
NoHR: Integrating XSB Prolog with the OWL 2
Profiles and Beyond

Carlos Lopes, Matthias Knorr(B), and João Leite

NOVA LINCS, Departamento de Informática, Faculdade de Ciências e Tecnologia,
Universidade Nova de Lisboa, 2829-516 Caparica, Portugal

mkn@fct.unl.pt

Abstract. We present the latest, substantially improved, version of
NoHR, a reasoner designed to answer queries over hybrid theories com-
posed of an OWL ontology in Description Logics and a set of non-
monotonic rules in Logic Programming. Whereas the need to combine
the distinctive features of these two knowledge representation and rea-
soning approaches stems from real world applications, their integration is
nevertheless theoretically challenging due to their substantial semantical
differences. NoHR has been developed as a plug-in for the widely used
ontology editor Protégé - in fact, the first hybrid reasoner of its kind
for Protégé, building on a combination of reasoners dedicated to OWL
and rules - but it is also available as a library, allowing for its integra-
tion within other environments and applications. Compared to previous
versions of NoHR, this is the first that supports all polynomial OWL
profiles, and even beyond, allowing for its usage with real-world ontolo-
gies that do not fit within a single profile. In addition, NoHR has now
an enhanced integration with its rule engine, which provides support for
a vast number of standard built-in Prolog predicates that considerably
extend its usability.

Keywords: Query answering · Logic programming · Description logic
ontologies

1 Introduction

Ontology languages based on Description Logics (DLs) [4] and non-monotonic
rule languages as known from Logic Programming (LP) [6] are both well-known
formalisms in knowledge representation and reasoning (KRR) each with its own
distinct benefits and features. This is also witnessed by the emergence of the
Web Ontology Language (OWL) [13] and the Rule Interchange Format (RIF)
[17] in the ongoing standardization of the Semantic Web driven by the W3C.1

On the one hand, ontology languages have become widely used to repre-
sent and reason over taxonomic knowledge. Since DLs are (usually) decidable
fragments of first-order logic, they are monotonic by nature, which means that

1 http://www.w3.org.

c© Springer International Publishing AG 2017
M. Balduccini and T. Janhunen (Eds.): LPNMR 2017, LNAI 10377, pp. 236–249, 2017.
DOI: 10.1007/978-3-319-61660-5 22

http://www.w3.org


NoHR – System Description 237

drawn conclusions persist when adopting new additional information. Further-
more, they allow reasoning on abstract information, such as relations between
classes of objects, even without knowing any concrete instances. The balance
between expressiveness and complexity of reasoning with ontology languages,
inherited from DLs, is witnessed by the fact that the very expressive general
language OWL 2, with its high worst-case complexity, includes three tractable
(polynomial) profiles [20] each with a different application purpose in mind.

On the other hand, non-monotonic rules explicitly represent inference, from
premises to conclusions, focusing on reasoning over instances. They commonly
employ the Closed World Assumption (CWA), i.e., the absence of a piece of
information suffices to derive it being false, until new information to the contrary
is provided, hence being non-monotonic. This permits to declaratively model
defaults and exceptions, in the sense that the absence of an exceptional feature
can be used to derive that the (more) common case applies, and also integrity
constraints, which can be used to ensure that the data under consideration is
conform to the desired specifications.

Combining both formalisms, though a non-trivial problem due to the mis-
match between semantic assumptions of the two formalisms, and the considerable
differences as to how decidability is ensured in each of them, has been frequently
requested by applications [1,22,23]. For example, in clinical health care, large
ontologies such as SNOMED CT,2 that are captured by the OWL 2 profile OWL
2 EL and its underlying description logic (DL) EL++ [5], are used for electronic
health record systems, clinical decision support systems, or remote intensive care
monitoring, to name only a few. Yet, expressing conditions such as dextrocardia,
i.e., that the heart is exceptionally on the right side of the body, is not possible and
requires non-monotonic rules. Another example can be found in [22], where model-
ing pharmacy data of patients with the closed-world assumption would have been
preferred in the study to match patient records with clinical trials criteria, because
usually it can be assumed that a patient is not under a specific medication unless
explicitly known. Also, in [1] it is shown that in Legal Reasoning, besides the well
known need for default reasoning afforded by non-monotonic rules, it is also nec-
essary to reason in the absence of concrete known individuals (instances), hence
requiring features found in ontology languages such as DL. Moreover, another
application scenario can be found in the risk assessment of cargo shipment, which
we will describe in more detail in Sect. 2.3. Notably, ontologies developed for such
applications, are often covered by the constructors the polynomial OWL 2 profiles
provide, but do not necessarily fall precisely into one of those profiles.

