Joao A. Leite Andrea Omicini Paolo Torroni
Pinar Yolum (eds.)

Declarative Agent
Languages and
Technologies

Second International Workshop, DALT 2004
Columbia University, New York, July 19th, 2004
Workshop Notes

DALT 2004 Home Page:
http://centria.di.fct.unl.pt/”jleite/dalt04/index.htm

II

Preface

Agent metaphors and technologies are more and more adopted to harness
and govern the complexity of today’s systems. However, it is still a challenge
to develop technologies that can satisfy the requirements of complex systems.
Importantly, building multi-agent systems still calls for models and technolo-
gies that ensure system predictability, enable feature discovery and verifi-
cation, and accommodate flexibility. Declarative approaches offer to satisfy
precisely these properties of large-scale multi-agent systems. Recent advances
in the area of computational logics provide a strong foundation for declarative
languages and technologies. Equipped with such strong foundation, declar-
ative approaches can enable agents to reason about their interactions and
their environment and hence not only establish the required tasks but also
handle exceptions that arise in many systems.

Accordingly, Declarative Agent Languages and Technologies (DALT)
workshop aims at bringing together (1) researchers working on formal meth-
ods for agent and multi-agent systems design, (2) engineers interested in
exploiting the potentials of declarative approaches for specification of agent-
based systems, and (3) practitioners exploring the technology issues arising
from a declarative representation of systems.

DALT is now at its second edition. The call for papers of DALT 2004 was
welcomed by an impressive 38 statements of interest, resulting in a 100 %
increase of submissions from last year. Given the high standard of submissions
and also due to time constraints on the duration of the workshop day, the
review process had to be particularly selective and many good papers could
not be included in the final program. The final acceptance rate was below
60 %. We want to take this opportunity to thank all the authors who warmly
answered our call with high quality contributions, and the members of the
Program Committee and additional referees for ensuring the quality of the
workshop program by kindly offering their time and expertise.

At the time of writing, DALT 2003 revised selected and invited papers are
being published by Springer as a Hot Topic volume (No. 2990) of the Lecture
Notes in Artificial Intelligence series. After DALT 2004, accepted papers will
be further extended to incorporate workshop discussion, and reviewed for
inclusion in the DALT Post-Proceedings, to be published as a Lecture Notes
volume by Springer.

May 28th, 2004 Jodo A. Leite
Andrea Omicini

Paolo Torroni

Pinar Yolum

IIT

DALT 2004 Program committee

Rafael H. Bordini, University of Durham, UK

Brahim Chaib-draa, Université Laval, Canada

Alessandro Cimatti, IRST, Trento, Italy

Keith Clark, Imperial College London, UK

Marco Colombetti, Politecnico di Milano, Italy

Stefania Costantini, Universita degli Studi di I’Aquila, Italy
Mehdi Dastani, Universiteit Utrecht, The Netherlands

Jiirgen Dix , Technical University of Clausthal, Germany
Michael Fisher, The University of Liverpool, UK

Mike Huhns, University of South Carolina, USA

Catholijn Jonker, Vrije Universiteit Amsterdam, The Netherlands
Alessio Lomuscio, King’s College, London, UK

Viviana Mascardi, Universita degli Studi di Genova, Italy
John Jules Ch. Meyer, Universiteit Utrecht, The Netherlands
Sascha Ossowski, Universidad Rey Juan Carlos, Madrid, Spain
Julian Padget, University of Bath, UK

Lin Padgham, RMIT University, Australia

Wojciech Penczek, Polish Academy of Sciences, Poland

Luis M. Pereira, Universidade Nova de Lisboa, Portugal
Jeremy Pitt, Imperial College, London, UK

Juan A. Rodriguez-Aguilar, Spanish Research Council, Spain
Fariba Sadri, Imperial College London, UK

Marek J. Sergot, Imperial College London, UK

Onn Shehory, IBM Research Lab in Haifa, Israel

Munindar Singh, North Carolina State University, USA
Francesca Toni, Universita di Pisa, Italy

Wiebe van der Hoek, The University of Liverpool, UK
Wamberto W. Vasconcelos, University of Aberdeen, UK
Michael Winikoff, RMIT University, Australia

Franco Zambonelli, Universita di Modena e Reggio Emilia, Italy

DALT 2004 Organizers

Joao A. Leite, Universidade Nova de Lisboa, Portugal
Andrea Omicini, Universita di Bologna / Cesena, Italy
Paolo Torroni, Universita di Bologna, Italy

Pinar Yolum, Vrije Universiteit Amsterdam, The Netherlands

v

Additional Referees

Jodo Alcantara

Holger Billhardt
Andrea Bracciali

Amit Chopra

Marina De Vos

Ulle Endriss

Alvaro Freitas Moreira
Dorian Gaertner

Mark Hoogendoorn
Magdalena Kacprzak

John Knottenbelt
Ashok Mallya

Ken Satoh

Kostas Stathis

Arnon Sturm
Peter-Paul van Maanen
M. Birna van Riemsdijk
Bozena Wozna
Yingqian Zhang

Table of Contents

Session 1: Reasoning

The Semantics of MALLET—An Agent Teamwork Encoding Language .. 1
Xiaocong Fan, John Yen, Michael Miller, and Richard Volz

Dynamics of Declarative Goals in Agent Programming 17
M. Birna van Riemsdijk, Mehdi Dastani, Frank Dignum, and
John-Jules Ch. Meyer

Theories of Intentions in the framework of Situation Calculus 33
Pilar Pozos-Parra, Abhaya Nayak, Robert Demolombe

The logic of knowledge based obligation 47
Rohit Parikh, Eric Pacuit, and Eva Cogan

Representational Content and the Reciprocal Interplay of Agent and
Environment 61
Tibor Bosse, Catholijn M. Jonker, and Jan Treur

Session 2: Engineering

On modelling declaratively multi-agent systems 7
Andrea Bracciali, Paolo Mancarella, Kostas Stathis, and Francesca

Tons

Modeling Flexible Business Processesccooiiiiiiiiiin. 93
Amit K. Chopra, Ashok U. Mallya, Nirmit V. Desai, and Munindar

P. Singh

MASAQ: A Multi-Agent System for Answering Questions Based on an

Encyclopedic Knowledge Base ... 109
Qiangze Feng, Cungen Cao, Yuefei Sui, Yufei Zheng, and Qianfu

Qin

Construction of an Agent-based Framework for Evolutionary Biology:

A Progress Report ... 125
Yu Pan, Phan Huy Tu, Enrico Pontelli, and Tran Cao Son

Session 3: Verification

Norm Verification and Analysis of Electronic Institutions 141
Wamberto Weber Vasconcelos
Model Checking Agent Dialogues, 156

Christopher Walton

VI

Modeling and Verification of Distributed Autonomous Agents using
Logic Programming 172
L. Robert Pokorny and C. R, Ramakrishnan

Session 4: Negotiation

A Protocol for Resource Sharing in Norm-Governed Ad Hoc Networks 188
Alexander Artikis, Lloyd Kamara, Jeremy Pitt, and Marek J. Sergot

A Paraconsistent Approach for Offer Evaluation in Multiagent

Negotiationt R R RERRRRS 204
Fabiano Mitsuo Hasegawa, Braulio Coelho Avila, and Marcos

Augusto Hochuli Shmeil

Partial Deduction for Linear Logic—The Symbolic Negotiation

Perspectiveo 220
Peep Kiingas and Mihhail Matskin

Session 5: Communication

A Lightweight Coordination Calculus for Agent Systems 236
David Robertson
Reasoning about agents’ interaction protocols inside DCaseLLP 250

Matteo Baldoni, Cristina Baroglio, Ivana Gungui, Alberto Martelli,
Maurizio Martelli, Viviana Mascardi, Viviana Patti, and Claudio
Schifanella

Intensional Programming for Agent Communication 266
Vasu S. Alagar, Joey Paquet, and Kaiyu Wan

The logic of communication graphso i 282
Eric Pacuit and Rohit Parikh
Enhancing Commitment Machines 297

Michael Winikoff, Wei Liu, and James Harland

Author Index......... . 312

The Semantics of MALLET—-An Agent
Teamwork Encoding Language

Xiaocong Fan', John Yen!, Michael S. Miller?, and Richard A. Volz?

1 School of Information Sciences and Technology
The Pennsylvania State University, University Park, PA 16802
2 Department of Computer Science
Texas A&M University, College Station, TX 77843
{zfan, jyen}@ist.psu.edu, {mmiller,volz}@cs.tamu.edu

Abstract. MALLET is a team-oriented agent programming language
for specifying teamwork knowledge and behaviors; one interpreter of
MALLET has already been implemented in the CAST (Collaborative
Agents for Simulating Teamwork) system. This paper defines an opera-
tional semantics for MALLET in terms of a transition system. This is
important not only in guiding the implementation of other interpreters
for MALLET, but also in formally studying the properties of team-based
agents specified in MALLET.

1 Introduction

Agent teamwork has been the focus of a great deal of research in both theories
[1-4] and practices [5-8]. A team is a set of agents having a shared objective and
a shared mental state [2]. While the notion of joint goal (joint intention) provides
the glue that binds team members together, it is not sufficient to guarantee that
cooperative problem solving will ensue [3]. The agreement of a common recipe
among team members is essential for them to achieve their shared objective in
an effective and collaborative way [4]. Languages for specifying common recipes
(plans) and other teamwork related knowledge are thus highly needed both for
agent designers to specify and implement cohesive teamwork behaviors, and for
agents themselves to easily interpret and manipulate the mutually committed
course of actions so that they could collaborate smoothly both when everything
is progressing as planned and when something goes wrong unexpectedly.

The term “team-oriented programming” has been used to refer to both the
idea of using a meta-language to describe team behaviors (based on mutual
beliefs, joint plans and social structures) [9] and the effort of using a reusable
team wrapper for supporting rapid development of agent teams from existing
heterogeneous distributed agents [10, 11]. This paper adopts the former meaning
and focuses on the semantics of an agent teamwork encoding language called
MALLET (Multi-Agent Logic Language for Encoding Teamwork), which has
been developed and used in the CAST (Collaborative Agents for Simulating
Teamwork) system [8] to specify agents’ individual and teamwork behaviors.

There have been several efforts in defining languages for describing team
activity [12,13,3]. What distinguishes MALLET from the existing efforts has
two-fold. First, MALLET is a richer generic language for encoding teamwork
knowledge. Teamwork knowledge may include both declarative knowledge and
procedural knowledge. Declarative knowledge (knowing “that”) describes ob-
jects, events, and their relationships. Procedural knowledge (knowing “how”)
focuses on the way needed to obtain a result, where the control information nec-
essary to use the knowledge is embedded in the knowledge itself. MALLET sup-
ports the specification of both declarative and procedural teamwork knowledge.
For instance, MALLET has reserved keywords for specifying team structure-
related knowledge such as agents in a team, roles an agent can play, etc., as well
as inference knowledge (horn-clauses). MALLET also has constructs for specify-
ing control flows (e.g., sequential, conditional, iterative, etc.) in a team process.
Tidhar also adopted such an synthesized approach [9], where the notions of so-
cial structure and plan structure respectively correspond to the team structure
and team process in our term. While MALLET does not describe team structure
in the command and control dimension as Tidhar did, it is more expressive than
the simple OR-AND plan graphs in describing complex team process.

Second, MALLET is a richer language for encoding teamwork process. In
MALLET, the constraints for task assignments, preconditions of actions, dy-
namic agent selection, decision points within a process and termination condi-
tions of a process can be explicitly specified. The recipe language used in [3]
lacks the support for specifying decision points in a process, which is often de-
sirable in dealing with uncertainty. While the OR nodes of a plan graph [9] can
be used for such a purpose, the language cannot specify complex execution or-
ders. Team/agent selection (i.e., the process of selecting a group of agents that
have complimentary skills to achieve a given goal) is an important aspect of col-
laborative activity [14]. No existing languages except MALLET allow the task
of agent-selection to be explicitly specified in a team process. Using MALLET,
a team of agents can collaboratively recruit doers for the subsequent activities
based on the constraints associated with the agent-selection statement.

The structure of this paper is as follows. Section 2 gives the syntax of MAL-
LET. We prepare our work in Section 3 and give the transition semantics in
Section 4. Section 6 concludes the paper.

2 Syntax

The syntax of MALLET is given in Table 1. A MALLET specification is com-
posed of definitions for agents, teams, membership of a team, team goals, initial
team activities, agent capabilities, roles, roles each agent can play, agents play-
ing a certain role, individual operators, team operators, plans (recipes), and
inference rules.

Operators are atomic domain actions, each of which is associated with pre-
conditions and effects. Individual operators are supposed to be carried out by
only one agent independently, while team operators can only be invoked by more

Table 1. The Syntax of MALLET

CompilationUnit ::= (AgentDef | TeamDef | MemberOf | GoalDef | Start |

AgentDef ::
TeamDef ::
MemberOf ::

GoalDef ::
Start ::
CapabilityDef ::

RoleDef ::
PlaysRole ::
FulfilledBy ::
IOperDef ::

TOperDef ::

PlanDef ::

RuleDecl ::

Cond ::

Pred ::

Invocation ::
PreConditionList ::

EffectsList ::
TermConditionList ::
NumSpec ::
PrefCondList ::

Priority ::
ByWhom ::
MixedList ::

Branch ::

MalletProcess ::

CapabilityDef | RoleDef | PlaysRole | FulfilledBy | IOperDef |
TOperDef | PlanDef | RuleDecl)*
(" <AGENT> AgentName ’)’
("’ <TEAM> TeamName (’(’ (AgentName)+)’)?)’
("’ <MEMBEROF> AgentName
(TeamName | ’(’ (TeamName)+ 7)))’
' <GOAL> AgentOrTeamName (Cond)+)’
'(’ <START> AgentOrTeamName Invocation ’)’
(" <CAPABILITY > (AgentName | ’(’ (AgentName)+’)’)
(Invocation | ’(’ (Invocation)+)’))’
(" <ROLE> RoleName (Invocation | ’(’(Invocation)+’)")’)’
(" <PLAYSROLE> AgentName ’(’ (RoleName)+ ')’ ’)’
(" <FULFILLEDBY > RoleName ’(’ (AgentName)+)’ ’)’
(" <IOPER> OperName ’(’ (<Variable>)* ’)’
(PreConditionList)* (EffectsList)? ’)’
'’ <TOPER> OperName ’(’ (<Variable>)* ’)’
(PreConditionList)* (EffectsList)? (NumSpec)? ’)’
'’ <PLAN> PlanName ’(’ (<Variable>)* ’)’
(PreConditionList | EffectsList | TermConditionList)*
'(* <PROCESS> MalletProcess ’)’ ’)’
' (Pred)+)
Pred | ’(C <NOT> Cond ’)’
'(<IDENTIFIER> (<IDENTIFIER> | <VARIABLE>)*)’
'("PlanOrOperName (<IDENTIFIER> | <VARIABLE>)* ')’
("’ <PRECOND> (Cond)+ (:IF-FALSE’ (<FAIL> |
<WAIT> ((<DIGIT>)+)? | <ACHIEVE>))?)
' <EFFECTS> (Cond)+ ')’
"C<TERMCOND> (<SUCCESS> | <FAILURE>)? (Cond)+’)’
O <NUM> (‘=" |*<" > [< £ 2") (<DIGIT >)+)
'(’ <PREFCOND> (Cond)+ (IF-FALSE’ (<FAIL> |
<WAIT> ((<DIGIT>)+)? | <ACHIEVE>))?°)’
"(<PRIORITY> (<DIGIT>)+)’
AgentOrTeamName | <VARIABLE> | MixedList
(" (<IDENTIFIER> | <VARIABLE>)+ ')’
'(’(PrefCondList) ?(Priority)? ’(’<DO>ByWhom Invocation’)”)’
Invocation
’<DO> ByWhom MalletProcess ’)’
’C<AGENTBIND> VariableList ’(" (Cond)+)" ")’
'C<JOINTDO> (<AND> | <OR> | <XOR>)?

(’C ByWhom MalletProcess)’)+)’
(<SEQ> (MalletProcess)+)’
'C<PAR> (MalletProcess)+)’
| <IF>’("<COND>(Cond)-+’)’MalletProcess(Mallet Process)?’)’
'C<WHILE> (" <COND> (Cond)+ ’)’ MalletProcess ’)’
C<FOREACH> ’(’ <COND> (Cond)~+’)’MalletProcess’)’
C<FORALL> (" <COND> (Cond)+ ¢)’MalletProcess’)’
|’<CHOICE> (Branch)+ ')’

than one agent who play specific roles as required by the operators. Before doing
a team action, all the involving agents should synchronize their activities and
satisfy the corresponding preconditions.

Plans are decomposable higher-level actions, which are built upon lower-
level atomic operators hierarchically. Plans play the same role as recipes in the
SharedPlan theory. A plan in MALLET specifies which agents (variables), under
what pre-conditions, can achieve what effects by following what a process, and
optionally under what conditions the execution of the plan can be terminated.

The process component of a plan plays essential role in supporting coordi-
nations among team members. A process can be specified using constructs such
as sequential (SEQ), parallel (PAR), iterative (WHILE, FOREACH, FORALL),
conditional (IF) and choice (CHOICE). An invocation statement is used to di-
rectly execute an action or invoke a plan; since there is no associated doer spec-
ification, each agent coming to such a statement will do it individually. A DO
process is composed of a doer specification and an embedded process. An agent
coming to a DO statement has to check if itself belongs to the doer specification.
If so, the agent simply does the action and moves on; otherwise the agent waits
to be informed of the outcome of the action. A joint-do process (JOINTDO)
specifies a share type (i.e., AND, OR, XOR) and a list of (ByWhom process)
pairs. For the share type “AND”, each of the pairs must be executed before
the complementation of the joint-activity, which requires all the involved agents
acting simultaneously. For an “XOR”, exactly one must be executed to avoid
potential conflicts, and for an “OR”, at least one must be executed (with no po-
tential conflicts). An agent-bind statement is used to dynamically select agents
to satisfy various constraints such as finding an agent that is capable of some
role or action. An agent-bind statement becomes eligible for execution at the
point when progress of the embedding plan has reached it, as opposed to be-
ing executed when the plan is entered. The scope for the binding to a variable
extends to either the end of the embedding plan, or the beginning of the next
agent-bind statement that also binds this variable, whichever comes first.

3 Preparation

The following notational conventions are adopted. We use i, j, k, m, n as indexes;
a’s 3 to denote individual agents; A’s to denote sets of agents; b’s to denote
beliefs; g’s to denote goals; h’s to denote intentions; p’s to denote plan templates;
p’s to denote plan preconditions; ¢’s to denote plan effects; e’s to denote plan
termination-conditions; 3 and a’s to denote individual operators; I'’s to denote
team operators; s and [’s to denote statements within a Mallet-process; ¥ and
¢’s to denote first-order formulas; t’s to denote terms; bold ¢ and v to denote
vector of terms and variables. A substitution (binding) is a set of variable-term
pairs {[z;/t;]}, where variable z; is associated with term ¢; (x; does not occur
free in t;). We use 6,0, n, u, 7 to denote substitutions.

3 We use a’s to refer to a and a with a subscript or superscript. The same applies to
the description of other notations.

Given a team specification in MALLET, let Agent be the set of agent names,
Toper be the set of individual operators, TOper be the set of team operators,
Plan be the set of plans, B be the initial set of beliefs (belief base), and G be
the initial set of goals (goal base).

Let P = Plan U Toper U Ioper. We call P the plan (template) base, which
consists of all the specified operators and plans. Every invocation of a template
in P is associated with a substitution: each formal parameter of the template is
bound to the corresponding actual parameter. For instance, given a template
(plan p (vr---v;)

(pre-cond p; - - - p) (effects ¢1 - - - ¢n) (term-cond e; - - - ¢,,) (process s)).
A plan call (p t; - - - ;) will instantiate the template by binding 6 = {v/t}, where
the evaluation of t; may further depend on some other (environment) binding p.
Note that such instantiation process will substitute ¢; for all the occurrence of v;
in the precondition, effects, term-condition, and plan body s (for all 1 < i < j).
The instantiation of p wrt. binding 7 is denoted by p - 7, or pn for simplicity.

We define some auxiliary functions. For any operator «, let pre(a) and
post(a) return the conjunction of the preconditions and effects specified for
a respectively, let A(a) returns the binding if « is an instantiated operator.
For team operator I', |I'| returns the minimal number of agents required for
executing I'. For any plan p, in addition to pre(p), post(p) and A(p) as defined
above, tc(p), x(p), and body(p) return the conjunction of termination-conditions,
the termination type (€ {success, failure, €¢}), and the plan body of p, respec-
tively. The precondition, effects and termination-condition components of a plan
are optional. When they are not specified, pre(p) and post(p) return true and
Xx(p) = €. For any statement s, isPlan(s) returns true if s is of form (p t) or
(Do A (p t)) for some A, where p is a plan defined in P; otherwise, it returns
false. (SEQ s1 --- s;) is abbreviated as (si;---;s;). € is used to denote the
empty Mallet process statement. For any statement s, £;s = s;e = s. (wait
until ¢) is an abbreviation of (while (cond —¢) (do self skip)) %, where skip is
a built-in individual operator with pre(skip) = true and post(skip) = true (i.e.,
the execution of skip changes nothing).

Messages Control messages are needed in defining the operational semantics
of MALLET. A control message is a tuple (type, aid, gid, pid, - - -), where aid €
Agent, gid € wf fs, pid € PU{nil}, and type € { sync, ctell, cask, unachievable
}. A message of type sync is used by agent aid to synchronize with the recipient
with respect to the committed goal gid and current activity pid; a message of
type ctell is used by agent aid to tell the recipient about the status of pid; a
message of type cask is used by agent aid to request the recipient to perform
pid; a message of type unachievable is used by agent aid to inform the recipient
of the inachievability of pid.

MALLET has a built-in domain-independent operator send (receivers, msg),
which is used for inter-agent communications. pre(send) = true. We assume the

4 The keyword “self” can be used in specifying doers of a process. An agent always
evaluate self as itself.

execution of send always succeeds. If (typ, a,---) is a control message, the effect
of send(a, (typ, a,---)) will assert (typ a ---) as a fact into the agent a’s belief
base. For instance, when agent a; receives message (sync,as,g,p), predicate
(sync az g p) will be appended as a fact into the belief base of a;.

Goals and Intentions A goal g is a pair (¢, A), where A C Agent is a set
of agents responsible for achieving a state satisfying ¢. When A is a singleton,
g is an individual goal; otherwise, it is a team goal.

An intention slice is of form (¢, A) < s, where the execution of statement
s by agents in A is to achieve a state satisfying . An intention is a stack of
intention slices, denoted by [wo)\ -+ \wx] (0 < k), where w; (0 < i < k) are of
form (4);, A;) < s;. wo and wy, are the bottom and top slice of the intention, re-
spectively. The ultimate goal state of intention h = [(¢g, Ag) «— so\ - \wk]
is 1o, referred to by o(h). The empty intention is denoted by T. For h =
[wo\ -+ \wi], [P\w'] & [wo\ - \wr\w']. If w; = true <« ¢ (0 < i < k), then
h=[wo\ "+ \wi—1\wit1\ - \wk]. Let H be the intention set.

Definition 1 (configuration). A Mallet configuration is a tuple (B, G, H,),
where B,G, H,0 are the belief base, the goal base, the intention set, and the
current substitution, respectively. And, (1) B =L, (2) for any goal g € G,
B [~ g, and g ~L hold.

B, G, H,0 are used in defining Mallet configurations, because beliefs, goals,
and intentions of an agent are dynamically changing, and a substitution is re-
quired to store the current environment bindings for free variables. Plan base P
is omitted since we assume P will not be changed at run time.

Similar to [15] we give an auxiliary function to facilitate the definition of
semantics of intentions.

Definition 2. Function agls is defined recursively as: agls(T) = {},
and for any intention h = [wo\ -+ - \wk—1\ (Y, Ax) — sx] (£ >0),
agls(h) = {¢¥r} Uagls(Jwo\ - - - \wk—1])-

Note that goals in G are top-level goals specified initially, while function
agls returns a set of achievement goals generated at run time in pursuing some
(top-level) goal in G.

4 Operational Semantics

Usually there are two options to defining semantics for an agent-oriented pro-
gramming language: operational semantics and temporal semantics. For instance,
temporal semantics is given to MABLE [16]; while 3APL [17] and AgentSpeak(L)
[18] have operational semantics, and transition semantics is defined for ConGolog
based on Situation calculus [19]. Temporal semantics is better for property verifi-
cation using existing tools, such as SPIN (a model checking tool which can check
whether temporal formulas hold for the implemented systems), while operational
semantics is better for implementing interpreters for the language.

We define an operational semantics for MALLET in terms of a transition
system in the hope that it can guide the implementation of interpreters. Each
transition corresponds to a single computation step which transforms the system
from one configuration to another. A computation run for an agent is a finite
or infinite sequence of configurations connected by transition relation —. The
meaning of an agent is a set of computation runs starting from the initial config-
uration. We assume a belief update function BU (B, p), which revises the belief
base B with a new fact p. The details of BU is out the scope of this paper. For
convenience in defining semantics, we assume two domain-independent opera-
tors working on B: unsync(v, p) and untell(v), s). Their effects are to remove
all the predicates that can be unified with sync(?a,, p) and ctell(?a,), s, id),
respectively, from B.

4.1 Semantics of beliefs, goals and intentions in MALLET

We allow explicit negation in B, and for each b(t) € B, its explicit negation is
denoted by b(t). Such treatment enables the representation of unknown.

Definition 3. Given a Mallet configuration M = (B,G, H,0), for any wff ¢,
any belief or goal formula 1, 1), any agent a,

M = Bel(6) iff B = 6,

M & —Bel(6) iff B E o,]

M = Unknown() iff B~ ¢ and B [~ ¢,

M = Goal(9) iff I¢', A) € G such that ¢' = ¢ and B} ¢,

M = —Goal(¢) iff M = Goal(¢),

M = Goal,(¢) iff 3¢, A) € G such that a € A, ¢/ = ¢ and B |~ ¢,
M = —Goal(¢) iff M = Goal(¢), M = —Goal,(¢) iff M = Goal,(d),
M AW iff M=t and M = o,

M = Intend(¢) iff ¢ € Upcy agls(h).

© 0RO o~

4.2 Transition system

We start with the semantics of termination. As shown in the syntax, termination-
conditions can be specified for a plan (we assume the execution of operators
always succeed). Given a configuration (B, G, H,0), a plan template (p v) and
an invocation (p t), let n = {v/t}. (B,G, H,0) = isTermed(p), iff either (1)on
entering, A7 - B = pre(p)dnt, and it is specified that plan invocation (p t) fails
when pre(p) is false; or (2)in execution, 37 - B |= te(p)fnt °; or (3)on exiting,
At - B | post(p)Onr. If (B,G, H,0) |= isTermed(p) holds, a predicate of form
(termed p t) will be asserted into B, so that in later transitions (isTermed(p)
may be inderivable then) the termination can be propagated upwards to a higher
plan level.

5 Tt is a successful termination if x(p) = succeed, and a failure termination if x(p) =
failure. For simplicity, failure termination is assumed in the follows.

Definition 4 (semantics of termination). Let s be any Mallet statement.
B = termed(s) iff
(termed p t) € B, if s = (p t), where (p v) € Plan
(termed p t) € B, if s= (Do A (p t)), where (p v) € Plan
B = termed(l1) V termed(lz), if s = (if (cond) 1 I3)
B [termed(l1), if s = (Whlle (cond ¥) 11)
B [termed(l1), if s = (I1;- -+ ;1m)

BE /\ termed(l;), if s = (choice Iy ---1)

i=1

BE \/ termed(l;), if s = (par l1---lm)

i=1
At - B = YT, if s = (agent-bind v)
BE \/ termed(l17), if s = (forall (cond v) I1)
re{0|B=yo}

BE \/ termed(l17), if s = (foreach (cond) I1)
Te{0| By}

BE \7 termed(l;), if s = (JointDo AND (A1 l1) -+ (Am lm))

=1

BE 7\termed(l¢), if s = (JointDo OR (A1 l1) -+ (Am Im))

B =) termed(ly), if s = (JointDo XOR. (A1 1) -+ (Am Im))
=1

Note that in Definition 4, the truth of termed in the clauses for if and while
is independent from the condition v because the truth of ¥ might have been
changed during the execution of the sub-statements (say, l1). Also, conjunction
rather than disjunction is used in defining the choice clause because the seman-
tics of choice allows re-try upon failures: a choice statement fails only when all
the branches have failed.

Definition 5 (Goal selection).

dg=(,A) € G, Ipwv) €P, self € A,
B = pre(p)0T, post(p)0T =1, v is not free in 07
(B,G,0,0) — (B,G\ {g},{[(¥,A) — (Do A (p 0)97)]}797>’(
Vg = (Y, A) € G,¥(pv) € P Ar-post(p)dr E ¢
(B,G,0,0) — STOP (G2)

G1)

(G3)

(B,0,0,0) — SUCCEED

In Definition 5, Rule G1 states that when the intention set is empty, the
agent will choose one goal from its goal set and select an appropriate plan, if

there exists such a plan, to achieve that goal. Rule G2 states that an agent
will stop running if there is no plan can be used to pursue any goal in G. Rule
G3 states that an agent terminates successfully if all the goals and intentions
have been achieved. G1 is the only rule introducing new intentions. It indicates
that an agent can only have one intention in focus (it cannot commit to another
intention until the current one has already been achieved or dropped). To allow
intention shifting (i.e., pursue multiple top-level goals simultaneously), G1 can
be revised by replacing the empty intention set with H.

As defined in Definition 6, when the execution of the top intention slice
is done (the body becomes ¢), the corresponding achievement goal v, will be
checked. If succeed, the intention will be revised with the top slice popped,
and the execution of this intention will proceed (EI1). Otherwise, the execution
stops (EI2); this means something was wrong with the plan selection.. Rule EI3
states that an intention is done successfully and dropped if the ultimate goal v
is satisfiable. If the agent believes the execution of s is terminated but v is not
satisfiable, it stops abnormally ((EI4)).

Definition 6 (End of intention/intention slice).

B E 0
(B, G, [\wk—1\(¥x, Ax) «— €],0) — (B,G, [- - \wk-1],0)’ (EI1)
B ¥ i
(B,G,[- \wr_1\(Ur, Ar) — €], 0) — STOP’ (E12)
B ': o0, {[("/}O,Ao) — 3]} c H (EI3)

(B,G,H,0) — (B,G, H — {[(¢0, Ao) < s]},6)’
B £ 400, B | termed(s)
(B, G, HU{[(t0, Ao) — s]},0) — STOP’

(EI4)

The successful execution of an agent-bind statement is to compose the sub-
stitution obtained from evaluating the constraint ¢ with 6 (Rule B1). The agent
stops if there is no solution to the constraints (Rule B2).

Definition 7 (Agent selection). For intention
h= [UJ()\ T \(wka Ak) - (agent'bind v ¢)7 5]7

B = ¢01
<B7G7 h7 6> - <B7G7 [“JO\' : \("/)MAIC) — 5]797—>7

AT - B = ¢01
(B,G,h,0) — STOP’

(B1)

(B2)

Given any configuration (B, G, H,), for any instantiated plan p, variables
in body(p) are all bounded either by some binding 7 where B = pre(p)fr, or by
some preceeding agent-bind statement in body(p).

Definition 8 (Sequential execution). For intention
<B7 @7 [(true, Ak) H ll]7 0> — <B/a Q)v [(true, Ak) H S], 9/>
<37 G? h? 0> - <B,7 G7 [UJO\ ce \(’(/}lw Ak) — l27 e 7l’m}a 6/>

(SE)

10

Definition 9 (Individual operator execution). For intention
h = [wo\ -+ - \(¢w, Ax) — (Do a (a t)); s],
ha = [wo\ -+ \(the, Ar) (o £);], where (a v) € Toper, n = {v/t},

self = a, B | pre(a)dnr, B = BU(B, post(«)0nT)
(B,G,h,0) = (B, G, [wo\ - - - \(¢x, Ax) < ; 5], 0)
self = a, At - B |E pre(a)dnt
(B,G,h,0) = (B, G, [wo\ - - - \(¢r, Ax) — 5';5],0)
self #a
(B.C.1.8) — (B.C, oo\ N A) — T 0]
B E pre(a)fnt, B = BU(B, post(a)fnr)
<B7G7 h279> - <B,7G7 [WO\ T \("pkvAk) — SL9>’ (
At - B = pre(a)inT
(B,G, h2,0) — (B,G, |wo\ - \(¥r, Ax) < s";5],0)

,(I1)

» (12)

13),

14)

» (I5).

where | = (Do self (send A \ {self}, (ctell, self, o, a))),
lo = (wait until ctell(a, vo,) € B),

s’ = (wait until 37 - B = pre(a)dnT); (Do self (a t))),
s"" = (wait until 37 - B |= pre(a)inT); (a t)).

Each agent in a team needs to evaluate the top intention slice. Suppose the
intention is of form h. In case that an agent is the assigned doer, if the precondi-
tion of the individual operator is satisfiable wrt. the agent’s belief base, then the
execution of the operator is to update the belief base with the postcondition of
the action (I1); otherwise, the agent has to wait until more information becomes
available (I2). In case that an agent is not the assigned doer, since the intention
is derived from part of a team process, before the agent can proceed, it has to
wait until being told about the accomplishment of @ (I3). Rules I4 and I5 are
similar to I1 and I2 except that the intention is now of form ho, which by default
all the individual agents in Ay are the doers of a.

