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Abstract

Boolean regulatory networks are used to represent complex
biological processes, modelling the interactions of biologi-
cal compounds, such as proteins or genes, with each other
and with other substances in a cell. Creating and maintaining
computational models of these networks is crucial for com-
prehending corresponding cellular processes, as they allow
reproducing known behaviours and testing new hypotheses
and predictions in silico. In this context, model revision fo-
cuses on validating and (if necessary) repairing existing mod-
els based on new experimental data. However, model revi-
sion is commonly performed manually, which is inefficient
and prone to error, and the few existing automated solutions
either only apply to simpler networks or are limited in their
revision process, since they may not be able to produce a so-
lution within a reasonable time frame or miss the optimal so-
lution. In this paper, we develop a solution for revising logical
models of Boolean regulatory networks, able to find repairs
that are consistent with provided, possibly incomplete experi-
mental data, and minimal w.r.t. the differences to the original
network. We show that our solution can be used to revise
different real-world Boolean logical models very efficiently,
surpassing a previous solution in terms of solved instances
and with a considerable margin w.r.t. processing time.

1 Introduction
The field of systems biology has flourished for the last two
decades. It focuses on making the most of the principles of
engineering, mathematics, physics, and computer science to
model real-life biological systems, in an attempt to under-
stand them through a holistic lens that allows us to gain new
insight about these systems in ways that were not possible
before (Siegel et al. 2006). One of the cornerstones of this
field is the ability to accurately model real-world biological
systems, with the ultimate goal of acquiring a better under-
standing of the complex processes that take place in cells, as
doing so may lead to new discoveries and theories about liv-
ing organisms. To this end, biological regulatory networks
(BRNs) enable us to computationally generate models that
allow for the emulation of patterns and behaviors of real-
world systems, as well as the testing of hypotheses and the
identification of predictions in silico (Jong 2002).

Biological regulatory networks are sets of biological com-
pounds, such as for example proteins or genes, that inter-
act with each other and with other substances in a cell.

These networks can be classified into continuous models,
single-molecule level models, and logical (qualitative) mod-
els (Karlebach and Shamir 2008). Among these, continuous
and single-molecule level models use real variables to repre-
sent the concentration values of compounds as well as equa-
tions to model the changes of these values over time, requir-
ing considerable amounts of detailed experimental data. On
the other hand, logical models, first introduced by Glass and
Kauffman (1973) and Thomas (1973), allow us to abstract
from actual concentration values, considering concentration
thresholds instead to represent whether a compound is active
or inactive. This usually requires far less information than
quantitative models, which means that logical models have
the advantage that they can be used with incomplete, impre-
cise and noisy information regarding the biological system.

Among such logical models, Boolean logical models, also
known as Boolean networks (BNs) have been extensively
used, e.g., as models of gene regulation networks and other
biological systems (Salinas, Gómez, and Aracena 2022).
They utilize graphs to represent the topology of the network,
i.e., the possible interactions between compounds, and reg-
ulatory functions for each compound to determine its state
based on the (Boolean) state – active or inactive – of the
compounds that can affect it, and whether they have an acti-
vating or inhibiting effect.

To be able to fully leverage BRNs requires the existence
of models that are as accurate as possible w.r.t. the consid-
ered biologicial process. This necessitates revising models
of BRNs as new experimental data is gathered, to assure that
the models remain consistent with this new experimental
data, for which inconsistencies must be identified and cor-
rected. This is often a manual process carried out by domain
experts, but it is a complicated, labor-intensive process, and
prone to error, having to deal with huge combinatorics of
possible revisions to match the observed behavior.

While the automatic creation of models of BRNs (Os-
trowski et al. 2016; Réda and Wilczyński 2020; Mitsos et
al. 2009; Schaub, Siegel, and Videla 2014; Videla et al.
2012) as well as the analysis of regulatory models (Melk-
man, Tamura, and Akutsu 2010; Tamiura and Akutsu 2009;
Dubrova and Teslenko 2011; Khaled and Benhamou 2019;
Baral et al. 2004) has already been extensively explored, au-
tomation in model revision, in particular for BNs, has re-
ceived considerably less attention. Notably, existing work
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on revision of BNs is limited in terms of possible revision
operations on the regulatory functions (Merhej, Schock-
aert, and Cock 2017; Lemos, Lynce, and Monteiro 2019;
Chai 2019) or focuses on simpler models for the interac-
tions of compounds (Gebser et al. 2010; Mobilia et al. 2015).
The sole exception is ModRev (Gouveia, Lynce, and Mon-
teiro 2020b; Gouveia, Lynce, and Monteiro 2020b), a sys-
tem for revising BNs that is very general in terms of appli-
cable modification operations, able to handle different forms
of dynamics and deal with incomplete experimental data, but
may fail to find a solution in reasonable time, or return a sub-
optimal solution whenever the more efficient search strategy
it implements is used. ModRev also implements a general
search strategy that would in principle guarantee an optimal
solution, but the number of instances where no solution is
found within a reasonable time frame would only increase.

In this paper, we present a system for analysing and re-
vising Boolean logical networks, dubbed ARBoLoM, that is
as general as ModRev in terms of applicable modification
operations and the forms of dynamics and experimental data
it can handle, provides solutions that are as close as possi-
ble to the given network, following the principle of minimal
change, and is elaboration-tolerant and flexible with respect
to the criteria employed to determine such minimality. De-
veloped in ASP and leveraging the state of the art system
clingo (Gebser et al. 2019), ARBoLoM shows that both con-
sistency checking and model repair for real networks can be
done highly efficiently, surpassing ModRev in both number
of solved instances and required time, by quite some margin.