In this paper, we describe the latest version of NoHR3 (Nova Hybrid Rea-
soner), a plug-in for the ontology editor Protégé 5.X,4 that allows the user to
query combinations of ontologies and non-monotonic rules in a top-down man-
ner, which substantially extends the usability of NoHR w.r.t. both the ontology
and the rule part.

2 http://www.ihtsdo.org/snomed-ct/.
3 http://nohr.di.fct.unl.pt.
4 http://protege.stanford.edu.

http://www.ihtsdo.org/snomed-ct/
http://nohr.di.fct.unl.pt
http://protege.stanford.edu


238 C. Lopes et al.

NoHR is theoretically founded on the formalism of Hybrid MKNF under the
well-founded semantics [18] which comes with two main arguments in its favor
(cf. the related work in [9,21] on combining DLs with non-monotonic rules).
First, the overall approach, introduced in [21] and based on the logic of minimal
knowledge and negation as failure (MKNF) [19], provides a very general and
flexible framework for combining DL ontologies and non-monotonic rules (see
[21]). Second, [18], which is a variant of [21] based on the well-founded semantics
[10] for logic programs, has a lower data complexity than the former – it is
polynomial for polynomial DLs – and is amenable for applying top-down query
procedures, such as SLG(O) [2], to answer queries based only on the information
relevant for the query, and without computing the entire model – no doubt a
crucial feature when dealing with large ontologies and huge amounts of data.

NoHR – the first Protégé plug-in to integrate non-monotonic rules and top-
down queries – is implemented in a way that combines the capabilities of the DL
reasoners ELK [16], HermiT [11], and Konclude [24] with the rule engine XSB
Prolog,5 exhibiting the following additional features:6

– Support for ontologies written in any of the three tractable OWL 2 Profiles,
and even beyond for those combining all the permitted constructors;

– Support for a vast number of standard built-in Prolog predicates;
– Rule editor within Protégé accompanied with a completely overhauled rule

parser to match the novel extensions;
– Possibility to define predicates with arbitrary arity in Protégé;
– Guaranteed termination of query answering;
– Robustness w.r.t. inconsistencies between the ontology and the rules;
– Scalable fast interactive response times.

2 Hybrid MKNF Knowledge Bases

We start with illustrating the kind of hybrid knowledge bases considered by
NoHR. First, we present an overview on the kind of ontologies in description
logics permitted here, referring to [4] for a more general and thorough intro-
duction to DLs. Then we recall hybrid MKNF knowledge bases, followed by
an example scenario and some general considerations on how to perform query
answering.

2.1 Description Logics

Description logics (DLs) are usually decidable fragments of first-order logic, com-
monly defined over disjoint countably infinite sets of concept names NC, role
names NR, and individual names NI, matching unary predicates, binary predi-
cates and constants resp. Building on these, complex concepts (and sometimes
also complex roles) are introduced based on the logical constructors a concrete
5 http://xsb.sourceforge.net.
6 NoHR 3.0 Beta can be downloaded for testing from http://nohr.di.fct.unl.pt/.

http://xsb.sourceforge.net
http://nohr.di.fct.unl.pt/


NoHR – System Description 239

DL admits to be used. An ontology O then is a finite set of inclusion axioms of
the form C � D where C and D are both (complex) concepts (or roles) and asser-
tions of the form C(a) or R(a, b) for concepts C, roles R, and individuals a, b. The
semantics of such ontologies is defined in terms on interpretation I = (ΔI , ·I)
consisting of a non-empty domain ΔI and an interpretation function ·I in a
standard way for first-order logic. Typical reasoning tasks are model-checking
or consistency or classification which requires computing all concept inclusions
between atomic concepts entailed by O.