To execute a team operator, all the involved agents need to synchronize.
Let Y (3, I") = {d/|sync(a’, 1, I") € B}, which is a set of agent names who has
already sent out synchronization message wrt. ¢ and I

In Definition 10, Rule T1 states that if the agent itself is one of the assigned
doers, the preconditions of the team operator holds, and the agent has not syn-
chronized with other agents in A, it will first send out synchronization messages
before executing I'. Rule T2 states that the agent itself has already synchronized
with others, but has not received enough synchronization messages from others,
then it continues waiting. Rule T3 states that the execution of I" will update B
with the effects of the team operator, and before proceed, it has to retrack the
sync messages regarding I (ensure correct agent behavior in case that I" needs
to be executed later) and inform the agents not in A of the accomplishment of
I'. Rule T4 deals with the case when the preconditions of I" does not hold, and
Rule T5 deals with the case when an agent does not belong to A; it has to wait
until being informed.

11

Definition 10 (Team operator execution). For intention
h = [wo\ - -~ \(¢w, Ak) = (Do A (I t)); 5], where (I v) € Toper, n = {v/t},

self € A, B |= pre(I')0nT, sync(self,vo, ") ¢ B

(B,G,h,0) = (B,G, [wo\ - \(¢x, Ax) — s';5],0)’
self € A, B = pre(I)0nr, sync(self,vo, ") € B,|Y (o, I")| < |I'|

(B,G,h,0) — (B,G,wo\ -+ \(¢r, Ar) — s2;5],0)

self € A, B = pre(I")0nT,

sync(self,vo,T") € B, |Y (¢o,I')| > |I'|, B’ = BU(B, post(I")0nT)

(B,G,h,0) — (B',G, [wo\ - - - \(¢r, Ak) < s3;3],0)

self € A, At - B = pre(I")0nt
(B,G,h,0) — (B,G, [wo\ - - \(¢¥r, Ax) < s%; s],0)
self € A
(B,G,h,0) = (B, G, [wo\ - - \(¢n, Ax) — 5°;], 0)

(T1)

,(T2)

,(T3)

(T4)

(T5)

where s* = (Do self send(A, (sync, self,10,'))); (Do A (I t)),

s? = (wait until (|Y (v,)| > |T'|)); (Do A (I t)),

5% = (Do self unsync(vo, I'));(Do self send(Ay \ A, (ctell, sel f, o, IT'))),
o = (wait until 37 - B = pre(I")0n7); (Do A (I t)),

s = (wait until Va € A - ctell(a, o, ") € B).

The semantics of joint-do is a little complicated. A joint-do statement implies
agent synchronization both at the beginning and at the end of its execution. Its
semantics is given in terms of basic constructs.

Definition 11 (Joint-Do). For intentions

hi = [wo\ - \(¥k, Ay) < (joint-do AND (A 1) -~ (A; In)); 5],
ha = [wo\ -+ \(¥k, Ax) < (joint-do OR. (A} lr)--- (4} In));s],
= [wo\ - \(¥k, Ax) < (joint-do XOR. (A} I1)--- (AL 1n));s],

Nj=y Aj = 0,self € Al

(B,G,h1,0) — (B, G, [wo\ -+ \(¢n, Ak) < s';5],0)’

M, Af = 0, self € A (

(B,G, h2,0) — (B,G,[wo\ - - - \(Yr, Ar) < s9;521;522; 50; 5], 0)’

self € A}, isSelected(A})

(B,G, hs,0) — (B, G, [wo\ - \(t, Ak) < s';5],0)’
self € A}, —isSelected(AS)

(B,G, h3,0) — (B, G, [wo\ - - \(Yr, Ak) — 5% % 5],0)’

(J1)

J2)

(J3)

(J4), where

= (Do self (send |J]_ (Sync sel f, o, nil)));
(walt until (Va € U " A% sync(a, o, nil) € B)); (Do self (unsync vo,nil));
s%; (Do A} I);s
= (If(cond /Hlm,a ctell(a, vo,1z,0) € B)

(s*; (Do A} I;); (Do self (send Uy 2 4G, (ctell, sel f, 1o, 15,1))))),
s3> = (If (cond Aa - cask(a,o,l;) € B)

((Do self (send |J]_ 17;&1‘4 (ctell, self,vo,1i,0)));

(Do self (send A\ {self}, (cask,self,o,1:))))),

81
S

12

5?2 = (while(cond 3¢y, a - ctell(a, o, l,0) € B)
(wait until Vb € A, - ctell(b, o, z,1) € B); (Do (untell ¢y,l;))).

Rule J1 defines semantics for joint-do with share type “AND”. It states
that before and after an agent does its task [;, it needs to synchronize (i.e., s°)
with the other teammates wrt. ;. A joint-do statement with share type “OR”
requires that at least one sub-process has to be executed. In Rule J2, the joint-do
statement is replaced by s%; s21; s22; s9. 52! states that if an agent has not received
any message regarding the start of some sub-statement [, (i.e., this agent itself is
the first ready to execute the joint-do statement), it will sequentially do (a) s:
if among A} this agent is the first ready to execute ;, then tell all other agents
not in A’ regarding the start of I; (i.e., {ctell---0)) and request other agents in
A’ to execute l;; (b) agents in A, together execute I;; (c) tell other agents not in
Al the accomplishment of I; (i.e., {ctell---1)). s*? states in case that this agent
was informed of the start of some other sub-statement [, it needs to wait until
being informed by all the doers that [, has been completed. The semantics of
joint-do with share type “XOR” is based on a function isSelected(): if an agent
belongs to the group of selected agents, it simply synchronizes and executes
the corresponding sub-statement (Rule J3); otherwise, only synchronization is
needed (Rule J4).

Definition 12 (Plan entering, executing and exiting). Let

hi = [wo\ -+~ \(¢k, Ak) — (Do A (p t)); 5],

hi = [wo\ -+ \(¥k, Ax) — (Do A (p t))0n7; s0],

R = [wo\ -+ \(Yr, Ar) < (Do A (p t))0n7; s6\(post(p)nT, A) < endp],

R = [wo\ - \(¥r, Ax) < (Do A (p t))0nT; 50\ (post(p)OnT, A) — li;- - ;Im;endp],
where (p v) € Plan, n = {v/t},

self ¢ A
(B, G, h1,0) = (B, G, [wo\ - - - \(¢r, Ax) — % 5],0)
self € A,(B,G,h1,0) = isTermed(p), B’ = BU(B, (termed p t))
(B,G,h1,0) — (B',G, h1,0)
self € A, B = pre(p)ont (P3)
(B,G, h1,0) — (B, G, [h}\(post(p)OnT, A) — s';endp],OnT)’
self € A, (B,G,h{",.) E isTermed(p), B’ = BU(B, (termed p t))

, (P1)

, (P2)

(B,G,hY{",1) — (B',G,hY, 1) (P4)
self € A, B = termed(l1), B' = BU(B, (termed p t)) (P5)
(B,G,hy", 1) — (B',G, kY1) ’
self € A, B [~ termed(p), B' = BU(B, post(p)f) (P6)
<B7G7 hlll, 9> - <B,7 G7 [w()\ T \(wkaAk) — 3]7 9)7
self € A, B = termed(p) (PT). where

<B7G7h/1/79> - <B7G7 [WO\' . \(wkvAk) — 32]’0>7

s' = (Do self (send A, (sync, self, o, p))); (wait until (Ya € A-sync(a,bo,p) € B));
(Do self (unsync v, p)); body(p)0nT;

5 Some negotiation strategy is required to define isSelect; this is left to the designers
of MALLET interpreters.

13

(Do self (send Ag, (ctell, sel f, o, p))); (wait until (Va € A - ctell(a,¢o, p) € B)),
s? = (Do self (send Ay, (unachievable, self, vo, p)));

(wait until (Va € A - unachievable(a, o, p) € B)),
5% = (wait until (Va € A - unachievable(a, o, p) € BV Ya € A - ctell(a,o,p) € B)).

Plan execution is a process of hierarchical expansion of (sub-)plans. Rule P1
states that if an agent is not involved, it simply waits until p is done. Before
entering a plan, an agent first checks the corresponding pre-conditions. Rule P2
applies when the preconditions does not hold and “wait” is specified as agents’
response (rules can be given for other responses such as “fail” and “achieve”,
refer to syntax). Rule P3 applies when the preconditions holds. s! states that on
entering a plan, a new intention slice will be appended where the agent needs to
synchronize with others (when everyone is ready the synchronization messages
are dropped to ensure that this plan can be properly re-entered later), and
then execute the plan body instantiated by the environment binding 6 and local
binding 7, which is followed by communications (tell other agents not involved
in p about the accomplishment of p), synchronizations, and endp. Rule P4 and
P5 applies when executing a plan. An agent will give up executing p in case
that either isT'ermed(p) is derivable from the current configuration (Rule P4);
or the first statement of the top intention slice is terminated (Rule P5). In both
cases, all the statements before endp are omitted. On exiting a plan (endp is
the only statement in the body of the top intention slice), the top intention slice
is popped. If p has been successfully executed, the DO statement will be dropped
and B is updated with the effects of p (Rule P6); otherwise, inform agents in A
of the inachievability of p (Rule P7). The semantics of plan invocation of form
(p t) (i.e., no doers are explicitly specified) can be similarly defined, except that
Ay will be used as the doers of p.

The choice construct can be used to specify explicit choice points in a com-
plex team process. For example, suppose a fire-fighting team is assigned to extin-
guish a fire caused by an explosion at a chemical plant. After collecting enough
information (e.g., chemicals in the plant, nearby dangerous facilities, etc.), the
team needs to decide how to put out the fire. They have to select one plan if there
exist several options. The choice construct is composed of a list of branches,
each of which specifies a plan (a course of actions) and may be associated with
preference conditions and a priority information. The preference conditions of a
branch is a collection of first-order formulas; the evaluation of their conjunction
determines whether the branch is workable under that context. The priority in-
formation is used in selecting a branch in case that the preference conditions of
more than one branch are satisfiable.

Given a configuration (B, G, H, §) and a statement (choice Bry; Bry - -- Bry,)
where Br; = (pref; pro; (DO A; (p; t:))), let BR = {Br;|]1 <i<m}, BR_ C
BR be the set of branches in BR already considered. We assume B can track the
changes of BR_. Let BR'T = {Bry|37-B = prefi-07,1 <k < m}\ BR_, which
is the set of branches that has not been considered and the associated preference
conditions can be satisfied by B. In addition, let BR® be the subset of BR*

14

such that all the branches in BR® have the maximal priority value among those
in BR*, and ram(BR?) can randomly select and return one branch from BR®.

Definition 13 (Choice construct). Let
h=[wo\ - \(Yk, Ar) < (choice Bry Bry--- Bry);s],
h1 = [h\(true, Ag) — (DO A; (p; t:)); cend,],

ram(BR®) = Br;, B’ = BU(B, BR_.add(Br;))

(B,G,h,0) — (B',G, [h\(true, Ay) — (DO A; (p; t;)); cend;],)’ (C1)
ram(BR®) = null
:(C2)

(B,G,h,0) — (B,G, h,0)

self € Ai,(B,G, h1,0) = isTermed(p;), B' = BU(B, (termed p; t;)) (C3)
(B, G, h1,0) — (B, G, h,0) ’
self € A, B |= termed(p;:) (C4)

(B, G, [h\(true, Ay) < cend;],0) — (B, G, h,0)’
self € A;, B} termed(p;), B' = BU(B, post(p;)6) (cs)

(B, G, [hP\(true, Ax) «— cend;],0) — (B’,G, [wo\ - - \(Vk, Ar) < s],0)

In Definition 13, Rule C1 applies when there exists a workable branch. The
intention h is appended with a new slice ended with cend; so that the agents
in A can backtrack to the latest choice point as p; fails. An agent has to wait
(e.g., for more information becomes available) if there is no workable branch
(Rule C2). Rule C3 applies when an agent starts to do p; but the preconditions
does not hold (i.e., isTermed(p;) is true on entering): it returns to the choice
point (to try another branch). When an agent comes to statement cend; and
finds out that p; is terminated abnormally (e.g., the performance does not result
in the expected effects), then return to the choice point (Rule C4). In case that
an agent comes to statement cend; and the execution of p; is successful, it
proceeds to the next statement following the choice point (Rule C5).

Par is a construct that takes a list of processes and executes them in any
order. For instance, an agent can safely execute walking and chewing gum in
either order or at the same time with no conflict. When each process in the list
has completed successfully, the entire par process is said to complete successfully.
If at any point one of the process fails, then the entire par process returns failure
and gives up executing any of the statements after that point.

Intuitively, a parallel statement with k branches requires the current process
(transition) split itself into k processes. These spawned processes each will be
responsible for the execution of exactly one parallel branch, and they have to be
merged into one process immediately after all have completed their responsibility.
To prevent the spawned processes from committing to other tasks, their initial
transitions need to be established such that (1) the intention set only has one
intention with one intention slice at its top; (2) the goal base is empty (so
that the transition cannot proceed further after the unique intention has been
completed). Because the original goal set and intention set have to be recovered
after the execution of the parallel statement, we adopt an extra transition, which
has the same components as the original transition except that # is pushed as

15

the top intention slice. This indicates the intention is suspended. Note that the
other intentions in the intention set may still be executable, which may change
the belief base and substitution of the transition.

Definition 14 (Parallel construct). Let ho = [wo\ - - - \(¢k, Ak) — Sk; 5],
h = [wo\ - - \(W¥r, Ax) — sg; s\#], where s, = (par l1 la-- 1),
T; = (B, 0, [(true, Ax) < l;],0) =" (Bj, 0, [(true, Ax) «— €],0;) A B;j [~ termed(l;), and
Pg = (B,G,h,0) || (B,0, [(true, Ax) < 11],0) || --- || (B, 0, [(true, Ar) < Im],0),
B [~ termed(sk)
(B,G, ho,0) — Pg’
/\;.":l(Tj), B = BU(U;":1 Bj,By),0 = 0001 -0,
<BO’ G, h, 90> - <B,7 G, [WO\ T \("/)lw Ak) — S] 9l>
37, (B, 0, [(true, Ax) — 15],0) =" (Bj, 0, [(true, Ax) «— 1}],0;), Bj = termed(l}) (PA3)
<BO,G,h,60> — <B07G7 h0790> ’

Now, it’s easy to define semantics for composite processes. For instance,
forall construct is an implied par over the condition bindings, whereas foreach
is an implied seq over the condition bindings. The constructs forall and foreach
are fairly expressive when the number of choices is unknown before runtime.

(PA1)

,(PA2)

Definition 15 (Composite plans). Let
h1 [wo\ -~ \(¢ow, Ax) — (if (cond ¢) Iy l2);]

= [wo\ - \(¢x, Ax) < (while (cond ¢)); s],
= [wo\ ‘- - \(¢¥%, Ax) < (foreach (cond ¢) 1);s],
e = o\ 42) — (forall (cond) o
B [¢01 (s1)
<Bv Gv {hl}’ 0> - <Bv G7 {[“"O\ o \(d}]ﬁ Ak) - llT; S”” 6>7
At - B E ¢01 (s2)
<Bv G, {hl}’0> — (B, G, {[WO\ T \(¢k7 Ag) — l2;]} 9)
B = ¢0r
(B,G,{h2},0) — (B,G,{|wo\ - - - \(¥x, A) < I7; (while (cond ¢) I);s],6)’ (83)
At - B E ¢01 (S4)

(B, G, {h2},0) — (B,G, {[wo\ " - \(¢r, A) < s],0)’

3, Th - Nioy B E 907 o5

(B, G, (I}, 0) = (B, G (lon\ -~ \(bn An) — s Tl))
AT - B = ¢01

(B,G,{hs},0) = (B,G, {[wo\ - - \(¢r, Ax) < s]},0)’

I, TR /\;?:1 B = ¢07;

(B, G, {ha},0) — (B, G, {[wo\ - - \(¢r, A) < (par Ir1 ---I7y); 8]}, 0)
At - B |E ¢01

(B, G, {ha},0) — (B,G, {[wo\ - \(¥r, Ax) < s]},0)’

(S6)

(S7)

(S8)

5 Conclusion

MALLET is a language that organizes plans hierarchically in terms of different
process constructs such as sequential, parallel, selective, iterative, or conditional.

16

It can be used to represent teamwork knowledge in a way that is independent of
the context in which the knowledge is used. This paper defined an operational
semantics for MALLET in terms of a transition system, which is important in
further studying the formal properties of team-based agents specified in MAL-
LET. The effectiveness of MALLET in encoding complex teamwork knowledge
was already shown in the CAST system [8], which implemented an interpreter
for MALLET using PrT nets as the internal representation of team process.

References

1. Cohen, P.R., Levesque, H.J.: Teamwork. Nous 25 (1991) 487-512

2. Cohen, P.R., Levesque, H.J., Smith, .A.: On team formation. In Hintikka, J.,
Tuomela, R., eds.: Contemporary Action Theory. (1997)

3. Jennings, N.R.: Controlling cooperative problem solving in industrial multi-agent
systems using joint intentions. Artificial Intelligence 75 (1995) 195-240

4. Grosz, B., Kraus, S.: Collaborative plans for complex group actions. Artificial
Intelligence 86 (1996) 269-358

5. Tambe, M.: Towards flexible teamwork. Journal of AT Research 7 (1997) 83-124

6. Rich, C., Sidner, C.: Collagen: When agents collaborate with people. In: Proceed-
ings of the International Conference on Autonomous Agents (Agents’97). (1997)

7. Giampapa, J., Sycara, K.: Team-oriented agent coordination in the RETSINA
multi-agent system. Technical Report CMU-RI-TR-02-34, CMU (2002)

8. Yen, J., Yin, J., loerger, T., Miller, M., Xu, D., Volz, R.: CAST: Collaborative
agents for simulating teamworks. In: Proceedings of IJCAI’2001. (2001) 1135-1142

9. Tidhar, G.: Team oriented programming: Preliminary report. In: Technical Report
41, AAII, Australia. (1993)

10. Pynadath, D.V., Tambe, M., Chauvat, N., Cavedon, L.: Toward team-oriented
programming. In: Agent Theories, Architectures, and Languages. (1999) 233-247

11. Scerri, P., Pynadath, D.V., Schurr, N., Farinelli, A.: Team oriented programming
and proxy agents: the next generation. In: Proc. of the 1st Inter. Workshop on
Prog. MAS at AAMAS’03. (2003)

12. Rao, A.S., Georgeff, M.P., Sonenberg, E.A.: Social plans: A preliminary report. In
Werner, E., Demazeau, Y., eds.: Decentralized AI 3 —Proceedings of MAAMAW-
91), Elsevier Science B.V.: Amsterdam, Netherland (1992) 57-76

13. Kinny, D., Ljungberg, M., Rao, A.S., Sonenberg, E., Tidhar, G., Werner, E.:
Planned team activity. In Castelfranchi, C., Werner, E., eds.: Artificial Social
Systems (LNAI-830), Springer-Verlag: Heidelberg, Germany (1992) 226-256

14. Tidhar, G., Rao, A., Sonenberg, E.: Guided team selection. In: Proceedings of the
2nd International Conference on Multi-agent Systems (ICMAS-96). (1996)

15. Bordini, R., Fisher, M., Pardavila, C., Wooldridge, M.: Model checking agentspeak.
In: Proceedings of AAMAS-2003. (2003) 409-416

16. Wooldridge, M., Fisher, M., Huget, M., Parsons, S.: Model checking multiagent
systems with MABLE. In: Proceedings of AAMAS-2002. (2002)

17. Dastani, M., van Riemsdijk, B., Dignum, F., Meyer, J.J.C.: A programming lan-
guage for cognitive agents: Goal directed 3APL. In: Proc. of the 1st Inter. Workshop
on Prog. MAS at AAMAS’03. (2003)

18. Rao, A.: AgentSpeak(L): BDI agents speak out in a logical computable language.
In: MAAMAW’96, LNAT 1038, Springer-Verlag: Heidelberg, Germany (1996) 42-55

19. Giacomo, G.D., Lesperance, Y., Levesque, H.J.: ConGolog, a concurrent program-
ming language based on the situation calculus. AT 121 (2000) 109-169

17

Dynamics of Declarative Goals in Agent
Programming

M. Birna van Riemsdijk Mehdi Dastani Frank Dignum
John-Jules Ch. Meyer

Institute of Information and Computing Sciences
Utrecht University
The Netherlands
{birna, mehdi, dignum, jj}@cs.uu.nl

Abstract. In this paper, the notion of declarative goals as used in agent
programming is central. Declarative goals describe desirable states and
are updated during the execution of an agent. These goal dynamics are
analyzed by distinguishing and formalizing various notions of goal drop-
ping and goal adoption. Furthermore, possible motivations for an agent to
drop or adopt goals are identified. Based on these motivations, we define
specific mechanisms for implementing dropping and adoption. We show
how these mechanisms are related to the general definitions of dropping
and adoption.

1 Introduction

An important concept in agent theory, agent logics and agent programming
is the concept of a goal. In agent theory, goals are introduced to explain and
specify an agent’s (proactive) behavior. In this view, agents are assumed to
have their own objectives, for the achievement of which they initiate behavior
[21,14,3,7]. Various logics have been introduced to formalize the concept of goals
and reasoning about goals [17,2]. In these logics, a goal is formalized as a set
of states. What is important in these logics, is which conclusions can be drawn
from the existence of a certain goal set, i.e. which other goals can and cannot be
inferred, etc.

Many agent programming languages have been proposed to implement (rep-
resent and process) an agent’s goals [19,8,7,16,1]. The way in which goals are
dealt with varies from language to language. For example, different languages
propose programming constructs that capture different aspects of the concept
of a goal. Also, in some programming languages goals are interpreted in a pro-
cedural way as processes that need to be performed while in other programming
languages goals are interpreted in a declarative way as states to be reached. In
this paper, we are interested in this declarative interpretation of goals. Declara-
tive goals have a number of advantages in agent programming. They for example
provide for the possibility to decouple plan execution and goal achievement [20].
If a plan fails, the goal that was to be achieved by the plan remains in the goal

18

base of the agent. The agent can then for example select a different plan or
wait for the circumstances to change for the better. Furthermore, agents can
be implemented such that they can communicate about their goals [13]. Also, a
representation of goals in agents enables reasoning about goal interaction [18].

Reasoning with goals is essential in agent logics as well as in agent program-
ming. In agent logics, reasoning with mental attitudes such as beliefs and goals is
usually (formally) done through the use of epistemic (or doxastic) logics [17,10].
The logics for beliefs are well developed and give many properties to the beliefs
[12]. By contrast, the logical axioms used for reasoning about goals are only the
D-axiom (taking care that goals are consistent) and the K-axiom (which makes
it possible to combine goals).

The considerations above lead to the fact that reasoning about goals in the
sense of making derivations, can be kept very limited and the logic to represent
it simple. The biggest role of goals in agents is thus not the ability to reason
about them, but their motivational power of generating behavior. This means
that we are interested in the relations between goals on the one hand and beliefs
and behavior of the agent on the other hand. A certain plan or behavior is
generated because of a goal. It might disappear again when the goal disappears
or maybe the goal disappears when there is no feasible plan to reach the goal. In
this light, we are more interested in the dynamics of goals than in the reasoning
about goals. In particular, we are concerned with questions such as when does
an agent adopt or drop a goal, how long does the goal persist, etc.

This paper aims to analyze these dynamics of declarative goals in the context
of agent programming. We will do this by distinguishing and formalizing vari-
ous notions of goal dropping (section 3) and goal adoption (section 4). In these
sections, also possible motivations for an agent to drop or adopt goals are iden-
tified. Based on these motivations, we define specific mechanisms for capturing
dropping and adoption in agent programming languages. Furthermore, we show
how these mechanisms are related to the general definitions of dropping and
adoption. Finally, in section 5, we conclude the paper and discuss some future
research.

2 Preliminaries

In order to facilitate discussion, we give a number of definitions. In the sequel,
a language defined by inclusion shall be the smallest language containing the
specified elements.

First, we define the notion of an agent configuration. An agent configuration
consists of a belief base, a goal base, a plan and a set of rules as defined below.

Definition 1. (agent configuration) Let £ with typical element ¢ be a proposi-
tional language with negation and conjunction, let Plan be a language of plans
and let R be a set of rules!. An agent configuration, typically denoted by ¢, then

! Agents will in general have multiple sets of rules of various types, such as rules
to select or revise plans and rules to specify goal dynamics. In this paper, we will

19

is a tuple (0,7, m, R) where o C L is the belief base, v C L is the goal base,
7 € Plan is the plan? of the agent and R is a set of rules.

In the sequel, we will use 0., 7., m. and R, to denote respectively the belief
base, the goal base, the plan and the set of rules of an agent configuration c.

This paper is based on the idea that an agent consists of data structures
representing the agent’s mental attitudes such as beliefs, goals and rules. Agents
from the 3APL language family [11,19,8] are for example defined based on this
view, but the ideas that are presented in this paper apply to any type of cognitive
agent with similar mental attitudes.

During the execution of an agent, the mental attitudes of the agent can
change through for example plan execution and rule application. It will often be
the case that e.g. multiple rules are applicable in a certain configuration. The
decision of which rule to apply, can then be made by the agent interpreter or
so called deliberation cycle [6], for example based on a certain ordering of the
rules.

Given an agent configuration, we are interested in the question whether the
agent has certain beliefs and goals. For this reason, we introduce a belief and a
goal language.

Definition 2. (belief and goal formulas) The belief formulas £p with typical
element 3 and the goal formulas L with typical element « are defined as follows.

—if ¢ € £, then Bé € L and Go € L,
—if 8,8 € Lg and k,k" € Lg, then =3,8AN 5" € Lg and —k,k Ak € Lg.

Below, we define a semantics for the belief and goal formulas, that we call the
“initial” semantics. In the sequel, we will introduce various other semantics.

Definition 3. (initial semantics of belief and goal formulas) Let . be an
entailment relation defined for £ as usual, let ¢ € £ and let (0,7, 7, R) be an
agent configuration. Let ¢ € LU L. The initial semantics =g of the belief and
goal formulas is then as defined below.

(o,v,m, R) Eq B¢ SolErs o

<U:777F7R> 'ZO G¢ Aaaiet ':ﬁ(b

<017a7raR> ':0 ' <~ <0‘7’7,7T,R> %0 ¥

<0’,’y,7l',R> ':0 P12 = <07777T»R>):0 1 and <0-7’Y’777R> ':0 P2

In this paper, we assume the semantics of agent programming languages are
defined in terms of a transition system [15]. A transition system is a set of
derivation rules for deriving transitions. A transition is a transformation of one
agent configuration into another and it corresponds to a single computation step.

however consider only one type of rule at the time, which is why it suffices to have
only one set of rules in the agent configuration.

2 For the purpose of this paper, an agent configuration could be defined without a
plan component, as it will not be used in the definitions. We however include it for
ease of possible extensions of the paper.

20

In the sequel, we use ¢ — ¢’ to indicate a transition from agent configuration c
to ¢’. It will sometimes be useful to add a label, denoting the kind of transition,
e.g.c—yc.

The following definitions will be used in the sequel and are introduced for
notational convenience. The first definition below specifies what we mean by an
expansion or contraction of the beliefs of an agent with a certain formula. The
second definition specifies two notions of a formula ¢ being a goal in a goal base
7, the first defined as membership of a set (modulo equivalence) and the second
as entailment.

Definition 4. (expansion and contraction of beliefs) Let ¢, be agent config-
urations. Let ¢ € £ and 8 € Lp. Then, we define respectively the notion of
expanding the beliefs with ¢ or 3, and contraction of the beliefs with ¢ or 3 over
the transition ¢ — ¢’ as follows.

expansiong(p,c — ') < clEBpand ¢ = Bo
expansiong(B,c — ') < cES andd ES
contractiong (¢, c — ') < ¢ = B¢ and ¢ [~ B¢
contractiong(B,c —)< ckEL andd B

Definition 5. (¢ is a goal in v) Let v be a goal base and let ¢ € £. We then
define the following notions specifying when ¢ is a goal in v: goalset(¢,vy) <
¢ € v : ¢ = ¢ and goalent(¢,y) < v Er ¢. Note that goalse:(d,7) implies
goalent (9, 7).

3 Goal Dropping

In this section, we consider possible reasons or motivations for an agent to drop
a goal. The notion of goal dropping can be related to the level of commitment
an agent has towards a goal. If the agent is not committed at all, it might
for example drop its goals right after they are adopted. If the agent is very
committed or even fanatic, it will not at all be inclined to abandon its goals.
These various levels of commitment or the way in which a certain agent deals
with goal abandonment, is often referred to as a commitment strategy for that
agent [17]. Although in principle one could consider any level of commitment for
agents, the common commitment strategies require some level of persistency of
goals [20]. In sections 3.1, 3.2 and 3.3, we will describe two widely used strategies
in some detail and discuss a few more possibilities (together with associated
problems). Before we can go into a discussion on various commitment strategies
however, we will first define the notion of goal dropping in general.

As we explained in section 2, the execution or semantics of an agent can be
described in terms of transitions. The phenomenon of dropping a goal naturally
involves a configuration change of some sort and goal dropping can thus be
defined as a property of these transitions. Informally, a goal ¢ is dropped over
a transition ¢ — ¢, if ¢ is a goal in ¢, but not in ¢’. In order to be more precise
about what we mean when we say that a goal is dropped, we first need to specify
what it means that “¢ is a goal in a configuration”.

21

We distinguish two different notions of what we can consider to be a goal
in an agent configuration. Firstly, a formula ¢ can be viewed as a goal in a
configuration c if ¢ is in the goal base, i.e. ¢ € 7.3. Secondly, a formula ¢ can
be considered as a goal in ¢ if the formula G¢ holds, i.e. ¢ = G¢ where = is
an entailment relation defined for L. If G¢ is defined such that it holds if and
only if ¢ € ., these notions coincide. As we will however see in the sequel, this
is usually not the case. Based on these two views on the goals of an agent, we
now distinguish two perspectives on dropping, i.e. a so called deletion perspective
and a satisfaction perspective. The first is based on the deletion of a goal from
the goal base, whereas the second is based on the satisfaction of a formula Gg.

Definition 6. (dropping, deletion perspective) Let ¢, ¢’ be agent configurations
and let ¢ — ¢’ be a transition. Let ¢ € £. Then, we define the notion of the goal
¢ being dropped over the transition ¢ — ¢’, denoted by droppedge;(¢,c — '), as
follows: droppedgei (¢, c —) < goalse(¢,7e) and =goalset (¢, ver)-

Definition 7. (dropping, satisfaction perspective) Let ¢,¢’ be agent configu-
rations and let ¢ — ¢ be a transition. Let = be an entailment relation de-
fined for L5 and let ¢ € L. Then, we define the notion of the goal ¢ being
dropped over the transition ¢ — ¢/, denoted by droppedsq:(¢p,c — '), as follows:
droppedsat(p,c — ') < c = G and ¢ = Go.

In the definition of dropping from a satisfaction perspective above, we assume an
entailment relation |=, defined for L. One such entailment relation is specified
in definition 3 and in the sequel we will also define other entailment relations.
However, in the definition of dropping from a satisfaction perspective, we want
to abstract from these specific entailment relations and assume a relation |=.

3.1 Blind Commitment

An often mentioned and very intuitive reason for dropping a goal is, that the
agent believes to have achieved the goal [17,5]. In [17], an agent that only drops
its goals if believed to have achieved them, is called a blindly committed agent.
An agent that also drops its goals if believed to be unachievable, is called a single
minded agent.

A blindly committed agent should drop a goal ¢ if it comes to believe ¢. An
implementation of a blindly committed agent should thus be such that it drops
a goal ¢ as soon as it comes to believe ¢. This dropping can be approached
from the two perspectives discussed above, i.e. we can specify the dropping of ¢
as deletion or as satisfaction. The dropping from a deletion perspective can be
defined as a general constraint on the transition systems that can be specified
for blindly committed agents.

Definition 8. (blind commitment, deletion perspective) Let ¢, ¢’ be agent con-
figurations and let ¢ € £. An agent is then blindly committed iff Ve — ¢ :

[(3¢ : expansiong(p,c —) = (ve =7 \{¢ | 0c Er ¢})] where ¢ — ¢ is a
transition that can be derived in the transition system for the agent.

3 Possibly modulo equivalence: ¢ is a goal in 7. iff goalset (¢, 7e), i.e. 3¢’ € v. : ¢’ = ¢.

22

The following proposition relates the definition of a blindly committed agent
above, to the general definition of dropping from a deletion perspective.

Proposition 1. (Goals are dropped from a deletion perspective once the agent
believes they are achieved.) If, for a blindly committed agent as specified in
definition 8, an expansion with ¢ takes place over a transition ¢ — ¢’ and ¢ is
a goal in 7., then ¢ is dropped over this transition from a deletion perspective,
i.e.: if expansiong(¢p,c —) and goalsei (P, 7.) then droppedge(p,c —).

