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Abstract. In the context of abduction in Logic Programs, when finding an ab-
ductive solution for a query, one may want to check too whether some other
literals become true (or false) strictly within the abductive solution found, but
without performing additional abductions, and without having to produce a com-
plete model to do so. That is, such literals may consume, but not produce, the
abduced literals in the solution. We show how this type of reasoning requires
a new mechanism, not provided by others already available. To achieve it, we
present the concept of Inspection Point in Abductive Logic Programs, and show
how, by means of examples, one can employ it to investigate side-effects of in-
terest (the inspection points) in order to help choose among abductive solutions,
to express intentions, to implement deontic verifiers, to code strict preferences,
as well as to permit use of passive integrity constraints – i.e. those not allowed
to abduce in order to be satisfied but just to check for satisfaction without further
abduction. The touchstone of Inspection Points can be construed as a form of
meta-abduction, by meta-abducing an abduction to check (i.e. passively verify)
that a certain concrete abduction is indeed adopted in an otherwise purported ab-
ductive solution. We furthermore show how to implement it on top of an already
existing abduction solving system — ABDUAL — in a way that can be adopted
by other systems too.
Keywords: Abduction, Side-Effects, Forward Chaining

1 Introduction

In this paper we present a new reasoning mechanism for abductive logic programs —
the inspection points — which permits a selective forward chaining, from adopted ab-
ductions. This allows for a panoply of different tools such as deontic verifiers, strict
preferences, and side-effects checking.

We begin by presenting the motivation, and some background notation and defi-
nitions follow. The general problem of reasoning with logic programs is addressed in
section 2; in particular, we take a look at the nature of backward and forward chaining
and their relationship to query answering in an abductive framework. In section 3 we
describe our implementation of the inspection points, illustrate it with an example, and
compare it to other previous works in this direction.

Further elaboration on possibilities of use of inspection points is sketched, and con-
clusions and future work close the paper.



1.1 Motivation

Sometimes, besides needing to abductively discover which actions to undertake in order
to satisfy some condition, we may also want to know some of the side-effects of those
actions; in fact, this is rather a rational thing to do. But, most of the time, we do not wish
to know all possible side-effects of our actions, since some of them will be irrelevant to
our concern. Similarly, the side-effects resulting from an abductive explanation might
not all be of interest.

Example 1. Relevant and irrelevant side-effects. Consider the following logic pro-
gram where drink_water and drink_beer are abducibles.

← thirsty, not drink. % This is an Integrity Constraint
wet_glass← use_glass. use_glass← drink.
drink ← drink_water. drink ← drink_beer.
thirsty. drunk ← drink_beer.

Suppose we want to satisfy the Integrity Constraint, and also to check if we get
drunk or not. However, we do not care about the glass becoming wet — that being
completely irrelevant to our current concern.

In this case, full forward-chaining or computation of whole models is a waste of
time, because we are interested only in a subset of the program’s literals. What we need
is a selective forward chaining mechanism, an inspection tool which permits to check
the truth value of given literals as a consequence of the abductions made to satisfy a
given query plus any Integrity Constraints.

1.2 Background Notation and Definitions

Definition 1. Logic Rule. A Logic Rule has the general form
A← B1, . . . , Bn, not C1, . . . , not Cm

where A is an atom h, and the Bi and Cj are atoms.

We call L the head of the rule, andB1, . . . , Bn, not C1, . . . , not Cm its body. Through-
out this paper we use ‘not ’ to denote default negation. When the body of a rule is empty,
we say its head is a fact and we write the rule just as h.

Definition 2. Logic Program. A Logic Program (LP for short) P is a (possibly infinite)
set of ground Logic Rules.

Definition 3. Integrity Constraint. An Integrity Constraint (IC) is a logic rule, ex-
pressing a denial, whose head is ‘false’.

A simpler way of writing an IC is by omitting the head of the rule. An example of
an IC is the first rule of the program in example 1, meaning that ‘thirsty’ cannot be
true whenever ‘drink’ is false, and vice-versa.

In this paper we focus solely on Normal LPs (NLPs), those whose heads of rules
are positive literals, i.e., simple atoms; and there is default negation just in the bodies
of the rules. Hence, when we just write “program” or “logic program” we mean a NLP.



In the next sections, we focus on abductive logic programs, i.e., those with ab-
ducibles. Abducibles are literals that are not defined by any rules and correspond to
hypotheses that one can independently assume or not — apart from eventual Integrity
Constraints. Abducibles or their default negations can appear in bodies of rules just like
any other literal.