While the description logic SROIQ underlying the W3C standard OWL 2
is very general and highly expressive as it admits many different constructors,
reasoning with it is highly complex, which is why the profiles OWL 2 EL, OWL
2 QL and OWL 2 RL have been defined [20] for which reasoning is tractable.
Since a detailed account on the full technical specification of these profiles would
be beyond the scope of this paper, we rather give a brief overview on important
features as supported in NoHR.

First, EL+
⊥, a large fragment of EL++ [5], the DL underlying the tractable

profile OWL 2 EL [20], only allows conjunction of concepts, existential restric-
tion of concepts (∃R.C for roles R and concepts C basically corresponding to
∀x∃yR(x, y) ∧ C(y)), hierarchies of roles, and disjoint concepts. EL+

⊥ is tailored
towards reasoning with large conceptual models, i.e., large TBoxes.

DL-LiteR, one language of the DL-Lite family [3] and underlying OWL 2
QL, admits in addition role inverses and disjoint roles, but in exchange only
simple role hierarchies, no conjunction, and limitations on the use of existential
restrictions in particular on the left hand side of inclusion axioms. This profile
focuses on answering queries over huge amounts of data, and is amenable to the
usage of relational database technology.

Finally, Description Logic Programs [12], which underly OWL 2 RL, have
been introduced with the aim to find a fragment that can be directly translated
into rules (and vice-versa), and therefore can also be implemented using a rule
reasoner. Due to that, this profile allows more constructors than the other two
profiles, but usually restricts their usage to one side of the inclusion axioms to
ensure that the translation to rules is possible.

Many ontologies matching one of these profiles exist and are used in applica-
tions, but there are also those that do use features from more than one of those,
such as the bio-ontology Galen7 or the famous benchmark ontology LUBM.8

For these, reasoning is no longer polynomial, but highly efficient general pur-
pose OWL reasoners nevertheless make their usage feasible in practice.

2.2 MKNF Knowledge Bases

MKNF knowledge bases (KBs) build on the logic of minimal knowledge and
negation as failure (MKNF) [19]. Two main different semantics have been defined

7 https://bioportal.bioontology.org/ontologies/GALEN.
8 http://swat.cse.lehigh.edu/projects/lubm/.

https://bioportal.bioontology.org/ontologies/GALEN
http://swat.cse.lehigh.edu/projects/lubm/


240 C. Lopes et al.

[18,21], and we focus on the well-founded version [18], due to its lower compu-
tational complexity and amenability to top-down querying without computing
the entire model. Here, we only point out important notions following [14], and
refer to [18] and [2] for the details.

MKNF knowledge bases as presented in [2] combine an ontology and a set of
non-monotonic rules (similar to a normal logic program).

A rule r is of the form H ← A1, . . . , An, notB1, . . . , notBm where the head
of r, H, and all Ai with 1 ≤ i ≤ n and Bj with 1 ≤ j ≤ m in the body of r
are atoms. A program P is a finite set of rules, O is an ontology, and an MKNF
knowledge base K is a pair (O,P). A rule r is safe if all its variables occur in at
least one Ai with 1 ≤ i ≤ n, and K is safe if all its rules are safe.9

The semantics of MKNF knowledge bases K is usually given by a translation
π into an MKNF formula π(K), i.e., a formula over first-order logic extended
with two modal operators K and not. It is shown in [18], that if K is MKNF-
consistent, then a unique model of K can be determined. Here, K may indeed not
be MKNF-consistent if the ontology alone is unsatisfiable, or by the combination
of appropriate axioms in O and rules in P, e.g., axiom A � ¬B in O, and
facts A(a) and B(a) in P. In the former case, we argue that the ontology alone
should be consistent and be repaired if necessary before combining it with non-
monotonic rules. Thus, we assume that O occurring in K is consistent, which
does not truly constitute a restriction as we can always make O by appropriately
turning assertions in O into rules without any effect on the semantics of K.

2.3 Use Case

The customs service for any developed country assesses imported cargo for a vari-
ety of risk factors including terrorism, narcotics, food and consumer safety, pest
infestation, tariff violations, and intellectual property rights.10 Assessing this
risk, even at a preliminary level, involves extensive knowledge about commodi-
ties, business entities, trade patterns, government policies and trade agreements.
Some of this knowledge may be external to a given customs agency: for instance
the broad classification of commodities according to the international Harmo-
nized Tariff System (HTS), or international trade agreements. Other knowledge
may be internal to a customs agency, such as lists of suspected violators or of
importers who have a history of good compliance with regulations.