Besides taking the deletion perspective on blind commitment, we can also ap-
proach this issue from a satisfaction perspective. In order to do this, we extend
the semantics for belief and goal formulas of definition 3, specifying that G¢
holds if and only if ¢ follows from the goal base and ¢ does not follow from the
belief base.

Definition 9. (blind commitment, satisfaction perspective) Let ¢ € L and let
(o,7,m, R) be an agent configuration. The semantics =, of the belief and goal
formulas for a blindly committed agent is then as defined below?.

<0-7’Y77T7R>):S G¢<:>’Y):E ¢and g béﬂ ¢

From the definition above, we can derive that =5 B¢ — —G¢ is a validity, i.e.
G¢ cannot hold if ¢ is believed. This implies, that if an agent comes to believe ¢
over a transition, a goal ¢ is dropped from a satisfaction perspective (assuming
that ¢ was a goal before the transition). This is formulated in the following
proposition.

Proposition 2. (Goals are dropped from a satisfaction perspective once the
agent believes they are achieved.) If the semantics of belief and goal formulas of
an agent is as specified in definition 9 and an expansion with ¢ takes place over a
transition ¢ — ¢’ and ¢ is a goal in ., then ¢ is dropped over this transition from
a satisfaction perspective, i.e.: if expansiong(¢,c — ¢') and goalen: (¢,) then
droppedsat (P, c —).

We can conclude that blindly committed agents can relatively easily be specified
in terms of goals and beliefs of the agents. However, the strategy seems very
limited and not very realistic. In the literature often agent commitment strategies
are discussed that are a bit looser on the commitment, which means that an agent
could also drop its goal if it believes that it is unachievable [17,5]. We will discuss
this strategy at the end of this section.

3.2 Failure Condition

The conditions for dropping a goal can be seen as a kind of failure condition on
the goal achievement. For blindly committed agents, the failure condition is that

4 The clauses for belief formulas, negation and conjunction are as in definition 3, but
we do not repeat them here or in definitions in the sequel, for reasons of space.

23

the agent already believes the goal is true. In [20], Winikoff et al. also consider
the specification of more specific failure conditions for goals. The idea is, that
this condition specifies an explicit reason for the agent to drop the goal, i.e. if the
failure condition becomes true, the agent drops its goal. This failure condition
is thus specific to a certain goal.

The authors do not elaborate on the intuitions behind this failure condition,
but one could imagine specifying a condition which, once true, will never become
false again and which falsehood is necessary for the agent to be able to achieve
the goal. Suppose for example that agent A has a goal to have a certain egg
sunny side up and suppose A comes to believe that the egg is scrambled, then
this would be reason for A to drop its goal, as a scrambled egg can never be
prepared sunny side up. The failure condition for a goal should thus correspond
to a situation from which the agent will never be able to achieve the goal. This
situation is however specified by the designer of the agent. The designer for
example knows that a scrambled egg cannot be transformed into one that is
prepared sunny side up. The reasoning is thus done at design time by the agent
developer instead of leaving it up to the agent itself.

In order to implement this idea of specifying a failure condition for a goal,
we propose a so called failure rule. This is a rule with a condition on beliefs as
the head and a goal (being a propositional formula) as the body. The informal
reading is, that the goal in the body can be dropped if the condition in the head
holds.

Definition 10. (failure rule) The set of failure rules Ry is defined as follows:
Rp={8=g¢|BcLpdeL}

The interpretation of failure rules can be approached from the two perspectives
on goal dropping we identified. We first define the semantics of this rule from a
deletion perspective, resulting in the deletion of a goal from the goal base if the
rule is applied®.

Definition 11. (failure rule semantics, deletion perspective) Let Ry be the set
of failure rules of definition 10 and let Ry C Ry. Let f = (8 =g ¢) € Ry and
let = be an entailment relation defined for L. The semantics of applying this
rule is then as follows, where v =~ \ {¢' | ¢’ = ¢}:

<O',’}/,’/T, Rf>): 6 and goalset(¢7 ’Y)
<U7777F7Rf> Happly(f) <U7 7/77T7Rf>

The following proposition relates the semantics of failure rule application above,
to the general definition of dropping from a deletion perspective.

Proposition 3. (Applying a failure rule results in dropping from a deletion per-
spective.) If ¢ —gppiy () ¢ where f = (8 =g @) is a transition derived using
the transition rule of definition 11, then droppedgei (¢, ¢ —appiy(s) ¢') holds.

5 Note that a blindly committed agent could be specified in terms of failure rules of
the form B¢ = ¢.

24

The semantics of failure rule application that is defined above, takes an oper-
ational view on failure rules. Another option is using these rules to define, in
a declarative way, the goals of an agent as the satisfaction of a formula G¢ in
a configuration. This is done in the following definition that extends definition
9, specifying that G¢ holds if and only if ¢ follows from the goal base, ¢ is
not believed and there cannot be a rule which head holds and which body is
equivalent to ¢.

Definition 12. (failure rule semantics, satisfaction perspective) Let Ry be the
set of failure rules of definition 10 and let Ry C Ry. Let ¢ € £ and let (o,v, 7, Ry)
be an agent configuration. The semantics |=; of the belief and goal formulas in
the presence of failure rules is then as defined below.

(0,7,m, Ry) Ef G < v =, ¢ and 0 =, ¢ and
~3f € Ry : (f = (B =g ¢') and (0,7, 7, Ry) =5 B
and ¢’ = ¢)

From the definition above, we can conclude that G¢ cannot hold in a configu-
ration if there is a rule 8 =g ¢’ in this configuration such that ¢’ = ¢ and such
that 3 holds. This implies, that if an agent comes to believe 3 over a transition,
i.e. if the rule is “activated” over this transition, the goal ¢ is dropped from a
satisfaction perspective (assuming that ¢ was a goal before the transition). We
formulate this in the proposition below, after first defining the notion of rule
activation®.

Definition 13. (rule activation) Let f = (8 =g ¢) € Ry be a failure rule,
let ¢,c¢’ be configurations with ruleset Ry and let ¢ — ¢’ be a transition. The
rule f is activated over the transition, denoted by activated(f,c —), iff
expansiong(f,c — '), i.e. if the rule’s head is false in ¢ and true in ¢'.

Proposition 4. (If a failure rule is activated over a transition, the goal associ-
ated with that rule is dropped from a satisfaction perspective.) If the semantics of
belief and goal formulas of an agent is as specified in definition 12 and a failure
rule f = (8 =g ¢) is activated over a transition ¢ — ¢ and ¢ is a goal in
e, then ¢ is dropped from a satisfaction perspective over this transition, i.e.:
if activated(f,c — ') and goalset (¢, vc) then droppedsqi(d,c —).

3.3 Other Strategies

In the previous two sections we discussed two widely used strategies for dropping
goals. Both strategies can be implemented in a rather straightforward way. The-
oretically, one can of course have far more commitment strategies. We already
mentioned the single minded commitment strategy. However, implementing a

6 Note that we use the term “activation” of a rule over a transition to indicate that
the antecedent becomes true over this transition. The rule is not activated from the
outside.

25

single minded agent is much more difficult. The condition stating that the agent
does not believe a goal ¢ to be achievable, could be specified using CTL temporal
logic [4] by the following formula: B(—EF ¢), i.e. the agent believes that there
is no possible course of future events in which ¢ is eventually true. In order to
evaluate this formula however, the agent would have to reason about its possi-
ble future execution traces. In general it is very difficult to check this formula,
but one could approximate it in several ways, e.g. by only considering future
traces up to a certain length, or by considering only traces generated by possible
plans of the agent. In whichever way the strategy is approximated though, the
agent needs a mechanism to reason with temporal aspects, thus complicating
the implementation considerably.

A last commitment strategy to be mentioned here is the open minded strat-
egy. This strategy states that a goal is dropped whenever the motivation for
having that goal has gone. This is directly related to the issue of goal adoption.
To implement this strategy, we should keep track of why a goal is adopted, i.e.
which are the conditions for adopting a goal. Whenever these conditions are no
longer true, the goal will be dropped, e.g. if a goal is adopted to go to New York
in order to attend an AAMAS workshop and the workshop is cancelled, we can
drop the goal to go to New York (even though we might still believe it is possible
to go there and we are not there yet). We will briefly get back to this in section
4.1.

4 Goal Adoption

The issue of goal adoption can be subdivided into the questions of when to start
considering to adopt goals and which goals are to be adopted. Regarding the
first question, a possible motivation for an agent to start adopting goals could for
example be the lack of goals or the lack of appropriate plans for the goals it has.
If we assume that agents generate behavior because they have goals, situations
like these would call for goal adoption to prevent an agent from being idle. The
decision of when to start adopting goals could be specified in the interpreter or
deliberation cycle of the agent (see section 2). In this paper, we will focus on the
second question.

As for goal dropping, we also distinguish two perspectives on goal adoption,
i.e. an addition perspective and a satisfaction perspective. The first is based on
the addition of a goal to the goal base, whereas the second is again based on the
satisfaction of a formula Go.

Definition 14. (adoption, addition perspective) Let ¢, ¢’ be agent configurations
and let ¢ — ¢’ be a transition. Let ¢ € £. Then, we define the notion of the goal
¢ being adopted over the transition ¢ — ¢/, denoted by adoptedqqa(p,c — '),
as follows: adoptedaqd(¢,c — ') < —goalset(¢,7.) and goalset(d, Ve).

Definition 15. (adoption, satisfaction perspective) Let ¢,c’ be agent configu-
rations and let ¢ — ¢ be a transition. Let = be an entailment relation de-
fined for L5 and let ¢ € L. Then, we define the notion of the goal ¢ being

26

adopted over the transition ¢ — ¢/, denoted by adoptedsqai (¢, c — '), as follows:
adoptedsar(p,c — ') & c = G and ¢ = Go..

In this section, we discuss important motivations for goal adoption that have
been identified in the literature. We distinguish reasons for adoption based on
motivational attitudes such as desires and norms (section 4.1), and reasons based
on the notion of subgoals (section 4.2). Based on this analysis, we sketch mech-
anisms for dealing with goal adoption, such as explicit goal adoption rules. We
believe it is important to analyze possible motivations for goal adoption, as dif-
ferent motivations may lead to different kinds of rules or other goal adoption
mechanisms.

Goal adoption rules have been proposed before in for example research on
3APL [8] and BOID [7]. However, in each of these languages the focus is on
one type of interpretation of the rules. 3APL for example interprets rules from
an addition perspective, whereas BOID takes the satisfaction point of view. We
believe that the observation that there are different interpretations of rules is
important, in order to be able to identify conditions under which these perspec-
tives are equivalent or differ. Although we do not provide this kind of analysis
of similarities and differences in this paper, we take a first step towards this by
identifying and defining the different perspectives.

4.1 Internal and External Motivations for Goal Adoption

In this section, we distinguish important internal and external motivations for
goal adoption. As internal motivations, we will discuss so called abstract goals
and desires, and as external motivations we will discuss obligations, norms and
communication. After a general discussion on these motivations, we will propose
a goal adoption rule to implement these ideas.

Motivations In [9], Dignum and Conte discuss the generation of concrete goals
from built-in abstract goals as an internal motivation for adopting goals. As
Dignum and Conte put it, these abstract goals are often not really achievable
but can be approximated through concrete goals. An abstract goal could for
example be to be social or to be a law abiding agent. The concrete goal of not
driving above the speed limit, would then for example contribute to being a law
abiding agent.

Other important sources that may cause the generation of new goals for an
agent are desires, norms and obligations of the agent. In general, desires are
considered as agents’ internal motivational attitude while norms and obligations
are classified as external motivational attitudes. An agent’s desires represent its
preferences, wants and urges. They may be produced by emotional or affective
processes or even by biological survival mechanisms. For example, if an agent
is without food for some period, this might produce an acute desire for food.
Desire may also be long-term preferences or wants such as being rich. Such long
term preferences can be triggered by an observation, belief, or communication

27

through which they are turned into goals, i.e. desires can be viewed as goals that
are conditionalized by beliefs, etc.

The norms and obligations represent the social nature of agents or what
agents have to adhere to. One might have very dutiful agents that generate a
goal for any obligation they incur. In general, the norms that an agent wants
to adhere to are rules of conduct that pertain in the society in which the agent
operates. These could be represented through abstract goals that state that the
agent tries to satisfy an obligation or adhere to a norm.

Agents usually operate in a multi-agent environment and have the ability to
communicate with other agents. They do not only communicate knowledge or
belief about the world, but they can also communicate requests for achieving
goals. If an agent decides to comply with a request to achieve a goal, the request
triggers the generation of a goal.

Formalisation In order to implement these reasons for goal adoption, we pro-
pose a goal adoption rule. This is a rule with a condition on abstract goals, beliefs
and/or communicated formulas as the head, and a goal (being a propositional
formula) as the body. The informal reading is, that the goal in the body can be
adopted if the condition in the head holds. In order to define the semantics of
these rules, we need to extend agent configurations, adding an abstract goal set
and a set of communicated formulas.

Definition 16. (extended agent configuration) Let A be a set of abstract goals
consisting of abstract goal names and let L¢ be a set of communication formulas.
Let {0, Yeoner, T, R) be an agent configuration. An extended agent configuration
is then a tuple (o,v, 7, R) where 7 is a tuple (&, Yeoners Yeomm) With a C A is
the abstract goal base and Ycomm C Lo are the communicated formulas.

Definition 17. (goal adoption rules) We assume a set of abstract goals A con-
sisting of abstract goal names and we assume a set of communication formulas
Lc. The set of goal adoption rules R, is then defined as follows:

Ra={h=& ¢ |h=h1,... h, with h; € (AULp U L)}

Definition 18. (semantics of goal adoption rule head) Let e = (o,v,m, R) be
an extended agent configuration with v = (@, Yeoner, Yeomm) and let a € A.
We then define an entailment relation for abstract goals as follows: e E4 a &
a € a. We furthermore assume an entailment relation =, for the language of
communication formulas. The entailment relation for the set of formulas AUL U
L¢ is then denoted as Az ,co- Let by, ..., h, be the head of a goal adoption
rule. The entailment relation =g for rule heads is then as follows.

<U7’777T7R>):H hly .. -7hn = <Ua 777T7R>):.AﬁBLc hl a'nd

and <0a Y, T, R> ':AEBEC hn

28

As for failure rules, we define an operational as well as a declarative semantics
of the goal adoption rule. This results in semantics from an addition and a
satisfaction perspective as also indicated by the propositions below.

Definition 19. (goal adoption rule semantics, addition perspective) Let R, C
R. be a set of goal adoption rules. Let a = (h :>'é @) € R,. The semantics of
applying this rule is then as follows, where v = v U {¢}:

<O-7’777T7Ra> ':H h
<U» YT, Ra> apply(a) <Ua 7/7 ™, Ra>

Proposition 5. (Applying a goal adoption rule results in adoption from an ad-
dition perspective.) If ¢ —qpp1y(q) ¢ Where a = (h :>Jé @) is a transition de-
rived using the transition rule of definition 19 and ¢ is not a goal in ., i.e.
goalset (P, 7e), then adoptedaqq(d, ¢ = appiy(a) ¢') holds.

Definition 20. (goal adoption rule semantics, satisfaction perspective) Let R,
be the set of goal adoption rules and let R, C R,. The semantics =, for belief
and goal formulas in the presence of goal adoption rules is then as follows.

(0,7, Ry) o Go & (YELpor Ja€ Ryt (a= (h=§ ¢') and
<U7777T7Ra> ':H h and ¢/ = ¢)) and o %E o

Proposition 6. (If a goal adoption rule is activated over a transition, the goal
associated with that rule is adopted from a satisfaction perspective.) If the se-
mantics of belief and goal formulas of an agent is as specified in definition 20
and a goal adoption rule a = (h =§ @) is activated over a transition ¢ — ¢’ and
¢ is not a goal in ¢, then ¢ is adopted from a satisfaction perspective over this
transition, i.e.: if activated(a,c — ¢’) and ¢ £, G¢ then adoptedsqt(¢,c —).

Note that if a goal adoption rule is deactivated over a transition, the goal in
the consequent could be dropped over this transition due to this deactivation,
provided that no other adoption rule has this goal as its consequent. This phe-
nomenon could thus be considered an implementation of the open minded com-
mitment strategy (section 3.3).

4.2 Subgoal Adoption

A goal can be viewed as a subgoal if its achievement brings the agent “closer” to
its topgoal. This notion of “closeness” to a topgoal is rather vague. One could
argue that the achievement of a concrete goal contributing to an abstract goal,
brings the agent closer to this abstract goal. A concrete goal can thus be viewed
as a subgoal of an abstract goal. In this section, we distinguish two other views
on subgoals, i.e. subgoals as being the “parts” of which a topgoal is composed
and subgoals as landmarks or states that should be achieved on the road to
achieving a topgoal. As we see it, these different kinds of subgoals can lead to
different goal adoption mechanisms.

29

Goal Decomposition A decomposition of a goal into subgoals should be such,
that the achievement of all subgoals at the same time implies achievement of the
topgoal. The goal p A ¢ could for example be decomposed into the subgoals p
and ¢. Achievement of both p and ¢ at the same time, now implies achievement
of pAgq .

Goal decomposition is most naturally reached through defining the semantics
of goal formulas like was done in definition 9, i.e. such that G¢ holds if ¢ is a
logical consequence of the goal base. In this way, if for example p A ¢q is a goal
in the goal base, Gp will hold and Gg will hold (assuming both p and ¢ are
not believed). We define the notion of a goal being a subgoal of another goal
as follows: a goal ¢’ is a subgoal of ¢, iff ¢ =, @ but ¢’ £, ¢, which we will
denote by subgoal(¢’, ¢).

In the following proposition, we state that under the semantics of belief and
goal formulas of definition 9, we can get subgoal adoption over a transition if the
subgoal was achieved before the transition, but not anymore after the transition
(assuming that the topgoal remains in the goal base).

Proposition 7. (Subgoals are adopted from a satisfaction perspective once the
agent believes they are not achieved anymore.) If the semantics of belief and
goal formulas of an agent is as specified in definition 9 and ¢’ is a subgoal
of ¢ and contraction with ¢’ takes place over a transition ¢ — ¢’ and ¢ is a
goal in 7, as well as in 7, then the subgoal ¢’ is adopted from a satisfaction
perspective over this transition, i.e.: if subgoal(¢’, ¢) and contractiong(¢’,c —
') and goalset (¢, ve) and goalset (P, Vo) then adoptedsai(d',c —).

Landmarks The second view on subgoals we discuss in this section, is as land-
marks. If an agent for example believes that it is in Utrecht and has the topgoal
to be in New York (and has a ticket for a flight to New York etc.), then a subgoal
would be to be at Schiphol airport. This subgoal does not contribute to the top-
goal in the sense that concrete goals contribute to abstract goals. Achievement
of the subgoal neither implies in some way achievement of the topgoal (together
with achievement of other subgoals for example) and it is thus different from
subgoals generated through decomposition.

It is important for an agent to be able to adopt landmark goals, because it
can be the case that the agent only has plans to get from landmark to landmark.
It can for example be the case that the agent has a plan in its library to get from
Utrecht to Schiphol and that it has another plan to get from Schiphol to New
York, i.e. the second plan is only applicable if the agent is at Schiphol. If the
agent now believes that it is in Utrecht and it has the goal to be in New York,
it does not have an applicable plan to execute. If however the agent can adopt
the goal to be at Schiphol from the goal to be in New York and the knowledge
that it has a plan to get to New York from Schiphol and possibly the belief to
be in Utrecht, it can execute an applicable plan.

The adoption of landmark subgoals could be implemented in various ways.
One possibility is the introduction of a goal adoption rule as below, through

30

which a goal can be adopted on the basis of beliefs and other goals. The semantics
can be defined analogously to that of the adoption rule of definition 17.

Definition 21. (landmark adoption rule) The set of landmark adoption rules
R; is defined as follows: R; = {f3, x :>"é o|BeLp,keLg e L}

Note that this formalisation does not record any structure or order among the
landmarks that are adopted.

We will mention two other ways to adopt landmark goals. Due to space
limitations however, we cannot elaborate on these. A first possibility could be to
use plan specifications, indicating the preconditions under which the plan could
be executed and the desired or expected postconditions. If the agent then has
the postcondition of a plan as a goal and does not believe the precondition to be
the case, it could adopt the precondition as a goal. If it then achieves this goal
or precondition, it can execute the plan and reach its initial goal.

Secondly, one could consider the definition of a goal adoption statement in
an agent’s plans, similar to achievement goals in AgentSpeak(L) [16]. The goal
in the goal adoption statement can be viewed as a subgoal of the plan at hand
and the goal can be adopted if the statement is executed. Another possible
interpretation of such a goal achievement statement could be, that this goal
state should be achieved before proceeding with the rest of the plan. A plan will
have to be selected for the specified goal. Plans with these kinds of statements
could thus be viewed as partial plans, the goal achievement statements of which
will need to be refined into plans.

5 Conclusion and Future Research

In agent programming languages, goals are often considered in a procedural
way. In most agent specification logics on the other hand, goals are employed
in a declarative way. We maintain that declarative goals are interesting and
useful not only in agent specification, but also in agent programming. In this
paper we have particularly explored the issue of the dynamics of declarative
goals in the context of agent programming. That is to say, we have analyzed
several motivations and mechanisms for dropping and adopting declarative goals
in a fairly general setting. We believe this distinction between dropping and
adoption and also the distinction between the different perspectives on these
phenomena are important in order to get a better understanding of declarative
goal dynamics. We have thus provided a basis for analyzing this phenomenon,
but many issues were not addressed and remain for future research.

Most importantly, we did not discuss the relation between the two perspec-
tives on dropping and adoption we defined. It will need to be investigated under
what circumstances these notions are equivalent or yield similar agent behavior
with respect to goal dynamics. Under most entailment relations for goal formu-
las, it will for example be the case that if a goal ¢ is adopted from an addition
perspective, ¢ is also adopted from a satisfaction perspective (assuming a be-
lief expansion with ¢ does not take place and assuming that ¢ does not follow

31

from the goal base before the adoption). Also, it is important to establish the
advantages and disadvantages of both approaches and investigate whether they
can or should be combined. A possible disadvantage for example concerns the
interpretation of goal adoption rules from a satisfaction perspective, as this in-
terpretation could diminish goal persistency: these rules can be activated and
deactived again over a series of transitions. This could result in the repeated
adoption and dropping of a certain goal, which could be considered undesirable.

Another issue for future research has to do with the semantics of goal formulas
in the presence of dropping or adoption rules. We took a rather conservative
approach, defining that only formulas equivalent to the goal in the body of the
rules can be dropped or adopted (definitions 12 and 20). One could also consider
for example dropping logical consequences of the goal in the body of the failure
rule, or combining applicable adoption rules by defining that logical consequences
of the set of goals in the bodies of applicable rules can be adopted. Moreover,
we did not discuss interactions between rules for dropping and adoption.

Furthermore, we did not discuss goal consistency. Goals are often assumed
or required to be consistent [20] as it is argued that it is not rational for an
agent to pursue conflicting objectives. This requirement has implications for
goal adoption, as goals could become inconsistent through adoption. The issue
could for example be dealt with like is done in BOID [7]. In this framework, the
rules are interpreted as default rules from which (consistent) extensions or goal
sets can be calculated. In the language GOAL [11], individual goals in the goal
base are required to be consistent, rather than the entire goal base. This has
implications for the definition of the semantics of goal formulas, as it will need
to be defined in terms of individual goals rather than in terms of the goal base
as a whole.

Finally, we mention goal revision. It seems natural that goal revision can be
characterized in terms of dropping and adoption. One could however imagine
that motivations for goal revision are different from those for dropping and
adoption, possibly calling for a separate treatment of this issue. Also the relation
with belief revision should be investigated in order to identify whether results
from this field can be applied to goal revision.

References

1. F. Bellifemine, A. Poggi, G. Rimassa, and P. Turci. An object oriented framework
to realize agent systems. In Proceedings of WOA 2000 Workshop, pages 52-57.
WOA, may 2000.

2. C. Boutilier. Toward a logic for qualitative decision theory. In Proceedings of the
KR’9/, pages 75-86, 1994.

3. J. Broersen, M. Dastani, J. Hulstijn, and L. van der Torre. Goal generation in the
BOID architecture. Cognitive Science Quarterly, 2(3-4):428-447, 2002.

4. E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons
using branching-time temporal logic. In Logic of Programs, Workshop, pages 52-71.
Springer-Verlag, 1982.

5. P. R. Cohen and H. J. Levesque. Intention is choice with commitment. Artificial
Intelligence, 42:213-261, 1990.

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

32

M. Dastani, F. S. de Boer, F. Dignum, and J.-J. Ch. Meyer. Programming agent
deliberation — an approach illustrated using the 3APL language. In Proceedings
of the second international joint conference on autonomous agents and multiagent
systems (AAMAS’03), pages 97-104, Melbourne, 2003.

M. Dastani and L. van der Torre. Programming BOID-Plan agents: deliberating
about conflicts among defeasible mental attitudes and plans. In Proceedings of The
Third Conference on Autonomous Agents and Multi-agent Systems (AAMAS’04),
New York, USA, 2004. To appear.

M. Dastani, M. B. van Riemsdijk, F. Dignum, and J.-J. Ch. Meyer. A program-
ming language for cognitive agents: goal directed 3APL. In First Workshop on
Programming Multiagent Systems (ProMAS’03). 2003.

F. Dignum and R. Conte. Intentional agents and goal formation. In Agent Theories,
Architectures, and Languages, pages 231-243, 1997.

F. Dignum, D. Kinny, and L. Sonenberg. From desires, obligations and norms to
goals. Cognitive Science Quarterly, 2(3-4):407-430, 2002.

K. V. Hindriks, F. S. de Boer, W. van der Hoek, and J.-J. Ch. Meyer. Agent
programming with declarative goals. In Intelligent Agents VI - Proceedings of
the 7th International Workshop on Agent Theories, Architectures, and Languages
(ATAL’2000), Lecture Notes in Al. Springer, Berlin, 2001.

J.-J. C. Meyer and W. van der Hoek. Epistemic logic for Al and computer science.
Cambridge Tracts in Theoretical Computer Science. Cambridge University Press,
Cambridge, 1995.

A. F. Moreira, R. Vieira, and R. H. Bordini. Extending the operational semantics
of a BDI agent-oriented programming language for introducing speech-act based
communication. In First International Workshop on Declarative Agent Languages
and Technologies (DALT03), pages 129-145, 2003.

A. Newell. The knowledge level. Artificial Intelligence, 18(1):87-127, 1982.

G. Plotkin. A structural approach to operational semantics. Technical report,
Aarhus University, Computer Science Department, 1981.

A. S. Rao. AgentSpeak(L): BDI agents speak out in a logical computable language.
In W. van der Velde and J. Perram, editors, Agents Breaking Away (LNAI 1038),
pages 42-55. Springer-Verlag, 1996.

A. S. Rao and M. P. Georgeff. Modeling rational agents within a BDI-architecture.
In J. Allen, R. Fikes, and E. Sandewall, editors, Proceedings of the Second Inter-
national Conference on Principles of Knowledge Representation and Reasoning
(KR’91), pages 473-484. Morgan Kaufmann, 1991.

J. Thangarajah, L. Padgham, and M. Winikoff. Detecting and exploiting pos-
itive goal interaction in intelligent agents. In Proceedings of the second inter-
national joint conference on autonomous agents and multiagent systems (AA-
MAS’03), pages 401-408, Melbourne, 2003.

M. B. van Riemsdijk, W. van der Hoek, and J.-J. Ch. Meyer. Agent program-
ming in Dribble: from beliefs to goals using plans. In Proceedings of the second
international joint conference on autonomous agents and multiagent systems (AA-
MAS’03), pages 393-400, Melbourne, 2003.

M. Winikoff, L. Padgham, J. Harland, and J. Thangarajah. Declarative and proce-
dural goals in intelligent agent systems. In Proceedings of the eighth international
conference on principles of knowledge respresentation and reasoning (KR2002),
Toulouse, 2002.

M. Wooldridge. An introduction to multiagent systems. John Wiley and Sons,
LTD, West Sussex, 2002.

33

Theories of Intentions in the framework of
Situation Calculus

Pilar Pozos Parra!, Abhaya Nayak!, and Robert Demolombe?

! Division of ICS, Macquarie University
NSW 2109, Australia
{pilar,abhaya}@ics.mq.edu.au
2 ONERA-Toulouse
2 Avenue E. Belin BP 4025, 31055 Toulouse, France
Robert.Demolombe@cert.fr

Abstract. We propose an extension of action theories to intention theo-
ries in the framework of situation calculus. Moreover the method for im-
plementing action theories is adapted to consider the new components.
The intention theories take account of the BDI (Belief-Desire-Intention)
architecture. In order to avoid the computational complexity of theorem
proving in modal logic, we explore an alternative approach that intro-
duces the notions of belief, goal and intention fluents together with their
associated successor state axioms. Hence, under certain conditions, rea-
soning about the BDI change is computationally similar to reasoning
about ordinary fluent change. The approach can be implemented using
declarative programming.

1 Introduction

Various authors have attempted to logically formulate the behaviour of rational
agents. Most of them use modal logics to formalize cognitive concepts, such as
beliefs, desires and intentions [1-6]. A weakness of the modal approaches is that
they overestimate the reasoning capabilities of agents; consequently problems
such as logical omniscience arise in such frameworks. Work on implementing
modal systems is still scarce, perhaps due to the high computational complexity
of theorem-proving or model-checking in such systems [7-9]. A proposal [10]
based on the situation calculus not only allows representation of the BDI notions
and their evolution, but also attends to finding a trade-off between the expressive
power of the formalism and the design of a realistic implementation.

A theory of intentions requires a well-defined theory of actions, such as one
provided in the situation calculus. In this paper, we propose to enhance Reiter’s
action theories [11] with BDI representation [10] to build intention theories. The
notion of knowledge-producing actions is generalized to propositional attitude-
producing actions whose effects modify the agent’s beliefs, goals and intentions.
We show how the proposed framework can be implemented using the method
for implementing Reiter’s action theories. The scenario presented in this paper
has been implemented in Prolog.

34

The paper is organised as follows. We start with a brief review of the situation
calculus and its use in the representation issues involving the evolution of the
world and mental states. In Section 3, we define the basic theories of intentions
and the method used to implement such theories. In Section 4, we present an
example. In conclusion we discuss some of the issues.

2 Situation Calculus

The situation calculus allows modelling dynamic worlds [12]. It involves three
types of terms, among which situation and action play an important role. In
the following, s represents an arbitrary situation, and a an action. The result
do(a, s) of performing a in s is taken to be a situation. The world’s properties (in
general relations) that are susceptible to change, are represented by predicates
whose last argument is of type situation called “fluents”. For any fluent p and
situation s, the expression p(s) denotes the truth value of p in s. It is assumed
that every change is caused by an action. The evolution of fluents is represented
by “successor state axioms”. These axioms were introduced to solve the infamous
frame problem.

In order to distinguish between what relations are true in a situation and
what relations are believed to be true or false in a situation, the notion of “belief
fluents” together with the “successor belief state axioms” are introduced in [13].3
This model of dynamic beliefs has been extended in order to consider dynamic
generalised beliefs, dynamic goals and dynamic intentions in [10]. In short, the
dynamic mental states are represented by suitable new fluents (such as belief,
goal and intention fluents) and their appropriate successor state axioms. These
axioms are a proposal to solve the corresponding frame problem in mental states.
This approach has been compared with other formalisations of BDI architecture,
in particular with the Cohen and Levesque’s approach, in [10].

2.1 Dynamic Worlds

For a fluent p, the successor state axiom Sp, is of the form:4
(Sp) p(do(a,s)) < Y (a,s) V (p(s) A =T, (a,5))

where Tp'*' (a, s) captures exactly the conditions under which p turns from false
to true when a is performed in s, and similarly 7, (a, s) captures exactly the
conditions under which p turns from true to false when «a is performed in s. It
is assumed that no action can turn p to be both true and false in a situation.
These axioms define the truth values of the atomic formulas in any circum-
stances, and indirectly the truth value of every formula. Furthermore, in order
to solve the qualification problem, a special fluent Poss(a, s), meaning it is pos-

3 A comparison with Scherl and Levesque’s approach has been presented in [14].
4 In what follows, it is assumed that all the free variables are universally quantified.

35

sible to execute the action a in situation s, was introduced, as well as the action
preconditions axioms of the form:

(Pa) Poss(A,s) « IT4(s)

where A is an action symbol and IT4(s) a formula that defines the preconditions
for the executability of the action A in s. Note that Reiter’s notation [11] shows
explicitly all the fluent arguments (p(z1,...,zn,do(a,s)), T\ (z1,...,25,a,5))
and action arguments (Poss(A(x1,...,2n),s) or Ha(x1,...,2y,s)). For the sake
of readability we show solely the action and situation arguments.

2.2 Dynamic Beliefs

A belief fluent is a syntactic combination of a modal operator and fluent or its
negation. We say that the “modalised” fluent B;p holds in situation s iff agent i
believes that p holds in situation s and represent it as B;p(s). Similarly B;—p(s)®
represents the fact that the fluent B;—p holds in situation s: the agent i believes
that p does not hold in situation s.

