
UPDATing Legal Documents - The case of Phytosanitary Protection of Vegetables

Agostinho Monteiro
 and Luís Moniz Pereira

Centro de Inteligência Artificial – CENTRIA

Departamento de Informática

Faculdade de Ciências e Tecnologia

Universidade Nova de Lisboa

Monte de Caparica

2829-156 Caparica

Portugal

Abstract – We show how Logic Programming updates can be applied successfully to problems involving legal reasoning namely those where legislation is subject to frequent alterations originating from different sources.

We employ the LUPS language to represent and update legal knowledge concerning the Phytosanitary Protection of Vegetables and Vegetable Products, in an environment where changes happened, not only in nation’s organization (EC regulations evolved several times in the period concerned) as in geography (disappearance of DDR, Czechoslovakia, Yugoslavia and USSR, and the corresponding constitution of new countries).

It is shown that logic programming, by means of a previously developed implementation of LUPS, is an appropriate tool to represent legal documents involving geographic border situations, and that its declarative approach greatly facilitates the specification of knowledge updating and the reasoning about it.

Typical, real, legislative cases are used to illustrate, in practice, different situations, and the feasibility of the approach shown. The whole work was subject to implementation and verification with a state of the art system. For its elaboration, the first author applied the knowledge acquired under supervision from the second, in a Master's degree in Applied Artificial Intelligence at the New University of Lisbon.

Keywords: Legal Reasoning, Dynamic Logic Programming, LUPS, Phytosanitary Protection.

I. Introduction

During the last two decades, Logic Programming (LP) evolved from a state in which we could only represent complete and static knowledge (truthfulness or falsehood were tautological and knowledge could not evolve with time) to a state in which we not only can represent incomplete knowledge (if something is not expressly true or false then it is undefined) as it’s also permitted that knowledge evolve in time, allowing to contradict former information and, as a consequence, to obtain different conclusions in different states. The notion of knowledge update was extended to sequences of programs, ‘Dynamic Logic Programs (DLP)’, using the principle of inertia (acquired knowledge should persist while it is not explicitly contradicted), not just in facts (extensive part) but also in rules (intentional part) [1, 2, 6].

With the development of LUPS, 'Language for Dynamic Updates’ [3], it was additionally permitted to express transitions among states (enacted by programs in logic) and to make declarative both states and state transitions. This way, given a program (corresponding to an initial Knowledge Base KB), it is now possible to proceed, sequentially, to its updating, in such a way that the declarative semantics of the sequence of sets of update actions is defined by the semantics of the program in DLP that expresses those actions.

In this paper we employ the LUPS language to represent and update legal knowledge concerning the Phytosanitary Protection of Vegetables and Vegetable Products, in an environment where changes happened, not only in nation’s organization (EC regulations evolved several times in the period concerned) as in geography (disappearance of DDR, Czechoslovakia, Yugoslavia and USSR, and the corresponding constitution of new countries) having in mind the fact that, in legal reasoning, two kinds of complementary ways of reasoning about law can be distinguished [5]. One being case oriented and the other rule oriented. Both can, however, be understood as complementary since in rule-based legislation it is some times necessary to determine the meaning of vague terms using, as precedents, the cases of previous ones while, in case-based argumentation, to justify a previous decision, it may be necessary to express it in general terms and appealing to general principles, thus originating rules. We believe that LUPS is adequate to represent both ways of reasoning while, in this project it is applied to a clear rule-based problem.

II. background

A. The language LUPS (from [3])

Knowledge states KSi represent dynamically evolving states of our knowledge. They undergo change due to update actions starting with an initial state, assumed empty, with all predicates false by default.

Given the current KS, its successor knowledge state KS[U] is produced as a result of a non-empty set U of simultaneous updates. Each of the updates can be viewed as a set of parallel actions. Consecutive knowledge states are obtained as

KSn = KS0 [U1] [U2] … [Un] also denoted as

KSn = U1 (U2 (… (Un
where Ui’s represent consecutive sets of updates and the so defined sequences of updates will be called update programs. In other words, an update program is a finite sequence U={Us: s(S} of updates indexed by the set S={1, 2, … , n}. Each update is a set of update commands that specify assertions or retractions to the current knowledge state. Knowledge can be queried at any state q (n, where n is the index of the current knowledge state, as

holds B1, … , Bk, not C1, … , not Cm at q?

In updates, a not A head means atom A is deleted if the body holds. Deleting A means that A is no longer true, not necessarily that it is false.

Update commands cause changes to the current knowledge state leading to a new successor state. The simplest command consists of adding a rule to the current state

assert L (L1, ... , Lk

Normally, the added rules persist from its addition until being objected or removed by future updates.

If it is intended to add a rule to the current state depending on a precondition we can do it with the command

assert L (L1, ..., Lk when Lk+1, ..., Lm

adding the rule L (L1, … , Lk if the Lk+1, … , Lm condition is true in the current state.

