their behavior rules, rather than to
act from a predetermined set. That is, individuals will be able to hypothesize, to look
at possible future consequences, to (probabilistically) prefer, to deliberate, to take into
account history, to adopt and fine tune game strategies.

Indeed, the study of properties like the emergent cooperative and tolerant collective
behavior in populations of complex networks, very much needs further investigation
of the cognitive core in each of the social atoms of the individuals in such populations
(albeit by appropriate LP features). See our own studies on intention recognition and
commitments, such as in e.g. [36, 38, 41, 42, 74]). In particular, the references [61, 74]
aim to sensitize the reader to these Evolutionary Game Theory based studies and is-
sues, which are accruing in importance for the modeling of minds with machines, with
impact on our understanding of the evolution of mutual tolerance, cooperation and com-
mitment. In doing so, they also provide a coherent bird’s-eye view of our own varied
recent work, whose more technical details, references and results are spread through-
out a number of publishing venues, to which the reader is referred therein for a fuller
support of claims where felt necessary.

In those works we model intention recognition within the framework of repeated in-
teractions. In the context of direct reciprocity, intention recognition is performed using
the information about past direct interactions. We study this issue using the well-known
repeated Prisoner’s Dilemma (PD), i.e., so that intentions can be inferred from past
individual experiences. Naturally, the same principles could be extended to cope with
indirect information, as in indirect reciprocity. This eventually introduces moral judg-
ment and concern for individual reputation, which constitutes “per se” an important
area where intention recognition may play a pivotal role.

In our work too, agents make commitments towards others, they promise to enact
their play moves in a given manner, in order to influence others in a certain way, often
by dismissing more profitable options. Most commitments depend on some incentive
that is necessary to ensure that the action is in the agent’s interest and thus, may be
carried out to avoid eventual penalties. The capacity for using commitment strategies
effectively is so important that natural selection may have shaped specialized signaling
capacities to make this possible. And it is believed to have an incidence on the emer-
gence of morality. Not only bilaterally wise but also in public goods games, where in
both cases we are presently researching into complementing commitment with apology.

Modeling such cognitive capabilities in individuals, and in populations, may well
prove useful for the study and understanding of ethical robots and their emergent be-
havior in groups, so as to make them implementable in future robots and their swarms,
and not just in the simulation domain but in the real world engineering one as well.

7 Message in a Bottle

In realm of the individual, Logic Programming is a vehicle for the computational study
and teaching of morality, namely in its modeling of the dynamics of knowledge and
cognition of agents.

In the collective realm, norms and moral emergence has been studied computation-
ally in populations of rather simple-minded agents.

By bridging these realms, cognition affords improved emerged morals in popula-
tions of situated agents.

Acknowledgements We thank Gonçalo Lopes for clarifying the implementation of the
interactive robot storytelling, and The Anh Han for joint work. Ari Saptawijaya ac-
knowledges the support of Fundação para a Ciência e a Tecnologia (FCT/MEC) Por-
tugal, grant SFRH/BD/72795/2010. Luı́s Moniz Pereira acknowledges the support of
FCT/MEC NOVA LINCS PEst UID/CEC/04516/2013.

References

[1] Ciao Prolog. http://ciao-lang.org.
[2] Smodels System. http://www.tcs.hut.fi/Software/smodels/.
[3] XSB Prolog. http://xsb.sourceforge.net/.
[4] YAProlog. http://www.dcc.fc.up.pt/˜vsc/Yap.
[5] J. J. Alferes and L. M. Pereira. NegABDUAL System. http://centria.di.

fct.unl.pt/˜lmp/software/contrNeg.rar, 2007.
[6] J. J. Alferes, A. Brogi, J. A. Leite, and L. M. Pereira. Evolving logic programs. In

JELIA 2002, volume 2424 of LNCS, pages 50–61. Springer, 2002.
[7] J. J. Alferes, L. M. Pereira, and T. Swift. Abduction in well-founded semantics

and generalized stable models via tabled dual programs. Theory and Practice of
Logic Programming, 4(4):383–428, 2004.