2 Reasoning with Logic Programs

When finding an abductive solution for a query, one may want to check whether some
other literals become true or false strictly within the abductive solution found (i.e.,
whether they are consequences, or side-effects, of such conditions), but without per-
forming additional abductions, and without having to produce a complete model to
do so. This type of reasoning requires a new mechanism. To achieve it, we introduce
the concept of inspection point, and show how one can employ it to investigate side-
effects of interest. Procedurally, inspection points can be construed as utilizing a form
of meta-abduction, by “meta-abducing” the specific abduction of actually checking (i.e.
passively verify) that a certain and corresponding concrete abduction is indeed adopted.
That is, one abduces the checking of some abducible A, and the check consists in con-
firming that A is part of the abductive solution by matching it with the object of the
abduced check. In our approach the side-effects of interest are explicitly indicated by
the user by wrapping the corresponding goals within a reserved construct inspect/1.

2.1 Backward and Forward Chaining

Query-answering is intrinsically backward-chaining as it is a top-down dependency-
graph oriented proof-procedure. Finding the side-effects of a set of assumptions is con-
ceptually envisaged as forward-chaining as it consists of progressively deriving con-
clusions from the assumptions until the truth value of the chosen side-effect literals is
determined. The problem with full-fledged forward-chaining is that too many (often
irrelevant) conclusions are derived. Since efficiency is always a concern, wasting time
and resources on deriving conclusions, only to be discarded afterwards, is a flagrant set-
back. Even worse, in combinatorial problems, there may be many alternative solutions
whose differences repose just on irrelevant conclusions. So, the unnecessary compu-
tation of irrelevant conclusions in full forward-chaining may be multiplied, leading to
immense waste. A more intelligent solution, when one is focused on obtaining some
specific conclusions of a set of premises, is afforded by selective forward-chaining.
In such a setting, ideally, the user would be allowed to specify the conclusions she is
focused on, and only those would be computed in a forward-chaining fashion. Combin-
ing backward-chaining with forward-chaining (and in particular with selective forward-
chaining) would allow for a greater precision in specifying what we wish to know, and
altogether improve efficient use of computational resources.

Significantly, if abduction is enabled, the computation of side-effects should take
place without further abduction, just passively (though not destructively) consuming
abducibles that are “produced” by abduction for the top query elsewhere.



In the sequel, we shall show how such a selective forward chaining from a set of
hypotheses can actually be achieved by backward chaining from the focused on conclu-
sions — the inspection points — by virtue of a controlled form of abduction.

2.2 The use of Stable Models

When we need to know the 2-valued truth value of all the literals in the program for the
problem we are modeling and solving, the only solution is to produce complete mod-
els. In such a case, tools like SModels [16] or DVL [5] are adequate because they can
indeed compute whole models for the program. We discuss other alternative semantics
(2-valued and 3-valued) that can also be used in this situation, and compare them with
Stable Models (SM) semantics [11]. In an abductive reasoning situation, however, com-
puting the whole model entails pronouncement about each of the abducibles whether
or not they are relevant to the problem at hand, and subsequently filtering the irrelevant
ones. When we just want to find an answer to a query, we either compute a whole model
and check if it entails the query (the way SM semantics does), or, if the underlying se-
mantics we are using enjoys the relevancy property — which SM semantics do not —
we can simply use a top-down proof-procedure (à la Prolog). In this second case, the
user does not pay the price of computing a whole model, nor the price of abducing
all possible abducibles or their negations, since the only abducibles considered will be
those needed for answering the query.

2.3 Abduction

Abduction ([1–3, 6–8, 10, 12, 13]) can naturally be used in a top-down query-oriented
proof-procedure to find an (abductive) answer to a query, where abducibles are leafs
in the call dependency graph. The Well-Founded Semantics(WFS), which enjoys rel-
evancy, allows for abductive query answering. We used it in the implementation de-
scribed in section 3. Though WFS is 3-valued, the abduction mechanism it employs can
be, and in our case is, 2-valued. However, if one desires a 2-valued answer, a different
semantics must be used. We suggest one such (relevant) semantics in subsection 2.5 —
the Revised Stable Models [18].