The remainder of the paper is structured as follows. We
first recall BNs and ASP in Sec. 2 and Sec. 3 resp.; then, we
present our solution for revising BNs, in Sec. 4, and we eval-
uate our approach in Sec. 5, before we conclude in Sec. 6.

2 Boolean Regulatory Networks
A Boolean Regulatory Network, or Boolean Network (BN),
is a set of biological compounds (be they proteins, genes,
metabolites or other) that interact with each other and with
other substances in a cell, representing the complex biolog-
ical processes that take place in that environment. A typical
way of modeling a BN makes use of a regulatory graph.

Definition 1. A regulatory graph is a directed graph G =
(V, E), where V = {v1, ..., vn} is the set of vertices
(nodes) representing the regulatory compounds, and E =
{(u, v, s) : u, v ∈ V, s ∈ {+,−}} is the set of signed edges
representing the interactions between compounds such that
E does not contain (u, v,+) and (u, v,−) for any u, v ∈ V .

An edge with s = + is called positive interaction (or ac-
tivation), representing that u activates v, while an edge with
s = − is called negative interaction (or inhibition), repre-
senting that u inhibits v.1 A node with no incoming edges in
G is called input node. Such nodes represent external stim-
uli, and their values do not change over time.

Example 1. Fig. 1 (on the left) shows regulatory graph G =
(V, E) with V = {v1, v2, v3, v4} and E = {(v1, v2,−),

1Sometimes, nodes can activate and inhibit another node under
different circumstances, but we do not consider this case here.
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Figure 1: Example of a Boolean logical model.

(v1, v3,+), (v2, v1,+), (v2, v3,+), (v4, v2,+), (v4, v3,−)}.
Regulatory graphs do not clarify how different com-

pounds that affect the same node interact with each other
for that node’s activation. To mend this, BNs make use
of regulatory functions for each compound, thus specifying
what combination of regulators produces an effect on a given
compound. This gives rise to Boolean logical models.
Definition 2. A Boolean logical model M of a regula-
tory network is defined as a tuple (V, F ) where V =
{v1, v2, ..., vn} is the set of variables representing the reg-
ulatory compounds of the network such that vi is assigned
to a value in {0, 1}, and F = {f1, f2, ..., fn} is the set of
Boolean functions such that fi defines the value of vi and
where fi = vi if vi is an input node.

Regulatory functions of input nodes may be omitted
(cf. Fig. 1), but in our solution we use the explicit represen-
tation, common when involving implementational aspects
(Klarner, Bockmayr, and Siebert 2014).
Example 2. Fig. 1 presents a boolean logical model with G
from Ex. 1 and regulatory functions for G on the right.

In line with (Lemos, Lynce, and Monteiro 2019; Gouveia,
Lynce, and Monteiro 2020b), we adopt the Blake canonical
form (BCF), a special case of the disjunctive normal form
(DNF), to represent the regulatory functions of each biolog-
ical compound. In the BCF, a function is represented by
the disjunction of all its prime implicants (Blake 1937). The
BCF is a canonical form, i.e., it is unique up to reordering
(of disjuncts), which considerably facilitates the search for
possible functions when looking for repairs. Recall, that a
conjunction of literals is an implicant of a Boolean func-
tion if, whenever the conjunction takes the value 1, then so
does the function, and that a prime implicant is an implicant
that does not absorb any other implicant (Crama and Ham-
mer 2011). As no compound can occur both positively and
negatively in a specific regulatory function by definition of
regulatory graphs, verification of prime implicants in such
a function thus reduces to ensuring that no disjunct is con-
tained in the other. E.g., fv3 from Fig. 1 is in BCF and both
disjuncts are prime implicants.

Dynamics The state of a BN changes over time as the var-
ious compounds that are a part of it interact with each other.
The dynamics of a network refer to this process of interac-
tion between compounds that alters the network’s state.

When modeling a BRN, one of the main challenges is to
ensure that the dynamics of the model correctly represent
the dynamics one can observe in the real system. Network
states are used to provide a representation of the activations
of the network’s compounds.

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

13



0000 1000

0010 1010

11000100

11100110

0001 1001

0011 1011

11010101

11110111

Figure 2: STG of the model in Ex. 2 for synchronous updating
scheme, with v4 inactive on the left, and active on the right (adapted
from (Gouveia 2021)).

Definition 3. The network state of a BN with n compounds
is a vector S = [v1, v2, ...vn] where vi is the value of the
variable representing the i-th compound of the network.

Clearly, for Boolean logical models, the number of differ-
ent states in a network is given by 2n. E.g., if nodes 1 and
3 in Ex. 2 are active and the other two are not, then the state
will be represented by 1010.

We can then use state transition graphs (Naldi et al. 2011)
to describe how networks evolve over time.
Definition 4. A State Transition Graph (STG) is a directed
graph GSTG = (S, T ) where S is the set of vertices repre-
senting the different states of the network, and T is the set of
edges representing the viable transitions between states.

Two update schemes are employed to update the values
of nodes in a BN: the synchronous and the asynchronous
updating scheme (Faure et al. 2006; Garg et al. 2008).

In the synchronous updating scheme, at each time step, all
compounds are updated simultaneously. Each network state
has at most one successor (cf. Fig. 2), which is biologically
less realistic and less accurate for analysing systems.

In the asynchronous updating scheme, at each time step,
only one regulatory function may be applied. This is closer
to what is observable in real systems, since these changes
seldomly tend to take place simultaneously. With n com-
pounds in a network, each state can have at most n possible
state transitions (including a transition to itself - cf. Fig. 3).