As there are cases where persistence by inertia shouldn’t be assumed, for instance, episodic, one-time events, it is available the keyword event indicating that the added rule is non-inertial.

assert event L (L1, ..., Lk when Lk+1, ..., Lm

We can deal with the deletion of rules with commands

retract L (L1, ..., Lk when Lk+1, ..., Lm
retract event L (L1, ..., Lk when Lk+1, ..., Lm

meaning that, under the Lk+1, …, Lm condition, rule L (L1, … , Lk is, or removed from there onward, or only in the next state.
Assert commands represent new information and, therefore, are not persistent update commands that are executed once. However, other update commands are susceptible of persistence, i.e., remain in action until being cancelled. The possibility of such updates allows the dynamic update of our system without having received any new true updates.

always L (L1, ..., Lk when Lk+1, ..., Lm
always event L (L1, ..., Lk when Lk+1, ..., Lm
cancel L (L1, ..., Lk when Lk+1, ..., Lm
The first two commands mean that, beyond the appearance of any new set of update commands, the persistent update command continues to be executed, with them. The third command cancels the execution of this persistent update if the specified conditions are verified.
Notice that to cancel an update command is not the same thing as to delete a rule. To cancel an update means that it won’t anymore be added as a command to the update, nor it will cancel the inertial effect of its previous applications. To delete a rule causes the cancellation of any of its inertial effect hereupon.

B. The problem

As a consequence of the integration of Portugal in the European Community (EC), in 1986, it became imperative to adapt national legislation to European directives about protection against the introduction and dispersion, in the member states, of organisms harmful to vegetables and vegetable products. This was accomplished with the adoption of EC Directive 77/93/CEE, of December 21, 1976. By virtue of this document, in Portugal and in the Community, production, circulation and importation of vegetables and vegetable products must respect some requirements, in the form of specific national legislation (Decree-Laws and Ordinances) and international (Community Directives), in force for a certain period of time. In general, these requirements consist of a structured group of attachments to those Ordinances, which may be subject to corrections, more or less frequently, be it by an international legislator, or by a national one. The adaptation of the mentioned Directive to national legislation, was accomplished with the publication of a Decree-Law, DL 348/88 of September 30, complemented with the publication of Ordinance 661/88, of September 30, that discriminates the list of harmful organisms, vegetables and vegetable products whose introduction in national territory is forbidden, and those whose entrance is restricted. In this process’s validation, modifications were introduced, by repeal, of the current law, i.e., DL 154/94 of May 28, regulated by Ordinance 344/94 of June 1, and DL 14/99 of January 12, that revokes the previous one and introduces a new list of products.

Due to this legislative dynamics, it’s necessary to proceed to a constant, and dynamic, update of information resulting from new norms, and to continue to be able to interrogate the past, concerning the truthfulness of any situation, in any previous period. Programming in Logic has, along its evolution, sought appropriate solutions to the resolution of this type of problems, namely in regard to legal reasoning [4, 5, 1], reaching nowadays a well developed state and a promising implementation.

LUPS is a development of Logic Programming and its programs are converted, by program transformations, to generalized logic programs, and thence to normal logic programs, by means of an implementation available at http://centria.di.fct.unl.pt/~jja/updates) [3]. It is a language appropriate for efficient and effective resolution of the problem at hand, allowing representing its whole gamut in an easy and direct way. We refer, in this report, to its use under the XSB PROLOG compiler, version 2.5, available at http://xsb.sourceforge.net/ whereby we have accomplished the necessary experiences for the proof of its adequacy to the solution of this type of problem.

Since Portugal, in 1977, date of the first considered EC Directive, wasn’t yet a member of the Community, and the dismemberment of some European countries hadn’t yet occurred, we divide our work into two parts. The first describing the problem before 1990, when phytosanitary protection of vegetables and vegetable products was essentially ruled by Ordinance 661/88 and countries like Czechoslovakia still existed. The second describing the European changes thereafter occurred and the corresponding adaptation of national legal diplomas.

We initiate the first part with state01, dubbed 'génesis', including examples of general rules that must be verified along legislative evolution. One of these rules stipulates, for instance, that everything that is not forbidden is allowed. Along the development, we proceed to the addition of ruled forbiddances and exceptions stipulated in legislation. Examples of vegetable products, countries, and continents are presented in state02, as ‘definitions’.

In 1957, the Community was formed with its first five constituents and a Knowledge Base update, with this new event, is accomplished with update 'update union-1957'. Meanwhile, the community evolves and that is represented with updates 'update union-1973', 'update union-1981', and 'update union-1986' (Portugal and Spain), corresponding to the adhesion of the respective countries. In this context, Ordinance 661/88 introduces new rules, forbidding and excepting some situations. This new knowledge is represented by update group 'update 661-88 Rules’, 'update 661-88 Facts' and 'update 661-88 Exceptions'. Notice that Ordinance 661/88 only refers national territory (Portugal) not mentioning other Community members. Transposition of community norms will be ruled only in 1994, with Ordinance 344/94 of June 1.

Along the second part, the world changes substantially. Some countries disappear and new ones appear in their stead. There also happen new adhesions to Community while others prepare for the future. These knowledge updates are accomplished with updates 'update exCzech-1990', 'update exDDR-1990', 'update exUssr-1990', 'update exYugo-1991', 'update exUssr-1991' and 'update exYugo-1992'.