[8] M. Anderson and S. L. Anderson. EthEl: Toward a principled ethical eldercare
robot. In Procs. AAAI Fall 2008 Symposium on AI in Eldercare, 2008.

[9] M. Anderson and S. L. Anderson. Robot be good: A call for ethical autonomous
machines. In Scientific American, October 2010.

[10] M. Anderson and S. L. Anderson, editors. Machine Ethics. Cambridge U. P.,
2011.

[11] M. Anderson, S. L. Anderson, and C. Armen. Towards machine ethics: imple-
menting two action-based ethical theories. In Procs. AAAI 2005 Fall Symposium
on Machine Ethics, 2005.

[12] M. Anderson, S. Anderson, and C. Armen. MedEthEx: a prototype medical ethics
advisor. In IAAI 2006, 2006.

[13] S. L. Anderson. Machine metaethics. In M. Anderson and S. L. Anderson, editors,
Machine Ethics. Cambridge U. P., 2011.

[14] T. Aquinas. Summa Theologica II-II, Q.64, art. 7, “Of Killing”. In W. P. Baum-
garth and R. J. Regan, editors, On Law, Morality, and Politics. Hackett, 1988.

http://ciao-lang.org
http://www.tcs.hut.fi/Software/smodels/
http://xsb.sourceforge.net/
http://www.dcc.fc.up.pt/~vsc/Yap
http://centria.di.fct.unl.pt/~lmp/software/contrNeg.rar
http://centria.di.fct.unl.pt/~lmp/software/contrNeg.rar

[15] C. Baral and M. Hunsaker. Using the probabilistic logic programming language P-
log for causal and counterfactual reasoning and non-naive conditioning. In IJCAI
2007, 2007.

[16] C. Baral, M. Gelfond, and N. Rushton. Probabilistic reasoning with answer sets.
Theory and Practice of Logic Programming, 9(1):57–144, 2009.

[17] M. E. Bratman. Intention, Plans and Practical Reasoning. Harvard University
Press, 1987.

[18] S. Bringsjord, K. Arkoudas, and P. Bello. Toward a general logicist methodology
for engineering ethically correct robots. IEEE Intelligent Systems, 21(4):38–44,
2006.

[19] S. Bringsjord, J. Taylor, B. van Heuveln, K. Arkoudas, M. Clark, and R. Woj-
towicz. Piagetian roboethics via category theory: Moving beyond mere formal
operations to engineer robots whose decisions are guaranteed to be ethically cor-
rect. In M. Anderson and S. L. Anderson, editors, Machine Ethics. Cambridge U.
P., 2011.

[20] F. Cushman, L. Young, and J. D. Greene. Multi-system moral psychology. In J. M.
Doris, editor, The Moral Psychology Handbook. Oxford University Press, 2010.

[21] P. Danielson. Artificial Morality: Virtuous Robots for Virtual Games. Routledge,
1992.

[22] P. Dell’Acqua and L. M. Pereira. Preferential theory revision. J. of Applied Logic,
5(4):586–601, 2007.

[23] P. M. Dung. On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artificial Intelli-
gence, 77(2):321–357, 1995.

[24] P. M. Dung and P. M. Thang. Towards probabilistic argumentation for jury-based
dispute resolution. In COMMA 2010, 2010.

[25] P. M. Dung, F. Toni, and P. Mancarella. Some design guidelines for practical
argumentation systems. In Procs. 3rd Intl. Conf. on Computational Models of
Argument (COMMA’10), 2010.

[26] Economist. Morals and the machine. Main Front Cover and Leaders (page 13),
The Economist, June 2nd-8th 2012.