In this case, the evolution needs to be represented by two axioms, each al-
lowing the representation of two attitudes out of four ¢’s attitudes concerning
her belief about the fluent p, namely B;p(s), =B;p(s), B;—p(s) and —~B;—p(s).
The successor belief state axioms for an agent ¢ and a fluent p are of the form:
(Sm,p) Bip(do(a,s)) < Tgip(a, s)V (Bip(s) A —=Tg,,(a,s))

(SBi-p) Bip(do(a,s)) < T (a,s) V (Bi=p(s) A =15, (a,s))

where Tglp(a, s) are the precise conditions under which the state of i (with
regards to the fact that p holds) changes from one of disbelief to belief when a is
performed in s, and similarly Y5 (a, s) are the precise conditions under which
the state of ¢ changes from one of belief to disbelief. The conditions Tgﬁp(a, s)
and T _ (a,s) have a similar interpretation. In these axioms as well as in the
goals and intentions axioms, p is restricted to be a fluent representing a property
of the real world. Some constraints must be imposed to prevent the derivation
of inconsistent beliefs (see Section 3.1).

To address the qualification problem in the belief context, we have the belief
fluent B; Poss(a, s), which represents the belief of agent 7 in s about the possible
execution of the action a in s.

2.3 Dynamic Generalised Beliefs

The statements of the form B;p(s) represent i’s beliefs about the present. In
order to represent the agent’s beliefs about the past and the future, the notation
B;p(s',s) has been introduced, which means that in situation s, the agent 4

5 We abuse of notation Bip and B;—p in order to have an easy identification of the
agent and proposition. An “adequate” notation could be Bip and Binotp. A similar
notation is used to represent goals and intentions.

36

believes that p holds in situation s’. Depending on whether s’ = s, s’ C s or
s C s',0 it represents belief about the present, past or future respectively.

The successor belief state axioms Sp,p and Sg;-p are further generalized to
successor generalised belief state axioms as follows:

(Supe)) Bip(s',doa,5) < T (a,5) V (Bip(s'y5) A =T,) (a,5))

(SBiﬁP(S’)) Bi_'p(s/v do(a7 5)) - Tgi—\p(s')(a’ 5) N (Bi_'p(s/v S) A _'TB?L—\p(s’)(av S))

where T];,r,p(s,)(a7 s) captures exactly the conditions under which, when a is per-
formed in s, i comes believing that p holds in s’. Similarly 75 (a, s) captures

Bip(s’)
exactly the conditions under which, when a is performed in s, i stops believing

that p holds in s’. The conditions Tgﬁp(s,)(a, s) and Tgﬁp(s,)(a, s) are similarly
interpreted. These conditions may contain communication actions or sensing ac-
tions which are examples of belief-producing actions. Communication actions
allow the agent to gain information about the world in the past, present or
future. For instance, if the agent receives one the following messages: “it was
raining yesterday”, “it is raining” or “it will rain tomorrow”, then her beliefs
about the existence of a precipitation, in the past, present and future respec-
tively, can be revised. Sensing actions allow the agent to gain information solely
in the present. For instance, if the agent observes raindrops, her belief about a
current precipitation can be revised.

B;Poss(a, s',s) was introduced in order to solve the qualification problem
about i’s beliefs. The action precondition belief axioms are of the form:

(Pi,\i) B;Poss(A,s',s) « H;h (s',9).

where A is an action symbol and IT); (s, s) a formula that defines the precondi-
tions for i’s belief in s concerning the executability of the action A in s’. A general
setting can consider also the axioms of the form: B;=Poss(A,s',s) « I} (s, s)
where B;—~Poss(A,s',s) means that in s the agent i believes that it is not pos-
sible to execute the action A in s'.

Notice that s’ may be non-comparable with do(a, s) under C. However, this
can be used to represent hypothetical reasoning: although situation s’ is not
reachable from do(a, s) by a sequence of actions, yet, B;p(s’, do(a, s)) means that
i, in do(a, s), believes that p would have held if the actions of s’ had happened. We
are mainly interested in beliefs about the future. Since to make plans, the agent
must project her beliefs to the future to “discover” a situation s’ in which her goal
p holds. In other words, in the current situation s (present) the agent must find
a sequence of actions to reach s’ (hypothetical future), and she expects that her

goal p will hold in s’. Therefore, we adopt the notation: B f;p(s’, s) ©f s sA

B;p(s, s) to denote future projections. Similarly, to represent the expectations of

executability of actions in future situations, we have: Bf; Poss(a, s, s) f s

6 The predicate s’ C s represents the fact that the situation s is obtained from s’ after
performance of one or several actions.

37

s'AB;Poss(a, s, s) that represents the belief of 7 in s about the possible execution
of a in the future situation s’.

2.4 Dynamic Goals

The goal fluent G;p(s) (respectively G;—p(s)) means that in situation s, the
agent ¢ has the goal that p be true (respectively false). As in the case of beliefs,
an agent may have four different goal attitudes concerning the fluent p. The
evolution of goals is affected by actions of the sort “adopt a goal” or “admit
defeat of a goal” called goal-producing actions. For each agent i and fluent p, we
have two successor goal state axioms of the form:

(Saip) Gipldo(a,s)) < 1§, ,(a,5) V (Gip(s) A =Yg, (a, 5))
(Sci-p) Gimwp(do(a,s)) < ¢ _,(a,5) V (Gimp(s) A TG, ., (a, 5))

As in the case of beliefs, Tgm represents the exact conditions under which,
when the action a is performed in s, the agent ¢ comes to acquire as a goal ‘p
holds’. The other conditions 7”’s can be analogously understood. The indifferent
attitude about p can be represented by —G;p(s) A =G;—p(s). Some constraints
must be imposed on the conditions 7’s in order to prevent the agent having
inconsistent goals such as G;p(s) A G;—p(s), meaning the agent wants p to both
hold and not hold simultaneously (see Section 3.1). A related example of in-
consistency is when the agent wants to be at the same time divorced and not
divorced.

2.5 Dynamic Intentions

Let T be the sequence of actions [ay, ag, ..., a,]. The fact that an agent has the
intention to perform T in the situation s to satisfy her goal p (respectively —p) is
represented by the intention fluent I;p(7, s) (respectively I;—p(T, s)). In the fol-
lowing, the notation do(T, s) is used to represent do(an, ..., do(as, do(a1, s)) .. .)
when n > 0 and s when n = 0. For each agent i and fluent p, the successor
intention state axioms are of the form:

(Syp) ILip(T,do(a,s)) « Gip(do(a, s)) A
(a = commit(T) A\ BfiPoss(do(T, s),s) A Bf;p(do(T,s),s))V
Lip([a|T], s) v
T;:;(a, s)V
(Lip(T,s) A =17, (a, 5))]
(St;—p) Li—p(T,do(a,s)) < G;—p(do(a,s)) A [

(a = commit(T) A Bf;Poss(do(T, s),s) A Bfi—p(do(T,s),s)) V
Iiﬁp([alT]a 8) N

38

1iE,(a,s) Vv
(Ii~p(T, s) A =17 (a, 5))]

where 7"’s capture some conditions under which 4’s intention attitude (concern-
ing T and goal p) change when a is performed in s. Intuitively, Sy, means that
in the situation do(a, s), agent 4 intends to perform T to achieve goal p iff

(a) In do(a, s) the agent has goal p; and
(b) either
(1) the agent has just committed to execute the sequence of actions T' (a
plan): the action commit(T) is executed in s, the agent believes that
the execution of such a plan is possible Bf;Poss(do(T),s),s), and she
expects that her goal will be satisfied after the execution of the plan
Bfip(do(T, s),s)); or
(2) in the previous situation, the agent had the intention to perform the
sequence [a|T] and the action a has just happened; or
(3) a condition T;;(a, s) is satisfied; or
(4) in the previous situation s, the agent had the same intention I;p(T), s)
and the condition Tl/:p(a, s) does not hold; this condition has the effect
to abandon her intention.

This definition of intention, as Cohen and Levesque say, allows relating goals
with beliefs and commitments. The action commit(T") is an example of intention-
producing actions that affect the evolution of intentions. An advantage of this
approach is that we can distinguish between a rational intention trigger by condi-
tion 1 after analysis of present and future situations, and an impulsive intention
trigger by condition 3 after satisfaction of T};(a, s) that may not concern any
analysis process (for example, running intention after seeing a lion, the agent
runs by reflex and not having reasoned about it).

We have considered a “credulous” agent who makes plan only when she
commits to follow her plan: she is convinced that there are not exogenous actions.
However, other kinds of agents may be considered. For instance, if the projection
to the future is placed at the goal level, we can define a “prudent” agent that
replans after every action that “fails” to reach her goal. Discussion of prudent
agents is beyond the scope of this paper.

Intuitively, Bf;Poss(do(T,s),s) means that in s, i believes that all the ac-
tions occurring in 7" can be executed one after the other.

Bf;Poss(do(T,s), s) €of A, BfiPoss(a;,do([ay,as,...,a;_1],s),s).
Notice the similarity of Bf;Poss(do(T,s),s) with an executable situation
defined in [11] as follows:

executable(do(T, Sp)) def Ni_, Poss(a;,do([a1,as,...,a;-1],50))

executable(do(T, Sp)) means that all the actions occurring in the action sequence
T can be executed one after the other. However, there are differences to con-
sider. In executable(do(T, Sp)), T is executable if the preconditions for every
action in the sequence hold in the corresponding situation. On the other hand

39

in Bf;Poss(do(T, s),s), T is believed to be executable in s if the agent believes
that the preconditions for every action in T hold in the corresponding situation.

3 Intention Theories

Now we extend the language presented in [11] with cognitive fluents and we in-
troduce the BDI notions to the action theories to build the intention theories. We
adapt regression [11] appropriately to this more general setting. The extension
of results about implementation of intention theories is immediate.

Let’s assume Lgitcalc, & language formally defined in [11]. This language
has a countable number of predicate symbols whose the last argument is of
type situation. These predicate symbols are called relational fluents and de-
note situation dependent relations such as position(z, s), student(Billy, So) and
Poss(advance, s). We extend this language to Lgiicaicsp, With the following sym-
bols: belief predicate symbols B;p and B;—p, goal predicate symbols G;p and
G;—p, and intention predicate symbols I;p and I;—p, for each relational fluent
p and agent i. These predicate symbols are called belief, goal and intention flu-
ents respectively and denote situation dependent mental state of agent i such as
By opotposition(1,S0), Gropotposition(3, So), Lrepotposition(3, [advance, advance], Sy):
in the initial situation Sy, the robot believes to be in 1, wants to be in 3 and has
the intention of advancing twice to fulfill her goal.

As a matter of simplification we consider only the languages without func-
tional fluents (see [11] for extra axioms that deal with function fluents).

Definition 1. A basic intention theory D has the following form:
D=XU DSO) Duna U Dap U Dss U DapB U DssB) DssD @ Dss]
where,

)7 is the set of the foundational axioms of situation.

Dg, is a set of axioms that defines the initial situation.

. Dyna is the set of unique names axioms for actions.

. Dqp is the set of action precondition axioms. For each action symbol A, there

is an axiom of the form P (See Section 2.1).

5. Dy is the set of successor state axioms. For each relational fluent p, there is
an axiom of the form Sy (See Section 2.1).

6. Dgpp is the set of action precondition belief axioms. For each action symbol
A and agent i, there is an axiom of the form P’y (See Section 2.3).

7. Dssgp is the set of successor generalised beliefs state axioms. For each rela-
tional fluent p and agent i, there are two axioms of the form Sg () and
SB;-p(s) (See Section 2.3).

8. Dssc is the set of successor goal state axioms. For each relational fluent p
and agent i, there are two axioms of the form Sg,p and Sg,-p (See Section
2.4).

9. D,y is the set of successor intention state axioms. For each relational fluent

p and agent 4, there are two axioms of the form Sy, and Sy, (See Section

2.5).

W N

40

The basic action theories defined in [11] consider only the first five sets of axioms.
The right hand side in P4, PiAi and in the different successor state axioms must
be a uniform formula in s in Leiteatesp; -

3.1 Consistency Properties

For maintaining consistency in the representation of real world and mental states,
the theory must satisfy the following properties:®
If ¢ is a relational or cognitive fluent, then
+ —
- DE V—|(T¢ ATy).
If p is a relational fluent, 7 an agent and M € {B, G, I'}, then
+ +
- DE Vﬂ(TMip A T/Vipp) B
— D EVMp(s)A TM_sz — T/\:lip)
= DEYMi—p(s) AT, = T
Other properties can be imposed in order to represent some definitions found
in the literature. For example, the following properties:
- DEY(Bip(s)VVs'(sC s’ — Bfimp(s's)) < Xg,,)

— DEVY(Biw(s)VVs'(sT s — Bfip(s',s)) < Tg,_,):

,i—\p)‘

characterize the notion of fanatical commitment: the agent maintains her goal
until she believes either the goal is achieved or it is unachievable [6]. The following
properties:

- DEY(Y,— 35 Bfip(s,s))

- DE V(TGtﬁp — 3s" Bf;—p(s,s))

characterize the notion of realism: the agent adopts a goal that she believes to be
achievable [6]. A deeper analysis of the properties that must be imposed in order
to represent divers types of agents will be carried out in our future investigations.

3.2 Automated Reasoning

As a matter of simplification we assume that there are no communication actions.
This assumption allows the representation of the generalised beliefs in terms of
present beliefs as follows: B;p(s’, s) < B;p(s').

Automated reasoning in the situation calculus is based on a regression mech-
anism that takes advantage of a regression operator. The operator is applied to a
regressable formula. In particular, when the operator is applied to a regressable
sentence, the regression operator produces a logically equivalent sentence whose
only situation term is Sp.

7 Intuitively, a formula is uniform in s iff it does not refer to the predicates Poss,
B;Poss or [, it does not quantify over variables of sort situation, it does not mention
equality on situations, the only term of sort situation in the last position of the fluents
is s.

8 Here, we use the symbol V to denote the universal closure of all the free variables in
the scope of V. Also we omit the arguments (a, s) of the 7’s to enhance readability.

41

Definition 2. A formula W is regressable iff

1. Each situation used as argument in the atoms of W has syntactic form

do([ag, ..., ap], So), where ai,...,a, are terms of type action, for some
n > 0.

2. For each atom of the form Poss(«o,c) mentioned in W, « has the form
A(ty,. .., t,) for some n-ary action function symbol A of Lgitcaicpp;-

3. For each atom of the form B; Poss(a,c’c) mentioned in W, « has the form
A(ty, ..., t,) for some n-ary action function symbol A of Lg;icaicsp;-

4. W does not quantify over situations.

We extend the regression operator R defined in [15] with the following set-
tings.
Let W be a regressable formula.

1. When W is an atom of the form B;Poss(A, o’c), whose action precondition
belief axiom in Dy,p is (Py,),

R[W] = R[IT},(0)]

2. When W is a cognitive fluent of the form M;p(do(c,0)), where M €
{B,G,I}. It Mip(do(a,s)) < Try (a,s) V (Mip(s) A =Ty (a,s)) is the
associated successor state axiom in Dgegp U Dysg U Dysr,

R[W] = RIT Sy, (,0) V (Mip(0) A =Ty, (@, 0))]

3. When W is a cognitive fluent of the form M;—p(do(a, o)), where M €
{B,G,I}. If M;=p(do(a,s)) < TI/lpp(a,s) V (Mi=p(s) ATy, (a,8)) is
the associated successor state axiom in Dysgp U Dssq U D,

R[W] = R[T Sy, - (@,0) V (Mip(0) A =Ty, (a, 0))]

Intuitively, these settings eliminates atoms involving B; Poss in favour of their
definitions as given by action precondition belief axioms, and replaces cognitive
fluent atoms about do(a, o) by logically equivalent expressions about o as given
in their associated successor state axioms.

Note that Sy,p, is logically equivalent to I;p(T, do(a, s)) < [(((a = commit(T)A
Bf;Poss(do(T,s),s) A Bf;p(do(T,s),s))V Lip([a|T], s) V T;fp) A Gip(do(a,s))) V
(Lip(T,s) A=Yy, A Gip(do(a, 5)))], hence the successor intention state axioms,
as well as every successor state axioms presented can be written in the standard
format: ¢(do(a, s)) « T(;r(m s)V (o(s) A =Ty (a, s)).

For the purpose of proving W with background axioms D, it is sufficient to
prove R[W] with background axioms Dg, U Dypq. This result is justified by the
following theorem:

Theorem 1. The Regression Theorem. Let W be a regressable sentence of
Lsitcalenp; that mentions no functional fluents, and let D be a basic intention
theory, then

42

DEW iff Ds,UDuna = RIW].

The proof is straightforward from the following theorems:

Theorem 2. The Relative Satisfiability Theorem. A basic intention theory
D is satisfiable iff Ds, U Dyng 1is.

The proof considers the construction of a model M of D from a model My of
Dsy U Dyna. The proof is similar to the proof of Theorem 1 in [15].

Theorem 3. Let W be a regressable formula of Lsitcaicpnp,, and let D be a basic
intention theory, then R[W] is a uniform formula in So. Moreover

D =YW < RIW)).

The proof is by induction based on the binary relation < that has been de-
fined in [15]. Since cognitive fluents can be viewed as ordinary situation calculus
fluents, the proof is quite similar to the proof of Theorem 2 in [15].

The regression-based method introduced in [15] for computing whether a
ground situation is executable can be employed to compute whether a ground
situation is executable-believed. Moreover, the test is reduced to a theorem-
proving task in the initial situation axioms together with action unique names
axioms. Regression can also be used to consider the projection problem [11],
i.e. answering queries of the form: Would G be true in the world resulting from
the performance of a given sequence of actions T, D = G(do(T, Sp))? In our
proposal, regression is used to consider projections of beliefs, i.e. answer queries
of the form: Does i believe in s that p will hold in the world resulting from the
performance of a given sequence of actions T, D = B f;p(do(T, s), s)?

As in [16], we make the assumption that the initial theory Dg, is complete.
The closed-world assumption about belief fluents characterizes the agent’s lack
of beliefs. For example, suppose there is only B,p(Sp) in Dg, but we have two
fluents p(s) and ¢(s), then under the closed-world assumption we have =B,.q(So)
and = B,—q(Sp), fact that represents the ignorance of r about ¢ in Sp. Similarly,
this assumption is used to represent the agent’s lack of goals and intentions.

The notion of Knowledge-based programs [11] can be extend to BDI-based
programs, i.e. Golog programs [16] that appeal to BDI notions as well as propo-
sitional attitude-producing actions. The evaluation of the programs is reducing
to a task of theorem proving of sentence relative to a background intention the-
ory. The Golog interpreter presented in [16] can be used to execute BDI-based
programs due to the intention theories use the fluent representation to support
beliefs,” goals and intentions.

9 In Scherl and Levesque’s approach [17], the notion that has been modelled is knowl-
edge. Our interests to consider beliefs is motivated by our desire to avoid the logical
omniscience problem.

43

4 A Planning Application

In this section we show the axiomatization for a simple robot. The goal of the
robot is to attain a position z. To reach the goal, it can advance, reverse and
remove obstacles. We consider two fluents: p(z, s) meaning that the robot is in
the position z in the situation s, and o(z, s) meaning that there is an obstacle in
the position z in the situation s. The successor state axiom of p is of the form:

p(z,do(a, s)) < [a = advance A\p(x —1,8)]V[a = reverse Ap(x+1,s)]V (p(z,s) A
—la = advance V a = reverse]).

Intuitively, the position of the robot is x in the situation that results from
the performance of the action a from the situation s iff the robot was in z — 1
and a is advance or the robot was in x + 1 and a is reverse or the robot was in
z and a is neither advance nor reverse.

Suppose that the robot’s machinery updates its beliefs after the execution
of advance and reverse, i.e. the assumption that the robot knows the law of
evolution of p is made. So the successor belief state axioms are of the form:

B,p(x,do(a, s)) < [a = advance A Byp(x —1,5) V a = reverse A B.p(x + 1,)| V
B,p(x,s) A —la = advance V a = reverse]

B,—p(x,do(a,s)) < [(a = advance V a = reverse) A Byp(z,s)] V By—p(z,s) A
=la = advance A By.p(z — 1,8) V a = reverse A B.p(z + 1, s)].

The similarity between the successor state axiom of p and the successor
belief state axiom of B,p represents formally this assumption. If initially the
robot knows its position, we can show that the robot has true beliefs about its
position in every situation VsVz(B,p(z, s) — p(z, s)).

Now if in addition we assume that there are no communication actions such
as communicate.p(z, s') which “sense” whether in s the position is/was/will be
z in §', the successor generalised belief state axioms are of the form:

Byp(z,s',s) < Byp(w,s)
Byop(x,s',s) < Brop(w, ')

To represent the evolution of robot goals, we consider the two goal-producing
actions: adopt.p(z) and adopt.not.p(z), whose effect is to adopt the goal to be

in the position x and to adopt the goal to not be in the position x, respectively.
Also we consider abandon.p(x) and abandon.not.p(x), whose effect is to give up

44

the goal to be and not to be in the position z, respectively. The successor goal
state axioms are of the form:

Grp(z,do(a, s)) < a = adopt.p(x) V Grp(x, s) A ~(a = abandon.p(x))
G,—p(z,do(a, s)) < a = adopt.not.p(x)V G,.—p(z,s) A ~(a = abandon.not.p(z))

The successor intention state axioms are of the form:

I.p(z,T,do(a,s)) < G.p(z,do(a, s))AN|[(a = commit(T)ABf.Poss(do(T, s), s) A
Bf.p(x,do(T,s),s)) V I,p(z,[a|T],s) V Lip(x, T, s) A ~(a = giveup(T))]

I—p(x,T,do(a, s)) < G.—p(x,do(a, s))\[(a = commit(T)AB f.Poss(do(T, s), s)A
Bf—p(x,do(T,s),s)) V L=p(x, [a|T],s) V I.—p(x, T, s) A ~(a = giveup(T))]

where the effect of action giveup(T") is to give up the intention of carrying out
T.
The successor state axiom of o is of the form:

o(z,do(a, s)) < a = add_obs V o(x,s) A ~(a = remove_obs).

Intuitively, an obstacle is in = in the situation that results from the perfor-
mance of the action a from the situation s iff a is add_obs or the obstacle was
in z in s and a is not remove_obs. Suppose that the robot knows the law of
evolution of o.

The plan generated by the robot can be obtained by answering queries of the
form: What is the intention of the robot after it executes the action commit(T)
in order to satisfy its goal I.p(T,do(commit(T),Sp))? For example, suppose
that we have in the initial state the following information: p(1,Sp), o(3,So),
B,p(1,50), Gp(4,Sp), i.e. the robot believes that its position is 1 and it wants
attain 4 but it ignores that there is an obstacle in 3. The plan determined by it
is [advance, advance, advance].

If the robot has incorrect information about the obstacle, for example B;.0(2, Sy),
the plan determined by it is [remove_obs, advance, advance, advance]. If the
robot’s beliefs corresponds to the real world, the robot determines a correct
plan [advance, remove_obs, advance, advance].1?

5 Conclusion

We have introduced intention theories in the framework of situation calculus.
Moreover we have adapted the systematic, regression-based mechanism intro-
duced by Reiter in order to consider formulas involving BDI. In the original
approach, queries about hypothetical futures are answered by regressing them
to equivalent queries solely about the initial situation. We used the mechanism
to answer queries about the present beliefs of an agent about hypothetical fu-
tures by regressing them to equivalent queries solely about the initial situation.
In the original approach, it is the designer (external observer, looking down on

10 These plans have been automatically generated using SWI-Prolog.

45

the world) who knows the goal. In the proposal, it is the agent (internal ele-
ment, interacting in the world) who knows the goal. Moreover, under certain
conditions, the action sequence that represents a plan generated by the agent is
obtained as a side-effect of successor intention state axioms.

The notions of belief-producing actions, goal-producing actions and intention-
producing actions, namely propositional attitude-producing actions have been
introduced just as Scherl and Levesque introduced knowledge-producing actions.
The effect of propositional attitude-producing actions (such as sense, adopt,
abandon, commit or give up) on mental state is similar in form to the effect of
ordinary actions (such as advance or reverse) on relational fluents. Therefore,
reasoning about this type of cognitive change is computationally no worse than
reasoning about ordinary fluent change. Even if the framework presents strong
restrictions on the expressive power of the cognitive part, the approach avoids
complicating of the representation and updating of the world model. Diverse
scenarios can be represented and implemented.

The notion of omniscience, the agent’s beliefs correspond with the real world
in every situation, can be represented under two assumptions: the agent knows
the laws of evolution of the real world, and the agent knows the initial state of
the world. In realistic situations, agents may have wrong beliefs about the evo-
lution of world or initial state. Wrong beliefs can be represented by introducing
successor belief axioms that do not correspond to successor state axioms, or by
defining different initial settings between belief fluents and their corresponding
fluents.

Acknowledgements

We are thankful to all the reviewers for their helpful observations. We are also
grateful to Billy Duckworth, Mehmet Orgun and Robert Cambridge for their
comments. This research is supported by a grant from the American Research
Council.

References

1. Singh, M.P.: Multiagent Systems. A Theoretical Framework for Intentions, Know-
How, and Communications. Springer LNAT 799 (1994)

2. Wooldridge, M.: Reasoning about Rational Agents. MIT Press (2000)

3. Singh, M.P., Rao, A., Georgeff, M.: Formal method in dai : Logic based repre-
sentation and reasoning. In Weis, G., ed.: Introduction to Distributed Artificial
Intelligence, New York, MIT Press (1998)

4. van Linder, B.: Modal Logics for Rational Agents. PhD thesis, University of
Utrecht (1996)

5. Rao, A., Georgeff, M.: Modeling Rational Agents within a BDI Architecture. In:
Proceedings of the Second International Conference on Principles of Knowledge
Representation and Reasoning, Morgan Kaufmann (1991)

6. Cohen, P.R., Levesque, H.J.: Intention is choice with commitment. Artificial
Intelligence 42 (1990) 213-261

10.

11.

12.

13.

14.

15.

16.

17.

46

Rao, A.: Agentspeak(l): Bdi agents speak out in a logical computable language.
In: Proceedings of the 7th European workshop on Modelling autonomous agents in
a multi-agent world : agents breaking away, Springer-Verlag New York, Inc. (1996)
42-55

Dixon, C., Fisher, M., Bolotov, A.: Resolution in a logic of rational agency. In: Pro-
ceedings of the 14th European Conference on Artificial Intelligence (ECAI 2000),
Berlin, Germany, I0S Press (2000)

Hustadt, U., Dixon, C., Schmidt, R., Fisher, M., Meyer, J.J., van der Hoek, W.:
Verification within the KARO agent theory. Lecture Notes in Computer Science
1871 (2001)

Demolombe, R., Pozos Parra, P.: BDI architecture in the framework of Situation
Calculus. In: Proc. of the Workshop on Cognitive Modeling of Agents and Multi-
Agent Interactions at IJCAI, Acapulco, Mexico (2003)

Reiter, R. In: Knowledge in Action: Logical Foundations for Specifying and Im-
plementing Dynamical Systems. The MIT Press (2001)

Reiter, R.: The frame problem in the situation calculus: a simple solution (some-
times) and a completeness result for goal regression. In Lifschitz, V., ed.: Artificial
Intelligence and Mathematical Theory of Computation: Papers in Honor of John
McCarthy, Academic Press (1991) 359-380

Demolombe, R., Pozos Parra, P.: A simple and tractable extension of situation cal-
culus to epistemic logic. In Ras, Z.W., Ohsuga, S., eds.: Proc. of 12th International
Symposium ISMIS 2000, Springer. LNAI 1932 (2000)

Petrick, R., Levesque, H.: Knowledge equivalence in combined action theories.
In: Proceeding 8th International Conference on Knowledge Representation and
Reasoning. (2002)

Pirri, F., Reiter, R.: Some contributions to the metatheory of the situation calculus.
Journal of the ACM 46 (1999) 325-361

Levesque, H., Reiter, R., Lespérance, Y., Lin, F., Scherl, R.: GOLOG: A Logic
Programming Language for Dynamic Domains. Journal of Logic Programming 31
(1997) 59-84

Scherl, R., Levesque, H.: The Frame Problem and Knowledge Producing Actions.
In: Proc. of the National Conference of Artificial Intelligence, AAAI Press (1993)

The logic of knowledge based obligation

Rohit Parikh!
Eric Pacuit?
Eva Cogan®

! CS, Math and Philosophy
Brooklyn College™ and The Graduate Center of CUNY
365 5th Avenue, New York City, NY 10016
rparikh@gc.cuny.edu
www.sci.brooklyn.cuny.edu/~rparikh
2 Computer Science
The Graduate Center of CUNY,
epacuit@cs.gc.cuny.edu,
wwW.cs.gc.cuny.edu/~epacuit
? Computer Science
Brooklyn College of CUNY
cogan@sci.brooklyn.cuny.edu
www.sci.brooklyn.cuny.edu/~cogan

Abstract. We point out that an agent’s obligations are often dependent
on what the agent knows, and indeed one cannot reasonably be expected
to respond to a problem if one is not aware of its existence. For instance
a doctor cannot be expected to treat a patient unless she is aware of the
fact that he is sick, and this creates a secondary obligation on the patient
or someone else to inform the doctor of his situation.

In other words, unlike general commandments, many obligations are sit-
uation dependent, and are only relevant in the presence of the relevant
information. This creates the notion of knowledge based obligation. We
offer an S5, history based Kripke semantics to express this notion. We
consider both the case of an absolute obligation (although dependent
on information) as well as the notion of an obligation which may be
over-ridden by more relevant information. For an example of the latter,
a physician who is about to inject a patient with drug d may find out
that the patient is allergic to d and that she should not use d; she should
use d’ instead. Dealing with the second kind of case requires a resort
to non-monotonic reasoning and the notion of weak knowledge which is
stronger than plain belief, but weaker than absolute knowledge in that
it can be over-ridden.

Clearly the issue of programming agents (human or other) to address
this question of discharging obligations, or informing another agent of
its obligation to perform some task will arise. A semantics based on
“no forgetting” will require unbounded memory for the agents, but the

** 2900 Bedford Avenue, Brooklyn, NY 11210

47

48

examples we deal with can also be addressed by finite automata which
treat their own local histories as strings of events.

1 Introduction

Suppose we are given two functions a and f over some domain D. Then o < 3 iff
Vz € D,a(x) < B(z), and moreover a < B iff @« < 8 and § £ a. If some element
d of D is chosen, and we are offered a choice between a(d) and 3(d) in dollars,
then knowing that a < 3, we will choose 3(d) even if d is unknown to us. This
paradigm comes in useful in two contexts. The decision theoretic context, where
D is the set of possible states of nature and «, 3 represent payoff functions. The
other context is the game theoretic one where D respresents the (already chosen
but unknown to us) choices of the other players, and «, 8 are possible strategies
for us. In this context, if @ < 3, we will say that 5 dominates a and we will
tend to prefer f.

Now this comparison between a and 8 will not be possible for us if all we
are given are the ranges of a and B. For instance if a(z) = 2% and B(z) = z
over the unit interval [0,1], then it is indeed the case that a < /8 but the ranges
of the two functions are the same. Moreover, the function y(z) = 1 — x has the
same range as 3, but while we do have a < 8 we do not have a < . Thus in
situations where we do not have domnance, we need further information to make
a decision. And sometimes that information is possessed by another agent.

Since we are concerned in this paper with obligations, we will interpret such
obligations in terms of furthering some general good, and thus we will assume
that all agents involved have the same preferences, albeit they may have different
information, or different ability to act. This also means that we do not need to
address the issue of some agents deliberately misinforming others, as that issue
would arise only when the utilities or preferences clash.

Thus our present work has relevance to the situation where the values rep-
resent some (individual or) societal good and we ought to do what is best for
society. Clearly, knowing the set of consequences of action a vs knowing the set
of consequences of # will not always tell us how to decide. Rather we need to
ask, given the current circumstances (possibly unknown or only partially known
to us) can we still choose? It has been suggested that action 3 is preferable to
action « if all consequences of 3 are better than any consequence of a. But
clearly this requirement is too strict for our purposes.

For consider the decision whether to exercise. Suppose some people are rich
and some are poor, but all would be better off exercising. However, assume for a
moment that it is better to be rich and lazy than to be poor and to exercise. Then
the consequences of exercising are {richAexercised, poorAexcercised } whereas the
consequences of being lazy are {richAlazy, poorAlazy}. Not all consequences of
exercising are better than every consequence of being lazy, even though each
individual person, whether rich or poor, is better off exercising. To ask that all
consequences of exercising be better than every consequence of being lazy, is too
much. So we need to compare situations pairwise, a particular situation with

49

exercising and the “same” situation with laziness. If choosing between an a and
a 3, we should choose 3 if for our specific circumstance, § yields a higher value
than a.

We illustrate this abstract framework so far with some examples.

a) Jill is a physician whose neighbour is ill. Jill does not know and has not
been informed. Jill has no obligation (as yet) to treat the neighbour.

b) Jill is a physician whose neighbour Sam is ill. The neighbour’s daughter
Ann comes to Jill's house and tells her. Now Jill does have an obligation to treat
Sam, or perhaps call in an ambulance or a specialist.