Meanwhile, Ordinance 344/94 of June 1 1994, is published and revokes, integrally, Ordinance 661/88. As a consequence, the Knowledge Base receives a new update, this time with updates 'update 344-94 Rules', 'update 344-94 Facts', and 'update 344-94 Exceptions'.

Finally, with update ‘update union-1995.p’, Austria, Finland, and Sweden adhere to the Community.

In short, the sequence of Knowledge Base updates is the following:

PART 1

State 01 updateF(‘genesis.p’).

State 02 updateF(‘definitions.p’).

State 03 updateF(‘update union-1957.p’).

State 04 updateF(‘update union-1973.p’).

State 05 updateF(‘update union-1981.p’).

State 06 updateF(‘update union-1986.p’).

State 07 updateF(‘update 661-88 Rules.p’).

State 08 updateF(‘update 661-88 Facts.p’).

State 09 updateF(‘update 661-88 Exceptions.p’).

PART 2

State 10 updateF(‘update exCzech-1990.p’).

State 11 updateF(‘update exDDR-1990.p’).

State 12 updateF(‘update exUssr-1990.p’).

State 13 updateF(‘update exYugo-1991.p’).

State 14 updateF(‘update exUssr-1991.p’).

State 15 updateF(‘update exYugo-1992.p’).

State 16 updateF(‘update 344-94 Rules.p’).

State 17 updateF(‘update 344-94-88 Facts.p’).

State 18 updateF(‘update 344-94-88 Exceptions.p’).

State 19 updateF(‘update union-1995.p’).

TABLE 1
- Sequence of Knowledge Base update states

Concerning this period, we execute a detailed, yet not exhaustive, analysis and experimentation of the most representative articles of each selected situation and proceed to its interpretation.

III. Design and Development

Decisions had to be taken during the elaboration of the experimental phase of this work. Bellow we enumerate them.

A. Special characteristics of the legislation under analysis

· The fact that the considered legal documents have total repeal, not partial, suggests that rules and corresponding facts should be totally annulled, not partially. LUPS makes available the commands retract and retract ... when to turn off rules, when that becomes necessary, and the effect just shows up in the following state. However, in the present case, this procedure would correspond to codifying a new rule and a new fact for each rule or fact intended to revoke (and they are all) in each document. Such procedure doesn't facilitate the intended coding. A more appropriate solution is to inhibit rules and facts using a new predicate [not in_force(directive-to-revoke)] and to create other one [in_force(new_directive)] in order to validate a new entrance.

However, in case it is verified, a posteriori in new legislation, the need to revoke, partially, rules and/or facts, these can be coded using the commands previously referred. This, jointly with the fact that an implemented language is available, and that it provides great ease in codifying rules, facts, and exceptions, is one of the main motivations for deciding to use the language LUPS.

· The structure of norms, and consequently of rules, facts, and exceptions, is similar in all diplomas under analysis. In fact, restrictions are stipulated to organisms, when present in a certain product, in a certain form, when originating in a country, or group of countries, destined to a country or group of countries and for a certain purpose. To allow for normalized code, we looked for a regular form, eventually able to be implemented on a graphical interface (screen form). Attributes not filled out could be instantiated with values by omission. This way, not only rules coding is empowered, and facilitated with the use of LUPS, as facts can be expressed with easiness.

So, after analysis of the Ordinances about vegetable’s phytosanitary protection, there resulted the following regular structure, constituted by the parameters:

1. Norm - Indication of the constituent rule’s norm and/or fact or exception;

2. Organism - Harmful organism whose introduction and/or circulation is intended to be forbidden;

3. Product - A product in which the occurrence of a harmful organism is found, or the product itself is harmful;

4. Form - The form presented by the product when it is analyzed;

5. Origin - The origin or, sometimes, the production place, of the product;

6. Destiny - The geographical destiny of the products, which can be a group of countries, an isolated country or, even, a group of specific areas;

7. Purpose - The product’s purpose.

When querying the Knowledge Base, it should be taken in account that all attributes must be available, though possibly with null values. The decision to implement this way is based on an expected easiness resulting from the use of one eventual graphical interface, already referred, to collect interrogations in pre-elaborated forms, where ignored attributes could be instantiated automatically with null values or any other code.

In the following we present, as an example, the forbiddances stipulated by Ordinance 344-94, Attach II, Part A, Paragraph a). It should be noticed that, during rules coding, we used the following acronyms to indicate groups of countries, be them Origins or Destinies for vegetable products:

	CM Community
	AM America

	NC Not Community
	MD Mediterranean

	EU Europe
	EC Ex-Czechoslovakia

	NE Not Europe
	EJ Yugoslavia

	AN North America
	ER USSR

	AC Central America
	EA DDR

	AS South America
	Asia Asia

TABLE 2
- Acronyms

B. Partial analysis of Ordinance 344-94 - Attach II
PART A

Harmful organisms whose introduction and dispersion is forbidden inside the Country and in the remaining member States since they are present in certain vegetables or vegetable products

Section I

Harmful organisms not existing in the Community and important for the whole Community

a) Insects, acaroids and nematodes in any phase or in development

	Species
	Vegetables and vegetable products

	1 – Aculops fuchsiae Keifer................
	Vegetables of Fuchsia L., destined to plantation, except seeds.