Figure 1 shows a simplified fragment K = (O,P) of such a knowledge base. In
this fragment, a shipment has several attributes: the country of its origination,
the commodity it contains, its importer and producer. The ontology contains
a geographic classification, along with information about producers who are
located in various countries. It also contains (partial) information about three

9 In general, the notion of DL-safety is used in this context which requires that these
variables occur in atoms that do themselves not occur in the ontology, but due to
the particular reasoning method employed here, we can relax that restriction.

10 The system described here, originally presented in [23], is not intended to reflect the
policies of any country or agency.



NoHR – System Description 241

Fig. 1. MKNF knowledge base for Cargo Imports



242 C. Lopes et al.

shipments: s1 , s2 and s3 . There is also a set of rules indicating information
about importers, and about whether to inspect a shipment either to check for
compliance of tariff information or for food safety issues. For that purpose, the set
of rules also includes a classification of commodities based on their harmonized
tariff information (HTS chapters, headings and codes, cf. http://www.usitc.gov/
tata/hts), and tariff information, based on the classification of commodities as
given by the ontology.

The overall task then is to access all the information and assess whether some
shipment should be inspected in full detail, under certain conditions randomly,
or not at all. In fact, an inspection is considered if either a random inspection is
indicated, or some shipment is not compliant, i.e., there is a mismatch between
the filed cargo codes and the actually carried commodities, or some suspicious
cargo is observed, in this case tomatoes from slovakia. In the first case, a poten-
tial random inspection is indicated whenever certain exclusion conditions do not
hold. To ensure that one can distinguish between strictly required and random
inspections, a random inspection is assigned the truth value undefined based
on the rule Random(x) ← ShpmtCommod(x,y), notRandom(x). Note that the
example indeed utilizes the features of rules and ontologies: for example excep-
tions to the potential random inspections can be expressed, but at the same
time, taxonomic and non-closed knowledge is used, e.g., some shipment may in
fact originate from the EU, this information is just not available.

Querying MKNF knowledge bases is based on SLG(O), as defined in [2].
This procedure extends SLG resolution with tabling [7] with an oracle to O that
handles ground queries to the DL-part of K by returning (possibly empty) sets
of atoms that, together with O and information already proven true, allows us
to derive the queried atom. We refer to [2] for the full account of SLG(O). E.g.,
the result of querying the example knowledge base for Inspection(x) reveals that
of the three shipments, s2 requires an inspection (due to mislabeling), s1 may
be subject to a random inspection as it does not knowingly originate from the
EU, while s3 is indicated as inconsistent, due to the fact that Inspection and
NoInspection hold, which are required to be disjoint.

3 NoHR Plug-in

In this section, we describe the architecture of the plug-in for Protégé as shown
in Fig. 2 and discuss some features of the implementation, in particular the new
ones that considerably extend the applicability of the tool.

3.1 Architecture

The input for the plug-in consists of an OWL file written in a description logic as
described in Sect. 2.1, which can be loaded and manipulated as usual in Protégé,
and a rule file. For the latter, we provide a tab called NoHR Rules that allows
us to load, save and edit rule files in a dedicated panel.

http://www.usitc.gov/tata/hts
http://www.usitc.gov/tata/hts


NoHR – System Description 243

XSBJava Virtual Machine

NoHR Plugin

GUI

Query 
Processor

InterProlog

NoHR 
Rules Tab

OWL File

NM Rules
File

XSB 
Knowledge 

Base

Query 
Answering

Tables

Tracer/
Debugger

NoHR 
Query Tab

Translator

Ontology

NM Rules

Ontology

NM Rules 
Base

DL Reasoners

HermiT Konclude
Interface 

Java/KoncludeELK

Fig. 2. System architecture of NoHR

The NoHR Query tab also allows for the visualization of the rules, but its
main purpose is to provide an interface for querying the combined KB. Whenever
the first query is posed by pushing “Execute”, the translator is started, which
with the help of one of the integrated OWL ontology reasoners ELK [16], HermiT
[11], and Konclude [24] transforms the ontology axioms into a set of rules that
are equivalent to the ontology axioms in terms of answers to ground queries
(see details in Sect. 3.2). The translation result is joined with the given non-
monotonic rules in P, which is further transformed if inconsistency detection
is required (in the presence of certain DL constructs in the ontology, such as
DisjointWith axioms).