¢) Mary is a patient in St. Gibson’s hospital. Mary is having a heart attack.
The caveat which applied in case a) does not apply here. The hospital has an
obligation to be aware of Mary’s condition at all times and to provide emergency
treatment as appropriate.

d) Jill has a patient with a certain condition C who is in the St. Gibson
hospital mentioned above. There are two drugs d and d' which can be used for
C, but d has a better track record. Jill is about to inject the patient with d,
but unknown to Jill, the patient is allergic to d and for this patient d’ should be
used. Nurse Rebecca is aware of the patient’s allergy and also that Jill is about
to administer d. It is then Rebecca’s obligation to inform Jill and to suggest that
drug d’ be used in this case.

In all the cases we mentioned above, the issue of an obligation arises. This
obligation is circumstantial in the sense that in other circumstances, the obliga-
tion might not apply. Moreover, the circumstances may not be fully known. In
such a situation, there may still be enough information about the circumstances
to decide on the proper course of action. If Sam is ill, Jill needs to know that he
is ill, and the nature of the illness, but not where Sam went to school.

Our purpose in this paper is to set forth a framework to express the sorts of
issues involved and to point out certain logical properties which will hold.

The Framework: our main tool will be the distinction between global histories
and local histories as in [PR’85,HMV ,PR’03]. The global histories include all
(relevant) events which have taken place. An agent i’s local history is those
events which i has actually seen. Here we make the assumption that if we knew
every event, that has taken place we would know all facts, but our ignorance of
some facts is due to the fact that some events have not been observed by us.
Thus for instance if Jill does not know that Sam is ill, it is because she has not
seen him throwing up. The events which she has seen, including perhaps the
sight of Sam mowing his lawn are quite compatible with another state of affairs
where he is in fact quite fine.

We shall use letters H, H' etc to range over global histories and h, h' over
local ones. To express the notion of a moment, we will assume a global clock.
This will allow us to translate sentences like, “At 10 AM, Jill is unaware that
Sam is ill, but at 11 AM she knows.” The time ¢ (e.g. 10 AM) allows us to talk
simultaneously about a moment for Jill and the corresponding moment for Sam.
Letters ¢, ¢’ will range over time, and given a moment ¢ of time the global history
H restricts to Hy, the global history upto time t.

50

2 An abstract model

We now present an abstract extensional representation of a communication sys-
tem in which the system is described as a set of global histories, each of which
represents one possible system evolution given by a sequence of global events.
For each system, the set of agents that participate in its events is assumed to be
a fixed finite set. Similarly, for each system, the set of possible global events is
fixed.

For convenience, we fix n > 0, and consider only systems with agents from
[n] = {1,2,...,n}, and events from a fixed (possibly infinite?) set E. E* is the
set of all finite sequences over F and E“ is the set of all infinite sequences over
E; we will let H, H',. .. range over the set E*UE“. Let H < H' denote that H is
a finite prefix of H'. We write Hy; Hs or just Hy Hy to denote the concatenation
of the finite history H; with the possibly infinite history H,. When H is infinite
or of length > ¢, we let H; denote the finite prefix of H consisting of the first
t elements. For a set of histories #, let P(H) denote the set {H' | H' < H for
some H € H} containing all finite prefixes of sequences in H.

The set of events E typically consists of actions by agents in the system
(including the sending and receipt of messages), but may also include other
events (perhaps due to actions of the environment) that affect the knowledge
of agents. We do not have a specific syntax of messages here, but choose to
identify the message with the event that denotes its sending or receipt; in this
sense, when we talk of the meaning of a message, we are referring to what the
sending (receiving) of that message (at a specific time, in a context) signifies
to the sender (receiver). Thus we are really discussing the semantics of event
occurrences as perceived by agents in the system.

Definition 21 A system is a tuple S = (H,E1,...,E,), where H C E“ (our

protocol) is the set of all (infinite) possible global histories of S, and fori € [n],
E; C E is the set of local events of agent i (not necessarily disjoint from E; for

J#i).

The role of the protocol H is to limit the possible global histories which
any agent may consider. It is this limitation on what can happen globally that
permits an agent to make inferences from locally observed events to non-observed
events. Thus for instance, when Sam throws up or vomits, that event v is not
witnessed by Jill, but the event m, which Jill does observe, of Ann saying “My
dad is throwing up,” creates in Jill the knowledge of the event v which she did
not observe, for every global history H in H which includes an event like m also
includes a previous event like v. If the protocol ‘allowed’ Ann to lie, then clearly
Jill could not infer v from m.

4 Typically, when the set E is infinite then it has some structure. For instance E could
be the set of strings on some finite alphabet. It is not intuitively plausible that an
infinite set without any such structure could be part of a system of communication.
This issue was addressed by Turing in his classic paper where he defined Turing
machines.

51

Local histories are got by ‘projecting’ global histories to local components.
For i € [n], let \; : P(E¥) — E* be the projection map for i, such that \;(H)

is obtained by mapping each event in E; into itself, and each event from E — E;

into a non-informative clock tick c. #; < {M(H) | H € P(H)} is the set of

local histories of .

The local history of agent i corresponding to global history H at time ¢
consists simply of those events from H; which are seen by agent i. Thus if
Hy, < Hy < H € H, then \;(Hy) < X\;(H>2) as well. In particular, if h is the local
history of agent i at some stage, and event e visible to i takes place next (that
is, e € E;), then h;e will be the resulting local history. If e is not visible, then
the new local history would be he where ¢ is a clock tick. Thus ke will be longer
than h but will not have any additional non-trivial events.

Definition 22 Let H,H' € P(H). For i € [n], define H ~; H' iff \;(H) =
)‘Z(H’) For H7H’ € H let H ~it H' Zﬁ.)‘l(Ht) = AZ(H;)

for i (for i at time t). We can consider this relation as giving the information
partition for i in the system S; that is, given the information available to i, the
histories H and H' cannot be distinguished; ¢ can only know properties common
to H, H'. Note that we are tacitly assuming a “no forgetting” condition, i.e. that
agent ¢ does not forget any of his local events. In practice we can often get away
with agent i being a finite automaton with limited memory.

The properties of such systems can be studied in a logical language. Let L be
a language which has formulae expressing (time dependent) properties of global
histories. Then we can write H,t = ¢, for ¢ belonging to L, to mean that the
history H satisfies formula ¢ at time ¢. If the truth value of ¢ does not depend
on t, then it is timeless. If ¢ has the property that once true it remains true, then
it is persistent. We expand L to a larger language LK by closing under boolean
connectives and operators K;. Thus if ¢ is a formula of LK and 7 is an agent,
then K;(¢), meaning i knows @, is also in LK. We can then define H,t = K;(¢)
to hold if for all H' € H, if H; ~; H; then H' t | ¢. What the agent i knows
at time ¢ depends on its local history. Moreover, the laws of logic LK5 (the S5
version of the logic of knowledge) are valid.

For definiteness, we fix a specific language £ so that the semantics of H,t |= ¢
is also fixed. Since the basic elements of the model are sequences, a linear time
temporal logic suggests itself. Let At = {po,p1,...} be a finite set of atomic
propositions. Formally, the syntax of £ is given by:

pYeLu=peAt| ¢ [V | Fo|Ph|Kip

Here P stands for “in the past”, F' for “in the future”, and K; for “i knows
that”.

A model is a pair M = (S,V), where V : P(H) — 2% is a valuation map
on finite prefixes of global histories which gives the truth values of some atomic
predicates at the states. We can now inductively define the notion H,t = ¢, for
HeH, t>0and ¢ € Lg:

52

. HitEpiff pe V(Hy), forpe P.

CH,tl= - iff Ht i 6.

CHtE ¢V if Hit = ¢or Ht = 1.

. H,t |= F¢ iff for some m > t, H,m |= ¢.

. H,t |= P¢ iff for some m < t, H,m = ¢.

. H,t|= K;¢ iff for all H' € H such that H, ~; H{, H',t |= ¢.

Y UL W N~

For simplicity we do include the connective U, until, as none of our current
examples need it. Of course there are other examples, like keep up mouth to
mouth resuscitation until the patient breathes on his own, which do need this
connective.

Since the truth value of a formula of the form K;¢ at H,t depends only on
h = X;(H;), we shall occasionally abuse language and write h = K;(¢) when we
mean H,t = K;(¢).

The formula ¢ is said to be satisfiable if there exists a model M, a global
history H € H in M and t > 0 such that M,t |= ¢. ¢ is said to be valid iff —=¢ is
not satisfiable. The following laws of the logic LK are easily seen to be valid:

- Ki¢ > ¢.
- K¢ > Ki~K;¢.

There are of course other laws which connect K; with the temporal connec-
tives. However, we shall not attempt to give a complete axiomatization in this
paper. See [HMV] for related results. See also [PaPa] for a logic of learning from
other agents.

2.1 Actions and Values

We think of an action as something which is performed at a finite global history
H and which yields a set a(H) of global extensions of H (provided that the
action a can be performed at H). In general there will be other extensions of
H in which a has not been performed. Formally, we assume a finite set, Act, of
actions that is a subset of E (the set of possible events). Then an action a € Act
can be understood as a partial function from the set of finite histories to global
histories. Given a finite global history H,

a(H)={H'| Ha < H' and H' € 1}

This implies that when an action is performed, it is performed at the next
moment of time. We could weaken this assumption and assume that performing
an action means performing that action eventually. In this case, a(H) will be
the set of global histories H' such that there is an Hy € E* and HHia < H'.
However, for now, we will use the above simpler definition of action performance.

We assume that each agent knows when it can perform an action. Thus if
H ~;; H' and i can perform a at H; then it can also perform a at H]. Moreover,

53

for simplicity we assume that only one agent can perform some action at any
moment. If no agents perform an action, then nature performs a ‘clock tick’.

We can introduce a PDL style operator into our language in order to repre-
sent executing an action. If a € Act, then [a]¢ is intended to mean that in all
histories in which a is performed, ¢ is true. Le., all executions of a makes ¢ true.
Its dual {(a)¢ will mean that after some execution of a, ¢ is true. Given a global
history H and time ¢, we define truth of [a]¢ as follows

H,t | [a]g iff for all H' € a(H;), H',t+1E ¢

Whereas the F' and P modal operators are linear time operators, i.e., they
range over moments on a single global history, the dynamic modalities just de-
fined are best understood as branching time operators.

We now have enough machinery to formalize the notion of a knowledge based
obligation. All global histories will be presumed to have a value and of course so
will those global histories which extend H; and in which a has been performed.
Under natural assumptions, (e.g. that the set of values is finite or compact)
there will be a set V of extensions of H; which have the highest possible value.
We will refer to this set as the H;-good histories and denote it as V(H;). Since
we are not dealing with lotteries, our notion of value is weak, and rather close
to being a mere representation of preferences. But we will assume that if the
same preferences are represented by two value functions V, V', then each is an
increasing, continuous function of the other.

We will say that a is necessary to be performed at H at time ¢, G(a, Hy),
if V(H;) C a(Hy), i.e., there are no Hy-good histories which do not involve the
performing of a. And we say that a may be performed at H, if V(H;) Na(Hy) is
non-empty.’

Let H be a set of global histories and H € H a global history. For each
t €N, let F(H;) ={H' € H | H; < H'}. That is, F(H;) is the “fan” of global
histories (in #) that contain H; as an initial segment. Recall that if F is any
set of histories, val[F] = {val(H) | H € F}. We require for each global history
HeH,

1. For all t € N, val[F(H;)] is a closed and bounded subset of R.
2. Nenval[F(Hy)] = {val(H)}

® Note that this definition seems compatible with the inference that if a letter may be
posted then it may be posted or burned. But we can avoid this apparent paradox by
saying that the permission to post or burn a letter really amounts to a permission
to post the letter plus the permission to burn it. This can be formally expressed
as the formula, (V(H;) Na(H;) # 0) A (V(H;) Nb(H;) # 0) rather than the more
obvious interpretation (V(H;) N (a(H:) Ub(H;)) # () which does not justify burning
the letter as an option. Here, of course, a is the action of posting the letter and b is
the action of burning it. The formula (V(H;) N a(H;) # () expresses permission to
post the letter. It does imply (V(H;) N (a(H¢) Ub(H;)) # 0) but, in our view, the
latter formula does not express the intent of the English sentence “You may post
the letter or burn it.”

54

Condition 2 is a ‘discounting’ condition which ensures that values of histories
depend only on what happens in a finite amount of time. If two histories agree
for a long time then their values should be close.

Since wval[F(H;)] is closed and bounded for all ¢, there are maximal and
minimal elements. Thus we define, V(H;) = {H'|H' € argmax(val[F(H;)])}.
Thus V(H;) is the set of maximally good, (or just maximal) extensions of Hy.

We can now define knowledge based obligation.

Definition 23 Agent i is obliged to perform action a at global history H and
time t iff a is an action which i (only) can perform, and i knows that it is
necessary to perform a, i.e. K;i(G(a,H)), or (VH')(H ~;+ H ANH' € V(H]) —
H' € a(H])). Le., putting this in terms of the agent’s local history h = X\;(Hy),
all mazimal extensions of any H| with X\;(H]) = h belong to the range of the
action a.

We can formalize the above notion as follows. For each a € Act, we define a
primitive proposition G(a). We say that H,t = G(a) iff all good global histories
H € H which extend H; are such that H;a < H. Then we say that ¢ is obliged
to perform action a if K;(G(a)).

2.2 Comparison with Horty

This above definition of a necessary action generalizes Horty’s dominance of ac-
tions ([Ho’01]). In [Ho’01] actions are sets of global histories and at any moment
m an agent i is faced with a set Choice}* of possible actions. This set is a parti-
tion of the possible global histories that extend a global history at a particular
moment m. Each history H is assumed to have a value Value(H). Since actions
are in fact sets of global histories, one is tempted to compare actions pointwise
so that action a is ‘better’ that a’ just in case Value(H) > Value(H') for each
H € a and H' € a'. In such a case we will write a > o' (<, <, > can then
be defined in similar ways). However, using the sure-thing principle of Savage,
Horty demonstrates some problems with this definition. In order to get around
this complication, actions are given a functional flavor.

For each agent i and moment m let State[™ be the actions available to each
agent other than i. That is

State;" = Choicelj_;
where A is the set of all agents®. Horty can now compare actions as follows

Definition 24 (Horty [Ho’01]) Leti be an agent and a and a' be two members
of Choicel™. Then (a' weakly dominates a) a < a' if and only if anS <a'NS
for each S € Statel*; and a < a' if a < a' and not @’ < a.

5 We have only defined the set Choice™ for one agent, so the above definition only
makes sense if there are only two agents. However, this definition can be extended
to multiple agents, see [Ho’01] for more details.

55

Thus when comparing actions a and a’, they are treated as functions over the
domain of choices of the other agents (i.e., the domain is Statel®). As functions,
a and a' are then compared pointwise. Qur approach is to make this idea explicit
and define actions as partial functions on the set of all possible histories. We then
can compare actions pointwise on their domains.

2.3 Applications

Suppose now that an agent acquires some knowledge. In that case, the set of
global histories H such that A\;(H,t) = h will decrease, and the universal quan-
tifier over all such histories will be more likely to become true. Thus before Jill
was told of Sam’s illness, the set of global histories compatible with her own local
one included many where Sam was not ill. Receiving the information, however,
deletes them, and in all global histories still compatible with her knowledge, she
must act to help Sam. Similarly, in example b) Ann had an obligation to inform
Jill, for before she tells Jill, in many of Jill’s local histories compatible with
Ann’s, and in some global histories compatible with these latter, Ann’s father
is not ill and Jill cannot act. By informing Jill, Ann extends Jill’s local history,
and creates an obligation for Jill. Moreover, assuming that Ann knows that Jill
does what she ought to, Ann herself has the obligation to inform Jill.

To see this more precisely we consider global histories consisting of four
events, v, m, t,c where v stands for Sam vomiting, m stands for Ann telling Jill,
t stands for Jill treating (or offering to treat) Sam and ¢ is a clock tick which,
unlike the other three, may occur more than once. Thus our global histories will
consist of sequences in which events occur infinitely often, but v, m, ¢ occur at
most once. Moreover, since Ann is truthful, m never occurs without v occurring
first. In those finite global histories in which v has occurred but not yet ¢, the
best continuations are those in which ¢ now occurs. And if v has not yet occurred
then ¢ (in the form of an offer to treat) may occur, but makes the history worse
as the doctor is embarrassed by offering to treat a healthy man.

Thus we stipulate that all histories in which neither v nor ¢ occurs have
value 2, those in which ¢ occurs without v have value 1 as do those in which v
is followed by ¢. Finally those histories in which v occurs but not ¢ have value 0
as they are the worst.

There are three agents, Sam, Ann, and the doctor, Jill. The event v is ob-
served by Sam and Ann, m by Ann and Jill, and ¢, let us say, by all three. In
a history in which v has occurred but not m, from Jill’s point of view there are
global histories in which » has not occurred which are compatible with her own
local history. So she cannot know that it is necessary to treat Sam, although it
is. She is not yet obligated to treat Sam. Once m occurs, she knows that v must
have occurred, it is necessary to treat, and she knows it. So she is obligated.

Suppose again that v has occurred but not m yet. Then from Ann’s point of
view, Jill’s local history is compatible with v not having occurred and in fact we
will have K,(—K;(V)) (Ann knows that Jill does not know about the vomiting)
where V' denotes that vomiting has occurred. Since the vomiting has happened,
all good histories now are those in which Sam has been treated, and those are

56

included in the ones in which Ann has told Jill. So Ann ought to inform Jill
about v, i.e. cause the event m, and then hope for ¢ to take place. Ann has the
obligation to tell Jill.

In a more complex scenario, with other agents, it could of course be that
someone other than Ann had informed Jill of Sam’s illness, but that Ann does
not know this. We would say that Ann still has an obligation to inform Jill, and
this can easily be expressed in our language.

Note that in our scenario, once the obligation to treat arises, it remains until
treatment has taken place.

Formal Erample: We can formalize the above discussion as follows. Suppose
that ¢ is the action ‘treat the neighbour’, ¢ is the action ‘do not treat the neigh-
bor’, and sick is the sentence ‘the neighbor is sick’. Suppose that there are four
global histories Hy, Ho, H3, Hy. The situation described in example (a) can be
represented as follows:

Hy H, H3 Hy

sick —sick

Figure 1

Jill cannot distinguish these four situations. Technically Hy ~j;; Ho ~ i
Hj3 ~jiy Hy. Thus Jill does not know that her neighbor is sick (—K;(sick)).
Since Hy > Hs, (i.e., Value(H,) > Value(H2)) Hy > Hs, Hy > Hjs, if the
neighbor is sick then it is strictly better to treat the neighbor than to not treat
the neighbor; however if the neighbor is not sick, then treating the neighbor for
an illness he does not have is worse than not treating the neighbor. Thus Jill
is not obliged to perform action ¢, since given her local history, even though
H, > H,, Hy > Hs. We are comparing the functions ¢t and ¢ on a domain D
of histories compatible with Jill’s local history. On this domain ¢ and ¢ are not
comparable, neither dominates the other.

Now suppose that Ann informs Jill that her father is sick (as in example (b)).
This event changes Jill’s local view so that the Hs, H; are no longer possible for
her. Jill’s local view is now restricted to the left two histories (H; and H»). And
so, Jill is obliged to perform action a, since on the new domain D' of histories
compatible with Jill’s updated local view, ¢ is strictly better than the action c.

The case of the nurse Rebecca is a bit more tricky. The reason is that acquir-
ing knowledge may create an obligation as we saw before, but it cannot erase (a
persistent) one. The existence of an obligation is a universally quantified formula

57

whose truth value can only go from false to true as the domain shrinks. Thus if
Jill had the obligation to administer drug d before being informed by Rebecca
of Mary’s allergy, then she would still have it. How, then do we represent the
fact that on learning of the allergy she acquires the obligation to administer d’
but loses the obligation to administer d?

Dealing with this case will require a resort to the notion of a default history.
Those histories in which patients do not have this allergy may be regarded as
the usual kind and those in which they do are unusual. Typically, obligations
are evaluated in terms of histories of the usual kind and when we say “good”
history, we mean a good history of the usual kind. Learning about the allergy
deletes these usual histories, and then the action contemplated is re-evaluated
in terms of the unusual variety. Thus d is better than d’ when we consider the
usual sort of history, but the opposite happens when we consider the unusual
variety.

Thus we will assume that each history fragment H; has a set D(H,t) of de-
fault extensions such that not all members of # which extend H; are in D(H,).
Now we can define the notion of an action which is necessary as a default, re-
placing H by D(H,t) in our original definitions.

The following picture illustrates the above discussion. Suppose that § is the
action ‘give drug d to Mary’ and ¢’ is the action ‘give drug d’ to Mary’. Suppose
that according to Jill’s information, all of the histories H;, H] for i = 1,...,4
are indistinguishable; and that H; > H] fori = 1,2,3, but Hy > Hy. In this case
Jill is not obliged to perform § since H; > H4. However, if we assume that the
histories H, and Hj are only remotely possible, then Jill is obliged to perform
action ¢, i.e., administer drug d. In the figure below, the histories inside the
innermost rectangle are the “usual” histories. Once Rebeca informs Jill about
Mary’s allergy, the histories inside the rectangle are no longer possible; and so
Jill is now obliged to perform action ¢’ and not obliged to perform 4.

Figure 2

58

To deal with such cases we introduce the notion of weak knowledge or more
prosaically, justified belief. For each Hy, divide its extensions into two (there
could be more than two) parts, the normal extensions (of which there must be
some) and the unusual extensions. Now we say that ¢ is justifiably believed by
i at H,t iff for all normal extensions H' of some H{ which are i,t-equivalent
to Hy, H',t = ¢. Justified belief no longer implies truth as H itself might not
be one of these normal extensions. It is possible for Jill to justifiably believe
that the patient does not have allergy although he does. Moreover, after nurse
Rebecca learns of the patient’s allergy, but before she tells Jill, the two have
disjoint normal histories. Rebecca will now think in terms of ‘typical patients
with allergy’, patients which, for Jill, are atypical. After Jill learns of the allergy,
their views are again compatible.

Finally we come to case c¢) where we talk of the hospital’s obligation to keep
track of a patient’s condition. Suppose that every heart attack, after a certain
amount of time, results in death, unless treated, and such treatment can only
follow an observation of the patient. Then it is clear that it is the obligation of
the hospital to observe the patient periodically. We postpone details to the full
version of the paper.

3 Programming the Agents

Given a set of histories and values assigned to each history, we can ask, ”Is it
possible to program the agents in such a way that if the agents do what the know
they ought to do, then one of the best histories is produced?

We first must decide on how much computational power we will ascribe to
the agents. Assuming that agents have perfect recall requires that they have un-
bounded memory, and we will need to model them as Turing machines whereas
assuming that agents are finite automata means that agents have bounded mem-
ory.

In the following example the agents are finite automata.

Ezample: Consider the example where Ann is obliged to inform Jill about
her father’s vomiting which induces Jill to have the obligation to treat Sam
(Ann’s father). We assume E = {v,m,t,c}, where v stands for vomiting, m for
Ann telling Jill about her father’s illness, ¢t for Jill treating Sam and ¢ for a
clock tick. Thus histories are strings over E. For the conditions placed on these
strings, refer to Section 2.3.

Since in this example, Sam has no control over whether or not he vomits, we
only consider Jill and Ann. We can ascribe the following finite automata to Jill
and Ann. For Jill, suppose that the input alphabet is X'; = {m, t}, the states are
QJ = {Jjo, j1,j2} with jo being the start state. As for the transitions, we need to
consider two types of transitions. The first is a transition induced by an action
of another agent. For example, when Jill is in state jp, and she “sees” a m, she
moves to state j;. Since m is not an action that Jill can perform, we think of
this transition as being forced or caused by another agent (Ann in this case).
Now once Jill is in state ji, it is her turn to act. She can move to state jo by

59

performing action ¢ or simply stay in state j; by doing nothing. But in any case
knowing of v corresponds to being in state j;.

Ann’s automaton will be similar. Let ¥4 = {v,m} and Q4 = {ag,a1,a2}.
Ann’s initial state is ag, when her father vomits she transitions from ag to a;.
While in a; she can choose to do nothing or perform action m to move to state
as. But she knows of v as she is in state a;.

The following figure depicts the above finite automaton. The dashed line
represents transitions induced by other agents or the environment, and the solid
line represents the choices that each agent can make.

%

R N O T C e

(&) (o)

Jill Ann

Figure 3

Define values as follows. All histories in which neither v nor ¢ occurs have
value 2, Those histories in which v occurs but not ¢ have value 0 as they are
the worst. Those histories in which v is followed by ¢ are assigned as follows.
Let H be a history in which v is followed by ¢, val(H) N]—+1 + M]—+1’ where
N is the number of clock ticks between the occurrences of v and m, and M is
the number of clock ticks between the occurrences of m and ¢. Those in which
t occurs without v have value 1 as do those in which v is followed by ¢. This
valuation not only means that both Ann and Jill have to act, but that they
should act speedily, for any delay leads to histories with lower values.

References
[BPX] Belnap, N., Perloff, M., and Xu, M., Facing the Future, Oxford 2001.
[Hi] Hilpinen, R., Deontic Logic, in Blackwell guide to philosophical Logic, Ed.

Lou Goble, Blackwell 2001, 159-182.
[Ho’01] Horty, J., Agency and Deontic Logic, Oxford 2001.

[HMV] Halpern, J., R. van der Meyden, and M. Vardi, Complete axiomatizations
for reasoning about knowledge and time, SIAM journal of computing.

[LS] Lomuscio, A., and M. Sergot, Deountic interpreted systems, Studia Logica,
75 (2003) 63-92.

[P95] Parikh, R., Knowledge based computation (Extended abstract), in Pro-

ceedings of AMAST-95, Montreal, July 1995, Edited by Alagar and Nivat,
Lecture Notes ib Computer Science no. 936, 127-42.

[P03]

[PaPa]

[PR’85]
[PR’03]

[(VM]

60

Parikh, R., Levels of knowledge, games, and group action, in Research in
Economics, 57, (2003) 267-281.

Pacuit, E., and R. Parikh, A Logic for communication graphs, to be pre-
sented at the Association for Symbolic Logic annual meeting in Pittsburgh,
May 2004.

Parikh, R., and R. Ramanujam, Distributed processes and the logic of
knowledge, in Logic of Programs, LNCS #193, Springer 1985, pp. 256-268.
Parikh, R., and R. Ramanujam, A Knowledge based Semantics of Mes-
sages, in J. Logic, Language and Information, 12, (2003) 453-467.

van der Meyden, R. The Dynamic Logic of Permission, Journal of Logic
and Computation, Vol 6, No. 3 pp. 465-479, 1996.

Representational Content and the Reciprocal
Inter play of Agent and Environment

Tibor Bosse', Catholijn M. Jonker*, and Jan Treur*?

"Vrije Universiteit Amsterdam, Department of Artificial Intelligence

De Boelelaan 1081a, NL-1081 HV Amsterdam, The Netherlands
Emai | : {tbosse, jonker, treur}@s.vu.nl
URL: http://ww.cs.vu.nl/~{tbosse, jonker, treur}

“Utrecht University, Department of Philosophy
Heidelberglaan 8, 3584 CS Utrecht

Abstract Declarative modelling approaches in principle assume a notion of
representation or representational content for the modelling concepts. The no-
tion of representational content as discussed in literature in cognitive science
and philosophy of mind shows complications as soon as agent and environment
have an intense reciprocal interaction. In such cases an internal agent stateis af-
fected by the way in which internal and external aspects are interwoven during
(ongoing) interaction. In this paper it is shown that the classica correlational
approach to representational content is not applicable, but the temporal-
interactivist approach is. As this approach involves more complex temporal rela-
tionships, formalisation was used to define specifications of the representational
content more precisely. These specifications have been validated by automati-
cally checking them on traces generated by a smulation model. Moreover, by
mathematical proof it was shown how these specifications are entailed by the
basic local properties.

1 Introduction

Declarative modelling approaches go hand in hand with some assumed notion of
representation or representational content for the modelling concepts. Within
cognitive and philosophical literature, classical approaches to representational
content are based on correlations between an agent’s internal state properties and
external state properties. For example, the presence of a horse in the field is cor-
related to an internal state property that plays the role of a percept for this horse.
One of the critical evaluations of this approach addresses the limitation that it is
static: internal state properties are to be related to single external states, and can-
not be related to processes involving multiple states or events over time. Espe-
cially in cases where the agent-environment interaction takes the form of an ex-
tensive reciprocal interplay in which both the agent and the environment contrib-
ute to the process in a mutual dependency, a classical approach to representa-
tional content is insufficient. Some authors even claim that it is a bad idea to aim
for a notion of representation in such cases; e.g., [7, 9]. Therefore these cases can
be considered a serious challenge to declarative methods.

61

As an alternative, within Philosophy of Mind, the interactivist approach [1] is
put forward. In [5] it is shown how a temporal-interactivist approach to represen-
tational content of an internal state property can be formalised based on sets of
agent-environment past and future interaction trajectories or traces.

In this paper it is analysed how some non-classical approaches may be used to
define representational content in the case of an extensive agent-environment
interplay. In particular, for a case study it will be discussed how the temporal-
interactivist approach and second-order approach to representational content can
be used. These alternative notions involve more complex temporal relationships
between internal and external states. Formalisation to define specifications of the
representational content more precisely was used as a means to handle this com-
plexity. This formalisation provided dynamic properties that can be (and actually
have been) formally checked for given traces of the agent-environment interac-
tion.

In Section 2 the modelling approach is briefly introduced. Section 3 introduces the
case study and the language used to model this case study. In Section 4 a number of
local dynamic properties describing basic mechanisms for the case study are pre-
sented; simulations on the basis of these local dynamic properties are discussed in
Section 5. Section 6 presents global dynamic properties, describing the process as a
whole and larger parts of the process. In Section 7 the interlevel relations between
these nonlocal properties and the local properties are discussed. In Section 8 three
different approaches to representational content are explored and formalised for the
case study. In Section 9 it is shown how these formalisations can be validated against
the simulation model, both by mathematical proof and by automated checks. Section
10 isadiscussion.

2 Modelling Approach

To formally specify dynamic properties that express criteria for representational
content from a temporal perspective an expressive language is needed. To this
end the Temporal Trace Language is used as atool; cf. [4]. In this paper for most
of the occurring properties both informal or semi-formal and formal representa-
tions are given. The formal representations are based on the Temporal Trace
Language (TTL), which is briefly defined as follows.

A state ontology is a specification (in order-sorted logic) of a vocabulary, i.e.,
a signature. A state for ontology ont is an assignment of truth-values {true, false}
to the set At(ont) of ground atoms expressed in terms of ont. The set of all possi-
ble states for state ontology ont is denoted by STATES(Ont). The set of state prop-
erties STATPROP(Ont) for state ontology ont is the set of all propositions over
ground atoms from Atont). A fixed time frame T is assumed which is linearly
ordered. A trace or trajectory yover a state ontology ont and time frameT isa
mapping y: T — STATES(Ont), i.e., a sequence of statesy, (t 0 1) in STATES(Ont).
The set of all traces over state ontology ont is denoted by TRACES(Ont). Depend-
ing on the application, the time frame T may be dense (e.g., the real numbers), or
discrete (e.g., the set of integers or natural numbers or a finite initial segment of
the natural numbers), or any other form, as long as it has a linear ordering. The
set of dynamic properties DYNPROP(Y) is the set of temporal statements that can
be formulated with respect to traces based on the state ontology ont in the follow-
ing manner.

62

Given a trace y over state ontology Ont, the input state of the organism (i.e.,
state of sensors for external world and body) at time point t is denoted by state(y,
t, input); analogously, state(y, t, output), state (y, t, internal) and state (y, t, EW) denote
the output state, internal state and external state (of the world, including the
physical body) for the organism.

These states can be related to state properties via the formally defined satisfac-
tion relation |=, comparable to the Holds-predicate in the Situation Calculus:
state(y, t, output) [= p denotes that state property p holds in trace y at time t in the
output state of the organism. Based on these statements, dynamic properties can
be formulated in a formal manner in a sorted first-order predicate logic with sorts
T for time points, Traces for traces and F for state formulae, using quantifiers
over time and the usual first-order logical connectivessuchas-, 0, 0, 0, 00, [1

To model direct temporal dependencies between two state properties, the ssimpler
leads to format is used. This is an executable format defined as follows. Let a and 8
be state properties of the form ‘conjunction of literals’ (where a literal is an atom or
the negation of an atom), and e, f, g, h non-negative real numbers. In the leads to lan-
guage o — ., B, means:

If state property a holdsfor a certain time interval with duration g,

then after some delay (between e and f) state property 3 will hold for a certain time interval of length h.
For a precise definition of the leads to format in terms of the language TTL, see [6]. A
specification of dynamic properties in leads to format has as advantages that it is ex-
ecutable and that it can often easily be depicted graphically. The leads to format has
shown its value especially when temporal or causal relations in the (continuous) physi-
cal world are modelled and simulated in an abstract, non-discrete manner; for exam-
ple, the intracellular chemistry of E. coli [3].

3 The Case Study

In this Section the case study will be introduced and the internal state properties and
their dynamics to model this example are presented.

3.1 Introduction of the Case Study

The case study addressed involves the processes to unlock a front door that
sticks. Between the moment that the door is reached and the moment that the
door unlocks the following reciprocal interaction takes place:

e the agent puts rotating pressure on the key,

the door lock generates resistance in the interplay,

the agent notices the resistance and increases the rotating pressure,

the door increases the resistance,

and so on, without any result.

finally, after noticing the impasse the agent changes the strategy by at the
same time pulling the door and turning the key, which unlocks the door.