This forbiddance is represented by the rule below which specifies that it is forbidden, by Norm, to introduce, if Ordinance 344-94 is in force, the specie Organism, when present in product Product (Vegetable and Vegetable Product), in the form of Form, if it has origin in Origin (in this case, origin isn’t specified, so it is considered null), if destiny Destiny is a Community country (specified in updates 'update union-nnnn') and if it’s to be applied for purpose Purpose.

assert forb-to-intro(Norm, Organism, Product, Form,

Origin, Destiny, Purpose) (in_force('Pt 344-94'),

in_force(Norm), harm-org(Norm, Organism, Product, Form, '', 'CM', Purpose), community(Destiny).

This forbiddance’s specification is made by the addition of new knowledge such as

% (' II-A-I-a-1') Rule from Attach II, Part A, Section I, Paragraph a, Number 1
.

assert harm-org(‘Pt 344-94’, 'Aculops fuchsiae', 'Fuchsia L.', 'Vegetable' - 'Whole', '', 'CM', 'Plantation').

If Ordinance 344-94 is in force, Organism (Species) Aculops fuchsiae, when present in Product (Vegetable and vegetable product) Fuchsia L., in the Form of a complete vegetable, 'Vegetable'-'Completo', with no specified Origin, destined to Destiny CM, (Community country previously specified in another update, ‘update union-nnnn’), for purpose ‘Plantation’, must have its introduction prohibited. One exception, to be added in the following state, will contradict this prohibition when it is a vegetable in seed form.

% ('II-A-I-a-1')

assert not forb-to-intro(‘Pt 344-94’, 'Aculops fuchsiae', 'Fuchsia L.', 'Vegetable' - 'Seed', '', 'CM', 'Plantation').

Knowledge Base interrogation will be accomplished with the command holds of LUPS

(holds forb-to-intro(Norm, 'Aculops fuchsiae', 'Fuchsia L.', Vegetable, '', Country, 'Plantation') at State.

As answer we obtain the Norms, Vegetables, Countries and updated States in which this forbiddance was stipulated. (Question variables start with capital letter):

Norm = Pt 344-94,
Vegetable = Vegetable – Whole

Country = Denmark, State = now (i.e. the present state)

Note: Due to space limitations, in the sequel, only some of the more interesting and representative cases will be presented. However, a copy of the 1st author’s thesis, as well as the whole code developed in this work, will be shortly available in that author’s page. In case of a more immediate interest in obtaining these elements, it will be enough to email him.

IV. Implementation and Tests

A. Implementation and tests relative to states 01 through 09

For better documentation, we use structured tables to present all necessary information. In each table, Rules means the rules used in the update. Facts and Exceptions discriminate facts and/or exceptions added to the program and used in the experience. Query is the key question presented to the program. Results is the place where answers, returned by the program, are shown and, finally, Comment is the line where we comment the results obtained in the experiment.

A special form is used to represent hierarchies; so the following terms:

assert europe(‘France’).

assert europe(‘France’-‘Corsica’).

assert not europe(‘France’-‘Martinique’).

define hierarchical structures indicating, for instance, that France and Corsica (European island, part of France) belong to Europe while Martinique (also an islander part of France) doesn't belong to this continent.

In the following, we experiment with Paragraph 2, Part A, Attach III of Directive 661/88. This paragraph has a complicated text and is a good example because it prohibits the introduction of vegetables original from singular countries and/or groups of countries and it even specifies some exceptions

1) Test about the introduction of Solanum tuberosum L., according to the description, with very differentiated origins and with some exceptions.

The following picture, besides reproducing faithfully the text of the paragraph under consideration, analyzes visually which countries/groups of countries have its introduction prohibited, and still specifies rules, facts and exceptions concerning its prohibition.

Notice the specification of third countries, i.e., those not belonging to continental Europe (NE). This prohibition is applied, not only to the countries explicitly referred, as well as to those outside continental Europe.

Along with the implementation of this Ordinance, several rules are codified. We consider only two representative ones. Note, in particular, how we mention the fact that a country is not European, that is, codifying it with 'NE' in its respective assert (see acronyms above).

When interrogating the Knowledge Base, the rule with 'NE' (mentioned in harm-org, argument Origin), is selected when a country is unified with not Europe(Origin).

	Description
	Country of origin

	Vegetable products:

2.1. Potato tubers (Solanum tuberosum L.), except those officially recognized as potato-seed.
	Turkey, USSR and other third countries not belonging to continental Europe, with exception of: Algeria, Cyprus, Egypt, Israel, Libya, Malta, Morocco, Syria, and Tunisia.

	Analysis

Used rules, facts, and/or exceptions:

	Rules (Only the applicable)

	assert forb-to-intro(Norm, Product, Form, Origin, Destiny, Purpose) (in_force('Pt 661-88'), in_force(Norm), harm-org(Norm, Product, Form, 'NE', Destiny, Purpose), not europe(Origin), prolog(Destiny == 'Portugal').

assert forb-to-intro(Norm, Product, Form, Origin, Destiny, Purpose) (in_force('Pt 661-88'), in_force(Norm), harm-org(Norm, Product, Form, Origin, Destiny, Purpose), prolog(Destiny == 'Portugal').