Boolean networks may enter so-called attractors during
updates, i.e., a set of network states that form a cycle. Such
cycles are linked to many important cellular processes, such
as phenotypes, cell cycle phases, cell growth, differentiation,
and apoptosis (Hopfensitz et al. 2012). Among them, stable
states are attractors that contain only a single state, whereas
cyclic attractors contain several. An example for a cyclic
attractor appears on the right of Fig. 2 with 0101, 1101, 1011
and 0011, whereas 0000 is a stable state on the left of Fig. 3.
Hence, stable states represent a particular case of dynamics
in BNs which can be checked for consistency as well.

3 Answer Set Programming
We briefly recall relevant notions and notation for logic pro-
grams under the answer set semantics.

Answer Set Programming (ASP) is a form of declarative
programming oriented towards difficult, primarily NP-hard,
search problems (Lifschitz 2008). It has become an attrac-
tive paradigm for knowledge representation and reasoning,
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Figure 3: STG of the model in Ex. 2 for asynchronous updating
scheme, with v4 inactive on the left, and active on the right (adapted
from (Gouveia 2021)).

thanks to its appealing combination of rich, yet simple mod-
eling languages with powerful solving engines.

A logic program P is a finite set of rules r of the form:

a0 ← a1, ..., am, not am+1, ..., not an. (1)

where each ai ( 0 ≤ i ≤ n, 0 ≤ m ≤ n) is an atom.
An atom takes the form p(t1, ..., tk), where p is a predicate
symbol of arity k, and t1, ..., tk are terms, built from vari-
ables and constants of the (implicit) language of the program
of r. Atoms to the left of the arrow (←) are said to be the
head of the rule, whereas (negated) atoms to the right of the
arrow are the body of the rule. We define as literals both
an atom a as well as its negation, not a. We say that the
head of r is a0 (head(r) = a0), and the body of r is the
set of all literals that occur in its body (also known as body
literals) (body(r) = {a1, ..., am, not am+1, ..., not an}).
We call rules with m = n = 0 facts and admit that a0
is ⊥ to represent constraints, and we commonly omit ←
in the former case and ⊥ in the latter. The ground instan-
tiation of a program, ground(P ) is obtained by replacing
all (first-order) variables with constants from the given lan-
guage of the program in all possible ways. A set of ground
atoms S is then an answer set of ground(P ) if S is the
subset-minimal model of the reduct ground(P )S obtained
as {a0 ← a1, ..., am | r of the form (1) in ground(P ) and
{am+1, . . . , an} ∩ S = ∅}. ASP then also admits a number
of additional language constructs to express choices, con-
straints on these, aggregates, as well as optimization state-
ments, that we will explain in the following sections.

4 Revision of Boolean Networks
Model revision of BNs consists of two parts: consistency
checking and repairing. Consistency checking is about con-
trasting the experimental results, obtained from real-world
biological systems, with the ones generated using computa-
tional models. If a computational model is able to replicate
the experimental observations, then the model is consistent
with them. Otherwise, it is inconsistent requiring a repair.

As shown in Fig. 4, our solution employs ASP encod-
ings for consistency checking and repairing using clingo,
while processing of input data and integration of the differ-
ent components is realized in Python. Before we discuss
in detail our solution to consistency checking and repairing,
we first show how to represent the necessary information for
this revision process. As our solution makes use of ASP
encodings, this amounts to providing corresponding sets of
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Figure 4: ARBoLoM – overview of the revision process of BNs

facts, similar in spirit to such representations in the litera-
ture (Gebser et al. 2010; Lemos, Lynce, and Monteiro 2019;
Gouveia, Lynce, and Monteiro 2020b).

We first encode a regulatory graph G = (V,E) as a set of
facts using compound/1 to represent all elements of V and
a set of facts using regulates/3 where regulates(u, v, s)
represents that compound u regulates v with the sign s (if s
is 0, then u is an activator, otherwise an inhibitor). E.g., we
indicate that v1 inhibits v2 by writing regulates(v1, v2, 1).

To represent regulatory functions of boolean logical mod-
els, we make use of the predicates function/2 and term/3
to represent the number of terms of a regulatory function
and the constituting terms, respectively. I.e., function(v1, 1)
represents that v1’s regulatory function has one term, while
term(v1, 1, v2) represents that term 1 of v1’s regulatory
function contains v2. E.g., fv3

from Ex. 2 can be represented
by term(v3, 1, v1), term(v3, 2, v2), and term(v3, 2, v4) to-
gether with the atoms using regulates to indicate the sign.

Finally, we encode observations, i.e., the experiments
used to assess and revise BNs, by means of two predicates,
experiment/1 and observation/4. The predicate exper-
iment is used to represent the id of an experiment, while
observation(e, t, c, s) represents the observed state s (0 for
inactive, 1 for active) of compound c, at time step t of exper-
iment e. Note that, for stable state observations where the
network does not change its state over time, no argument t
is required, and oberservation/3 is used instead. Also note
that observations in Fig. 4 are assumed to be in ASP format
already, but any adaptation to a different format can be eas-
ily realized either by adapting the processing of inputs or by
employing an adequate pre-processing step.

4.1 Consistency Checking
For checking consistency, in our solution, we consider three
different modes of interaction between compounds, namely
stable states (for which no time component is considered),
and the synchronous and asynchronous update scheme.
Here, for the sake of readability, we spell out in detail the
ASP encoding for checking consistency for stable states,
even if it amounts to a rather routine encoding, and then we
briefly explain the additions for the other schemes.2

Given the model representation of the BN and (possibly
incomplete) observations for some experiments, the main
idea of consistency checking is comparing, for each experi-
ment, whether the observed states of the compounds match

2The complete encodings can be found at https://github.com/
fpaleixo/arbolom/tree/main/encodings/consistency.

those that are determined based on the regulatory functions.
Listing 1 shows the encoding for stable state consistency

which assumes as input the ASP specification of the network
and the experimental data. We next explain this encoding.