This example shows different elements. The first part of the process is described in
terms of Sun’s sub-conceptual level, whereas the last part of the process is viewed in
terms of the conceptual level [9,10]. For both parts of the process the notion of repre-
sentational content will be discussed and formalised.

63

64

3.2 State Properties

To model the example the following internal state properties are used:

s1 sensory representation for being at the door

s2(r) sensory representation for resistance r of the lock

p1(p) preparation for the action to turn the key with rotating pressure p (without pull-

ing the door)

p2 preparation for combined pulling the door and turning the key

c state for having learnt that turning the key should be combined with pulling the
door

The interactions between agent and environment are defined by the following
sensor and effector states:

ol observing being at the door

02(r) observing resistance r

al(p) action turn the key with rotating pressure p (without pulling the door)
a2 action turn the key while pulling the door

In addition, the following state properties of the world are used:
arriving_at_door the agent arrives at the door

lock_reaction(r) the lock reacts with resistance r

door_unlocked the door is unlocked

d(mr) resistance threshold mr of the door (indicating that the door will con-
tinue to resist until pressure mr or more is used)

max_p(mp) maximal force on the key that can be exercised by the agent.

4 L ocal Dynamic Properties

To model the dynamics of the example, the following local properties (in leads to
format) are considered. They describe the basic parts of the process.

LP1 (observation of door). Thefirst local property LP1 expresses that the world state
property arriving_at_door |eads to an observation of being at the door. Formalisation:

arriving_at_door — ol
L P2 (observation of resistance). Loca property LP2 expresses that the world state
property lock_reaction with resistance r leads to an observation of this resistancer.
lock_reaction(r) — 02(r)

Note that r is a variable here; the specification should be read as a schema for the set
of al instancesfor r.

LP3 (sensory representation of door). Local property LP3 expresses that the
observation of being at the door leads to a sensory representation for being at the door.
ol - sl
LP4 (sensory representation of resistance). LP4 expresses that the observation of
resistance r of the lock leads to a sensory representation for this resistance.
02(r) — s2(r)

L P5 (action preparation initiation). LP5 expresses that a sensory representation for
being at the door leads to a preparation for the action to turn the key with pressure 1.

sl — pl(1)
LP6 (pressure adaptation). LP6 expresses the following: if turning the key with a
certain pressure p did not succeed (since the agent received a resistance that equals p),
and the agent has not reached its maximal force (p<mp), and the agent has not learnt
anything yet (not c), then it will increase its pressure.

p1(p) and s2(r) and p=r and p<mp and not ¢ — p1(p+1)

LP7 (birth of learning state). LP7 expresses that, if turning the key with a certain
pressure p did not succeed (since the agent received a resistance that equals p), and the
agent has reached the limit of its force (p=mp), then it will learn that should perform a
different action.

p1l(p) and s2(r) and p=r and p=mp — C

LP8 (learning state persistency). LP8 expresses that the learning state property c
persists forever.

cC —»C

LP9 (alternative action preparation). LP9 expresses that a sensory representation
for resistance r of the lock together with the learning state property lead to a
preparation for combined pulling of the door and turning the key.

cand s2(r) - p2

L P10 (action performance). LP10 expresses that a preparation for the action to turn
the key with pressure p (without pulling the door) leads to the actual performance of
this action.

p1(p) — al(p)
LP11 (alternative action performance). LP11l expresses that a preparation for

combined pulling of the door and turning the key leads to the actua performance of
this action.

p2 — a2
L P12 (negative effect of action). LP12 expresses the following property of the world:
if the key isturned with a certain pressure p that is smaller than the maximal resistance
of the door (p<mr), and the agent is not pulling the door simultaneoudly, then the lock
will react with resistance p.

al(p) and not a2 and d(mr) and p<mr — lock_reaction(p)

L P13 (positive effect of action). LP13 expresses the following property of the world:
if the key is turned with a certain pressure p that at least equals the maximal resistance
of the door (p=mr), then the door will unlock.

al(p) and d(mr) and p=mr — door_unlocked
LP14 (positive effect of alternative action). LP14 expresses the following property

of the world: if the agent turns the key, and simultaneously pulls the door, then the
door will unlock.

a2 — door_unlocked

65

ol sl p1(p) al(p)

p=r, pzmp \
O c

02(r) s2(r) p2 a2

arriving_at_door door_unlocked

o) o

lock_reaction(r) d(mr)@\

p<mr\

Figure 1 Overview of the simulation model

In Figure 1 an overview of these propertiesis given in a graphical form. To limit
complexity, local property LP6 is not depicted.

5 Simulation

A specia software environment has been created to enable the simulation of ex-
ecutable models. Based on an input consisting of dynamic properties in leads to
format, the software environment generates simulation traces. An example of
such a trace can be seen in Figure 2. Time is on the horizontal axis, the state
properties are on the vertical axis. A dark box on top of the line indicates that the
property is true during that time period, and a lighter box below the line indicates
that the property is false. This trace is based on all local properties identified
above. In property LP6, the values (0,0,1,5) have been chosen for the timing pa-
rameters e, f, g, and h. In all other properties, the values (0,0,1,1) have been cho-
sen. As can be seen in Figure 2, the presence of the agent at the door leads to a
corresponding observation result (o1), followed by a sensory representation for
being at the door. Next, the agent prepares for turning the key (initially with
pressure 1), and subsequently performs this action. Since this pressure is insuffi-
cient to unlock the door (within this example, the resistant threshold of the door
is 5), the door does not open, but a lock reaction (with resistance 1) occurs in-
stead. As a conseguence, the agent observes this resistance, and creates a sensory
representation of it. At this point, the agent prepares to increase the pressure (see
local property LP6), resulting in the action of turning the key with pressure 2.
This loop is being activated once more: the agent even tries to turn the key with
pressure 3, but then reaches the limit of its force (3 in this example, see LP7) and
learns that it should perform a different action. In other words, internal state
property ¢ becomes true.

66

a2 f— [
arriving_at_door
c |
door_unlocked — [r—
ot H==F i
p2 —, frp—
si{ | .
at(l) e .
at(2)
al(3) — 1
d(s) 1
lock_reaction(1) —
lock_reaction(2) fr—
lock_r
max_p{3)]
02(1)] e, f—
02(2) —.
02(3) f—.
pI1) | [, —
p1(2) —
p13) fr—.
s2(1) — —
s2(2) frm—
s2(3) fr—

time
Figure 2 Example simulation trace

Subseguently, the combination of this state property ¢ and state property s2(3)
leads to the preparation for an alternative action: combined pulling of the door
and turning the key. As a result of this preparation, the action is actually per-
formed and the door is unlocked. After that, to show that the agent has indeed
learned something, the trace continues for a while. At time point 40, the agent
again finds itself confronted with a locked door. Again, it starts by trying to turn
the key with pressure 1. However, when this approach turns out not to work, this
time the agent shows adapted behavior. It does not try to increase the pressure,
but immediately switches to the alternative action instead.

6 Non-local Dynamic Properties

This section presents dynamic properties for larger parts of the process, i.e., at a
nonlocal level. Within these properties, y is a variable that stands for an arbitrary
trace.

GP1 (door eventually unlocked). Global property GP1 expresses that eventualy the
door will be unlocked.
Ot: state(y, t, EW) = arriving_at_door O

r'>t: state(y, t', EW) = door_unlocked

GP2 (learning occurs). Global property GP2 expresses that if the maximal resistance
of the door is bigger than the maximal rotation force that the agent can exert, then at
some point in time learning will occur.
0Ot: state(y, t, EW) = d(mr) O
Ot: state(Y, t, internal) = max_p(mp) Omr > mp O
' state(y, t', internal) = ¢

67

GP3 (mr > mp = door eventually unlocked). Global property GP3 expresses that if
the maximal resistance of the door is bigger than the maximal rotation force that the
agent can exert, then at some point in time the door will be unlocked.
Ot: state(y, t, EW) = d(mr) O
Ot: state(Y, t, internal) = max_p(mp) Omr > mp O
' state(y, t', EW) = door_unlocked

GP4 (mr < mp = door eventually unlocked). Global property GP4 expresses that if
the maximal resistance of the door is less than or equal to the maximal rotation force
that the agent can exert, then at some point in time the door will be unlocked.
Ot: state(y, t, EW) = d(mr) O
Ot: state(Y, t, internal) = max_p(mp) Omr < mp O
' state(y, t', EW) = door_unlocked

GP3 and GP4 are formulated separately because their proofs differ. Next a num-
ber of intermediate properties are formulated that form a kind of milestones in
the process of opening a door and learning.

M1 (at door = preparation to turn key). Intermediate property M1 expresses that
after the agent stands at the door the agent will prepare for turning the key.
Ot: state(y, t, EW) |= arriving_at_door O

[t' > t: state(y, t', internal) = p1(1)

M2 (lock reaction represented). Intermediate property M2 expresses that a lock
reaction will be represented internally.
Ot: state(y, t, EW) = lock_reaction(r) O

' > t: state(y, t', internal) = s2(r)

M3 (alter native action). M3 expresses that if lock resistance is internally represented
and the agent has learned, then at some later point in time the agent will perform the
action a2.
Ot: state(Y, t, internal) = c O state(Y, t, internal) = s2(r) O

' > t: state(y, t, ouput) = a2

M4 (increasing rotation pressure). M4 expresses that under the condition that agent
has not learned c yet, the rotation pressure that the agent exerts on the key will always
reach the minimum of the maximal resistance of the door and the maximal force that
agent can exert.
0Ot, Omp, Omr, Osl

not state(y, t, internal) = ¢ O state(y, t, EW) = d(mr) O

state(y, t, internal) = max_p(mp) O sl = minimum(mr, mp) O

state(Y, t, EW) = arriving_at_door O

' > t: state(y, t', internal) = p1(sl) O " > t": state(y, t”, output) = al(sl)

Finally, a number of additional properties are needed in order to prove the rela-
tions between the properties.

Al (maximal force). Additional property Al expresses that the maximal rotation
force that the agent can exert on the key is constant.
Omp Ot: state(y, t, internal) = max_p(mp)

A2 (maximal resistance). Additional property A2 expresses that the maximal
resistance that the door can offer is constant.
Omr Ot: state(y, t, EW) = d(mr)

68

A3 (Closed World Assumption). The second order property that is commonly known
as the Closed World Assumption expresses that at any point in time a state property
that is not implied by a specification to be true is false. Let Th be the set of all local
properties L P1-L P14.

OPOAt(ONT) Ot: not Th |-- state(Y, t) = P O state(Y, t) = not P

7 Interlevel Relations

This section outlines the interlevel connections between dynamic properties at
different levels, varying from dynamic properties at the local level of basic parts
of the process to dynamic properties at the global level of the overall process.
The following interlevel relations between local dynamic properties and non-
local dynamic properties can be identified.

GP3 & GP4 0 GP1
M2 & M4 & LP7 & LP12 0 GP2
M2 & M3 & M4 & LP7 & LP14 0O GP3
M4 & LP13 O GP4
LP1 & LP3 & LP5 o M1
LP2 & LP4 0 M2
LP8 & LP9 & LP11 0 M3

M1 & M2 & LP6 & LP10 & LP12 & Al & A2 & A3 o M4

The proofs of M1, M2, M3, and GP1 are rather straightforward and left out. A
proof sketch of the other properties is provided.
Property M4 can be proved by induction. The induction hypothesisis

Ot: state(y, t, output) = al(p) Op <sl O

1> t, (2 > tl:

state(y, t1, internal) = p1(p+1) O state(Y, t2, output) = al(p+1)

The induction base is given by properties M1 and LP10, providing p1(1), and
al(1). The induction step is proved along the following lines. Because of A3 and
“not ¢”, also “not a2” holds at all times during which “not ¢” holds. Since p < sl
and sl is the minimum of mp and mr, p < mr. All conditions of LP12 hold, there-
fore, some time after ai(p) holds, lock_reaction(p) will hold. Applying property M2
tells us that again some time later s2(p) will hold. Since p is also less than mp now
LP6 can be applied giving us that again some time later (call this time point t1)
pl(p+1) will hold. By applying LP10, we now have that some time later again, say
at time t2, a1(p+1) will hold. This proves that the induction hypothesis holds.
Now assuming that the antecedent of M4 holds, implies that subsequently (over
time) LP1, LP3, LP5 and LP10 can be applied. In that manner, from arriving at
the door, an observation of that fact is derived, leading to an internal representa-
tion thereof (s1), leading to an internal state in which p1(1) holds, leading to an
output state in which a1(1) holds. Therefore, all circumstances hold for the induc-
tion principle to be applicable. The induction principle leads to the conclusion
that at some point in time pi(sl) holds in the internal state and some time later
again ai(sl) holds in the output state. Thus proving the conclusion of M4 under
the assumption that the antecedent of M4 holds. This concludes the proof by
induction of M4.

Property GP2 can be proved as follows. Since mr > mp, sl = mp. Applying M4
gives us [x': state(y, t', output) = al(mp). By application of LP12, we get some time

69

later lock_reaction(mp), application of M2 gives us, some time later again, s2(mp).
Finally, application of LP7 provides us with the learned c.

The proof of Property GP3 follows the following subsequent time points of
interest: application of M4 gives a time point t1 such that p1(mp) holds, applica-
tion of M2 give a time t2 such that s2(mp) holds, application of LP7 gives atime
t3 such that ¢ holds, application of M3 gives a time t4 such that a2 holds, applica-
tion of LP14 gives a time t5 such that door_unlocked holds.

The proof of property GP4 is rather short, by application of M4 at a certain
time t1 a1(mr) will hold, by application of LP13 a later time t2 exist at which
door_unlocked holds. All proofs can be worked out in more details by using the
timing parameters of the local properties involved.

8 Representational Content

In the literature on Philosophy of Mind different types of approaches to represen-
tational content of an internal state property have been put forward, for example
the correlational, interactivist, relational specification and second-order represen-
tation approach; cf. [8], pp. 191-193, 200-202, [1]. These approaches have in
common that the occurrence of the internal state property at a specific point in
time is related to the occurrence of other state properties, at the same or at differ-
ent time points. The ‘other state properties’ can be of three types:

A. external world state properties, independent of the agent

B. the agent's sensor state and effector state properties, i.e. the agent’s in-

teraction state properties (interactivist approach)

C. internal state properties of the agent (higher-order representation)
Furthermore, the type of relationships can be (1) purely functional one-to-one
correspondences, (e.g., the correlational approach), or (2) they can involve more
complex relationships with a number of states at different points in time in the
past or future, (e.g., the interactivist approach). So, six types of approaches to
representational content are distinguished, that can be indicated by codings such
as Al, A2, and so on. Below, examples are given.

8.1 Correlational Approach

According to the Correlational approach, the representational content of a certain
internal state is given by a one-to-one correlation to another (in principle exter-
nal) state property: type Al. Such an external state property may exist backward
as well as forward in time. Hence, for the current example, the representational
content for internal state property s1 can be defined as world state property arriv-
ing_at_door, by looking backward in time. Intuitively, this is a correct definition,
since for all possible situations where the agent has s1, it was indeed physically
present at the door, and conversely. Likewise, the representational content for
internal state property p2 can be defined as action property a2, by looking for-
ward in time, or, rather, as world state property door_unlocked. However, for many
other internal state properties the representational content cannot be defined ade-
quately according to the correlational approach. In these cases, reference should
not be made to one single state in the past or in the future, but to a temporal se-
quence of inputs or output state properties, which is not considered to adequately
fit in the correlational approach. An overview for the content of all internal state

70

properties according to the correlational approach (if any), is given in Table 1.
These relationships can easily be specified in the language TTL.

Table 1 Correlational approach

Internal state property | Content (backward) | Content (forward)
sl arriving_at_door lock_reaction(1)
s2(r) lock_reaction(r) impossible

p1(1) arriving_at_door lock_reaction(1)
p1(2) impossible lock_reaction(2)
p2 impossible door_unlocked

c impossible impossible

8.2 Temporal-Interactivist Approach

The temporal-interactivist approach [1,5] relates the occurrence of internal state
properties to sets of past and future interaction traces. type B. This can be done
in the form of functional one-to-one correspondences (type B1), or by involving
more complex relationships over time (type B2). In this paper the focusis on the
more advanced casg, i.e., the B2 type. As an example, consider the internal state
property c. The representational content of c is defined in a semantic manner by
the pair of sets of past interaction traces and future interaction traces (here Inter-
actionont denotes the input and output state ontology and Intont the internal state
ontology; v Meaenon denotes the trace y up to t, with states restricted to the inter-
action states):

PITRACES(c) = {y,/™e"anon |+ 0 T, state(y, t, IntOnt) |= c}

FITRACES(c) = {y, ™™™ | ¢ O T, state(y, t, IntOnt) |= ¢ }
Here the first set, PITRACES(c), contains all past interaction traces for which se-
guence of time points exists such that at these time points first o1 occurs, next
al(l), next 02(1), next ai1(2), next o2(2), next a1(3), and next 02(3). For this exam-
ple, a learning phase of 3 trials has been chosen. The second set, FITRACES(c),
contains all future interaction traces for which no o2(r) occurs, or o2(r) occurs and
after this a2 occurs.

An overview for the representational content of all internal state properties
according to the temporal-interactivist approach is given, in an informal notation,
in Table 2. Note that these relationships are defined at a semantic level, and are
thus of type B2a. Different interaction state properties, separated by commas,
should be read as the temporal sequence of these states. Again, a learning phase
of 3 trials has been chosen.

Table 2 Temporal-interactivist approach (semantic description)

|I.s.p. | Content (backward) Content (forward)

sl ol al(l)

s2(r) | o2(r) if ¢ (defined by o1, ..,
02(3)), then a2

p1(1) | o1 al(l)

p1(2) | 01, al(l), 02(1) al(2)

p1(3) | 01, al(l), 02(1), al(2), 02(2) al(3)

p2 01, al(1), 02(1), al(2), 02(2), al(3), 02(3) | a2

c o0l, al(1), 02(1), al(2), 02(2), al(3), 02(3) | if 02(r), then a2

71

In order to obtain a description at a syntactic level, the relationships given in
Table 2 are characterised by formulae in a specific language, TTL in our case.
Thus, the representational content of a certain internal state is then defined by
specifying a formal temporal relation of the internal state property to sensor and
action states in the past and future. A number of such formal temporal relations
are given in Table 3. Because of space limitations, only the backward content is
shown. The following abstractions are used:

is_followed_by(y, X, 11, Y, 12) =
Otl: state(y, t1, 11) F X O 002 > t1: state(y, t2, 12) F Y

This expresses that X is always followed by Y.
is_preceded by(y, Y, I1, X, 12) =
Ot1: state(Y, t2, 11) E Y O [l < t2: state(y, t1, 12) F X

This expresses that Y is always preceded by X. These abstractions can be used
like is_preceded_by(y, s1, internal, o1, input), is_followed_by(Y, 02(1), input, s2(1), inter-
nal), et cetera. The next abstraction describes that the interplay between agent and
environment in which the agent increases pressure and the environment increases
resistance is performed up to a certain level of pressure.
interplay_up_to(y, t1,t2,1)= tlst2 &

state(Y, t1, output) = al(1) & state(y, t2, input) = 02(1)
interplay_up_to(y, t1,t4, 2) =[12,t3 [t1 <t2 <t3 <t4]

interplay_up_to(y, t1,12, 1) &

state(y, t3, output) = al(2) & state(Y, t4, input) = 02(2)
interplay_up_to(y, t1,t6, 3) = [14,t5[tl < t4 <t5 < 16]

interplay_up_to(y, t1,t4, 2) &

state(y, t5, output) = al(3) & state(Y, t6, input) = 02(3)

Table 3 Tempora-interactivist approach (syntactic description, backward)

l.s.p. Content (backward)
sl is_followed_by(Y, o1, input, s1, internal)
& is_preceded_by(Y, s1, internal, o1, input)
s2(r) |is_followed_by(Y, 02(r), input, s2(r), internal)
& is_preceded by(Y, s2(r), internal, 02(r), input)
pl(1) |is_followed_by(Y, o1, input, p1(1), internal)
& is_preceded by(Y, p1(1), internal, 01, input)
pl(2) |DOt1,t2,t3 [t1<t2<t3 & state(y, t1, input) F= ol &
interplay_up_to(Y, t2, t3,1) & not [[11,t12,t17 [t11<t12<t17<t3 &
state(y, t11, input) = 01 & interplay_up_to(Y, t12, t17,3)]]
O [14 > t3 state(y, t4, internal) = p1(2)]
& Ot4 [state(y, t4, internal) = p1(2) O [X1,t2,t3 t1<t2<t3<t4 &
state(y, t1, input) F= ol & interplay_up_to(Y, t2, t3,1) |
pl(3) | Dt1,t2,t5 [t1<t2<t5 & state(y, t1, input) = ol &
interplay_up_to(Y, t2, t5, 2) O 6 = t5 state(Y, t6, internal) = p1(3) |
& [Ot6 [state(y, t6, internal) = p1(3) O X1,t2,t5 t1<t2<t5<t6
& state(y, t1, input) = ol & interplay_up_to(Y, t2, t5,2)]
p2 | Ot1,t2,t7 [t1<t2<t7 & state(y, t1, input) F 01 &
interplay_up_to(y, t2, t7,3) O X8 = t7 state(Y, t8, internal) = p2]
& Ot8 [state(y, t8, internal) |== p2 O O1,t2,t7 t1<t2<t7<t8 &
state(y, t1, input) = ol & interplay_up_to(Y, t2, t7,3)]

72

c 0t1,t2,t7 [t1<t2<t7 & state(y, t1, input) F ol &

interplay_up_to(y, t2, t7,3) O [18 > t7 state(Y, t8, internal) = c]
& Ot8 [state(y, t8, internal) = ¢ O [1,t2,t7 t1<t2<t7<t8 &

state(y, t1, input) F= ol & interplay_up_to(Y, t2, t7,3)]

8.3 Second-Order Representation

In approaches to representational content of type C, internal state properties are
related to other internal state properties. For example, in Sun’s dual approach to
cognition [9,10], conceptual level state properties are related to subconceptual
level state properties:
On this view, high-level conceptual, symbolic representation is rooted, or grounded, in low-
level behavior (comportment) from which it obtains its meanings and for which it provides
support and explanations. The rootedness/groundedness is guaranteed by the way high-level
representation is produced: It is, in the main, extracted out of low-level behavioral structures.
(Sun, 2000).
Two possibilities arise: either the other internal state properties are not consid-
ered to be representational (this seems to be Sun’s position), or they are them-
selves considered representations of something else. In the latter case, which is
explored here, the conceptual level state properties become second-order repre-
sentations: representations of representations. In the main example of this paper,
the internal state property ¢ can be considered to be at the conceptual level,
whereas the other, s and p properties are considered subconceptual. Then, in the
spirit of [9], the representational content of ¢ can be defined in terms of the other
internal state properties as shown below. However, keep in mind that this ap-
proach only makes sense if the low-level internal state properties are considered
to be representational already.

Backward: ¢ will occur if in the past once s1 occurred, then p1(1), then s2(1), then
p1(2), then s2(2), then p1(3), then s2(3), and conversely. Formally:

0t1,t2,t3,t4,15,t6,t7 [t1<t2<t3<t4<t5<t6<t7

& state(y, t1, internal) = s1

& state(y, t2, internal) = p1(1) & state(Y, t3, internal) F= s2(1)

& state(y, t4, internal) = p1(2) & state(y, t5, internal) = s2(2)

& state(y, 6, internal) = p1(3) & state(y, t7, internal) = s2(3)
O (08 > t7 state(Y, t8, internal) F ¢] &

0t8 [state(Y, t8, internal) F= ¢ O

[11,t2,t3,t4,t5,t6,t7 tl<t2<t3<t4<t5<t6<t7<t8

& state(y, t1, internal) F= s1

& state(y, t2, internal) = p1(1) & state(Y, t3, internal) F= s2(1)

& state(y, t4, internal) F p1(2) & state(Yy, t5, internal) F s2(2)
& state(y, t6, internal) = p1(3) & state(y, t7, internal) = s2(3)]

Forward: if ¢ occurs, then in the future, if s2(r) occurs, then p2 will occur. For-

mally:

Ot1 [state(y, t1, internal) F= ¢ O
Ot2 = t1 [state(y, t2, internal) = s2(r) O
(03 > t2 state(y, t3, internal) = p211]

73

9 Validation

The specifications of representational content have been validated in two ways:
(1) by relating them to the local dynamic properties by mathematical proof, and
(2) by automatically checking them for the simulated traces.

02(1) ol
LP4 LP3,LP5
02(2) s2(1) pi(1)

o o, 2(2) pL(2) -

2(3) p1(3)
LP7

Figure 3 Proof Tree

An example of the former is as follows. Consider the formula that presents the
backward representational content for internal state property c¢ in Table 3. Con-
sider first the direction from observations to c. Given o1, 02(1), 02(2), and 02(3) at
the different subsequent time points the proof obligation is c. Given o1, by apply-
ing (in this order) LP3, LP5 we obtain p1(1) which we need to derive from the
given 02(1) using LP4, s2(1) and by application of LP6 on p1(1) and s2(1) we ob-
tain p1(2). Given 02(2), by application of LP4 we obtain s2(2) and on the basis of
p1(2) LP6 is again applicable resolving into p1(3). Given 02(3), apply LP4 to ob-
tain s2(3), and using p1(3) LP7 is applicable and c is obtained. These dependen-
cies are graphically represented in Figure 3. The reverse direction again depends
on property A3 and all local properties.

In addition to the software described in Section 5, other software has been
developed that takes traces and formally specified properties as input and checks
whether a property holds for a trace. Using automatic checks of this kind, many
of the properties presented in this paper have been checked against a number of
generated traces as depicted in Figure 2. In particular, the global properties GP1,
GP2, GP3, and GP4, and the intermediate properties M1, M2, M3, and M4 have
been checked, and all turned out to hold for the given traces. Furthermore, all
properties for representational content denoted in Table 3 have been checked.
The duration of these checks varied from one second to a couple of minutes,
depending on the complexity of the formula (in particular, the amount of time
points). Success of these checks would validate our choice for the representa-
tional content (according to the temporal-interactivist approach) of the internal
state properties s1, s2(r), p1(1), p1(2), p1(3), p2, and c. However, note that these
checks are only an empirical validation, they are no exhaustive proof as, e.g.,
model checking is. Currently, the possibilities are explored to combine TTL with
existing model checking techniques.

Although they are not exhaustive, even the empirical checks mentioned
above have already proved their value. Initially, one of these checks did not suc-
ceed. It turned out that the backward representational content defined for p1(2)
was not correctly chosen. At that time, it was defined as follows:

Ot1,t2,t3 [t1<t2<t3 & state(y, t1, input) F ol &
interplay_up_to(Y, t2, t3, 1)
0 04 > t3 state(y, t4, internal) F= p1(2)]
& Ot4 [state(y, t4, internal) = p1(2) O [01,t2,t3 t1<t2<t3<t4 &
state(y, t1, input) F= ol & interplay_up_to(y, t2, t3, 1)]

According to the above notation, the sequential occurrence of the state properties
o1, al(1), and o2(1) always implies that state property p1(2) will occur. However, a
close examination of Figure 2 reveals that this is not always the case. Whenever
the agent has learned, it will not increase its pressure on the key anymore. As a
result, the extra condition not ¢ had to be added to the representational content.
All the other checks concerning the properties of Table 3 did succeed immedi-
ately.

10 Discussion

The classical correlational approach to representational content requires a one-to-
one correspondence between an internal state property of an agent and one exter-
nal world state property. For embodied agents that have an extensive reciprocal
interaction with their environment, this classical correlational approach does not
suffice. In particular, an internal state in such an agent does not depend on just
one state property of the external world, but is affected both by external aspects
of the world and by internal aspects of the agent itself and the way in which these
aspects are interwoven during the (ongoing) interaction process.

Given this problem, it is under debate among several authors whether adequate
alternative notions of representational content exist for such an embodied agent’s
internal states. Some authors claim that for at least part of the internal states it
makes no sense to consider them as conceptual or as having representational
content; e.g., [2,7,9]. Other authors claim that some notions of representational
content can be defined, but these strongly deviate from the classical correlational
approach; e.g., [1,5,8].

Given the above considerations, the case of an intensive agent-environment in-
teraction is a challenge for declarative approaches in the sense that internal states
depending on such an interaction have no simple-to-define representational con-
tent. The formally defined and validated representation relations presented in this
paper show how it is still possible to obtain a declarative perspective also for
such a case. It is shown how formal methods allow to address the temporal struc-
ture entailed by suitable representation relations in these cases in a manageable
declarative form.

More specifically, in this paper, for some notions of representational content it
was explored in a case study how they work out, and, especially, how the tempo-
ral structure can be handled by formalisation. The processes of the case study
have been formalised by identifying executable local dynamic properties for the
basic dynamics. On the basis of these local properties a simulation model has
been made. The formalised specifications of the representational content of the
internal state properties have been validated by automatically checking them on
the traces generated by the simulation model. Moreover, by mathematical proof it
was shown how these specifications are entailed by the basic local properties.
This shows that the internal state properties indeed fulfil the representational
content specification.

75

The use of the temporal trace language TTL has a number of practical advantages.
In the first place, it offers a welldefined language to formulate relevant dynamic rela-
tions in practical domains, with first order logic expressivity and semantics. Further-
more, it has the possibility of explicit reference to time points and time durations that
enables modelling of the dynamics of continuous real-time phenomena, such as sen-
sory and neural activity patterns in relation to mental properties. These features go
beyond the expressive power available in standard linear or branching time temporal
logics.

Moreover, the possibility to quantify over traces allows for specification of more
complex adaptive behaviours. As within most temporal logics, reactiveness and pro-
activeness properties are specified. In addition, in TTL also properties expressing
different types of adaptive behaviour can be expressed. For example a property such
as ‘exercise improves skill’, which is a relative property in the sense that it involves
the comparison of two alternatives for the history. Another property of this type is
trust monotony: ‘the better the experiences with something or someone, the higher the
trust’. This type of relative property can be expressed in our language, whereas in
standard forms of temporal logic different alternative histories cannot be compared.

Note that, in addition to simulated traces, the TTL checking software is also
able to take other (e.g. empirical) traces as input, enabling the validation of the
representational content of internal states in real-world situations.

References

1. Bickhard, M.H., (1993). Representational Content in Humans and Machines. Journal of
Experimental and Theoretical Artificial Intelligence, 5, 1993, pp. 285-333.

2. Clark, A., (1997). Being There: Putting Brain, Body and World Together Again. MIT
Press, 1997.

3. Jonker, C.M., Snoep, J.L., Treur, J., Westerhoff, H.V., and Wijngaards, W.C.A., (2002).
BDI-Modelling of Intracellular Dynamics. In: A.B. Williams and K. Decker (eds.), Proc.
of the First International Workshop on Bioinformatics and Multi-Agent Systems,
BIXMAS02, 2002, pp. 15-23.

4. Jonker, C.M. and Treur, J., Compositiona Verification of Multi-Agent Systems: a Formal
Analysis of Pro-activeness and Reactiveness. International Journal of Cooperative Infor-
mation Systems, vol. 11, 2002, pp. 51-92.

5. Jonker, C.M., and Treur, J., (2003). A Temporal-Interactivist Perspective on the Dynamics
of Mental States. Cognitive Systems Research Journal, vol.4, 2003, pp.137-155.

6. Jonker, C.M., Treur, J., and Wijngaards, W.C.A., A Temporal Modelling Environment for
Internally Grounded Beliefs, Desires and Intentions. Cognitive Systems Research Journal,
vol. 4(3), 2003, pp. 191-210.

7. Keijzer, F. (2002). Representation in Dynamical and Embodied Cognition. Cognitive
Systems Research Journal, vol. 3, 2002, pp. 275-288.

8. Kim, J. (1996). Philosophy of Mind. Westview Press.

9. Sun, R. (2000). Symbol grounding: a new look at an old idea. Philosophical Psychology,
Vol.13, No.2, 2000, pp.149-172.

10. Sun, R. (2002). Duality of the Mind. Lawrence Erlbaum Associates

76

7

On modelling declaratively multi-agent systems

A. Bracciali!, P. Mancarella!, K. Stathis?!, and F. Toni®!

! Dipartimento di Informatica, Universita di Pisa, {braccia,paolo}@di.unipi.it
?* Department of Computing, City University London, kostas@soi.city.ac.uk
3 Department of Computing, Imperial College London, ft@doc.ic.ac.uk

Abstract. We propose a declarative framework for modelling multi-
agent systems and specify a number of properties of these systems and
agents within them. The framework is parametric with respect to an in-
put/output semantics for agents, whereby inputs are the agents’ obser-
vations, and outputs are their actions. The observations include actions
performed by other agents and events happening in the world. We define
the semantics of a multi-agent system via a stability condition over the
individual agents’ semantics. We instantiate the framework with respect
to simple abductive logic agents. We illustrate the framework and the
proposed properties by means of a simple example of inter-agent negoti-
ation.