The kind of situation we address with this contribution occurs when one wants only
to passively determine which abductions, activated or produced by other goals, would
be sufficient to satisfy some goal, but without actually abducing them, just consum-
ing other goal’s produced abductions. The difference between this and usual abductive
query answering is subtle but of utmost importance, as it carries in itself the seed for a
new primitive construct. This mechanism is that of inspecting without abducing, and it
can be implemented by means of meta-abduction, discussed in detail in subsection 2.4.

2.4 Inspection Points

Meta-Abduction Meta-abduction is used in abduction avoidant inspection. Intuitively,
it is abducing the intention of a posteriori checking for the abduction of some abducible,
i.e. the intention of verifying that the abducible is indeed adopted. In practice, when



we want to meta-abduce some abducible ‘x’, we abduce a literal ‘abduced(x)’, which
represents the intention that ‘x’ is eventually abduced along the process of finding an
answer. The check is performed after a complete abductive answer to the top query is
found. Operationally, ‘x’ has been or will be abduced as part of the ongoing solution to
the top goal. Meta-abduction can be implemented by any abduction-based system, and
used to reify mechanisms as diverse as:

– Intentions — future goals which are not yet scheduled for solution, but that we
know we want to have solved by abducing actions at some point in time.

– Deontic verifiers — a deontic verifier is simply a mechanism for checking or im-
posing some conditions. Typically, deontic verifiers are used to express what is
allowed, what is forbidden, and what is obligatory, with application to moral rea-
soning.

– Side-effects — meta-abduction can be used to check if some literal is a consequence
of the abductions made when solving the top goal.

– Strict preferences — the complex subject of preferences is outside the scope of this
paper, but a short word on “strict preferences” and how meta-abduction can be used
to implement them is provided in section 3.

Further explanation of these points — with illustrative examples — is given in sec-
tion 3, right after the detailed outline of the implementation.

When using a system that allows only for the top-down dependency-graph-oriented
abductive query-solving we must simulate this selective bottom-up forward chaining
by means of a top-down query where making actual abductions is disallowed. In this
setting, inspection points are the literals we are interested in.

Example 2. Inspection Points. Consider this NLP, where ‘tear_gas’, ‘fire’, and
‘water_cannon’ are the only abducibles.

← police, riot, not contain. % this is an Integrity Constraint
contain← tear_gas. contain← water_cannon.
smoke← fire. smoke← inspect(tear_gas).
police. riot.

Notice the two rules for ‘smoke’. The first states that one explanation for smoke is
fire, when assuming the hypothesis ‘fire’. The second states ‘tear_gas’ is also a pos-
sible explanation for smoke. However, the presence of tear gas is a much more unlikely
situation than the presence of fire; after all, tear gas is only used by police to contain
riots and that is truly an exceptional situation. Fires are much more common and spon-
taneous than riots. For this reason, ‘fire’ is a much more plausible explanation for
‘smoke’ and, therefore, in order to let the explanation for ‘smoke’ be ‘ tear_gas’,
there must be a plausible reason — imposed by some other likely phenomenon. This
is represented by inspect(tear_gas) instead of simply ‘tear_gas’. The ‘inspect’ con-
struct disallows regular abduction — only meta-abduction — to be performed whilst
trying to solve ‘tear_gas’. I.e., if we take tear gas as an abductive solution for smoke,
this rule imposes that the step where we abduce ‘tear_gas’ is performed elsewhere, not
under the derivation tree for ‘smoke’. Thus, ‘tear_gas’ is an inspection point.



The Integrity Constraint, because there is ‘police’ and a ‘riot’, forces ‘contain’ to
be true, and hence, ‘tear_gas’ or ‘water_cannon’ or both, must be abduced. ‘smoke’
is only explained if, at the end of the day, ‘tear_gas’ is abduced to enact containment.

Abductive solutions should be plausible. ‘smoke’ is plausibly explained by
‘tear_gas’ if there is a reason, a best explanation, that makes the presence of tear gas
plausible; in this case the riot and the police. Plausibility is an important concept in
science which lends credibility to hypotheses.

Declarative Semantics of Inspection Points The following simple transformation
maps programs with inspection points into programs without them. Mark that the ab-
ductive stable models of the transformed program where each abduced(x) is matched
by the abducible x clearly correspond to the intended procedural meanings ascribed to
the inspection points of the original program.