The result is used as input for the top-down query engine XSB Prolog which
realizes the well-founded semantics for logic programs [10]. The transfer to XSB
is realized via InterProlog,11 which is an open-source Java front-end allowing the
communication between Java and a Prolog engine.

Next, the query is sent via InterProlog to XSB, and answers are returned to
the query processor, which collects them and sets up a table showing for which
variable substitutions we obtain true, undefined, or inconsistent valuations (or
just shows the truth value for a ground query). XSB itself not only answers
queries very efficiently in a top-down manner, with tabling, it also avoids infinite
loops, thus ensuring termination of the query process.

Once the query has been answered, the user may pose other queries, and the
system will simply send them directly without any repeated preprocessing. If the
user changes data in the ontology or in the rules, then the system recompiles,
but always restricted to the part that actually changed.

3.2 Support for OWL 2 Profiles

The new version of NoHR supports the usage of ontologies written in any of the
OWL 2 profiles and even those that combine expressive features from several of

11 http://interprolog.com/java-bridge/.

http://interprolog.com/java-bridge/


244 C. Lopes et al.

them. For the latter, DL reasoning is naturally no longer polynomial, but the
usage of highly efficient general purpose DL reasoners, namely HermiT [11], and
Konclude [24], allow us to compensate for this in practice despite the higher
worst-case complexity.

The usage of these DL reasoners depends in fact on the concrete ontology.
Namely, a switch determines whether the ontology falls into one of the OWL 2
profiles or not. In the former case, the specific translation module developed for
each profile is used, unless the user indicates specifically that one of the general
reasoners should be used, which are used anyway in the latter case.

Regarding the OWL 2 profiles, specific translation modules have been devel-
oped. For EL+

⊥, i.e., OWL 2 EL, the ontology reasoner ELK [16], tailored for
EL+

⊥ and considerably faster than other reasoners when comparing classification
time, is used to classify the ontology resulting from normalizing the given ontol-
ogy O to ensure that no possible derivations w.r.t. answering ground queries are
lost during the subsequent translation into rules.12 The inferred axioms together
with O are translated discarding certain axioms which are irrelevant for answer-
ing ground queries. For DL-LiteR, i.e., OWL 2 QL, a dedicated direct transla-
tion without prior classification is used, introducing some auxiliary predicates
instead to compensate for the missing inferred axioms (see [8,14] for the respec-
tive details on both approaches). The new module for DLP, i.e., OWL 2 RL,
makes use of a direct translation that does not require any auxiliary predicates
as the profile supports the direct translation into rules by design.

Concerning an ontology that does not fall into one single profile, a new gen-
eral translation module is used that follows the methodology employed for EL+

⊥,
i.e., (partial) normalization, classification, and translation of the (relevant major-
ity of the) inferred axioms, where the translation function itself results from a
merge of those for the single profiles. The reason why we apply two different
general purpose DL reasoners is as follows. It has been shown that Konclude
is in general the most efficient reasoner currently available [24], unfortunately,
unlike Protégé, it is not programmed in Java, but in C++, and the necessary
effort to interface with Konclude constitutes a considerable drain on efficiency of
reasoning, because no native Java interface compatible with the current version
of the OWL API exists. HermiT, on the other side, does not suffer from that
problem, but has some limitations when reasoning with very large ontologies
[11]. Therefore, both reasoners are integrated and the user can choose in the
preference panel which of the two should be employed.

Note that if we consider the hybrid knowledge base as presented in Fig. 1
whose ontology is in EL+

⊥, and query for Inspection(x), then we would obtain
that s1 is undefined, s2 is true, and s3 is inconsistent. However, if we add an
additional property ImportedBy and declare it to be the inverse of ShpmtImporter,
then the resulting ontology would no longer fit any profile and the previous
version of NoHR would simply cease to work. In our new version, the ontology
change is detected and the general translation module is used instead, that is,

12 Similar techniques have been used independently that allow the usage of OWL 2 RL
reasoners for answering ground queries for ontologies outside of OWL 2 RL [25].