1 Introduction

The ever-growing use of agents and multi-agent systems in practical applications
poses the problem of formally verifying their properties; the idea being that
by verifying properties of the overall system we can make informed judgements
about the suitability of agents and multi-agent systems in solving problems posed
within application domains. For example, if a multi-agent system is to be used
to negotiate on behalf of people, in order to solve problems of re-allocation
and sharing of resources (e.g. as in [15]), the problem arises as to whether a
specific set of agents/multi-agent system can actually solve a concrete problem
of resource-reallocation.

We specify a set of generic properties, which we believe to be interesting,
of individual agents, multi-agent systems and agents within multi-agent sys-
tems. Rather than proposing a specific architecture or theory for agents, we
view agents as “black-boxes”, whose “semantics” is expressed solely in terms of
(i) their observable behaviour, which is public and thus visible to other agents
in the same multi-agent system, and (ii) their mental state, which is private and
thus inaccessible to other agents in the same multi-agent system. Our proposed
properties can be instantiated for any concrete agent architecture/theory that
can be abstracted away in terms of the aforementioned “semantics”, and apply
to systems consisting of architecturally heterogeneous agents, including legacy
systems. Thus, our approach is not concerned with the specification or program-
ming of agents and agents’ applications, but rather it is tailored towards the
specification of properties of agents, which is to serve for their verification.

78

The observable behaviour of an agent is expressed in terms of an output set
of actions from a pool of actions that the agent can perform, given an input set
of observations from a pool of observations that the agent can make. Actions
and observation can be communicative or not. Actions of one agent may be
observations of another. Observations may include also events in the world in
which agents are situated. The set of visible events and actions by other agents
that an agent can observe in the world constitute its environment. If all agents
in a multi-agent system can observe all events happening in the world and all
actions performed by the other agents, then we call the multi-agent system fully
transparent. Otherwise, we call the system partially transparent. The mental
state is seen as a set of beliefs by the agent. Actions, observations, events and
beliefs are seen as atoms in some logical languages.

Given the “semantics” of agents as described above, we define the semantics
of a multi-agent system via a definition of stability on the set of all actions
performed by all agents in the system, possibly arising from their communication
and interaction via observation: a set of actions (by the different agents) is stable
if, assuming that an “oracle” could feed each of the agents with all the actions in
the set performed by the other agents (and all events happening in the world),
then each agent would do exactly what is in the set, namely their observable
behaviour would be exactly what the set envisages.

We specify properties of individual success of agents, overall success of a
multi-agent system, robustness and world-dependence of a multi-agent system,
as well as a number of properties of agents within systems. We then instantiate
our framework by means of simple abductive logic agents, whose mental state
and observable behaviour can be computed by applying an adaptation of the
T, operator of logic programs (see e.g. [3]) starting from the observations of
the agents. If a multi-agent system consists of these simple agents, we show
how stable sets of actions by all the agents can be computed incrementally. We
also illustrate the framework and the properties we propose in the context of
multi-agent systems consisting of the simple abductive logic agents.

2 Preliminaries

A multi-agent system consists of a set A4 of n agents (n > 1) that we refer
to simply as 1,...,n, and a world W in which events may happen which the
agents may perceive. Until section 5, we will abstract away from the details
of the agents’ architecture and model, and simply rely upon the existence of a
semantics of agents, as understood below. Thus, note that our model applies
to systems of architecturally heterogeneous agents. We will also abstract away
from the details of the world, except for assuming that it is characterised by a
(possibly empty, possibly infinite) set of events, which may be observed by the
agents. We will refer to these events as E(W).

Each agent 7 is associated with a (possibly empty, possibly infinite) set of
potential actions that it can perform, indicated as A(7), and a (possibly empty,
possibly infinite) set of observations it can make, indicated as O(). Without loss

79

of generality, we will assume that A(i) N A(j) = 0, for ¢ # j, namely no action
can be performed by two different agents. For example, the action whereby agent
1 asks agent 2 for some resource is an action that can only be performed by
agent 1, the action whereby agent 2 asks agent 3 for some resource is an action
that can only be performed by agent 2, and so on. Also, given some set A, we
will denote by A(j) the set of actions in A pertaining to the agent j, namely
Aj) = AN AG).

Actions performed by one agent may be observations of another, namely the
language in which actions and observations are represented is common amongst
the agents. E.g., actions may be outgoing communication and observations may
be incoming communication, and the language in which they are represented
may be an agent communication language. Observations by agents may also be
events happening in the world, taken from E(W). Formally,

J oG cEw)u | AG)

i€A i€A
In Section 3.1 we will first consider the case in which each agent can observe all
other agents’ actions as well as the whole world. In Section 3.2 we will consider
the case in which each agent may have only a partial visibility both of other
agents’ actions and of the world. This may be due to its inability to fully observe
the other agents and the world, as well as to the unwillingness of some agents to
disclose all their actions to every other agent. The portion of the world and of
the (actions performed by) other agents visible to an agent can be seen as the
environment in which this agent is situated.

The semantics of agent i is indicated as

Si (Aina AO) = <Ma Aout);

where

Ain € O(i) is a (possibly infinite) set of observations by agent 4,

Ay C A(4) is a (possibly infinite) set of actions by agent 4,

— M is a (possibly infinite) set of atomic sentences (from a given “private”
language that the agent is equipped with), understood as the mental state
of the agent, and

— Ayt C A(4) is a (possibly infinite) set of actions performed by agent 4,

understood as the observable behaviour of the agent.

Ag will typically belong to some initial plan of the agent ¢, allowing 7 to achieve
its goals or desires. We will refer to the goals of agent i as G;. Syntactically,
goals are sets of atoms in the internal language of the agent. In particular, the
set of goals may be empty.

Note that M can be seen as the set of atomic beliefs held by the agent, and
private to the agent itself. A,,; is instead the public side of the agent.

Given A;y, and Ag, S{(A;n, Ag) may not be unique (namely S? may not be a
function in general). Also, M in (M, A,,+) may be L, indicating the inconsistency
of a mental state of the agent.

80

Different realisations of this agent semantics are possible. Section 5 proposes
a concrete way to construct a concrete such semantics for simple agents based
upon abductive logic programming.

3 Semantics of a multi-agent system

We define a semantics for a multi-agent system, parametric with respect to the
semantics of the individual agents. This semantics relies upon the notion of
stable set of actions (by all agents in the system). Agents are assumed to start
with (possibly empty) initial plans A}, ..., A%. Moreover, the world is supposed
to provide a set Ap C E(W) of happened events. We provide two definitions
for the notion of stable set, according to whether the agents fully or partially
perceive the world and the other agents.

3.1 Fully transparent multi-agent systems

In this section we assume that each agent has full perception of each other agent
as well as of the world. We call such a multi-agent system fully transparent.

Definition 1. A fully transparent multi-agent system (A, W) is stable if there
exists A C |J;c4 A(4), such that

1 U 4y, =4
ieA , o
2. Sz(A—z U AEaA(l)) = (MZ,A})ut>
8. AD | Af
i€A

where A~ is the set of all actions performed by all agents except agent i, namely

AT =] AG)
5

The set A is called a stable set for (A, W).

By the previous definition, the sets A},,,..

for the set of mutually recursive equations

., A ., if they exist, are a solution

out

SYATU A, AY) = (MY, AL,)

Sn(Ain U AE7 Ag) = (Mn7 Agut)
where each A~% occurring on the left-hand side of the i —th equation is defined in
terms of the A? , sets, occurring in all the other equations. Intuitively speaking,
a set of actions (by the different agents) is stable if, assuming that an “oracle”
could feed each of the agents with all the actions in the set performed by the
other agents (and all events happening in the world), then each agent would do

81

exactly what is in the set, namely their observable behaviour would be exactly
what the set envisages. Note that the assumption on the existence of an “oracle”
is justified by the fact that we are providing a semantics for multi-agent systems,
rather than relying upon their execution model.

Note that conditions 1. and 3. in definition 1 imply that Aj C A? . namely
that agents cannot change their initial plans. This condition could be relaxed.

3.2 Partially transparent multi-agent systems

We model now multi-agent systems where each agent may have only a partial
visibility of the rest of the system and of the world. We call such multi-agent
systems partially transparent. We assume that the perception of the world by
every agent i is given by A%, C Ag. A% could be defined via a suitable projection
function. Notice that, for fully transparent multi-agent systems, A%, = Ag.

Definition 2. A partially transparent multi-agent system (A, W) is stable if
there exists A C |J;c 4 A(i) such that

1. U Af)ut = A
€A) . o
2. SHAT U AR, Ap) = (M*, Agyy)
3. AD U A4
i€A
where .
AT c | AG)
igd

The set A is called a stable set for (A, W).

Notice that in point 2 of this definition, each agent i has access to A%, as opposed
to the whole Ag in the corresponding bullet of Definition 1. Moreover, the set
A~* does not consists, in the general case, of the whole set of actions performed

by other agents. Concretely, for each agent i and set A C |J A(i), the set A~¢
i€EA

can be given by a suitable wvisibility projection function which filters out the

elements of A that are not visible to agent i. For example

A~ = | vi(a6)
jEA
i#i
where vzj is the visibility projection function of agent ¢ on agent j, expressing
what agent i sees of what agent j does. Necessarily, v/ (X) C X, and, for fully
transparent multi-agent systems, v} (X) = X. Actions performed by j and not
”seen” by 4 may be private to j, or simply not under i’s jurisdiction. Note that
the environment of 4, given Ag and A, can be formally defined as

£() = Az u | vI(AG)
st

82

4 Properties

In this section we define properties of individual agents, of multi-agent systems,
and of agents in multi-agent systems. These properties rely upon agents having
the semantics we describe in section 2 and multi-agent systems having the se-
mantics we describe in sections 3.1 and 3.2, depending on whether they are fully
or partially transparent.

4.1 Individual agents

Definition 3. (Successful agent)

Assume that agent i is equipped with a set of desires G;. We say that the agent is
successful with respect to input Az, and initial plan Ao (for G;) if S{(Ain, Do) =
(M, Aout) and G; C M.

Namely, a successful agent is one that achieves its desires, in that its desires hold
in the mental state of the agent. Note that our notion of success is local and
subjective to the agent, namely, an agent may believe to be successful without
being so in the world. Note also that, if the agent has no desires, then success
amounts to its mental state being different from L. This is required also in the
case of the agent being equipped with desires.

4.2 Multi-agent systems

Definition 4. (Owverall successful system)
(A, W) is overall successful wrt some A, A}, ..., AP, if there exists a stable A
such that each i is successful, wrt A% and Aj.

Namely, overall success amounts to individual success for all the agents. Note
that this is a rather weak notion of overall success, as it only requires for one
successful stable set to exist. Stronger versions could also be interesting. Note
also that, if agents have no desires, then overall success amounts to the existence
of a stable set and to the property that no agent has | as its mental state.

Definition 5. (Robust system)
An overall successful system (A, W) is robust if there exists no i € A such that

(AN {i}, W) is not.

Namely, a robust system is one that does not need any of its agents to be overall
successful, or, alternatively, one in which no agent needs any of the others in
order to be successful.

Definition 6. (World-dependent system)
(A, W) is world-dependent if it is not overall successful wrt Ag = @ (and any
Ab, ..., AR) but it is overall successful wrt some Ag # 0 (and some A}, ..., A}).

Namely, a world-dependent multi-agent system is one that cannot do without
the world, and events happening in it, to be successful.

83

4.3 Agents in multi-agent systems

Definition 7. (Aware agent)
Let (A, W) be a (fully or partially) transparent multi-agent system, and i €
A. Given input Ay, initial plan Ao, and set of events Ag, let SH(A,, Ag) =
(M AL). Then, we say that agent i € A is

— world aware, if AL, N A;,, C M,

— j-aware, for some j € A, j #1i, if A(§) N Ain C MY,

— environment aware, if it is world-aware and j-aware, for all j € A, j # i.

Namely, a world-aware agent is one that holds, within its mental state, a belief
of all the events that have happened in the world and that it has observed.
An other-agent aware agent is one that believes in all the observations it made
upon the other. An environment-aware agent is one that believes in everything
it observes, including events in the world and actions by other agents it can
observe.

Definition 8. (System dependent agent)

Let (A, W) be a (fully or partially) transparent multi-agent system, and i € A.
Given Ag and G?, assume that for no initial plan Ag, agent i is successful with
respect to Ag and Ag. We say that agent i is system dependent if there erists
a stable set A for (A, W) such that agent i is successful with respect to A% and
some initial plan Ag.

Namely, a system-dependent agent is one that cannot be successful alone, but it
can be successful if with other agents in a multi-agent system. Thus, this agent
has a motivation to look for other agents with which to join forces.

Definition 9. (Dispensable agent)
Let (A, W) be a (fully or partially) transparent multi-agent system, and i € A.
Agent i is dispensable within (A, W) if (A\ {i}, W) is overall successful.

Namely, a dispensable agent is one that is not needed to guarantee success of the
other agents in the system. So, designers of a multi-agent systems, or individual
agents having control over which agents belong to the system, could exclude any
dispensable agent from it (e.g. to reduce communication costs).

Definition 10. (Dangerous agent)
Let (A, W) be a (fully or partially) transparent multi-agent system. i ¢ A is
dangerous to (A, W) if (A, W) is overall successful but (AU {i}, W) is not.

Namely, a dangerous agent is one that can undermine the overall success of a
multi-agent system, if added to it. So, designers of a multi-agent systems, or
individual agents having control over which agents belong to the system, should
make sure that no dangerous agent belong to the system.

84

5 A concrete multi-agent semantics

We illustrate our framework by means of a simple example where agents are
abductive logic agents. Abductive logic programming has been recently used to
describe agents and their interactions (see e.g. [13,14, 16]). The semantics S of a
single (abductive) agent is defined by means of a bottom-up construction, in the
spirit of the T}, operator for logic programs [3], and adapted here for abductive
logic programs. Informally, given a “partial semantics”, the operator returns
a more defined semantics, if it exists, by adding the immediate consequences
of it. The (possibly infinite) repeated application of the operator is proved to
converge to a semantics which is taken as the semantics S of the agent. This
kind of semantics is then lifted to multi-agent systems by defining a bottom-up
semantics in terms of the operators of the single agents the multi-agent system
is made up of. This construction of S is not to be interpreted as the execution
model of the agent. For simplicity, we concentrate upon fully transparent multi-
agent systems.

5.1 Single agent language and semantics

Due to lack of space, we assume that the reader has some familiarity with ab-
ductive logic programming (ALP for short, see e.g. [11]). An agent i consists of
an abductive theory < P,O U A,IC >, where P is a logic program, O U A is a
set of abducible atoms partitioned in observations and actions, and IC is a set
of integrity constraints. * P consists of a set of clauses of the form
P P1y,--3Pn TLZO
where p is a non-abducible atom and py, ..., p, are (possibly abducible) atoms.
As usual in ALP, we assume that abducibles have no definition in P. The in-
tegrity constraints IC are of the form
Pi,.-spn=> 1 Pis--,Pn =G

where L is a special symbol denoting integrity violation, each p; is a (possibly
abducible) atom and a is an action, namely a € A. Notice that L can occur only
in the conclusion of integrity constraints. We assume that variables occurring in
clauses and integrity constraints are implicitly universally quantified from the
outside, with scope the entire formula in which they occur. Moreover, we assume
that no variable occurs in the conclusion of an IC that does not occur in its
body. As usual in logic programming, given an abductive logic agent as defined
above, we will denote by ground(P) (resp. ground(IC)) the (possibly infinite)
set of all possible ground instantiations of the clauses in P (resp. of the integrity
constraints in IC). Moreover, given a set of ground abducibles A C O U A, we
indicate with I an interpretation for P U A. Roughly speaking, the semantics of
an abductive theory < P,OU A, IC >, if it exists, can be given as a pair (I, A),
where ACOUA, I'isamodel of PUAUIC and L ¢ I (see e.g. [12]).

In the sequel, given an abductive logic agent, we define its input/output se-
mantics S(A;n, Ao) by a suitable T operator, which step-wise approximates both

4 The sets O and A correspond to the sets O(i) and A(4) of Section 2, respectively.

85

the mental state and the observable behaviour of the agent, and which is a simple
generalization of the immediate consequences operator Tp of logic programming,
suitably extended in order to take integrity constraints into account.

Definition 11 (7 operator). Given an abductive logic agent < P,OUA,IC >,
let AC OUA and let I be an interpretation. Then, the T operator is defined as
follows:

T(I,4) =(I', &)

where:
I'={p|p«l,... I, €ground(P) AN {l1,... I} CITUA},
A'=AU{ac AU{L} | l1,... ln = a € ground(IC) A {li,... I} CTUA}.

It is not difficult to see that the T operator is monotonic. For simplicity, in the
sequel we use C to denote pairwise set inclusion.

Lemma 1 (7 is monotonic). Let (I, A1), (I, A2) such that (I, A1) C (L5, As).
Then:
T(I1, A1) C T(I2, Az).

Proof. Let T(I1, A1) = (1], A}) and T (I, As) = (I}, AL). We show that I C I}
(the proof of A} C Al is analogous). Let p € I;. Then there exists a clause in
ground(P) of the form p « l4,... I, such that {l;,... I} C I, U A;. Since, by
hypothesis, I U Ay C I, U Ay, {l1,... I} C I U Ay and hence p € I,. O

The monotonicity of 7 ensures that, given a set of observations 4A;, C O and an
initial plan Ay C A, we can define the semantics of an abductive logic agent 7 in
terms of the least fix-point of the T operator, that we denote by T (0, A;nUAo),
starting from the initial pair (@, A;, U Ap).

Definition 12. Given an abductive logic agent i, an initial set of observations
Ain and an initial plan Ay, let Too (0, Ay U Ag) = (M, A). Then

i _ (MA@ ifLgM
S (Ain, Ao) = { <J_,A(1:Z) f)therwise

Example: a concrete agent. Consider a simple agent 1 who can achieve some
goal g by asking to get a resource from a friend (we assume that resources can be
shared amongst agents and be re-used as many times as required). This simpli-
fying assumption allows us to present our model within a monotonic framework.
Agent 1 believes that agent 2 is a friend. Agent 1 can observe that another agent
gives something to it and can perform the actions of paying and thanking. It is
forced to thank a friend or pay an enemy for a received resource.

P: g« friend(Y),ask(1,Y,r), getfrom(Y,r) O: give(Y,1,r)

getfrom(Y,r) < give(Y,1,r1) A: thank(1,Y)
friend(2) pay(1,Y)
IC: give(Y,1,r), friend(Y) = thanks(1,Y) ask(1,Y,r)

give(Y,1,7),enemy(Y) = pay(1,Y)

86

We also assume here an implicit treatment of time, so that an asking action is
performed before the asked resource is obtained.

Let us imagine that the agent has the initial plan to ask for the resource
from agent 2, i.e. ask(1,2,7) € Ay, and that agent 2 is actually giving the owned
resource to 1, as confirmed by the observation give(2,1,r) € A;,. The semantics
of the agent is then defined as follows (note that in this case the fix-point has
been reached in few iterations):

Ti(0, {give(2, 1,7), ask(1,2,r)}) =
({ friend(2), get from (2,1}, {give(2,1,r), ask(1,2,r)})
To(0, {give(2, 1,7), ask(1,2,r)}) =
({friend(2), get from(2,1), g}, {give(2, 1,r), ask(L,2,7)})
To(0, {give(2,1,1), ask(1,2,r)}) =
({friend(2), get from(2,7), g}, {give(2, 1,1, ask(1,2,r), thank(1,2)})
Ta(0, {give(2,1,7),ask(1,2,r)}) = T3(8, {give(2,1,7), ask(1,2,7)})

that is, the agent satisfies its goal g. In the notation of Section 3.1:

S'({give(2,1,)},{ask(1,2,r)}) =
({friend(2), getfrom(2,r), g}, {ask(1,2,r),thank(1,2)}).

Instead, considering the case in which agent 1 asks another agent not believed
to be a friend, e.g. agent 3, it still acquires the resource, but fails its goal g:

S*({give(2,1,7)}, {ask(1,3,7)}) =
({friend(2), get from(2,r)},{ask(1,3,r),thank(1,2)}).

5.2 Multi-agent semantics

A fully transparent multi-agent system, as defined in Section 3.1, can consist
of agents whose concrete semantics is the one defined in Section 5.1. We first
show a simple example of the resulting semantics for a multi-agent system con-
sisting of agent 1 previously introduced, and two new agents. Then, we define
an operational bottom-up semantics for the multi-agent system, by lifting the
single agent semantics. Semantics hence consists of a set of mutually recursive
77, one for each agent participating into the system. Finally, we prove that,
under specific circumstances, the operational semantics entails the one defined
in Section 3.1.

An example: a fully transparent multi-agent system. Let us consider a
system consisting of agent 1 of Section 5.1, together with agents 2 and 3, as
below defined:

2: 3:
P: have(r) « offer(Y,2,r) P: friend(2)
A: give(2,X,r) have(r)
O: ask(X,2,r) A: offer(3,X,r)
offer(Y,2,r) IC: have(r), friend(X) =
IC: ask(X,2,r), have(r) = give(2,X,r) offer(3,X,r)

87

Agent 2 has a resource if it observes that the resource has been offered by
someone. In this case the agent is forced to give the resource to anybody who
requires it. Agent 3 has the resource and a friend, and it must give the owned
resource to the friend. Agent 1 is the only agent having a goal, g namely, while all
the others have a reactive behaviour with respect to (their representation of) the
world and the behaviour of the other agents. Given their knowledge bases, agents
are able to coordinate their behaviours and allow agent 1 to accomplish its goal,
as soon as it adopts the initial plan to ask for the resource (A} = {ask(1,2,7)}).

Assuming that no other information is provided by the environment Ag = 0,
and that agents 2 and 3 have empty initial plans, A2 = A3 =0,

A ={ask(1,2,r), give(2,1,r),thank(1,2), offer(3,2,r)}

is a stable set for the multi-agent system (A = {1,2,3}, W) with E(W) = 0.
Indeed, we have

SH(A™, {ask(1,2,)}) = (g, friend(2), getfrom(2,r)},
{ask(1,2,r), thank(1, 2)})

S*(A72,0) = ({have(r)}, {give(2,1,r)})

S3(A3,0) = {{friend(2), have(r)}, {offer(3,2,r)})

and J;c 4 Ay = A D U;eq AY, where A%, are boldface. Notice how some of

the actions performed by an agent are interpreted as observations by the other

agents (e.g. ask(1,2,r) for agents 1 and 2, respectively).

The multi-agent system is thus overall successful, but it is not robust (e.g. 2
is needed for the overall success of the system, and so is 3). Agent 1 is system-
dependent, whereas agents 2, 3 are not. Finally, (4 = {1,2,3}, W) is obviously
not world-dependent.

5.3 Fully transparent multi-agent system operational semantics

Similarly to the case of the single agent operational semantics presented in Sec-
tion 5.1, also multi-agent system can be provided with a bottom-up semantics
in the case of the simple agent language taken into account. The semantics of a
system builds upon the semantic operators 7¢ of the single agents i belonging
to the system. The overall semantics is then obtained by the mutual interaction
of agent semantics, where each application of the semantic operators takes into
account not only the single agent so-far approximated, but also the observable
semantics, namely the actions, produced up to now by the repeated application
of the semantic operators of the other agents. In this way, agents “react” to the
output actions by the other agents in the system as soon as they are observed.

The operational counterpart of S7 (A7, A}) within the context of the chosen
language, is defined on top of the single agent operational semantics as a class
of mutually recursive operators, which step-wise approximate the semantics of
the system. In the following we will use the short-hand (I, A) for the tuple
((It, A),...,(I", A™)), where 1,...,n are the agents in A. On the other hand,
when clear from the context, (I*, A?) will denote the i—th component of the tuple

88

(I, A). Finally, given two tuples (I, A) and (J,T'), we will write (I, A) C (J,T)
as a shorthand for the conjunction (I, Al) C (J1,I')YA...(I", A™) C (J", ™).

For simplicity, in this section we consider multi-agent systems where the
world component W is not present. Hence, in the sequel we refer to a multi-
agent system consisting only of a set A, where each agent i is an abductive logic
agent (P;,0; U A;, IC;) (as introduced in Section 5.1). For each agent i € A we
denote by T its operator as defined in Definition 11.

Definition 13 (T4). Let A = {1,...,n}, I' and A® be an interpretation and
a subset of abducibles for each agent i, respectively. The T4 operator is defined
as follows

where for each 1, o S '
(J', Iy =T*I"',A"UA™Y)
where A7 = Ujca, j & ().
It is not difficult to show that the operator 74 is monotonic.

Lemma 2 (74 ' is monotonic).
Let (I, A) and (J,I") be such that (I, A)

C (J,T). Then
TA(TJZ gT

(J, 1)

k‘l

Proof. Let:
(IIJA1> TA(T;E)

— (Ji,I1) = Ta(J,T)

We need to show that, for each i, (I, A1) C (Ji, I}). By definition, for all
i, (It, Aty = THI*, A* U A~%). By the hypothesis (T,Z) (J,T), it is clear
that A" C I'* and hence (I{, A{) = (I', A*U A™) C (Ji, I U T~y By the
monotonicity of 7 it follows that 7¢(It, AUA™Y) C TH(JE, TUl~Y) = (J§, I}).

O

The monotonicity of 7 allows us to give a bottom-up characterisation of
the semantics of a multi-agent system as a whole, similarly to what we have done
in Definition 12 for a single agent. In the next definition we denote by 72(0, Ag)
the least fix-point of T4, obtained by repeatedly applying it starting from the
initial tuple (§, Ao), where, for each i, A} is a (possibly empty) initial plan for
the agent .

Definition 14. Given a multi-agent system A, and and initial plan A_f) for each
i € A, let (I,AY = TA(0,2q). Then the concrete semantics SA(Ag) of the
system is deﬁned as follows:

S4(4o) = (I, 4)
Notice that the semantics of the system as a whole is defined even if the semantics
of some or all of the agents in the system is undefined. This is somewhat an
arbitrary decision, that could be changed according to the needs of applications.

Let us show how the operator 7% works on the example of the previous
section.

89

Example: a fully transparent multi-agent system concrete semantics.
We show how the operator 7 behaves in the case of the multi-agent system
of Section 5.2. The process is summed up by the following table, where rows
represent the iteration steps and columns represent the agents. In the example,
the initial plans are empty as far as agents 2 and 3 are concerned, whereas the
initial plan of agent 1 consists of asking to agent 2 for the resource. We highlight
in boldface the pairs (I*, A?) which do not change in the future iterations. Hence
the operator’s fix-point is obtained by the tuple composed by the boldface pairs.

1 2 3
({friend()}, {ask(1,2,1)}) (,0) ({friend(2), have(r)}, {})
({friend(2)}, {ask(1,2,7)}) (0, {ask(1,2,7)}) ({friend(2), have(r)},

{offer(3,2,r)})

{friend(2)}, {ask(1,2,7r)}) ({have(r)}, {ask(1,2,7),
offer(3,2,7)})

({friend(2)}, {ask(1,2,7)}) ({have(r)}, {ask(1,2,r),
offer(3,2,r), give(2,1,r)})

({friend(2), getfrom(2,7)},
{ask(1,2,1), give(2,1,r),
thank(1,2)})

({friend(2), getfrom(2,r), g},
{ask(17 27 r)) give(27 1) r)7
thank(1, 2), g})

From the fix-point, we can extract the set
A ={ask(1,2,r), give(2,1,r),thank(1, 2), offer(3,2,r)}

of the actions performed by each agent. It is worth noting that this set coincides
with the stable set shown in Section 5.2.

Indeed, we conjecture that a stable set can be constructed from the fix-
points of the operator 7. If this is the case, the latter can be seen as a way of
incrementally building stable sets for the multi-agent system.

6 Related Work

Viroli and Omicini in [17] view a multi-agent system (MAS) as the composition
of observable systems. The focus on observation is based, like in our framework,
on the assumption that the hidden part of an agent manifests itself through
interactions with the environment, and on how an agent makes its internal state
perceivable in the outside. However, our work further distinguishes between dif-
ferent kinds of environment accessibility by agents through the use of visibility
projection functions used by these agents. In addition, we combine observable

90

behaviour with the mental state of the agent. Indeed, the designer of a MAS
will need to have partial access to the mental state of an agent in order to prove
properties that are useful to a MAS. In practice, it is enough to allow MAS
designers to use a membership function that tests the desires against the mental
state of an agent, without necessarily revealing/computing the full mental state.

Wooldridge and Lomuscio in [18] define a family of multi-modal logics for
reasoning about the information properties of computational agents situated in
some environment. They distinguish between what is objectively true in the
environment, which in our approach is defined by what holds true in the world,
the information that is visible, which our approach does not provide, information
that an agent perceives, as with our observations with or without a visibility
function, and finally information that the agent knows of the environment, which
in our framework is defined by the mental state of an agent. Apart from the
fact that we do not use a modal logic semantics, we also differ in the way we
understand an environment. Wooldridge and Lomuscio’s work is based on a
definition often found in distributed systems [8], in that an environment does
not contain the other agents (a bit like our notion of world). Instead in our
approach the environment of an agent contains the state of the world and the
other agents, and is closer to [1].

Another related approach to our work, presented by Asrhri et al in [4], is the
identification and management of relationships in multi-agent systems. A formal
model of the different kinds of relationships formed between interacting agents is
presented and the way such relationships impact the overall system functioning
is being investigated. If relationships between agents can be seen as properties,
their work is similar to ours in that it attempts to identify properties in relation
to observable parts of the environment in an application neutral manner. In this
context, their way of managing relationships using control mechanisms can be
thought in our terms as the required mechanisms that can be used to compute
the semantics. However, Ashri et al focus more on finding dependencies and
influences between agent actions in the environment and less upon our concern
of proving properties using the notion of stability.

Computational logic approaches whose aim has been to provide formal ap-
proaches to understand multi-agent system environments have been proposed
in the past, for example, [6,9,2]. Closer to our work is the work on the ALIAS
system [5, 6], which relies on abductive logic programming to define a MAS. One
major difference between ALIAS and our work is that agents in ALTAS have all
the part of their mental states public, while in our approach part of the mental
state needs to be public to the designer only.

7 Conclusions

We have proposed a semantics for multi-agent systems and a catalogue of proper-
ties for individual agents, multi-agent systems, and agents in multi-agent systems
that we believe to be useful to aid the designers of concrete applications. Our
semantics is fully declarative and abstract, and does not rely upon any concrete

91

agent architecture or model, except for assuming that the semantics of individ-
ual agents is given in terms of their (public) observable behaviour and (private)
mental state. We have illustrated the proposed notions for concrete abductive
logic agents, whose beliefs are held within an abductive logic program, and whose
mental state and observable behaviour is given by adapting the T}, operator for
logic programming.

We have adopted a qualitative approach to the definition of success of agents,
rather than assuming they are equipped with quantitative utility functions. The
resulting model for multi-agent systems is not based upon game-theoretic con-
cepts. It would be interesting to compare/integrate our approach with game-
theoretic ones, e.g. comparing our notion of stable set with that of Nash equi-
librium.

Other notions of individual welfare, different from the notion of individual
success, would also be interesting. For example, we could consider maximising
the number of achieved goals. Also, rather than having a “black-white” kind
of overall success, we could consider comparing multi-agent systems in terms of
how close to success they are.

As future work, we plan to investigate the relationships between fix-points of
the 7 operator, i.e. the concrete semantics of a multi-agent system, and stable
sets of A, as described in the final example of Section 5.3.

A further important problem for future studies is that of identifying means
for the automatic verification of properties of multi-agent systems, in terms of
properties of the individual agents composing them. This would aid the effective
design of the such systems for the solution of concrete problems.

Additional, less simplistic instances of our framework would also be inter-
esting, e.g. 3APL agents [7]. In particular, we plan to adopt this framework for
KGP agents, as defined in [10], and study the problem of properties verification
in that context.

Acknowledgments

We want to acknowledge the support of the SOCS project (IST-2001-32530),
funded under the EU Global Computing initiative. The last two authors would
also like to acknowledge support from the Italian programme “Rientro dei cervelli”.

References

1. S. Abramsky. Semantics of Interaction. Technical report. Available at
http://www.dcs.ed.ac.uk /home/samson/coursenotes.ps.gz.

2. J. J. Alferes, A. Brogi, J. A. Leite, and L. M. Pereira. Evolving logic programs.
In S. Flesca, S. Greco, N. Leone, and G. lanni, editors, Proceedings of the 8th
European Conference on Logics in Artificial Intelligence, volume 2424 of Lecture
Notes in Artificial Intelligence, pages 50-61. Springer-Verlag, September 2002.

3. K. R. Apt. Logic programming. In Handbook of Theoretical Computer Science,
volume B, pages 493-574. Elsevier Science Publishers, 1990.

10.

11.

12.

13.

14.

15.

16.

17.

18.

92

R. Ashri, M. Luck, and Mark d’Inverno. On identifying and managing relationships
in multi-agent systems. In Proceedings of the 18th International Conference of
Artificial Intelligence (IJCAI-08), pages 743-748, 2003.

A. Ciampolini, E. Lamma, P. Mello, and P.Torroni. Rambling abductive agents in
ALIAS. In Proc. ICLP Workshop on Multi-Agent Sytems in Logic Programming
(MAS’99), Las Cruces, New Mezico, 1999.