	Facts (Some)

	assert harm-org('Pt 661-88', 'Solanum tuberosum L.', 'Vegetable' - 'Tuber', 'Turkey', 'Portugal', '').

assert harm-org('Pt 661-88', 'Solanum tuberosum L.', 'Vegetable' - 'Tuber', 'USSR', 'Portugal', '').

assert harm-org('Pt 661-88', 'Solanum tuberosum L.', 'Vegetable' - 'Tuber', 'USSR' - 'Estonia', 'Portugal', '').

assert harm-org('Pt 661-88', 'Solanum tuberosum L.', 'Vegetable' - 'Tuber', 'NE', 'Portugal', '').

	Exceptions (Some)

	% ('III-A-2.1')

assert not forb-to-intro('Pt 661-88', 'Solanum tuberosum L.', 'Vegetable' - 'Tuber', 'Algeria', 'Portugal', '').

assert not forb-to-intro('Pt 661-88', 'Solanum tuberosum L.', 'Vegetable' - 'Seed', 'Tunisia', 'Portugal', '').

Query 21

Demonstrates that Solanum tuberosum L. tubers, when with origin from third countries, not belonging to continental Europe (the case of USA), are prohibited of being introduced in Portugal, in state 8.

	Query

	holds forb-to-intro(Norm, 'Solanum tuberosum L.', 'Vegetable'-'Tuber', 'EUA', ‘Portugal’, ‘’) at 8.

	Results

	Norm = Pt 661-88

The introduction of tubers of Solanum tuberosum L. with origin in the USA, in Portugal, it prohibited by norm Pt 661-88, in state 8 (notice that, in state 8, only facts are inserted in the Knowledge Base).

Query 22

Queries Knowledge Base if introduction of tubers of Solanum tuberosum L., original from Algeria, is prohibited in state 8.

	Query

	holds forb-to-intro(Norm, ‘Solanum tuberosum L.’, ‘Vegetable’–‘Tuber’, ‘Algeria’, ‘Portugal’, ‘’) at 8.

	Results

	Norm = Pt 661-88

The introduction of tubers of Solanum tuberosum L. from Algeria (exception expressed in the description), in Portugal, is prohibited in state 8. This result, seemingly non consensual, is however correct because, in state 8, only facts are inserted in Knowledge Base (exceptions are only inserted in state 9).

Query 23

Queries Knowledge Base, in state 9, with the same objective as the previous interrogation.

	Query

	holds forb-to-intro(Norm, 'Solanum tuberosum L.', 'Vegetable' - 'Tuber', 'Algeria', ‘Portugal’, ‘’) at 9.

	Results

	No

The introduction of tubers of Solanum tuberosum L. from Algeria, to Portugal, is not prohibited in state 9. (In state 9, exceptions were already added to the Knowledge Base). This experiment demonstrates the importance of testing questions in appropriate states.

Query 24

Knowing that Estonia, in state 9, is still a constituent of USSR and that this country constitutes one of the prohibited origins, this query determines which Norm forbids the introduction of tubers of Solanum tuberosum L. from Estonia, USSR, to Portugal.

	Query

	holds forb-to-intro(Norm, 'Solanum tuberosum L.', 'Vegetable' - 'Tuber', 'USSR’ – ‘Estonia', ‘Portugal’, ‘’) at 9.

	Results

	Norm = Pt 661-88

The introduction of tubers of Solanum tuberosum L. from Estonia, (considered as part of USSR), to Portugal, is prohibited in state 9, by Ordinance 661/88.

B. Implementation and tests relative to states 10 through 19

States 10-19 constitutes the second phase of the demonstration. These states correspond to the 'World’s change beginning'. Europe’s map suffers great transformations, namely, with the emergence of new countries and the disappearance of others. In 1990, Czechoslovakia and DDR disappear giving place to the Czech Republic and Slovakia, as result of the disappearance of the former and to the integration, in Germany, of the latter. We update Knowledge Base with updates ['update exCzech-1990.p' (state 10) and ‘update exDDR-1990.p' (state 11)]. Still in 1990, USSR suffers its first scission with creation of Estonia, Leetonia, and Lithuania. However, USSR still remains as a country ['update exUssr-1990.p' (state 12)].

In 1991, the scission of Yugoslavia happens, with the constitution of Slovenia, Croatia, and Bosnia-Herzegovina, while maintaining itself as a country with its previous denomination ['update exYugo-1991.p' (state 13)]. Also, in this year, it occurs the definitive dissolution of USSR and the appearance of the new republics of Bielo-Russia, Moldavia, Russia, Georgia, and Ukraine [‘update exUssr-1991.p' (state 14)]. In 1992, Yugoslavia definitively disappears, emerging, as a consequence, two new republics, Macedonia and Serbia-Montenegro [‘update exYugo-1992.p' (state 15)]. These modifications changes previously found knowledge base models.

1) New countries emerge from the disaggregation of Czechoslovakia

Used rules, facts, and/or exceptions:

	Rules

	Doesn’t have

	Facts

	assert exCzech('Czech republic').

assert exCzech('Slovenia').

assert europe('Czech republic').

assert europe('Slovenia').
assert not europe('Czechoslovakia').