Definition 4. Transforming Inspection Points. Let P a program containing rules
whose body possibly contains inspection points. The program Π(P ) consists of:

1. all the rules obtained by the rules in P by replacing:
– inspect(not L) with not inspect(L)

– inspect(a) or inspect(abduced(a)) with abduced(a)
if a is an abducible, and keeping inspect(L) otherwise

2. for every ruleA← L1, . . . , Lt inP , the additional rule: inspect(A)← L
′

1, . . . , L
′

t

where for every 1 ≤ i ≤ t

L
′

i =

abduced(Li) if Li is an abducible
inspect(X) if Li is inspect(X)
inspect(Li) otherwise

Example 3. Transforming a Program with Nested Inspection Levels.
Let P be

x← a, inspect(y), b, c, not d y ← inspect(not a)
z ← d y ← b, inspect(not z), c

Then, Π(P ) is:

x ← a, inspect(y), b, c, not d
inspect(x)← abduced(a), inspect(y), abduced(b), abduced(c), not abduced(d)
y ← not inspect(a)
y ← b, not inspect(z), c
inspect(y) ← not abduced(a)
inspect(y) ← abduced(b), not inspect(z), abduced(c)
z ← d
inspect(z) ← abduced(d)

The abductive stable model of Π(P ) respecting the inspection points is:
{x, a, b, c, abduced(a), abduced(b), abduced(c), inspect(y)}.

Note that for each abduced(a) the corresponding a is in the model.



2.5 Alternative Semantics

The SM semantics does not guarantee existence of a model for every Normal Logic
Program, and it does not enjoy relevancy either. Thus it cannot be used to provide an
(abductive) answer to a query by need, in a top-down fashion. The lack of relevancy
results because the SM semantics gives no semantics to odd loops over negation —
OLONs1. In fact, OLONs are used as Integrity Constraints by the SMs programming
community.

Example 4. Odd Loop Over Negation as Integrity Constraint.
a← not a,X.

The Odd Loop Over Negation on literal ‘a’ prevents the remaining body X from
being in any model.

Preferred Extensions In 1995, Dung proposed the preferred extensions [9] — a con-
servative extension to SMs which coincides with the SMs for all literals not involved
in OLONs. What the Preferred Extensions do is assign all literals in the OLON (and
their consequences) the undefined truth-value. All NLPs have a preferred extension, but
if one wishes a total 2-valued semantics to every NLP the Preferred Extensions are not
enough.

Revised Stable Models In 2005, Pereira and Pinto defined the Revised Stable Models
(RSM) semantics [18], a 2-valued conservative extension to SM semantics guaranteeing
existence of a model for every NLP, that enjoys relevancy and cumulativity. How the
RSMs semantics handles OLONs is beyond the scope of this paper but the interested
reader can find all the details in [18]. For our present matters, what is important is that
the RSMs permits abductive query solving by need.

3 Implementation

We based our practical work on a formally defined, implemented, tried and true ab-
duction system: Abdual [3]. Meta-abduction is implemented adroitly by means of a
new reserved abducible predicate which engages the abduction mechanism to try and
discharge any meta-abductions by means of the corresponding abducible. The approach
taken can easily be adopted by other abductive systems, as we had the occasion to check
[4].

Abdual lays the foundations for efficiently computing queries over ground 3-valued
abductive frameworks for extended logic programs with integrity constraints, on the
WFS semantics and its partial SMs. The query processing technique in Abdual relies
on a mixture of program transformation and tabled evaluation. A transformation re-
moves default negative literals (by making them positive) from both the program and
the integrity rules. Specifically, a dual transformation is used, that defines for each ob-
jective literal O and its set of rules R, a dual set of rules whose conclusions not (O) are

1 An OLON is a cycle in the dependency call-graph where there is an odd number of default
negations along the cycle from one literal back to itself.



true if and only if O is false in R. Tabled evaluation of the resulting program turns out
to be much simpler than for the original program, whenever abduction over negation
is needed. At the same time, termination and complexity properties of tabled evalua-
tion of extended programs are preserved by the transformation, when abduction is not
needed. Regarding tabled evaluation, Abdual is in line with SLG [21] evaluation, which
computes queries to normal programs according to the well-founded semantics. To it,
Abdual tabled evaluation adds mechanisms to handle abduction and deal with the dual
programs.