[27] J. Evans. Biases in deductive reasoning. In R. Pohl, editor, Cognitive Illusions:
A Handbook on Fallacies and Biases in Thinking, Judgement and Memory. Psy-
chology Press, 2012.

[28] J. Evans, J. L. Barston, and P. Pollard. On the conflict between logic and belief in
syllogistic reasoning. Memory & Cognition, 11(3):295–306, 1983.

[29] P. Foot. The problem of abortion and the doctrine of double effect. Oxford Review,
5:5–15, 1967.

[30] M. Gelfond and V. Lifschitz. The stable model semantics for logic programming.
In 5th Intl. Logic Programming Conf. MIT Press, 1988.

[31] G. Gigerenzer and C. Engel, editors. Heuristics and the Law. MIT Press, 2006.
[32] J. D. Greene, R. B. Sommerville, L. E. Nystrom, J. M. Darley, and J. D. Cohen.

An fMRI investigation of emotional engagement in moral judgment. Science, 293:
2105–2108, 2001.

[33] J. D. Greene, L. E. Nystrom, A. D. Engell, J. M. Darley, and J. D. Cohen. The
neural bases of cognitive conflict and control in moral judgment. Neuron, 44:
389–400, 2004.

[34] M. Guarini. Computational neural modeling and the philosophy of ethics: Reflec-
tions on the particularism-generalism debate. In M. Anderson and S. L. Anderson,
editors, Machine Ethics. Cambridge U. P., 2011.

[35] J. Haidt and M. Hersh. Sexual morality. J. of Applied Social Psychology, 31:
191–221, 2001.

[36] T. A. Han. Intention Recognition, Commitments and Their Roles in the Evolution
of Cooperation: From Artificial Intelligence Techniques to Evolutionary Game
Theory Models, volume 9 of SAPERE. Springer, 2013. ISBN 978-3-642-37511-8.

[37] T. A. Han and L. M. Pereira. Intention-based decision making with evolution
prospection. In EPIA 2011, volume 7026 of LNAI. Springer, 2011.

[38] T. A. Han and L. M. Pereira. State-of-the-art of intention recognition and its use
in decision making. AI Communications, 26(2):237–246, 2013.

[39] T. A. Han, C. D. K. Ramli, and C. V. Damásio. An implementation of extended
P-log using XASP. In Procs. 24th Intl. Conf. on Logic Programming (ICLP’08),
volume 5366 of LNCS. Springer, 2008.

[40] T. A. Han, A. Saptawijaya, and L. M. Pereira. Moral reasoning under uncertainty.
In LPAR-18, volume 7180 of LNCS, pages 212–227. Springer, 2012.

[41] T. A. Han, L. M. Pereira, F. C. Santos, and T. Lenearts. Good agreements make
good friends. Nature Scientific Reports, 3(2695):DOI: 10.1038/srep02695, 2013.

[42] T. A. Han, L. M. Pereira, F. C. Santos, and T. Lenearts. Why Is It So Hard to Say
Sorry: The Evolution of Apology with Commitments in the Iterated Prisoner’s
Dilemma. In IJCAI 2013, pages 177–183. AAAI Press, 2013.

[43] M. D. Hauser. Moral Minds: How Nature Designed Our Universal Sense of Right
and Wrong. Little Brown, 2007.

[44] B. Inhelder and J. Piaget. The Growth of Logical Thinking from Childhood to
Adolescence. Basic Books, 1958.

[45] A. R. Jonsen and S. Toulmin. The Abuse of Casuistry: A History of Moral Rea-
soning. University of California Press, 1988.

[46] A. Kakas, R. Kowalski, and F. Toni. The role of abduction in logic programming.
In D. Gabbay, C. Hogger, and J. Robinson, editors, Handbook of Logic in Artificial
Intelligence and Logic Programming, volume 5. Oxford U. P., 1998.

[47] F. M. Kamm. Intricate Ethics: Rights, Responsibilities, and Permissible Harm.
Oxford U. P., 2006.