NoHR – System Description 245

NoHR is capable to interactively adjust to changes that alter the DL fragment
of the considered ontology.

Finally, note that, while HermiT and Konclude are in fact applicable to
arbitrary DL ontologies, the method applied in NoHR is not: it is well known
that constructors such as first-order disjunction cannot be captured in non-
monotonic rules in an equivalent way, which is why the approach is focused on
the constructors occurring in the OWL 2 profiles.

3.3 Extended Prolog Support

The rule editor and parser have also been significantly improved, both in terms
of user-friendliness and applicability. To begin with, the rule syntax has been
slightly changed so that variables are now always written with a leading “?”.
While this deviates from standard prolog syntax, it permits the user and the
system to differentiate between variables and constant names from the ontology
where, in general, there is no restriction to only have names in lowercase. This
is also aligned with common rule notation in SWRL,13 a monotonic first-order
rule language that has been used in Protégé.

With the new version, NoHR was also extended with the ability to use a
large set of inbuilt XSB prolog predicates. This extension allows the user to
specify rules that make use of arithmetic, comparison and list-based predicates
for enriching the knowledge base. The novel features include:

– Built-in XSB Prolog predicates prefixed with #. For example:

A(?X) :- B(?X), C(?Y), #compare("<",?X,?Y).

– Inline form of built-in XSB Prolog predicates. For example:

A(?X) :- B(?Y), C(?Z), ?X is (?Y + ?Z) * 2.

– Numeric and list expressions within rule syntax and integration with numeric
datatypes from OWL 2.

In addition, the rule editor allows switching between the labels of ontology names
and their Internationalized Resource Identifiers (IRIs), which can be useful in
case the labels used in the ontology are not unique.

4 Evaluation

Previous tests on the EL+
⊥ component have shown that a) different EL ontologies

can be preprocessed for querying in a short period of time (around one minute
for SNOMED CT with over 300,000 concepts), b) adding rules increases the time
of the translation only linearly, and c) querying time is in general neglectable,
in comparison to a) and b) [14]. In subsequent tests on improved versions of
13 http://www.w3.org/Submission/SWRL/.

http://www.w3.org/Submission/SWRL/


246 C. Lopes et al.

Axioms EL ELK HermiT Konclude
Fly Anatomy 19,211 yes 0.75 1.54 1.63
Full-Galen 37,696 no – – 11.21
LUBM1 93 no – 1.81 3.82
Snomed Anatomy 40,485 yes 1.76 3.08 12.39
Snomed CT 294,479 yes 13.89 – 63.71

Fig. 3. Reasoners average classification run times (in seconds) when called from Java.

both components (for EL+
⊥ and DL-LiteR) [8], we have shown that i) NoHR

scales reasonably well for OWL QL query answering without non-monotonic
rules (only slowing down for memory-intensive cases), ii) preprocessing is even
faster when compared to NoHR’s previous version using a classifier (for EL),
iii) querying scales well, even for over a million facts/assertions in the ABox,
despite being slightly slower on average in comparison to EL, and iv) adding
rules scales linearly for pre-processing and querying, even for an ontology with
many negative inclusions (for DL-LiteR).

Here, we are additionally interested as to how using the general reasoners
compares to applying the dedicated translation module. For that purpose, we
first compared how the preprocessing period is affected by the usage of the
different reasoners using standard ontologies of different expressiveness (in Fig. 3,
we mention the number of inclusion axioms and whether the ontology fits the
OWL 2 EL profile). All tests were performed on a 4 GHz Intel i7 processor with
16 GB under Windows 7 (64-bit) with 12 GB of maximum memory for Java. The
results are shown in Fig. 3. We can observe that ELK is indeed always fastest,
which confirms that by default, whenever the ontology fits EL+

⊥, the dedicated
translation module should be used. Additionally, we observe that HermiT is
faster than Konclude in all instances where it does not time out, which justifies
using HermiT whenever it is capable of classifying the given ontology. Still,
Konclude turns out to be useful, in the cases where HermiT fails to classify an
ontology that does not fit the OWL 2 EL profile.