Abdual is composed of two modules: the preprocessor which transforms the orig-
inal program by adding its dual rules, plus specific abduction-enabling rules; and a
meta-interpreter allowing for top-down abductive query solving. When solving a query,
abducibles are dealt with by means of extra rules the preprocessor added to that effect.
These rules just add the name of the abducible to an ongoing list of current abductions,
unless the negation of the abducible was added before to the lists failing in order to
ensure abduction consistency.

3.1 Abdual with Inspection Points

Inspection Points in Abdual function mainly by means of controlling the general ab-
duction step, which involves very few changes, both in the pre-processor and the meta-
interpreter. Whenever an ‘inspect(X)’ literal is found in the body of a rule, where
‘X’ is a goal, a meta-abduction-specific counter — the ‘inspect_counter’ — is in-
creased by one, in order to keep track of the allowed character, active or passive, of
performed abductions. The top-down evaluation of the query for ‘X’ then proceeds
normally. Actual abductions are only allowed if the counter is set to zero, otherwise
only meta-abductions are allowed. After finding an abductive solution for the query
‘X’ the counter is decreased by one. Backtracking over counter assignations is duly
accounted for.

Of course, this way of implementing the Inspection Points (with just one
inspect_counter) presupposes the abductive query answering process is carried out
“depth-first”, guaranteeing the order of the literals in the bodies of rules actually cor-
responds to the order they are processed. We assume such a “depth-first” discipline in
the implementation of Inspection Points, described in detail below. Later we lift this
restriction at the end of this subsection.

Changes to the pre-processor:
1. A new dynamic predicate was added: the ‘inspect_counter/1’. This is initialized

to zero (inspect_counter(0)) via an assert, before a top-level query is launched.
2. The original rules for the normal abduction step are now preceded by an additional

condition checking that the ‘inspect_counter’ is indeed set to zero.
3. Extra rules for the “inspection” abduction step are added, preceded by a condition

checking the ‘inspect_counter’ is set to greater than zero. When these rules are
called, the corresponding abducible ‘A’ is not abduced as it would happen in the
original rules; instead, ‘abduced(A)’ is abduced. This corresponds to the meta-
abduction: we abduce the need to abduce ‘A’, the need to ‘consume’ the abduction
of ‘A’, which is finally checked when derivation for the very top goal is finished.



The changes to the meta-interpreter include all the remaining processing needed to
correctly implement Inspection Points, namely matching the meta-abduction of
‘abduced(X)’ against the abduction of ‘X’.

Changes to the meta-interpreter: The semantics we chose for the Inspection Points
in Abdual is actually very close to that of the deontic verifiers mentioned before (and
also below), in the sense that if a meta-abduction on ‘X’ (resulting from abducing
‘abduced(X)’) is not matched by an actual abduction on ‘X’ when we reach the end
of solving the top query, the candidate abductive answer is considered invalid and the
query solving fails. On backtracking, another alternative abductive solution (possibly
with other meta-abductions) will be sought.

In detail, the changes to the meta-interpreter include:

1. Two ‘quick-kill’ rules for improved efficiency that detect and immediately solve
trivial cases for meta-abduction:

– When literal ‘X’ about to be meta-abduced (‘abduced(X)’ about to be added
to the abductions list) has actually been abduced already (‘X’ is in the abduc-
tions list) the meta-abduction succeeds immediately and ‘abduced(X)’ is not
added to the abductions list;

– When the situation in the previous point occurs, but with ‘not X’ already ab-
duced instead, the meta-abduction immediately fails.

2. Two new rules for the general case of meta-abduction, that now specifically treat
the ‘inspect(not X)’ and ‘inspect(X)’ literals. In either rule, first we increase the
inspect_countermentioned before, then proceed with the usual meta-interpretation
for ‘not X’ (‘X’, respectively), and, when this evaluation succeeds, we then de-
crease inspect_counter.

3. After an abductive solution is found to the top query, check (impose) that every
meta-abduction, i.e., every ‘abduced(X)’ literal abduced, is matched by a respec-
tive and consistent abduction, i.e., is matched by the abducible ‘X’ in the abduc-
tions list; otherwise the tentative solution found fails.

A counter — inspect_counter — is used instead of a simple toggle because sev-
eral inspect(X) literals may appear at different graph-depth levels under each other,
and reseting a toggle after solving a lower-level meta-abduction would allow actual
abductions under the higher-level meta-abduction. An example helps to clarify this.

Example 5. Nested Inspection Points. Consider the program from example 3, where
the abducibles are a, b, c, d.