First, observation data is converted into curated obser-
vations to be able to handle incomplete experimental data.
Line 1 simply passes the observed data for the compounds
where it exists, while Line 2, by means of a cardinality con-
straint, allows one to fix the observation of a compound C
(active or inactive) when such observation is not available
for it in experiment E. This may cause additional inconsis-
tencies, but we will see in a moment how this can be avoided.
Based on the curated observations, we can determine when
compounds are active according to the model. Recall that
regulatory functions are presented in BCF, i.e., a disjunction
of conjunctions (its prime implicants). Now an implicant
I_NO of C is inactive if one of its activating compounds R
is inactive (Line 3) or one of its inhibiting compounds R is
active (line 4). If, in the considered experiment E, at least
one term I_NO of C is not inactive, then C is active, as one
true term suffices to make the entire disjunction true (Line
5). In Line 6, we determine input nodes, namely by identi-
fying those compounds C whose regulatory function has a
single term that is a single activator of itself. Then, Line 7 is
used to determine if these input nodes are active based on the
experimental data alone. With this in place, inconsistency of
compound C in experiment E can be verified if C is active
according to the model, but observed to be inactive (Line 8),
or if C is inactive according to the model, but observed to
be active (Line 9). The third argument of inconsistent/3 is
used to identify the type of inconsistency that was encoun-
tered. Finally, in Line 10, the optimization statement mini-
mizes the number of inconsistencies found. The rationale is
that the choices made on unseen experimental data may cre-
ate additional inconsistencies. Here, our aim is to emulate
the behavior of the real world system as closely as possi-
ble, so that, e.g., missing observations should lead to as few
inconsistencies as possible, and the minimization ensures
that. Using #show statements (omitted from Listing 1), in-
formation over predicates inconsistent/3, experiment/1,
and curated_observation/3 is extracted from the obtained
model. This information indicates which compounds are in-
consistent for which experiments and the corresponding cu-
rated observations, required for repairing the model later.

The encodings for synchronous and asynchronous time
update schemes follow the same main idea presented for sta-
ble states, only a (discrete) time component is added. I.e., at
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Listing 1: Stable state consistency checking.

1 curated_observation(E,C,S) :- observation(E,C,S).

2 1{curated_observation(E,C,0);curated_observation(E,C,1)}1 :- not observation(E,C,_), experiment(E), compound(C).

3 implicant_inactive(E,C,I_NO) :- function(C,I), term(C,I_NO,R), regulates(R,C,0), curated_observation(E,R,0).

4 implicant_inactive(E,C,I_NO) :- function(C,I), term(C,I_NO,R), regulates(R,C,1), curated_observation(E,R,1).

5 active(E,C) :- function(C,I), not implicant_inactive(E,C,I_NO), experiment(E), term(C,I_NO,_).

6 input_compound(C) :- compound(C), function(C,1), regulates(C,C,0), #count{R : term(C,1,R)} = 1.

7 active(E,C) :- curated_observation(E,C,1),input_compound(C).

8 inconsistent(E,C,1) :- active(E,C), curated_observation(E,C,0).

9 inconsistent(E,C,0) :- not active(E,C), curated_observation(E,C,1).

10 #minimize{1,E,C : inconsistent(E,C,_)}.

time step T , curated observations are created based on the
observations at T (recall that experiments now have such
a temporal component) from which inactive implicants are
determined at T . This, in turn, allows us to conclude which
compounds are active at T +1, which provides the means to
detect inconsistencies (at T+1) between the supposed result
and the observed one. Note that we can only check for time
series consistency for T > 0, since, for T = 0, we have no
information regarding the previous timepoint.

For synchronous consistency checking, recall that all reg-
ulatory functions are applied at each time step. If each com-
pound can replicate the observed value at each timepoint,
given the value of its regulators in the previous timepoint,
then the model is consistent. To account for missing oberva-
tions (and states of compounds) at timepoint 0, we guess the
state of those compounds, determine corresponding curated
observations, and minimize inconsistencies as before.

In asynchronous consistency checking, only one regula-
tory function may be applied at each time step. If the com-
pound, whose regulatory function is applied, can replicate
the observed value at the time step of its application given
the values of its regulators in the previous time step, then
the model is consistent. The corresponding encoding is
quite similar to the synchronous case, but we need to ensure
that only one compound changes at each time step. This is
achieved by adding rules that determine compounds whose
curated observations change from time T to T +1, and then
validate with a constraint that only one compound changes
at each time step. In addition, the inconsistency check is ad-
justed to only take into account differences between the de-
termined state of a compound and its corresponding obser-
vation if that compound changed in the previous time step.

4.2 Model Repair
Repair of inconsistent models is realized by individually
modifying each of the regulatory functions that have been
identified as inconsistent so that they be consistent with the
expected behavior from the experiments. This requires as
input the ASP representation of the network together with
the curated observations and the obtained inconsistencies.