In state 10, Czechoslovakia disaggregates into two new countries, Czech Republic and Slovakia, that become the ex-Czechoslovaquia countries. Emergent countries begin to belong to Europe as shown in the above table’s different assert commands. The information that Czechoslovakia no more constitutes a European country is added with the command assert not europe('Czechoslovakia').

Query 31

Check if Czech Republic is a European country in 9.

	Query

	holds europe(‘Czech republic’) at 9.

	Results

	No.

Because mentioned world’s modification hadn’t yet occurred, in 9, Czech Republic wasn’t a European country.

Query 32

Repeats the interrogation, this time in state 10, when there were already substantial alterations in the world with the creation of new countries.

	Query

	holds europe('Czech republic') at 10.

	Results

	Yes.

In state 10 and next (until the opposite is affirmed) Czech Republic exists and Czechoslovakia ceases to exist. It was also an expected result.

Due to the fact that, in this legislation, references appear to ex-Czechoslovakia’s countries, it becomes necessary to codify them. That is accomplished with predicate exCzech ('Czech republic').

Query 33

It is verified if, in state 10, Czech Republic is a country of ex-Czechoslovakia.

	Query

	holds exCzech('Czech republic') at 10.

	Results

	Yes.

As expected, in state 10 and the next, Czech Republic begins to be considered as an old constituent of ex- Czechoslovakia.

Query 34

As Czechoslovakia wasn’t, in state 9, yet dismembered, we verify if this country is part of Europe.

	Query

	holds europe(''Czechoslovakia ') at 9.

	Results

	Yes.

Czechoslovakia is, in state 9, a country of Europe.

Query 35

As dismemberment occurred in state 10, Czechoslovakia shouldn’t, since then, be a European country.

	Query

	holds europe(''Czechoslovakia ') at 10.

	Results

	No.

Czechoslovakia no longer belongs to Europe in state 10.

Considering the Community, along this period of time it didn't happen any new adhesion. However, with publication of Law 154/94, of May 28, it became necessary to transpose Council’s Directive 77/93/CEE, of December 21, 1976, for internal jurisprudence. Ministry of Agriculture’s Ordinance 344/94, of June 1, did that transposition. This ordinance is implemented with updates 'update 344-94 Rules.p' (state 16), 'update 344-94 Facts.p' (state 17) and 'update 344-94 Exceptions.p' (state 18).

A difference to mention, about Ordinance 661/88 and the next ones, is that the prohibited destiny changed from Portugal to Countries of the Community, designated in rules, facts and exceptions, by 'CM' (other used acronyms were described previously), or to specific areas. We emphasize the fact that, now, queries directly specify the origin and/or destiny (Portugal, Sweden, etc.). It is the rule that, declaratively, verifies if the country has, or hasn’t, a certain attribute, for instance to be a Community country, 'CM'. As an example, in part B of Attachment II, harmful organisms is highlighted whose introduction and dispersion is prohibited in certain protected areas, whenever present in certain vegetables and vegetable products.

	Species
	Vegetables and vegetable products
	Protected areas

	II-B-b-2. Erwinia amylovora (Burr.) Winsl. Et al.
	Parts of vegetables, except fruits, seeds and vegetables destined to plantation, but including alive pollen for pollination, of Chaenomeles Lindl., … , Sorbus L., except Sorbus intermedia (Ehrh.) Pers. and Stranvaesia L.
	Spain, France [Champagne-Ardennes, Alsace (except the department of Nanny-Rhin),…], Ireland, Italy, Portugal, UK, (N.Irl., Isle of Man and Channel islands).

Used rules, facts, and/or exceptions:

	Rules

	assert forb-to-intro(Norm, Organism, Product, Form, Origin, Destiny, Purpose) (in_force(‘Pt 344-94’), in_force(Norm), harm-org(Norm, Organism, Product, Form, Origin, Destiny, Purpose).

	Facts

	% (‘II-B-b-2’)

assert harm-org(‘Pt 344-94’, ‘Erwinia amylovora’, ‘Chaenomeles’, ‘Vegetable’ – ‘Part’, ‘’, ‘Spain’, ‘Plantation’).

assert harm-org(‘Pt 344-94’, ‘Erwinia amylovora’, ‘Chaenomeles’, ‘Vegetable’ – ‘Polen vivo’, ‘’, ‘Spain’, ‘Pollination’). ...

assert harm-org(‘Pt 344-94’, ‘Erwinia amylovora’, ‘Sorbus L.’, ‘Vegetable’ – ‘Part’, ‘’, ‘United kingdom’ – ‘Channel islands’, ‘Plantation’).

assert harm-org(‘Pt 344-94’, ‘Erwinia amylovora’, ‘Sorbus L.’, ‘Vegetable’ – ‘Alive pollen’, ‘’, ‘United kingdom’ – ‘Channel islands’, ‘Pollination’).