When we want to find an abductive solution for x, skipping over the low-level tech-
nical details we proceed as follows:

1. a is an abducible and since the inspect_counter is still set initially to 0 we can
abduce a by adding it to the running abductions list;

2. y is not an abducible and so we cannot use any ‘quick kill’ rule on it. We increase
the inspect_counter — which now takes the value 1 — and proceed to find an
abductive solution for y;

3. since the inspect_counter is different from 0, only meta-abductions are allowed;



4. using the first rule for y we need to inspect(not a), but since we have already ab-
duced a a ‘quick-kill’ is applicable here: we already know that this inspect(not a)
will fail. The value of the inspect_counter will remain 1;

5. on backtracking, the second rule for y is selected, and now we meta-abduce b by
adding abduced(b) to the ongoing abductions list;

6. increase inspect_counter again, making it take the value 2, and continue on,
searching an abductive solution for not z;

7. the only solution for not z is by abducing not d, but since the inspect_counter is
greater than 0, we can only meta-abduce not d, i.e.,
abduced(not d) is added to the running abductions list;

8. returning to y’s rule: the meta-interpretation of inspect(not z) succeeds and so
we decrease the inspect_counter by one — it takes the value 1 again. Now we
proceed and try to solve c;

9. c is an abducible, but since the inspect_counter is set to 1, we only meta-abduce
c by adding abduced(c) to the running abductions list;

10. returning to x’s rule: the meta-interpretation of inspect(y) succeeds and so we
decrease the inspect_counter once more, and it now takes the value 0. From this
point onwards regular abductions will take place instead of meta-abductions;

11. we abduce b, c, and not d by adding them to the abductions list;
12. a tentative abductive solution is found to the initial query. It consists of the abduc-

tions: [a, abduced(b), abduced(not d), abduced(c), b, c, not d];
13. the abductive solution is now checked for matches between meta-abductions and

actual abductions. In this case, for every abduced(A) in the abduction list there
is an A also in the abduction list, i.e., every intention of abduction abduced(A) is
satisfied by the actual abduction ofA. Because this final checking step succeeds, the
whole answer is actually accepted. Note it is irrelevant which order a abduced(A)
and the corresponding A appear and were placed in the abductions list.

In this example, we can see clearly that the inspect predicate can be used on any
arbitrary literal, and not just on abducibles.

The actual implementation of Abdual with Inspection Points is available on request.

More general query solving In case the “depth-first” discipline is not followed, either
because goal delaying is taking place, or multi-threading, or co-routining, or any other
form of parallelism is being exploited, then each queried literal will need to carry its
own list of ancestors with their individual inspect_counters. This is necessary so as to
have a means, in each literal, to know which and how many inspects there are between
the root node and the currently being processed literal, and which inspect_counter
to update; otherwise there would be no way to know if abductions or meta-abductions
should be performed.

3.2 Topical Application Examples

Intentions: When developing an agent’s architecture one typically considers the cycle
of the agent where perception, reasoning and action take place. The action part can con-
sist simply of updating the agent’s “to-do list” with another intended goal that will be



attended to when the best opportunity arises. The conditions for updating the intended
goals can occur unexpectedly and they might be met as side-effects of other actions the
agent takes. In such cases, the agent just wants to check if, by any chance, the con-
ditions for some action become true while the agent undertakes the solution to some
other problem. It does not need to make those conditions true by abducing actions to
that effect, as it would deviate efforts from the problem it is undertaking.

Example 6. Intentions.

add_new_intention(X)← inspect(ConditionForIntendingGoalX)

inspect/1 is what we use to adopt the meta-abduction mode.

Notice that this mechanism allows for explicitly taking advantage of computations
already made. The fact that the rule above depends on an inspect means that there will
be no extra abductions made in order to make add_new_intention true; the inspect
will only check if, with the abductions made in the present derivation, even if not yet
achieved, we can add the new intention.

Deontic Verifiers: The meta-abduction mechanism itself is implemented as we de-
scribed: by means of abducing a special reserved unary predicate expressing the in-
tention of actual abduction. A posteriori, after a (meta-)abductive answer to the query is
found, different kinds of check/enforce restrictions can be put on the meta-abductions.

In our current implementation, in particular, we have just implemented the “meta-
abduction⇔ abduction” enforcement check, which in practice corresponds to deontic
verifiers: whenever we have abduced(a) in the abductive answer we must also have a
or else the whole answer will fail. Likewise, having abduced(not a) in the abductive
answer imposes that not a has been also abduced, but not below an inspection of the
triggering goal of abduced/1.