The modifications we consider are adding and removing
regulators, changing regulators from activator to inhibitor
and vice-versa, and changing the function’s format, i.e.,
changing the number of terms as well as their composition.
Combining these allows for a large variety of possible re-

paired functions. In the spirit of minimal change, our ob-
jective is to find repairs that are as close as possible to the
original functions, using the following order of priority:

1. Minimize the changes to the number of function terms;

2. Minimize the changes to the function’s regulators;

3. Minimize the changes to the signs of regulators;

4. Minimize the changes to the format of each term.

While the order of criteria 2.–4. is easily adjustable (as we
will see), the choice for criterion 1. turns out to be important
for our developed solution, because the main search algo-
rithm employs an iterative deepening search on the number
of changes to the number of function terms. The central
idea is to start searching for solutions with the same number
of function terms as the function to be repaired, and if no
solution is found, simultaneously search for solutions with
one more or one less function term, picking the better so-
lution according to the other criteria, if one exists, and iter-
ate this process otherwise. This iteration is limited by the
lower bound of 0 function terms and by an upper bound de-
termined based on the number of positive observations. This
is possible because, in the worst case, each positive observa-
tion is only covered by a single term in the function, so if we
cannot find a function with at most as many terms as existing
distinct observations (for the function to be repaired), then
no such candidate can exist. This is further improved upon
by not counting identical transitions of such observations.

Similar to consistency checking, we discuss with more
detail our repair solution for stable state repairs (Listing 2),
and then the main differences for time-series repairs.3

First (Lines 1–2), we define constants for the compound
whose function we want to repair and for the number of
nodes in the function (i.e., the number of disjuncts). Both
these values can be set during the execution of the iterative
deepening process. Then, we generate the possible candi-
dates for the regulatory function. Since there is only one
compound to be regulated, we use a more compact represen-
tation of the function. Here, activator/1 and inhibitor/1
indicate the kind of regulation for a compound w.r.t. that
compound, and node_regulator/2 allows us to represent
that a certain compound occurs in a specific node (disjunct).
Thus, Lines 3–9 determine for each compound whether it is

3The complete encodings can be found at https://github.com/
fpaleixo/arbolom/tree/main/encodings/repairs.
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Listing 2: Repair under stable state observations.

1 #const compound = c.

2 #const node_number = n.

3 fixed_regulator(C) :- fixed(C,compound), compound(C).

4 fixed_regulator(C) :- fixed(C,compound,_), compound(C).

5 fixed_activator(C) :- fixed(C,compound,0), compound(C).

6 fixed_inhibitor(C) :- fixed(C,compound,1), compound(C).

7 activator(C) :- fixed_activator(C).

8 inhibitor(C) :- fixed_inhibitor(C).

9 1 {activator(C); inhibitor(C)} 1 :- compound(C), not fixed_activator(C), not fixed_inhibitor(C).

10 available_node_ID(1..TERM_NO) :- function(compound, TERM_NO).

11 available_node_ID(TERM_NO + 1..node_number):- function(compound, TERM_NO), node_number > TERM_NO.

12 {node_regulator(N,C) : compound(C)} :- available_node_ID(N).

13 node_ID(N) :- node_regulator(N,_).

14 :- fixed_regulator(C), not node_regulator(_,C).

15 :- node_number != #count{N : node_regulator(N,R)}.

16 :- COMMON_VARNO = #count{C : node_regulator(N1,C), node_regulator(N2,C)}, node_ID(N1), node_ID(N2), N1 != N2,

N1_VARNO = #count{ C : node_regulator(N1,C) }, COMMON_VARNO = N1_VARNO.

17 experiment_negative_node(E,N) :- node_regulator(N,C), curated_observation(E,C,0), activator(C).

18 experiment_negative_node(E,N) :- node_regulator(N,C), curated_observation(E,C,1), inhibitor(C).

19 experiment_positive_node(E,N) :- not experiment_negative_node(E,N), node_ID(N), curated_observation(E,_,_).

20 :- experiment_positive_node(E,N), curated_observation(E,compound,0).

21 :- not experiment_positive_node(E,_), curated_observation(E,compound,1).

22 original_regulator(C) :- regulates(C,compound,_).

23 present_regulator(C) :- node_regulator(N,C).

24 missing_regulator(C) :- original_regulator(C), not present_regulator(C).

25 extra_regulator(C) :- not original_regulator(C), present_regulator(C).

26 sign_changed(C) :- regulates(C,compound,0), inhibitor(C).

27 sign_changed(C) :- regulates(C,compound,1), activator(C).

28 missing_node_regulator(ID,R) :- term(compound, ID, R), node_ID(ID), not node_regulator(ID, R).

29 extra_node_regulator(ID,R) :- node_regulator(ID, R), term(compound, ID, _), not term(compound, ID, R).

30 #minimize{1@3,C : missing_regulator(C)}.

31 #minimize{1@3,C : extra_regulator(C)}.

32 #minimize{1@2,C : sign_changed(C)}.

33 #minimize{1@1,N,C : missing_node_regulator(N,C)}.

34 #minimize{1@1,N,C : extra_node_regulator(N,C)}.

an activator or an inhibitor taking also into account possible
information from the user on certain compounds being fixed
to be a regulator of the considered compound (or even of a
specific kind). In Lines 10–11, available nodes are deter-
mined based on the number of disjuncts of the original func-
tion possibly adjusting if n in the iteration is greater than
that previous number. This allows us to assign a number of
compounds to each such node with a choice rule (Line 12)
and also project on node IDs (Line 13). Then, a number
of restrictions ensure that fixed regulators occur somewhere
in the function (Line 14), the number of nodes (containing
some compound) is correct (Line 15), and that the function
be in BCF (Line 16) by verifying that no node can have the
same number of compounds as it does have common com-
pounds with another node. We determine nodes as nega-
tive if one of its activators is inactive (Line 17) or one of its
inhibitors is inactive (Line 18), and as positive if it is not
negative (Line 19). Then, Lines 20–21 discard any function
where the observed result differs from those calculated by
the function, which suffices to find all valid solutions.