	Exceptions

	% (‘II-B-b-2’)

assert not forb-to-intro(‘Pt 344-94’, ‘Erwinia amylovora’, ‘Chaenomeles’, ‘Vegetable’ – ‘Seed’, ‘’, ‘Spain’, ‘Plantation’).

assert not intro-forb(‘Pt 344-94’, ‘Erwinia amylovora’, ‘Chaenomeles’, ‘Vegetable’ – ‘Fruit’, ‘’, ‘Spain’, ‘Plantation’).

assert not forb-to-intro(‘Pt 344-94’, ‘Erwinia amylovora’, ‘Chaenomeles’, ‘Vegetable’ – ‘Whole’, ‘’, ‘Spain’, ‘Plantation’). ...

assert not forb-to-intro(‘Pt 344-94’, ‘Erwinia amylovora’, ‘Sorbus intermedia’, ‘Vegetable’ – ‘Alive pollen’, ‘’, ‘United kingdom’ – ‘Channel islands’, ‘Pollination’).

assert not forb-to-intro(‘Pt 344-94’, ‘Erwinia amylovora’, ‘Stanvaesia’, ‘Vegetable’ – ‘Alive pollen’, ‘’, ‘United kingdom’ – ‘Channel islands’, ‘Pollination’).

Query 65

Obtains information concerning Norm, Forms, and Vegetables, whose introduction in the United Kingdom, in the area of the Isle of Man (protected area), is prohibited in state 18.

	Query

	setof(Vegetable, holds forb-to-intro(Norm, 'Erwinia amylovora',Vegetable, Form, '', ‘United kingdom’ – ‘Isle of man’, 'Plantation') at 18, Vegetables).

	Results

	Norm = Pt 344-94

Form = Vegetable-Part

Vegetables = [Chaenomeles, Cotoneaster, Crataegus L., Cydonia Mill., Eriobotrya, Malus Mill., Mespilus L., Pyracantha, Pyrus L., Sorbus L.]

In state 18, the organism Erwinia amylovora, is prohibited from introdution in the United Kingdom, Isle of Man, by Pt 344-94, when present in parts of the vegetables pointed out in of the Vegetable list.

Query 66

Interrogates the Knowledge Base to obtain information, concerning Norm and protected Areas (Zone), about the introduction of Erwinia amylovora, when present in parts of vegetables of Chaenomeles, destined to plantation, in state 18.

	Query

	setof(Zone, holds forb-to-intro(Norm, ‘Erwinia amylovora’, ‘Chaenomeles’, ‘Vegetable’ – ‘Part’, ‘’, Zone, ‘Plantation’) at 18, Zones).

	Results

	Norm = Pt 344-94

Zones = [Spain, France – Champagne-Ardennes, France – Alsace, France – Lorraine, France – Franche-Comté, France – Rhônes-Alpes, France – Bourgogne, France – Auverne, France – Provence-Alpes-Côte dÁzur, France – Corse, France – Languedoc-Roussillon, Ireland, Italy, Portugal, United kingdom – Isle of man, United kingdom – Channel islands, United kingdom – N.Irl.]

Organism Erwinia amylovora, is prohibited from introdution in the areas pointed out in list Areas, by Pt 344-94, when present in vegetables of Chaenomeles, in the form of vegetable parts, if destined to plantation, in state 18.

V. Maintenance

Knowledge Base maintenance is easy and evolutionary. As new knowledge is acquired, i.e., new legislation is published, its enough to indicate this new knowledge (rules, facts, and exceptions) in a new update program (in italic for, in reality, it is a group of one or more programs). The process begins with publication of new ruling legislation, usually Ordinances, composed by 5 or 6 attachments, perfectly structured, as presented in the examples above, which, in general, revoke all previous legislation before the definition of new clauses.

The analysis and coding of the published legislation, article by article, must then be accomplished. This task, though not being difficult, is some times not clear. The edition of rules, facts, and exceptions may be done with any text editor (ASCII), editing a ‘.p’ extension file for each one, coding the structure corresponding to each attachment.

When geographical alterations have taken place (new countries), or new adhesions to the Community have happen, these also need new update programs that must be inserted in a suitable order, in evolution.

It’s useful to point out that some reference states must be defined for querying the Knowledge Base. Since inserting knowledge (rules, facts, and exceptions), corresponding to the ordinances, is accomplished by one or more update programs, we must query at the proper state if we want them all to be considered. Interrogations about intermediate states won't contemplate information only available in subsequent states. When it is desired to repeal a certain ordinance, it suffices to assert the clause not in_force(directive-to-revoke), at the beginning of the first update program in the sequence(rules), whose main function is to inhibit (to turn false) the assertion accomplished by the previous legislation. Simultaneously, the assertion in_force(new_directive) should be added. We preferred inhibition instead of annulment with retract, since it is a more direct and easy way to reach the intended objective, in this case, total repeal. The use of the retract command would force us to add one for each rule to be revoked (resp. for facts and exceptions), and that would cause an overload both in update operation and processing time.

As previously referred, repeal is total, however, if it were partial, LUPS would allow for the annulment of rules, or facts, by retract, providing the possibility to continue interrogating the Knowledge Base in former states. Note that updating programs, by deleting rules, facts or exceptions, in corresponding '. p' files, is not a desirable solution because it impedes this interrogation.