[48] I. Kant. Grounding for the Metaphysics of Morals, translated by J. Ellington.
Hackett, 1981.

[49] R. Kowalski. Computational Logic and Human Thinking: How to be Artificially
Intelligent. Cambridge U. P., 2011.

[50] R. Kowalski and F. Sadri. Abductive logic programming agents with destruc-
tive databases. Annals of Mathematics and Artificial Intelligence, 62(1):129–158,
2011.

[51] R. Kowalski and F. Sadri. A logic-based framework for reactive systems. In
RuleML 2012, volume 7438 of LNCS, 2012.

[52] D. L. Krebs. The Origins of Morality – An Evolutionary Account. Oxford U. P.,
2011.

[53] G. Lopes and L. M. Pereira. Prospective programming with ACORDA. In ESCoR
2006 Workshop, IJCAR’06, 2006.

[54] G. Lopes and L. M. Pereira. Prospective storytelling agents. In PADL 2010,
volume 5937 of LNCS. Springer, 2010.

[55] R. Mallon and S. Nichols. Rules. In J. M. Doris, editor, The Moral Psychology
Handbook. Oxford University Press, 2010.

[56] B. M. McLaren. Computational models of ethical reasoning: Challenges, initial
steps, and future directions. IEEE Intelligent Systems, pages 29–37, 2006.

[57] J. Mikhail. Universal moral grammar: Theory, evidence, and the future. Trends in
Cognitive Sciences, 11(4):143–152, 2007.

[58] J. O. Newman. Quantifying the standard of proof beyond a reasonable doubt: a
comment on three comments. Law, Probability and Risk, 5(3-4):267–269, 2006.

[59] J. Pearl. Causality: Models, Reasoning and Inference. Cambridge U. P., 2009.
[60] J. Pearl. The algorithmization of counterfactuals. Annals of Mathematics and

Artificial Intelligence, 61(1):29–39, 2011.
[61] L. M. Pereira. Evolutionary tolerance. In L. Magnani and L. Ping, editors, PCS

2011, volume 2 of SAPERE, pages 263–287. Springer, 2012.
[62] L. M. Pereira and T. A. Han. Evolution prospection. In Procs. KES International

Conference on Intelligence Decision Technologies, volume 199, pages 139–150,
2009.

[63] L. M. Pereira and T. A. Han. Intention recognition with evolution prospection
and causal bayesian networks. In A. Madureira, J. Ferreira, and Z. Vale, editors,
Computational Intelligence for Engineering Systems: Emergent Applications, vol-
ume 46 of Intelligent Systems, Control and Automation: Science and Engineering
Book Series, pages 1–33. Springer, 2011.

[64] L. M. Pereira and G. Lopes. Prospective logic agents. International Journal of
Reasoning-based Intelligent Systems, 1(3/4):200–208, 2009.

[65] L. M. Pereira and A. M. Pinto. Approved models for normal logic programs.
In Procs. 14th Intl. Conf. on Logic for Programming Artificial Intelligence and
Reasoning (LPAR’07), volume 4790 of LNAI. Springer, 2007.

[66] L. M. Pereira and A. M. Pinto. Inspecting side-effects of abduction in logic pro-
grams. In M. Balduccini and T. C. Son, editors, Logic Programming, Knowledge
Representation, and Nonmonotonic Reasoning: Essays in honour of Michael Gel-
fond, volume 6565 of LNAI, pages 148–163. Springer, 2011.

[67] L. M. Pereira and A. Saptawijaya. Moral Decision Making with ACORDA. In
Local Procs. of LPAR 2007, 2007.

[68] L. M. Pereira and A. Saptawijaya. Modelling Morality with Prospective Logic. In
EPIA 2007, 2007.

[69] L. M. Pereira and A. Saptawijaya. Modelling Morality with Prospective Logic.
International Journal of Reasoning-based Intelligent Systems, 1(3/4):209–221,
2009.