To find an optimal one according to the criteria estab-
lished earlier, we also determine in Lines 22–25 regulators

that have been added/removed from the function, in Lines
26–27 changes from activator to inhibitor and vice-versa, as
well as, in Lines 28–29, whether a certain compound is miss-
ing or has been added to a certain node in the repaired func-
tion. Then, Lines 30–34 encode the optimization criteria,
where, e.g., #minimize{1@3,C : missing_regulator(C)}.
represents that any missing regulator C is associated a
weight 1 with priority 3 (statements with higher priority are
optimized first). The info on activators and inhibitators as
well as node regulators can then be extracted from the an-
swer set to obtain the repaired function (if it exists). Sub-
sequently, we can re-run this encoding with the next com-
pound’s function to be repaired.

The encodings of time series repairs is quite similar. In
fact, the definition of the function (Lines 1–16) as well as
the optimization criteria (Lines 22–34) from Listing 2 can be
used as is. The only difference lies in time-dependent deter-
mination of negative and positive nodes and the subsequent
elimination of undesired solutions given the time-series ex-
periments. While synchronous repairs perform updates si-
multaneously, for asynchronous repairs, we slightly adjust
to only consider the validation for the node that changed.
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Abbr. #C #I #SS Avg. Reg. Max. Reg.
MCC 10 35 1 3.500 6

FY 10 27 12 2.700 5

TCR 40 57 7 1.425 5

SP 19 57 7 3.000 8

Th 23 35 3 1.520 5

Table 1: Boolean models data with model’s abbreviations (Abbr.),
their number of compounds (#C), number of compound interac-
tions (#I), number of stable states (#SS), average number of regu-
lators (Avg.Reg.), and maximum number of regulators (Max.Reg.).

5 Evaluation
We have implemented ARBoLoM4 as described in the pre-
vious section and we report here on its evaluation.

We first assess whether our system is able to perform revi-
sion of Boolean models efficiently, following the methodol-
ogy described in (Gouveia, Lynce, and Monteiro 2020a). To
this end, we have used five well-known biological models:

• The network that controls the Mammalian Cell Cycle
(MCC) (Faure et al. 2006);

• The cell-cycle regulatory network of Fission Yeast (FY)
(Davidich and Bornholdt 2008);

• The T-Cell Receptor signalling network (TCR) (Klamt et
al. 2006);

• The Segment Polarity network (SP), which plays a role
in the fly embryo segmentation (Sanchez, Chaouiya, and
Thieffry 2008);

• And the regulatory network controlling T-helper cell dif-
ferentiation (Th) (Mendoza and Xenarios 2006).

The precise characteristics for each of these models can be
found in Table 1, showing the variety in terms of numbers
of compounds, regulation interactions, and stable states, and
the average and max. number of regulators per function.

For each of these models, we generated new (corrupted)
versions using four operations (with varying probability X):

• Each regulatory function is altered with probability X
(0.1 to 1). This alteration can change the number of terms
in the function and/or the format of the terms;

• The sign of each edge (regulator) in the functions is
changed with probability X (0.05 to 0.75).

• Each regulator in the functions can be removed with prob-
ability X (0.01 to 0.15).

• For each function, any regulator not in that function may
be added as a regulator with probability X (0.01 to 0.15).

In our tests, we used 24 different configurations of corrup-
tion operations, varying on how many of these operations are
used simultaneously and their probabilities. Table 2 shows
the details of these configurations. For each configuration,
100 corrupted models were generated providing a total num-
ber of 2400 models for each of the five models and each
of the three modes of interaction between compounds. The
corresponding distribution into consistent and inconsistent

4https://github.com/fpaleixo/arbolom

# 1 2 3 4 5 6 7 8 9 10 11 12
F 5 25 50 100 0 0 0 0 0 0 0 0
E 0 0 0 0 5 10 15 20 25 50 75 0
R 0 0 0 0 0 0 0 0 0 0 0 1
A 0 0 0 0 0 0 0 0 0 0 0 0

# 13 14 15 16 17 18 19 20 21 22 23 24
F 0 0 0 0 0 0 0 25 50 100 5 10
E 0 0 0 0 0 0 0 5 25 50 25 10
R 5 10 15 0 0 0 0 0 0 0 5 5
A 0 0 0 1 5 10 15 0 0 0 5 5

Table 2: Corruption configurations. Displayed is an ID for the con-
figuration (#), and the probability (0%-100%) of applying each of
the four different corruption operations: (F)unction change, (E)dge
sign flip, (R)emove a regulator, and (A)dd a regulator.

stable state synchronous asynchronous
Model # Cons. # Inc. # Cons. # Inc. # Cons. # Inc.
MCC 1372 1028 543 1857 657 1743

FY 728 1672 602 1798 760 1640

TCR 545 1855 390 2010 423 1977

SP 413 1987 306 2094 378 2022

Th 514 1886 358 2042 449 1951

Table 3: Statistics on consistent (#Cons.) and inconistent (#Inc.)
created models for each of the three modes of interaction.

models is summarized in Table 3 (based on the consistency
analysis of our tool).

The tests were conducted on an Intel(R) Xeon 2.2GHz
running Linux with a timeout of 3600s and 13GB of mem-
ory, although memory usage never exceeded 1.4GB.

For testing stable state observations, we used available in-
formation on the stable states of the five networks5 to create
the experimental data. In the experiments, all 12000 tested
models were either identified as consistent or repaired in
around 0.1 seconds on average, and even the most compli-
cated cases were solved in under one second. Table 4 sum-
marizes the results showing the times for the entire revision
process, consistency checking, and repair, restricted, in the
case of repair, to the corrupted models where repair was re-
alized (which explains why the average of the total revision
process is often smaller than the average on repairs).