In addition, we also compared HermiT and the translation module for OWL
2 QL that does not use any classifier. This test is actually quite similar to the
one in [8] comparing the modules for QL and EL. The difference is that we can
use a more expressive ontology that only fits the QL profile, and not EL. Figure 4
shows the results for ii) where we considered LUBM14, a standard benchmark
for evaluating queries over a large data set, which also includes a given set
of standard queries. We created instances of LUBMn with n = 1, 5, 10 using
the provided generator, and a restricted version of LUBM which fits OWL QL
(thus rendering only one standard query meaningless), with the number of asser-
tions ranging from roughly 100,000 to over 1,400,000. Note that “Initialization”
includes loading the ontology and, for HermiT, also classifying it, “Ontology
Processing” includes the actual translation, and “XSB Processing” the writing
of the rule file and loading it in XSB. We observe that QL is considerably faster,

14 http://swat.cse.lehigh.edu/projects/lubm/.

http://swat.cse.lehigh.edu/projects/lubm/


NoHR – System Description 247

0

100

200

300

1 5 10 1 5 10

T
im

e 
(s

)
HermiT OWL 2 QL

XSB Processing

Ontology Processing

Initialization

Fig. 4. Preprocessing time for LUBM for the two translation modes

indeed up to factor 35 for LUBM10, which is mainly due to the absence of a
classification step. When querying, we observed a slight compensation as run-
ning queries using the HermiT translation is slightly faster (up to factor 2.5),
but faster preprocessing clearly favors the dedicated OWL 2 QL module here.

5 Conclusions

The Protégé plugin NoHR – also distributed as an API – affords us the pos-
sibility to query knowledge bases composed of both an ontology in one of the
OWL 2 profiles and even a union of their language features and a set of non-
monotonic rules, using a top-down reasoning approach, which means that only
the part of the ontology and rules that is relevant for the query is actually evalu-
ated. Its sound theoretical foundation together with the fast interactive response
times make NoHR a truly one-of-a-kind reasoner and the novel extensions have
considerably widened its applicability.

Ongoing work focuses on supporting different sets of rules and allowing the
import of other rule file formats such as Prolog. In terms of future work, the
integration of database access is of interest as this could considerably reduce the
time it takes to load prolog files with huge amounts of data in XSB. Also, adjust-
ing NoHR to the paraconsistent semantics for MKNF knowledge bases of [15]
would provide better support to the already observed paraconsistent behavior.

Acknowledgments. We would like to acknowledge the valuable contribution of
both Nuno Costa and Vadim Ivanov to the development of NoHR. This work
was partially supported by Fundação para a Ciência e a Tecnologia (FCT) under
UID/CEC/04516/2013, and grant SFRH/BPD/86970/2012 (M. Knorr).

References

1. Alberti, M., Knorr, M., Gomes, A.S., Leite, J., Gonçalves, R., Slota, M.: Normative
systems require hybrid knowledge bases. In: AAMAS, pp. 1425–1426 (2012)

2. Alferes, J.J., Knorr, M., Swift, T.: Query-driven procedures for hybrid MKNF
knowledge bases. ACM Trans. Comput. Log. 14(2), 1–43 (2013)

3. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-Lite family
and relations. J. Artif. Intell. Res. (JAIR) 36, 1–69 (2009)



248 C. Lopes et al.

4. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Applica-
tionsm, 3rd edn. Cambridge University Press, New York (2010)

5. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Kaelbling, L.P.,
Saffiotti, A. (eds.) Proceedings of IJCAI, pp. 364–369. Professional Book Center
(2005)

6. Baral, C., Gelfond, M.: Logic programming and knowledge representation. J. Log.
Program. 19(20), 73–148 (1994)

7. Chen, W., Warren, D.S.: Tabled evaluation with delaying for general logic pro-
grams. J. ACM 43(1), 20–74 (1996)

8. Costa, N., Knorr, M., Leite, J.: Next step for NoHR: OWL 2 QL. In: Arenas, M.,
et al. (eds.) ISWC 2015. LNCS, vol. 9366, pp. 569–586. Springer, Cham (2015).
doi:10.1007/978-3-319-25007-6 33

9. Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining
answer set programming with description logics for the semantic web. Artif. Intell.
172(12–13), 1495–1539 (2008)