Of course, additional flexibility can be implemented via different reserved unary
predicates for meta-abduction, each of which requiring a different level of “commit-
ment” concerning meta-abductions. The abduced/1 predicate has now the meaning of
obligatory. An extra possibility would be to have another predicate like allowed/1
which would, by itself, never prevent the abductive answer from succeeding, by not re-
quiring its argument to be actually abduced, yet requiring its negation-complementary
not to be explicitly abduced. This latter scenario allows for a numeric (frequentist) ap-
proach where an abductive answer can be rated according to the number of allowed
actual abductions, i.e., #{X:allowed(X)∧abduced(X)}

#{X:allowed(X)} , or simply according to the number
of allowed requests.

Example 7. A gourmet’s deontic principles. For a gourmet, a proper meal goes along
with red wine if the main dish is meat, and with white wine if it is fish. The abducibles
are merlot, chardonnay, meat, and fish.

← not proper_meal main_dish← meat
proper_meal← wine,main_dish main_dish← fish
wine← red_wine, inspect(meat) red_wine← merlot
wine← white_wine, inspect(fish) white_wine← chardonnay



Specific wine abduction can be done before main dish abduction, without comitting
to the kind of main dish. In fact, the abduction for the wine and the one for the main
dish can be run in parallel. If the resulting combination of abductions is not acceptable
according to the gourmet’s deontic principles, an alternative abduction for the wine can
be produced.

Side-Effects: The actual semantics of checking side-effects can be of two kinds:

1. We can require that some literal a is a side-effect consequence of the abductions
made during the process of finding a solution for the query — this is the semantics
we implemented.

2. We may want to know the truth-value (2 or 3 valued, depending on the specific
application being developed) of some literal a as a consequence of the abductions
made when finding an answer for the query. In this case, the reserved predicate
abduced would need to be binary — abduced/2 in order to provide the truth-value
of the inspected literal as the second argument. The collected truth-values of the in-
spected literals can then be post-processed after the abductive answer is computed.

Strict Preferences: In an abductive framework, general preferences between abducibles
can be expressed via a set of rules where abducibles are preferred only when they are
“considered”. An abducible is considered when it is abduced, but only if there is expec-
tation in favor of it (since not all abducibles need be expected and thus made available in
some situation), and also there is no expectation to the contrary, i.e., the abducible is not
made available. Expectation for an abducible is expressed by application-specific con-
ditions; whereas expectation against the abducible can be used to express the conditions
under which an abducible is less preferred than another. These notions of preferences,
consideration, expectation and contrary expectation are borrowed from [17]. An exam-
ple will help clarify this.

Example 8. Preferences. Consider abducibles a and b. Under conditions c, a is more
preferred than b — abstractly written as a � b ← c. This means that whenever c holds
and b is available, a must also be available.

The general rule for considering an abducible is
consider(X)← expect(X), not expect_not(X), X

The rules for saying that some abducible is expected are problem-domain specific
and look like expect(a) ← ‘some conditions under which a is expectable’. This way,
the rules for expressing preferences just need to undermine the unpreferred abducible
whenever the conditions for the preference hold, i.e., consideration of an abducible is
defeasible. This is done by expect_not. The preference a� b← c above is thus coded
as expect_not(b)← c, not consider(a)

Since consideration of an abducible depends on its actual abduction, according to
the rule for above, in order to have expect_not(b) true, a must not be considered. In
case there is evidence in favor of expecting a and no evidence for expecting not a, this
means a cannot be abduced. So, this kind of general preference may have an impact on
the actual abduction (or not) of a.



Strict preferences, however, have a slightly different meaning. When we say we
strictly prefer a to b, given conditions c, we mean that b can only be available if a is
available, given that c holds. We write such a strict preference as a <�b ← c, and
this translates into expect_not(b)← c, inspect(not consider(a)), because with strict
preferences we wish to forbid the preference to interfere with the actual abduction or not
of a: this kind of preference has a mere verification role, whereas general preferences
may condition which abductions are actually made in order to satisfy the preference.
This is why strict preferences must recur to a mechanism like inspection points, just
like in the rule expect_not(b)← c, inspect(not consider(a)) above.