For experiments with time-series observations, we created
a number of experiments with a variable number of charac-
teristics, resulting in 4 kinds of observations, from 1 experi-
ment with 3 timepoints to 5 experiments with 20 timepoints.
Table 4 also includes the results for synchronous and asyn-
chronous observations for 5 experiments and 20 timepoints.

While processing times increase with time observations
(slightly more for synchronous observations, likely because
more changes happen at every time step that need to be val-
idated), all instances are identified as consistent or repaired,
and the overall revision process can still be done on aver-
age within 1 second, with a maximum of 5 seconds in a few
cases. We note that among the five models, TCR has slightly
higher processing times, likely due to the higher number of
compounds.

5https://filipegouveia.github.io/ModRev/
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stable state synchronous asynchronous
Model Revision Proc. Avg. Min. Max. Avg. Min. Max. Avg. Min. Max.

Revision (s) 0.01 < 0.01 0.44 0.14 0.03 0.59 0.11 0.03 0.56

Consistency (s) < 0.01 < 0.01 0.44 0.04 0.03 0.47 0.03 0.03 0.45MCC
Repair (s) 0.02 < 0.01 0.07 0.13 0.03 0.53 0.10 0.03 0.50

Revision (s) 0.04 < 0.01 0.45 0.14 0.03 0.51 0.09 0.03 0.53

Consistency (s) < 0.01 < 0.01 0.45 0.04 0.03 0.47 0.03 0.03 0.52FY
Repair (s) 0.05 < 0.01 0.15 0.13 0.03 0.45 0.09 0.03 0.32

Revision (s) 0.11 0.01 0.81 0.76 0.11 5.02 0.54 0.09 3.08

Consistency (s) 0.01 < 0.01 0.62 0.13 0.11 0.59 0.11 0.08 0.86TCR
Repair (s) 0.12 0.01 0.80 0.76 0.09 4.88 0.51 0.09 2.92

Revision (s) 0.10 < 0.01 0.69 0.60 0.06 2.64 0.30 0.05 1.21

Consistency (s) < 0.01 < 0.01 0.51 0.07 0.05 0.47 0.05 0.04 0.40SP
Repair (s) 0.11 < 0.01 0.68 0.45 0.05 2.52 0.30 0.05 1.14

Revision (s) 0.07 < 0.01 0.47 0.41 0.06 2.21 0.28 0.05 1.20

Consistency (s) < 0.01 < 0.01 0.46 0.07 0.06 0.53 0.06 0.05 0.49Th
Repair (s) 0.07 < 0.01 0.38 0.39 0.06 2.08 0.27 0.05 1.11

Table 4: Revision process times for each family of models, under stable state observations, and synchronous and asynchronous observations.

Average times 1 – 3 1 – 20 5 – 3 5 – 20
Revision (s) 0.06 0.11 0.13 0.41

Consistentency (s) < 0.01 0.02 0.02 0.07

Repair (s) 0.07 0.11 0.13 0.39

Table 5: Average revision times for varying numbers of experi-
ments X and numbers of timepoints Y – represented by X–Y –
under synchronous observations for model Th.

We also examined how the size and number of the exper-
iments influence the revision process. Table 5 presents the
data gathered from the revision of the corrupted instances
of Th under synchronous observations, showing that in-
creasing the number of experiments and/or the number of
timesteps used, increases both consistency checking and re-
pair times. Similar observations are obtained for the other
models and under asynchronous observations.

We also compared ARBoLoM with ModRev (Gouveia,
Lynce, and Monteiro 2020a), which also uses ASP, but only
to check for consistency, while repair is implemented as a
search in C++6, with the following order of optimization cri-
teria:

1. Minimise the changes to the function’s regulators;
2. Minimise the changes to the signs of regulators;
3. Minimise the number of function change operations.
The third item incorporates the minimization of changes to
the number of function terms and to the format of each term.

ModRev’s reported experimental evaluation uses the same
set of real-world models, the same set of corruption configu-
rations – creating 100 instances for each model and configu-
ration – the same stable states and the same method for cre-
ating observations. However, the set of created models7 ap-
pears to have been restricted to only contain instances with at
least one modification (our test set may contain unchanged

6In fact, (Gouveia 2021) also mentions an implementation that
partially uses ASP in the revision process, which was nevertheless
discarded for reasons of efficiency

7https://filipegouveia.github.io/ModRev/validation

models, mainly for configurations where the probabilities of
change were low), impacting on the frequency with which
revision is required. For the sake of fairness, the follow-
ing results compare ARBoLoM’s performance on ModRev’s
test dataset, with the reported performance of ModRev.8

Table 6 presents the statistics regarding the number of
successfully revised models and average revision times
(for time-series observations with 5 experiments and 20
timesteps), both for ARBoLoM and ModRev. While AR-
BoLoM solves each of the 12000 instances in less than a
second on average (apart from TCR in synchronous mode),
ModRev fails to solve a considerable number of instances
for all models in either mode – in particular the (vast) ma-
jority for some more complicated corruption configurations
(e.g., 11, 18, 19, 23, 24 - cf. Table 2 and the detailed Mod-
Rev results). We can also observe that ARBoLoM com-
monly presents revision times better than ModRev by 1 to
3 orders of magnitude, which is even more significant given
that the reported average times do not take into account the
instances where ModRev timed out. ARBoLoM’s better per-
formance can be explained by a combination of our ASP en-
coding of the repair process, the efficiency of clingo, and
possibly also by the selected optimization criteria. Even
though the obtained repaired solution will commonly differ
between the two approaches due to the different optimiza-
tion criteria, the empirical guarantee to find a solution (very
quickly) certainly is in favor of ARBoLoM. It is worth not-
ing that ModRev’s most efficient search algorithm – the one
used in the reported experiments – may fail to find consistent
functions, even though they may exist, and even if they are
found, there is no guarantee that the function found is opti-
mal (Gouveia 2021). Also, the optimization criteria adopted
by ARBoLoM can very easily be changed, since it amounts
to adjusting the preference order of the minimization criteria
in the repair encoding (see Listing 2), leaving only fixed the