From the exposed, we can now approximate a systematic maintenance algorithm:

MAINTENANCE:

Analysis and interpretation of the legislation and/or world

if partial repeal or change of the world
Identify rules, facts and exceptions to modify/delete

while rules, facts and exceptions exist to modify/delete
Inhibit or turn off those rules, facts and exceptions (a program for each type) with not or retract
if modification
Add the rule, fact and exception (a program for each type) to modify, with assert
end if

end while

else

Add assert not in_force(directive-to-revoke)

Add assert in_force(new_directive)

Add the new rules, facts and exceptions (a program for each type)

end if

VI. Future Work

In [3], the authors discuss and illustrate examples of applicability of LUPS to several other broader knowledge representation domains, namely, active knowledge bases, reasoning about actions, legal reasoning and software specifications. As LUPS is a multiple purpose language, allowing to dynamically updating knowledge, even the one we want to persist until explicitly contradicted, and specify state transitions, it can be used to represent other legal, political or social problems.

In the phytosanitary protection area, it will certainly be important to complete the Knowledge Base, inserting the remaining communitarian and national legislation, (directives, decree-laws and ordinances), specifying all its allowances and exceptions, and proceed to a more exhaustive test in order to obtain, for instance, metrics about performance. Also, as the characteristics of the problem we have analyzed may be found in other areas, be it legal, political or social, since border situations can be verified, i.e., situations that prohibit, or condition, the entrance of certain objects, eventually present in others, (considering form, origin, destiny -both can be structured- and purpose), this model, even if with slight modifications, may be used.

As examples for future study and eventual application, we suggest areas like biology (microorganisms), environment (industrial, nuclear and/or human residues), economics (customs), medical (drugs) and military (armament, terrorism, etc).

VII. Conclusion

In our project we described the problem of phytosanitary protection of vegetables, considering the period (1957 to 1999), in a constantly changing world. During this period, we observed the Community's constitution and the disaggregation of Czechoslovakia, DDR, Yugoslavia, and USSR. New countries were constituted, and several new adhesions to the European Community have also happened. We proceeded to code the attending legislation, while commenting and justifying all decisions, tested solutions and presented perspectives for future work.

From our experience, we concluded that Logic Programming is adequate to represent legal problems which covers border crossing situations and that the declarative approach greatly facilitates the specification of legal knowledge and reasoning.

The same problem would be much more difficult to solve and implement with another programming paradigm (imperative programming, for instance), would require much more program modifications and could eventually lose previously specified information. With Dynamic LP [2] and the language LUPS (itself developed in LP and available at http://centria.di.fct.unl.pt /~jja/updates), all we need is to create a new update program (here understood as a text file), for each state we intend to represent and, without further external intervention, proceed to automate the legal update. Notice that this specification is declarative, that is, it indicated What it is and not How it is done. More importantly yet, it allows querying the Knowledge Base, in former states, by simply specifying the state(s) intended or, conversely, to obtain information concerning some state, in which some situation was true.

For the concrete case under study, we did not employ the full power made available by this language (in reality we used only a small sub-set) because we didn’t find it necessary, for the moment, to specify, for instance, events (event) and/or conditions (when) for state transitions. However, if we didn't have such a language, it would be much more difficult and complex to define a state’s specification.

On the other hand, it may become necessary in the future to do it, if a Knowledge Base update is partial and/or conditional. In that case, it can be necessary to use some of the referred potentialities, and the readiness of an efficient and effective language, already implemented, will be of great usefulness. Dynamic representation of knowledge, accomplished by successive updates, allows us to deal with this type of changes, be it in the legislation or in the world, in a perfectly natural way.

Acknowledgments: We acknowledge the support of POCTI project FLUX, funded by FCT. Special thanks are due to José Júlio Alferes for making LUPS available and to João Alexandre Leite for his collaboration when necessary.

VIII. References

[1]
Alferes, J. J.; Pereira, L. M. Update-programs can update programs. In J. Dix, L. M. Pereira, and T. Przymusinski, editors, NMELP'96. Springer, 1996.

[2]
Alferes, J. J.; Leite, J. A.; Pereira, L. M.; Przymusinska, H.; Przymusinski, T. Dynamic logic programming. In A. Cohn and L. Schubert, editors, KR'98 Morgan Kaufmann, 1998.

[3]
Alferes, J. J.; Pereira, L. M.; Przymusinska, H.; Przymusinski, T. LUPS - a language for updating logic programs, Artificial Intelligence, 138(1-2), 2002.

[4]
Kowalski, R. The treatment of negation in logic programs for representing legislation. In 2nd Int. Conf. On AI and Law, pages 11-15, 1989.

[5]
Kowalski, R. Legislation as logic programs. In Logic Programming in Action, pages 203-230. Springer-Verlag, 1992.

[6]
Leite, J. A. Evolving Knowledge Bases - Specification and Semantics. IOS Press, 2003.

[7]
Monteiro, A. Aplicação da Programação em Lógica Dinâmica ao Raciocínio Legal – O caso da Protecção Fitossanitária de Vegetais. MSc dissertation in Applied Artificial Intelligence (in Portuguese), Universidade Nova de Lisboa, 2002.

Exceptions:

Algeria, Cyprus, Egypt, Israel, Libya, Malta,

Morocco, Syria, Tunisia.

Third (Europe

Community

Turkey (Forbidden)

USSR (Forbidden)

Third (Europe (Forbidden) (Out of Europe

� aem@fct.unl.pt

� lmp@di.fct.unl.pt

� % - Means a comment