10. Gelder, A.V., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general
logic programs. J. ACM 38(3), 620–650 (1991)

11. Glimm, B., Horrocks, I., Motik, B., Stoilos, G., Wang, Z.: Hermit: an OWL 2
reasoner. J. Autom. Reason. 53(3), 245–269 (2014)

12. Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description logic programs: com-
bining logic programs with description logic. In: Hencsey, G., White, B., Chen,
Y.R., Kovács, L., Lawrence, S. (eds.) Proceedings of WWW, pp. 48–57. ACM
(2003)

13. Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P.F., Rudolph, S. (eds.):
OWL 2 Web Ontology Language: Primer, 2nd edn. W3C Recommendation,
Cambridge (2012). http://www.w3.org/TR/owl2-primer/

14. Ivanov, V., Knorr, M., Leite, J.: A query tool for EL with non-monotonic rules.
In: Alani, H., et al. (eds.) ISWC 2013. LNCS, vol. 8218, pp. 216–231. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-41335-3 14

15. Kaminski, T., Knorr, M., Leite, J.: Efficient paraconsistent reasoning with ontolo-
gies and rules. In: Yang, Q., Wooldridge, M. (eds.) Proceedings of IJCAI (2015)

16. Kazakov, Y., Krötzsch, M., Simanč́ık, F.: The incredible ELK: from polynomial
procedures to efficient reasoning with EL ontologies. J. Autom. Reason. 53, 1–61
(2013)

17. Kifer, M., Boley, H. (eds.): RIF Overview, 2nd edn. W3C Working Group Note,
Cambridge (2013). http://www.w3.org/TR/rif-overview/

18. Knorr, M., Alferes, J.J., Hitzler, P.: Local closed world reasoning with description
logics under the well-founded semantics. Artif. Intell. 175(9–10), 1528–1554 (2011)

19. Lifschitz, V.: Nonmonotonic databases and epistemic queries. In: Mylopoulos, J.,
Reiter, R. (eds.) Proceedings of IJCAI, pp. 381–386. Morgan Kaufmann (1991)

20. Motik, B., Grau, B.C., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C. (eds.): OWL
2 Web Ontology Language: Profiles, 2nd edn. W3C Recommendation, Cambridge
(2012). http://www.w3.org/TR/owl2-profiles/

21. Motik, B., Rosati, R.: Reconciling description logics and rules. J. ACM 57(5),
93–154 (2010)

22. Patel, C., Cimino, J., Dolby, J., Fokoue, A., Kalyanpur, A., Kershenbaum, A., Ma,
L., Schonberg, E., Srinivas, K.: Matching patient records to clinical trials using
ontologies. In: Aberer, K., et al. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825, pp.
816–829. Springer, Heidelberg (2007). doi:10.1007/978-3-540-76298-0 59

http://dx.doi.org/10.1007/978-3-319-25007-6_33
http://www.w3.org/TR/owl2-primer/
http://dx.doi.org/10.1007/978-3-642-41335-3_14
http://www.w3.org/TR/rif-overview/
http://www.w3.org/TR/owl2-profiles/
http://dx.doi.org/10.1007/978-3-540-76298-0_59


NoHR – System Description 249

23. Slota, M., Leite, J., Swift, T.: On updates of hybrid knowledge bases composed of
ontologies and rules. Artif. Intell. 229, 33–104 (2015)

24. Steigmiller, A., Liebig, T., Glimm, B.: Konclude: system description. J. Web Sem.
27, 78–85 (2014)

25. Stoilos, G., Cuenca Grau, B., Motik, B., Horrocks, I.: Repairing ontologies for
incomplete reasoners. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A.,
Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011. LNCS, vol. 7031, pp. 681–696.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-25073-6 43

http://dx.doi.org/10.1007/978-3-642-25073-6_43

	NoHR: Integrating XSB Prolog with the OWL 2 Profiles and Beyond
	1 Introduction
	2 Hybrid MKNF Knowledge Bases
	2.1 Description Logics
	2.2 MKNF Knowledge Bases
	2.3 Use Case

	3 NoHR Plug-in
	3.1 Architecture
	3.2 Support for OWL 2 Profiles
	3.3 Extended Prolog Support

	4 Evaluation
	5 Conclusions
	References