Collaborative/Competitive Planning: An application of Inspection Points is Planning
in a multi-agent setting. Whenever there are several agents there can be both collabo-
ration and competition. Our agent may have a plan already set up and, in the course of
carrying out the actions of the plan, it may find out that another agent has sabotaged
his work by undoing some of the planned and already executed actions. In this case,
before executing any action, our agent should check if all the necessary preconditions
hold. Notice the agent should only check: this way, if the preconditions hold the agent
can continue and execute the planned action. The agent should only take measures to
enforce the preconditions whenever the check fails, and only in those cases. Clearly, an
inspection of the preconditions is what we need here.

On the other hand, the “other” agent can actually be collaborating with our agent;
and when our agent goes on to execute some planned action, it might find that the
companion agent has already done some of the work for him. In this case, our agent also
wants only to check, not perform any actions in order to ensure the conditions. Merely
checking if an intermediate goal has already been achieved — because some other agent
helped, for example — is what we need to take advantage of this collaborative scenario.
Again, an inspection is the way to implement such check.

Plausible reasoning: Creating arbitrary abductive theories to explain observations is
easy; not so easy is to create minimal, consistent and plausible abductive theories. Plau-
sibility is one of the strongest criteria when finding a rational and consistent explana-
tion for observations. To impose plausibility on certain more unlikely abducibles, e.g.,
by means of an inspection point, is assuring the abducible (in case it is included in an
abductive solution) is adopted only when there is a plausible reason to it. Example 2
illustrates a case of plausibility reasoning, where, by means of an inspection point, we
enforce the abductive explanation for ‘smoke’ to be ‘tear_gas’ only in case there is
some action that caused it; in the example the action comes from the riot containment
the police enforced.

3.3 Comparing with other systems

We briefly compared our abduction system with inspection points to HyProlog [4].
HyProlog is an abduction/assumption system which allows for the user to specify if an
abducible is to be consumed only once or many times. In HyProlog, as the query solving
proceeds, when abducibles/assumptions consumptions take place they are executed as
storing the respective consumption intention in a store. After an abductive solution for



a query is found, the actual abductions/assumptions are matched against the consump-
tion intentions. In general, there is not such a big difference between the operational
semantics of HyProlog and the Inspection Points implementation we present; however,
there is a major functionality difference: in HyProlog we can only require consumption
directly on abducibles, and with Inspection Points we can inspect any literal, not just
abducibles. Moreover, HyProlog still has no declarative semantics, as opposed to our
Inspection Points approach.

In [20], the authors detect a problem with the IFF abductive proof procedure [14] of
Kung and Kowalski, in what concerns the treatment of negated abducibles in integrity
constraints (e.g. in their examples 2 and 3). They then specialize IFF to avoid such
problems and prove correctness of the new procedure. The problems detected refers to
the active use of an IC of some not A, where A is an abducible, whereas the intended use
should be a passive one, simply checking whether A is proved in the abductive solution
found. To that effect they replace such occurrences of not A by not provable(A), in order
to ensure that no new abductions are allowed during the checking.

Our own work generalizes the scope of the problem they solved and solves the
problems involved in this wider scope. For one we allow for passive checking not just
of negated abducibles but also of positive ones, as well as passive checking of any
literal, whether or not abducible, and allow also to single out which occurrences are
passive or active. Thus, we can cater for both passive and active ICs, depending on the
use desired. Our solution uses abduction itself to solve the problem, making it general
for use in other abductive frameworks and procedures. The declarative semantics of our
approach is supplied by a straight forward, meaning preserving, program transformation
whose correctness is apparent.

4 Conclusions and Future Work

In the context of abductive logic programs, we have presented a new mechanism of in-
specting literals, which corresponds to a selective forward chaining, that can be used to
check for side-effects. Besides allowing for implementation of side-effects inspection,
the meta-abduction principle, which is the heart of this contribution, permits a panoply
of other reasoning tools such as deontic-verifiers (useful for moral reasoning [19]), and
strict preferences. We have implemented the inspection mechanism within the Abdual
[3] meta-interpreter and checked that it can easily be ported to other systems [4]. The
semantics underlying Abdual (and, therefore, the current implementation of inspection
points) is the WFS with abduction. However, in case we need a total 2-valued seman-
tics we need to recur to Revised Stable Models if we want to keep taking advantage
of relevancy for top-down querying. Hence, our future work directions include extend-
ing the RSMs semantics with abduction, and, of course, meta-abduction. An efficient
implementation of this semantics is also under way.
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