8ModRev’s experiments were conducted on an Intel(R) Xeon
2.1GHz running Linux, with the same timeout of 3600s and lim-
ited to 2GB of memory. The results are available at https://
filipegouveia.github.io/ModRev/results-global-v1.3.1.pdf
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synchronous asynchronous
ModRev ARBoLoM ModRev ARBoLoM

Model Solved Avg. Solved Avg. Solved Avg. Solved Avg.
MCC 53.04% 277.92 100% 0.37 77.87% 93.91 100% 0.28

FY 82.54% 382.02 100% 0.29 94.54% 437.54 100% 0.19

TCR 78.96% 104.57 100% 1.34 86.08% 179.56 100% 0.64

SP 53.37% 72.63 100% 0.89 49.25% 241.06 100% 0.68

Th 73.33% 28.78 100% 0.91 83.00% 50.38 100% 0.69

Table 6: Comparison of model revision with ModRev for time series observations with 5 experiments and 20 timesteps indicating the
percentage of solved instances (out of 2400 in each case) and the average revision time (in s) of solved instances.

5 Exp. 20 steps Avg. Min. Max. Std. Dev.
Revision (s) 3.11 0.24 14.40 2.98
Consistentency (s) 0.27 0.22 0.78 0.08
Repair (s) 3.25 0.26 14.13 2.98

Table 7: Experimental results for revising models combining all 5
realistic models under asynchronous observations.

first criterion of number of changes on function terms.

Finally, to test whether our solution scales up to larger
networks, we built an artificial boolean network composed
of the five real networks we tested before. The composing
parts are only loosely connected (one compound is shared
between two of them), but the corruption may introduce con-
nections when adding regulators, and the combinatorics in
the revision process are considerably increasing compared
to the individual networks due to using 101 compounds. We
created 10 corrupted models for each of the same 24 corrup-
tion configurations using the most demanding experimental
setup (5 experiments and 20 steps) under the arguably most
realistic setting of asynchronous observations. Our results
show that all 240 corrupted models are correctly identified
as consistent (31) or inconsistent, and then repaired (209).
Table 7 summarizes the experiments for this revision pro-
cess, showing that, on average, revision is done within 3s,
and consistency checking can still be done very efficiently.
In some cases, the revision process takes up to 13 seconds,
but mainly for configurations where corruptions occur with
high probability. For example, the corrupted model with the
highest revision time was corrupted under configuration #11
resulting in 33 corrupted regulatory functions within that
model, whose individual repair time varied between 0.1 and
4s, requiring several changes to restore consistency in some
cases. As the repair process is oblivious of the corruption
process, it does not necessarily restore the original functions
in such cases, but rather finds a function that is close to the
corrupted one, but consistent with the observations. We be-
lieve that in realistic settings such profound changes to ex-
isting/established models are not that likely, hence reducing
the cases where this happens. In any case, ARBoLoM is
perfectly able to handle the revision process for a network
integrating the 5 real networks with considerable modifica-
tions, and we believe that these results show that our solu-
tion is in fact capable of efficiently revising realistic Boolean
networks.

6 Conclusions

Throughout this paper, we presented ARBoLoM, a tool for
revising Boolean Networks that is able to check the consis-
tency of a network given a set of experiments, and repair the
network, whenever necessary, providing optimal solutions
with respect to the developed optimization criteria. Our ap-
proach leverages ASP encodings and iterative deepening on
the number of used terms in the revised regulatory function
to deal with the high arising combinatorics. Our solution
permits the usage of incomplete experimental data, allows
the user to provide specific information for the revision pro-
cess to acertain conditions that must hold for the revised
function(s), and is flexible as to the order of the adopted op-
timization criteria. The evaluation of our tool shows that it
is able to perform revision very efficiently for realistic BNs,
outperforming ModRev – the only previously existing tool
with the same scope – by a significant margin, in particular
in terms of solved instances and processing times.

Other related work on revising Boolean models is re-
stricted in terms of applicable repairs (no addition of reg-
ulators and changes to the formula refer to switching AND
and OR) and considered functions (Lemos, Lynce, and Mon-
teiro 2019), or only admits very specific changes and in part
only to acyclic graphs (Chai 2019). Other work employs
“rules of thumb” for model revision (Merhej, Schockaert,
and Cock 2017), aiming to find least contradictory repairs,
but it is limited to synchronous observations and uses a dif-
ferent evaluation of regulatory functions. Further work on
model revision uses interaction graphs (Mobilia et al. 2015)
for revising generic regulatory networks and ASP for revis-
ing sign consistency models (Gebser et al. 2010) respec-
tively. Both formalisms differ from BNs, and the former
approach was observed to not always provide results that ac-
curately model the biological counterpart, whereas the latter
formalism is arguably less expressive.

In the future, we may consider extending our tool to allow
for mixed observations, i.e., synchronous and asynchronous,
or admit additional optimization criteria that together with
the existing ones can be picked by an expert user to adjust
the revision process to their needs. Another possible im-
provement could be achieved by introducing explanations
to the presented repairs, making the process more transpar-
ent and allowing the user to better understand why a certain
modification was done. Finally, we can explore with synthe-
sizing regulatory functions based on the developed approach
that uses iterative deepening to find suitable candidates.
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