[70] L. M. Pereira and A. Saptawijaya. Computational Modelling of Morality. The
Association for Logic Programming Newsletter, 22(1), 2009.

[71] L. M. Pereira and A. Saptawijaya. Modelling Morality with Prospective Logic.
In M. Anderson and S. L. Anderson, editors, Machine Ethics, pages 398–421.
Cambridge U. P., 2011.

[72] L. M. Pereira and A. Saptawijaya. Abductive logic programming with tabled
abduction. In ICSEA 2012, pages 548–556. ThinkMind, 2012.

[73] L. M. Pereira, E-A. Dietz, and S. Hölldobler. Abductive reason-
ing with contextual side-effects. Submitted to KR 2014. Available
at http://centria.di.fct.unl.pt/˜lmp/publications/
online-papers/context_abd.pdf, 2013.

[74] L. M. Pereira, T. A. Han, and F. C. Santos. Complex systems of mindful entities
– on intention recognition and commitment. In L. Magnani, editor, Model-Based
Reasoning in Science and Technology: Theoretical and Cognitive Issues, volume 8
of SAPERE. Springer, 2013.

[75] D. L. Poole. A logical framework for default reasoning. Artificial Intelligence, 36
(1):27–47, 1988.

[76] T. M. Powers. Prospects for a Kantian machine. IEEE Intelligent Systems, 21(4):
46–51, 2006.

[77] I. Rahwan and G. Simari, editors. Argumentation in Artificial Intelligence.
Springer, 2009.

[78] W. D. Ross. The Right and the Good. Oxford University Press, 1930.
[79] A. Saptawijaya and L. M. Pereira. Tabled abduction in logic programs (techni-

cal communication of ICLP 2013). Theory and Practice of Logic Programming,
Online Supplement, 13(4-5), 2013.

[80] A. Saptawijaya and L. M. Pereira. Incremental tabling for query-driven propa-
gation of logic program updates. In LPAR-19, volume 8312 of LNCS ARCoSS.
Springer, 2013.

[81] A. Saptawijaya and L. M. Pereira. Program updating by incremental and answer
subsumption tabling. In LPNMR 2013, volume 8148 of LNCS. Springer, 2013.

[82] A. Saptawijaya and L. M. Pereira. Towards practical tabled abduction usable
in decision making. In KES-IDT 2013, Frontiers of Artificial Intelligence and
Applications (FAIA). IOS Press, 2013.

[83] T. M. Scanlon. Contractualism and utilitarianism. In A. Sen and B. Williams,
editors, Utilitarianism and Beyond. Cambridge U. P., 1982.

[84] T. M. Scanlon. What We Owe to Each Other. Harvard University Press, 1998.
[85] T. M. Scanlon. Moral Dimensions: Permissibility, Meaning, Blame. Harvard Uni-

versity Press, 2008.
[86] J. J. Thomson. The trolley problem. The Yale Law Journal, 279:1395–1415, 1985.
[87] F. Toni. Argumentative agents. In Procs. Intl. Multiconference on Computer Sci-

ence and Information Technology, volume 5, 2010.
[88] J. van den Hoven and G-J. Lokhorst. Deontic logic and computer-supported com-

puter ethics. Metaphilosophy, 33(3):376–386, 2002.
[89] A. van Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics for

general logic programs. Journal of ACM, 38(3):620–650, 1991.
[90] W. Wallach and C. Allen. Moral Machines: Teaching Robots Right from Wrong.

Oxford U. P., 2009.
[91] V. Wiegel. SophoLab; Experimental Computational Philosophy. PhD thesis, Delft

University of Technology, 2007.

http://centria.di.fct.unl.pt/~lmp/publications/online-papers/context_abd.pdf
http://centria.di.fct.unl.pt/~lmp/publications/online-papers/context_abd.pdf

	The Potential of Logic Programming as a Computational Tool to Model Morality