A. Ciampolini, E. Lamma, P. Mello, F. Toni, and P. Torroni. Co-operation and
competition in ALIAS: a logic framework for agents that negotiate. Computational
Logic in Multi-Agent Systems. Annals of Mathematics and Artificial Intelligence,
37(1-2):65-91, 2003.

M. Dastani, F. S. de Boer, F. Dignum, W. van der Hoek, M. Kroese, and J. Ch.
Meyer. Programming the deliberation cycle of cognitive robots. In Proc. of 3rd
International Cognitive Robotics Workshop (CogRob2002), Alberta, Canada, 2002.
R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning About Knowledge.
MIT Press, 1995.

J. A. Leite J. Alferes, A. Brogi and L. M. Pereira. Computing environment-
aware agent behaviours with logic program updates. In A. Pettorossi, editor,
Logic Based Program Synthesis and Transformation, 11th International Workshop
(LOPSTR’01), pages 216-232. Springer-Verlag, 2002.

A. Kakas, P. Mancarella, F. Sadri, K. Stathis, and F. Toni. The KGP model
of agency. In Proceedings of 16th European Conference of Artificial Intelligence
(ECAI-04), 2004. To appear.

A. C. Kakas, R. A. Kowalski, and F. Toni. Abductive Logic Programming. Journal
of Logic and Computation, 2(6):719-770, 1993.

A. C. Kakas and P. Mancarella. Generalized stable models: a semantics for abduc-
tion. In Proceedings 9th European Conference on Artificial Intelligence. Pitman
Pub., 1990.

R. A. Kowalski and F. Sadri. From logic programming towards multi-agent sys-
tems. Annals of Mathematics and Artificial Intelligence, 25(3/4):391-419, 1999.
F. Sadri, F. Toni, and P. Torroni. An abductive logic programming architecture
for negotiating agents. In S. Greco and N. Leone, editors, Proceedings of the 8th
European Conference on Logics in Artificial Intelligence (JELIA), volume 2424 of
Lecture Notes in Computer Science, pages 419-431. Springer-Verlag, September
2002.

F. Sadri, F. Toni, and P. Torroni. Dialogues for negotiation: agent varieties and
dialogue sequences. In Intelligent Agents VIII: 8th International Workshop, ATAL
2001, Seattle, WA, USA, Revised Papers, volume 2333 of Lecture Notes in Artificial
Intelligence, pages 405-421. Springer-Verlag, 2002.

F. Toni and K. Stathis. Access-as-you-need: a computational logic framework
for flexible resource access in artificial societies. In Proceedings of the Third In-
ternational Workshop on Engineering Societies in the Agents World (ESAW’02),
Lecture Notes in Artificial Intelligence. Springer-Verlag, 2002.

M. Viroli and A. Omicini. Multi-agent systems as composition of observable sys-
tems. In A. Omicini and M. Viroli, editors, AI*IA/TABQOO Joint Workshop -
Dagli oggetti agli agenti: tendenze evolutive dei sistemi software”, 2001.

M. Wooldridge and A. Lomuscio. A logic of visibility, perception, and knowledge:
completeness and correspondence results. Journal of the IGPL, 9(2), March 2001.

93

Modeling Flexible Business Processes*

Amit K. Chopra, Ashok U. Mallya, Nirmit V. Desai, and Munindar P. Singh

Department of Computer Science, North Carolina State University

Abstract. Current approaches of designing business processes rely on traditional
workflow technologies and thus take a logically centralized view of processes.
Processes designed in that manner assume the participants will act as invoked,
thus limiting their flexibility or autonomy. Flexibility is in conflict with both
reusability and compliance.

We propose a methodology to build processes from declarative commitment-
based protocol specifications and to enact them in a distributed manner. Because
protocols are publishable, reusable specifications of interaction and commitments
can be reasoned about, this approach enables software reuse, improved autonomy
through flexibility, and more robust compliance verification.

We present an operational semantics of protocols and commitments in the -
calculus that better supports contextualized reasoning. Reasoning about commit-
ments leaves protocols reusable and improved process flexibility.

1 Introduction

The modeling and enactment of business processes has received considerable attention
in the research community. Cross-enterprise business processes involve a number of
components that are independently designed and configured and represent the interests
of autonomous parties and yet have to interact coherently. One challenge that arises
is to reconcile interoperation with the autonomy of the partners. Another challenge is
to make business processes easy to put together from reusable components. Efforts in
this area include OWL-S [4], BPEL [1], and XPDL [19]. While these efforts allow the
specification and enactment of a business process, they specify the implementation of
a process rather than the interactions that are expected of it. More specifically, they
rely on flow abstractions that support the perspective of only one participant. They,
therefore, support neither reusability or flexible execution in the face of exceptions or
opportunities that are a reality in dynamic and open systems.

Interactions in business processes are typically long-lived so that they can be or-
ganized in the form of protocols. Protocols offer the level of abstraction that naturally
supports local perspectives as they specify the interaction (the what) rather than imple-
mentation (the how). Thus, business protocols naturally maximize the autonomy of the
participants. This paper presents an approach for developing business processes that (1)
can be built from reusable protocols; (2) is agent-based, implying decentralization; and,
(3) affords the agents flexibility in handling exceptions and exploiting opportunities.

* The first three authors are students. This research was supported by the NSF under grant DST-
0139037 and by DARPA.

94

1.1 Challenges in Process Design

We recognize commitments as important in giving a semantics to protocols. As agents
interact, they create and manipulate commitments. Previous work has developed a declar-
ative commitment-based semantics for protocols [2, 20] where representing and reason-
ing about commitments leads to enhanced flexibility in protocols. This paper delves
deeper into the design of business processes. Business process design offers challenges
that commitment-based protocols can address naturally. First, reusability is in tension
with flexibility. Second, compliance is in tension with flexibility. We motivate each in
the following.

Reusability Vs. Flexibility For a protocol to be reusable, it should be well-encapsulated
and its semantics should be unambiguous. In other words, a protocol should be specified
as independently as possible of the context in which it will be used. This context could
be the society in which the agent exists in or the physical location of the agent or the
other processes in which an agent participates. Adding such context-dependent com-
putations to a protocol would make it unwieldy and non-reusable. However, exception
handling is inherently context-sensitive.

Thus reusability is in tension with the ability of an agent to handle exceptions and
exploit opportunities that might arise during the enactment of the protocol. (Of course,
exceptions that occur routinely and depend on the nature of the protocol could be added
to the protocol, but that means they are treated like normal behavior.)

The approach proposed in this paper leaves the protocol reusable, but at the same
time allows the agent maximum autonomy in handling exceptions and exploiting op-
portunities. Giving protocols a commitment-based semantics plays a central role in this
scheme.

Compliance Vs. Flexibility Business process agents have two main components, pro-
tocols and business policies (see Figure 2). The protocol prescribes the interaction that
should take place irrespective of an agent’s policies, whereas policies control the inter-
action, presumably in a way that is compatible with the agent’s interests. Policies can
be entirely internal or be dependent on the agent’s context. The policies generally dif-
fer from agent to agent, whereas protocols tend to be reused. Policies and protocols are
specified independently of each other. An agent may comply with a protocol completely,
but will only have simplistic policies that are unable to handle dynamism. Similarly, an
agent could completely respect its policies and therefore, be flexible, but might end up
utterly violating the protocol. This paper shows how we can strike a balance between
compliance and flexibility by reasoning about commitments.

1.2 From Declarative to Operational Semantics

Our design methodology involves taking declarative commitment-based specifications
of protocols and extracting operational specifications of role skeletons from them (see
Figure 1). Agents are built out of business policy specifications and role skeletons. Poli-
cies are used to control the interaction. While a declarative semantics is appropriate for

95

Declarative Protocols AGENT

Policies

Business Policies (Context)

‘ Operational Role Skeleton%

Protocol Protocol
1 n
‘ Implementation ‘ MESSAGING
Fig. 1. Abstraction Levels Fig. 2. Agent Construction

protocol specification, an operational semantics is more appropriate for role specifica-
tion. This is because role skeletons are local in nature and the operational semantics
better captures the interaction between roles. More importantly, declarative specifica-
tions allow for partial descriptions of systems which is good for global specifications
like protocols; the rest of the system description is fleshed out with respect to a con-
text, that is, in an operational setting. The context is accommodated by specifying the
business policies of the agent. The operational specifications can then be used to reason
about an agent’s compliance, both with its policies and its protocol roles. This is signifi-
cant because a fully compliant agent would exhibit less autonomy than a non-compliant
one.

1.3 Contributions

This paper presents an operational model of commitments and business processes based
on the m-calculus. The m-calculus is a process algebra for modeling concurrent pro-
cesses whose configuration, that is, communication links, may change at run time. To
avoid ambiguity with business processes, we write m-process to refer to a w-calculus
process. The most notable contributions of our approach are listed below.

— Business processes can be built from reusable protocols.

— Reasoning about commitments alleviates the tension between reusability and com-
pliance, and flexibility.

— This leads to the development of robust business process agents.

Our proposed approach models a commitment itself as a w-process. The commitment
maintains communication channels with the agents that participate in it. Our opera-
tional characterization of commitments leads to flexible modeling of the commitment
life-cycle. For example, the partial discharge of a commitment can be modeled. More
importantly, our modeling alludes to the need for even more sophisticated modeling of
commitments to add to the flexibility of protocols.

96

1.4 Organization

The rest of the paper is organized as follows. Section 2 introduces the basic notions of
commitments. Section 3 describes our conceptual model of building business processes.
Section 4 sketches the 7-calculus. Section 5 formalizes the commitments and their op-
erations in the w-calculus. Section 6 models the NetBill protocol [3] in the 7-calculus.
Section 7 talks about reasoning with commitments. Section 8 discusses relevant litera-
ture and future work.

2 Commitments

Commitments have been identified as a key abstraction in the modeling of agent interac-
tion protocols and languages [15, 8, 6,2, 7]. As agents interact, they create and manipu-
late commitments. In simple terms, a commitment represents a directed obligation from
one agent to another for maintaining or achieving a condition. Knowing what commit-
ments exist helps an agent plan its actions and leads to coordination between agents.
Another advantage of commitments is that they give a social semantics to interaction.
A number of operations may be performed on commitments. Following [16], we
formally define commitments and the operations that can be performed on them.

Definition 1. A base-level commitment C(x,y,G,p) binds a debtor x to a creditor y for
fulfilling the condition p in context G.

Definition 2. A conditional commitment CC(x,y,G,p,q) denotes that if a condition p is
brought about, then the commitment C(x,y, G,q) will hold.

Both commitments and conditional commitments are created in a context G, which
can be thought of as an institution or society whose rules are binding on the agents that
participate in it. The context also defines the meanings of the terms used. Since we will
only informally talk about the context, we omit G to reduce clutter. Below we list the
commitment operations.

— Create(x,y,p) creates a new commitment C(x,y,p).

— Discharge(x,y,p) discharges the existing commitment C(x,y,p) so that it no longer
holds. A discharge is done only when the condition p starts to holds, i.e, the com-
mitment is satisfied.

— Cancel(x,y,p) cancels the existing commitment C(x,y,p) so that it no longer holds.
Only debtors can cancel a commitment.

— Delegate(x,y,p,z) delegates the commitment C(x,y,p) to a new debtor z. More specif-
ically, the original commitment C(x,y,p) no longer holds and a new commitment
C(z,y,p) is created in its place.

— Assign(x,y,p,z) assigns the commitment C(x,y,p) to a new creditor z. More specif-
ically, the original commitment C(x,y,p) no longer holds and a new commitment
C(x,z,p) is created in its place. Only a creditor can do an assign.

— Release(x,y,p) releases the debtor x from the commitment C(x,y,p) so that the com-
mitment no longer holds. Only a creditor can do a release.

97

3 Protocols for Business Processes

We look at protocols as reusable specifications of business interactions. Before we
present a conceptual model for building processes from protocols, we explain in de-
tail our motivation for using protocols as building blocks for processes.

Business processes tend to be complex and implementation-specific. They are there-
fore, not amenable for reuse. On the other hand, protocols are declarative publish-
able specifications describing only the interaction and can therefore, be reused.
Protocols themselves can be complex, but a process that uses a complex protocol
will be even more complex.

— Representing commitments leads to flexible protocols. Flexible protocols naturally
maximize the autonomy of interacting parties. Using such protocols to design pro-
cesses will lead to autonomy-preserving business processes while ensuring inter-
operation at the same time.

— Since protocols have a commitment-based semantics, this paves the way to formally
reason about protocols. From the design point of view, it allows creation of newer
protocols by specializing and aggregating existing ones. For example, payment by
credit card is a specialization of a general payment protocol. Similarly, ordering,
shipping and payment protocols can be spliced together to form a complete trading
protocol.

— Building business processes around protocols will lead to modular business process

where interaction and policy are cleanly separated.

Figure 3 presents a conceptual model of how to build processes from protocols. A
business protocol is a declarative specification that specifies the business interactions.
The protocol skeletons P-Skels, one for each role in the protocol, are extracted from the
specification. An agent is an implementational entity representing a business partner
that adopts one or more roles in one or more protocols. The C-Skel corresponds to
composition of the P-Skels of the adopted roles. This composition may be policy based.
The C-Skel represents the local flow enacted by the agent. A business process aggregates
the local flows of the agents participating in it.

4 The m-Calculus

The 7-calculus [11-13] is a process algebra for modeling concurrent processes whose
configurations, that is, communication links may change as the processes execute. In
the m-calculus, the fundamental unit of computation is the transfer of a communication
link between two processes. Intuitively, the communication link is like an access to a
resource. The simplicity of the m-calculus arises from the fact that it includes only two
kinds of entities: names and agents (processes). These are sufficient to rigorously define
interactional behavior. Interaction corresponds to a handshake between two processes
and involves the output of a link by one process and simultaneous receipt of the link
as input by another process. For this paper, we shall limit ourselves to the basic or
synchronous 7-calculus. The following briefly presents the m-calculus language and
some examples.

1 Business

publishable
specification

C] configurable entity

J0 uonisodwod

| Process
b
aggregation
of
2+
A4
Local
= Flow Implements
'g A_J1
o 1
3 enacts
()
= 1
=3
S A
o gent
1+
adopts
I+
involves defines
> | Role
2+ 1
1 o 2+ 1
Business 2 14
1+ || Protocol 3 P-Skel | 1«
©11
1 2+
1,| |Protocol| |1
specified by Logic derives

Fig. 3. Conceptual Model

4.1 Process Syntax

98

The language of the w-calculus consists of prefixes and process expressions, as sum-
marized in Table 1. Below we explain the language constructs in the same order as

Table 1.
Prefixes are of the following kinds:

— The output prefix ax means that x is sent along the channel a.
— The input prefix a(z) means that the channel a can be used to receive input and

binds this input to x.

— The silent 7 means that nothing observable happens.

The process expressions are as follows:

0 represents the nil-process.

Q

a.P does the action represented by prefix o and changes to P.
P + (@ represents the sum-nondeterminism, that is, do either process P or process

P|Q represents that process P and process Q execute in parallel.

99

Prefixes «::= ax (Output)
a(x) (Input)
T (Silent)
Agents P = 0 (Nil)
a.P (Prefix)
P+ P (Sum)
P|P (Parallel)
[x =y]P (Match)
[x # y]P (Mismatch)
(new x)P (Restriction)
\P (Replication)
Aty - yn) (Identifier)
Definitions A(z1,...,zn)% P, (where i # j = x; # x;)

Table 1. 7w-calculus Syntax

— [z = y]P or match represents the process that changes to P if z = y. Mismatch is
the opposite, i.e., it checks x # y.

— (new x)P means that the variable x is declared as a new name local to process P
and bound in P. It is not visible outside of P.

— |P represents an unbounded number of copies of the process P. Formally, |P def
P|!P.

— A(yi,--.,yn) represents the instantiation of a defined agent.

- A(z1,...,7,) % P (wherei # j = z; # x;) represents the declaration of a
process A in terms of process P. One can think of it as a method declaration in
traditional procedural programming.

The input prefix and the new operator bind the names. For example, in a process
a(x).P, the name x is bound, but a is not. This is similar to the A-calculus. In (new x)
P, x is considered to be bound. As in the A-calculus, a-conversion might be necessary
to avoid capture of free names. The free names of a process indicate the linkage to the
environment.

5 Commitments in the 7r-Calculus

In the 7-calculus, processes are also known as agents. However, from now on, we use
the term agent for a process capable of becoming a debtor or creditor for a commitment.
The commitment operations have constant names DISCHARGE, CANCEL, and so on.
The environment of a process consists of all other processes in the system.

5.1 Channels

We propose that a commitment be represented in the m-calculus via a process that has
four channels, which we list below (See Figure 4):

100

obs_ ¢h

debtor_ ch creditor_ ch

sensor_

Fig. 4. Commitment channels

debtorp, represents a link to the commitment’s debtor. The debtor sends the name
of the commitment operation it wishes to perform, one of Cancel, Delegate or Dis-
charge on this channel. The success of the operation depends on how the Guard of
the commitment evaluates. We explain the Guard shortly.

— creditor.p, represents a link to the commitment’s creditor. The creditor sends the
name of the commitment operation it wishes to perform, one of Assign or Release,
on this channel. Once again, the success of the operation depends on how the Guard
of the commitment evaluates.

— sensor.p, represents a link to the commitment’s environment on which the commit-
ment receives the condition (payment, for instance) it is interested in. The condition
could correspond to the condition of the commitment or a prerequisite for some
commitment operation. The Guard evaluates the received condition; intuitively, it
is guarding the commitment operations.

— obs.p, Some processes other than the creditor and debtor might be interested in
knowing what operation took place in a particular commitment. Each such process
uses the obs.;, channel to subscribe for the operation that it is interested in. Then,
obs.p, returns to the subscribing process a private channel, on which notifications
are delivered.

An alternative model is possible where, along with the operation name an agent wishes
to perform, it also sends the event on the debtor., (or creditor., depending on what
role the agent plays in the commitment). Such a model would mean that only those con-
ditions which are received from the debtor (or creditor) can be evaluated. In our model,
the use of sensor., separate from creditor and debtor channels allows the condition to
be received from any process. For example, this flexibility is useful for modeling third-
party verification of satisfaction of conditions. The case where the sensor receives input
from the debtor (or creditor) is a special case of this model.

The intuition behind the obs.p is similar to the intuition behind sensor.,. The
obs.p, gives the model independence from having to receive notifications solely from
the agents. Both, the sensor., and obs., facilitate modular designs since the agents
are no longer hard-coded.

101

Normal Commitment Process

C(debtorep, creditorcn, cond, sensorep,, 0bscn,) et (new y)((DebtorOp + CreditorOp)
|'Subscribe)

Special Commitment Process

C(debtor.p, creditorep, cond, sensorcp,, 0bSch, Y) def (DebtorOp + CreditorOp)
['Subscribe

Table 2. Commitment process definition

DebtorOp = debtor.p(op).([op = DISCHARGE| Discharge + [op = CANCEL]Cancel
+ [op = DELEGATE|Delegate)

CreditorOp = creditorcn(op).([op = RELEASE|Release + [op = ASSIGN]Assign)

Discharge = Guard.creditor.,DISCHARGE.!(JDISCHARGE)
+NotGuard.C(creditor.p,debtor.p, cond, sensorcp, 0bsch, y)

Cancel = creditor., CANCEL.!(JCANCEL)

Delegate = debtorcy(delegateecr).delegateecy.debtorcn.C(debtorer, creditorey, cond,
$ensorep, 0bsch, y).creditor., DELEGATE.!(yDELEGATE])

Subscribe = (new x)obscr (operation)obs.yx.!(y(op).[operation = op]T)

Guard = sensorcp.(value)[value = cond]

NotGuard = sensorcr.(value)[value # cond)]

Table 3. Constituent processes

5.2 Commitment Process

Now that we have introduced the channels that are used and the intuitions behind their
existence and usage, we can present the model in detail. We describe this model in
the context of how various operations on commitments—whose formal expressions are
given in Table 2 and 3—would be realized through it.

Create. All this while, we have not talked explicitly about modeling the creation of
a commitment. The reason is that we model commitment as a parametric process.
Invoking this process corresponds to creating a commitment. For reasons explained
below, we consider two variations on the parametric process for creating commit-
ments. Table 2 lists the formal descriptions of the two processes.

Consider the normal commitment process: C(debtor ., creditor.,, cond, sensor.y,
obs.p,). Ignoring Subscribe for the time being, the definition says that either a cred-
itor operation or a debtor operation can be performed depending on the channel on
which the input arrives, i.e., creditor.y or debtor.p. cond represents the condition
of the commitment. CreditorOp and DebtorOp represent the creditor and debtor
operations, respectively. The creditor.p channel is read for name of the operation
requested and the operation is attempted. Similarly, debtorp, is read for debtor op-
erations.

Discharge. Here the Guard simply checks if the value read on sensor.;, matches the
condition. First the Guard is evaluated. If a match is successful, then Discharge is

102

successful and the creditor is notified. If the match fails, i.e., NotGuard succeeds,
then the commitment is recreated.

Cancel. The creditor is notified of the cancel operation.

Delegate. The delegatee is passed debtor.,, the commitment is recreated, and the cred-
itor is notified of the operation.

Assign and Release. For simplicity and to save space, we do not explicitly model As-
sign and Release as these are conceptually similar to Delegate and Cancel, respec-
tively.

To function cleanly, the commitment operations require some auxiliary processes.
Guard and NotGuard were described above. A more important process is Subscribe.
Subscribe enables other processes to receive notifications from the commitment (by
subscribing to such notifications). A subscription is created by sending on the obs, the
name of the operation that the subscribing process is interested in. A private channel x
is returned to the process. When that operation happens on the commitment, it sends a
notification to the process on x.

Internal to a commitment, when an operation happens, it sends a notification on .
Note yDISCHARGE, JCANCEL and yDELEGATE in Table 3. The notification is modeled
as happening an unbounded number of times meaning that enough copies of the notifi-
cation are always available. An unbounded number is essential because of two reasons:

— The number of processes that may be registered for the same operation is not known
in advance and allowing potentially unbounded notifications simplifies our repre-
sentation. This is realistic in terms of practical implementations.

— In Subscribe, the match [operation = op| may fail. In this case, the process must
be ready to test another input for forwarding to the subscriber. This is also why in
Subscribe there is a repetition !(y (op).[operation = op|T).

In the same vein, there are unboundedly many copies of Subscribe. For every registra-
tion request on obs,p, a fresh copy is, in essence, activated.

The special parametric commitment process shown in Table 2 is used when a com-
mitment operation recreates a commitment. This happens in Discharge when the Not-
Guard branch is taken and in Delegate when the new commitment reflecting the dele-
gation is created. When recreating a commitment, it is necessary to pass the original y
channel since prior subscriptions for notifications must still be honored.

5.3 Modeling Conditional Commitments

. de .
CC(debtoren, creditorcn, condi, conda, SENSOTch1, SENSOTch2, 0bSch) e/ (new trigeom)
(Guardi .trigeom + NotGuard:.CC(debtoren, creditor.p, conds, condsa, sensorcp1,
SENSOTch2, 0bSch))|trigeom - C(debtorey, creditorep, conds, sensorecha, 0bscr))

Table 4. Conditional commitment process

103

Fig. 5. NetBill

Just like commitments, conditional commitments support all the commitment op-
erations. Likewise, events on the conditional commitment itself may be observed by
other interested parties. However, for simplicity, we omit the operations and subtleties.
Table 4 shows the corresponding formula. Guard; checks if the right condition is re-
ceived on sensorqp1. If so, it triggers the creation of the base-level commitment. Oth-
erwise, it recreates the conditional commitment.

6 NetBill in 7r-calculus

To illustrate our model, we represent the simplified version of the NetBill protocol in the
m-calculus. Figure 5 shows the protocol. There are two roles in the protocol; customer
and merchant denoted by C and M respectively in Figure 5. The protocol starts with the
customer sending a request for offers and ends with the customer sending payment. The
commitment is created by the debtor of the commitment and access to the commitment
is passed to the creditor. Also, all the input to the sensor channels are coming from
agents in this model.

We abbreviate (new z)(new y)(new z) to new(z y z). Similarly we will abbreviate
z(y).z(2) to x(y z). We abbreviate output similarly. We also drop the obs, in the
specification as we do not use it. Table 5 shows the encoding of NetBill in 7-calculus.
cre and deb denote respectively, the creditor and debtor channels of a commitment.
Cregoods, for example, denotes the creditor channel for goods. sen denotes the sensor
channel of a commitment.

We now illustrate the flexibility -calculus brings to protocol modeling with some
examples.

Example 1. Given this specification of NetBill in 7-calculus and our encoding of com-
mitments, we now present a deviation from the NetBill protocol that our specification
can handle elegantly. When it is time to send the payment, the customer delegates the
payment to another agent ccc that represents the credit card company. ccc will even-

104

NetBill = (new z)(Customer|Merchant)

Customer = SendRequest. ReceiveQ f fer.Send Accept.ReceiveGoods.
SendPayment. Receive Receipt

Merchant = Receive Request.SendOf fer. Receive Accept.SendGoods.
Receive Payment.SendReceipt

SendRequest = Trequest

ReceiveOffer = z(of fer cregoods S€Naccept)

SendAccept = new(accept debpay crepay goods pay sengoods S€Npay)(S€Ngeceptaccept.
T(crepay$en2goods)|CC(debpay, crepay, goods, pay, sen2goods, S€Npay))

ReceiveGoods = Cregoods (DISCHARGE)

SendPayment = debpayDISCHARGE.S€Npay .paYy

ReceiveRequest = x(request)

SendOf fer = new(of fer debgoods Cregoods accept goods senaccept S€Nlgoods)

((of fer cregoods S€Naccept)| CC(debgoods, Cregoods, accept, goods,
S€Naccept, Senlgoods))

ReceiveAccept = z(crepay $€n2g00ds)

SendGoods = debgoodsDISCHARGE.sen1g00d:900dSs.5en2g004sgo0ds

Receive Payment = crepqy (DISCHARGE)

Table 5. NetBill Process

tually satisfy the commitment and the merchant process could handle the delegation
cleanly.

The NetBill process could handle such a deviation because the operations are han-
dled inside the commitment process, not in the agents, and operations basically require
nothing more than channel extrusion, i.e, handing off the relevant channels to other
m-processes. |

Example 2. Consider the case where partial discharges are allowed. For example, in-
stead of the customer paying for the goods in one shot, it could send multiple, smaller
payments, thereby discharging its commitment to pay in steps. Such a case can be han-
dled by reading the amount of the current payment on the sen,q, and implementing
Discharge differently. The Guard in this new Discharge would implement arithmetic
instead of simple match. If the result of the Guard > 0, then a residual commitment
would be created. I

Figure 6 shows the state of the process in terms of the commitments that exist in
NetBill after executing the protocol actions up to accept. Note that commitments act as
intermediaries between the processes. All the important events or conditions affecting
commitments pass through them and their internal logic decides if operations are suc-
cessful. In other words, they are doing the compliance checking. The implementation of
a compliance checker could potentially be derived from the design of the commitment.
We leave this to future work.

105

deb,

cre soods goods

se"lgoods

deb,

Customer pay cre Merchant
/pay/
sen sen2,
pay T——g00ds |

Fig. 6. NetBill Process After Accept

7 Reasoning With Commitments

A protocol is violated if a commitment made in the protocol is violated. For example,
if a merchant accepts payment, but fails to ship the goods then it is violating its com-
mitment to send the goods. Policies are a combination of policies inherited from the
context and an agent’s internal policies. The agent has more leeway in enforcing its
internal policies, but it usually must enforce contextual policies. For example, US law
prohibits the sale of software with strong encryption to customers outside the US. An
agent that sells encryption software will have this law encoded as its conextual pol-
icy. Contextual policies will usually encode commitments to an institution. Violation
of contextual policies usually result in penalties. The institution in the above example
is the US government. An example internal policy is that the agent accepts only credit
cards. Note that generally, execution of the commitment operations are also governed by
contextual policies. For instance, a Cancel would normally be prohibited by the context
unless some special circumstances hold.

Now consider the exception that occurs when the merchant is unable to ship the
goods after receiving payment from the customer. Because commitments are repre-
sented, it knows it is committed to sending the goods and that failure to do so will invite
some kind of social penalty. So it decides to either delegate the reponsibility of shipping
to some other merchant or if that is not possible, it sends a refund. Because delegation is
not specified in the protocol, it still represents a weak violation of the the protocol. Re-
funding the money represents a stronger violation of the protocol. But reasoning about
commitments lets it find a somewhat satisfactory solution to this exception. Of course,
it is possible that the customer agent might find none of delegation or refund accept-
able. However, the exception handling like this is certainly preferable to the situation
where the merchant does not know how to handle a failure to deliver goods and does
nothing or aborts the transaction. It is possible to add the ‘delegate’ and ‘refund’ com-
putations to the protocol itself, but that would be a manifestation of a particular agent’s
policy in the protocol, making the protocol unwieldy and less reusable. An example of
an opportunity would be when for a large enough transaction, the merchant overrides its
policy to only accept credit cards in favor of wire transfers. A contextual policy could
be overridden for similar reasons.

106

To specify this at an architectural level, a m-process encodes the policies of the
agent. Before every transition, the protocol skeleton consults with a process called the
commitment-collector (in the sense of a garbage collector) that looks at the state the role
skeleton is in, determines its outstanding commitments in the protocol and takes steps
to execute, that is, satisfactorily handle those commitments. The commitment-collector
could also proactively poll the state of the skeleton depending upon the timeouts of
commitments. We can thus view the agent as a virtual commitment machine that exe-
cutes commitments.

The most important point to note here is that we are separating interaction and
control. Control resides with the commitment-collector whereas the role skeleton just
carries out the interaction. This allows the reusability of the protocol in another context
and keeps the handling of exceptions and opportunities in the commitment-collector.

8 Discussion

This paper presents a vision of business process design. Current business processes
end up being rigid and limit the participating agents’ autonomy. Although current tech-
niques give a semantics to the data and control constructs, they fail do to so at a high
level, that is, they fail to capture the semantics of the desired interactions. Moreover,
they do not achieve a clean separation between control and interaction. Thus they can-
not reconcile reusability and compliance with flexibility. In this paper, we attempt to
make a clean separation between the two. Protocols are reusable as they specify only
interaction (the whar); the agents’ business policies control the interaction (the how).

8.1 Literature

Current approaches tackle some of the above challenges, but only partially. Though
service composition is a kind of reusability, it is limited to a small class of applica-
tions. The reusability we are advocating is conceptually at the level of binary libraries.
In the following, we discuss some of the prevalent approaches for modeling business
processes.

BPEL [1] BPEL is a flow language that is used the describe web services in terms of
a process model. BPEL enables process composition by allowing the specification of
partner services and using flow constructs to operationally compose the web services.
In this way, BPEL takes a logically centralized view of the composed web service.
Although it supports the specification of exceptions, the exceptions are hard-coded and
therefore the agents’ flexibility is limited.

Semantic Web Services OWL-S [4] is an ontology for web services (built using OWL,
the W3C’s Web Ontology Language) that enables the specification of the service profile,
the service grounding, and the process model. Unlike BPEL processes that are statically
composed, OWL-S processes can be dynamically composed via planning. However, the
processes are specified logically centrally in a flow language. It therefore suffers from
the same limitations as BPEL.

107

RosettaNet and ebXML RosettaNet [14] is an industry-led consortium working to
create and implement industry-wide open e-business processes. RosettaNet has created
more than 100 Partner Interface Processes (PIPs), which are in the nature of business
protocols. RosettaNet enables the creation of business processes using PIPs, but does
not directly support the creation of business processes. ebXML [5] provides a language
in which specifications such as RosettaNet’s can be encoded. RosettaNet and ebXML
are limited to interactions with a single request-response pair.

MIT Process Handbook This effort catalogues different kinds of business processes
in a hierarchy [9]. For example, sell is a generic business process. It can be qualified by
sell what, sell to who, and so on. Our notion of a protocol hierarchy bears similarity with
the Handbook, the major difference being that we attempt to give a formal semantics to
the hierarchy in terms of commitments, and support aggregation in a robust manner.

Commitment Life-Cycle Fornara and Colombetti [6] present an operational charac-
terization of commitments in which they treat commitments as objects. They model
commitments as having states and, therefore, can represent a life-cycle of commitments.
Fornara and Colombetti’s focus is on developing semantics for an agent communication
language (ACL).

The 7-Calculus for Business Processes The -calculus has recently been suggested as
an approach for modeling business processes, €.g., [10]. The m-calculus can potentially
be quite useful, but only if applied at the level of interaction protocols. The 7-calculus
is conventionally applied simply to encode orchestrations as in XLANG (now absorbed
into BPEL [1]) or to even to specify choreographies as in WSCI [18]. In other words,
the machinery of the m-calculus is used primarily to encode the sequence of steps to
be executed—something that could be done with any conventional scripting approach.
Consequently, even some proponents of the m-calculus recognize that its subtle features
of the w-calculus, e.g., reconfigurability, end up not being put to good use in the current
literature [17].

8.2 Directions

We have presented the elements of a formal model using the m-calculus in this paper.
A current research direction is to exploit 7r-calculus concepts such as bisimulation to
determine the compatibility of an agent’s business policies with a role it wishes to adopt.
This will lead naturally into a type system for protocols to be able to formally create a
hierarchy of protocols.

On the practical side, we are developing a new language, OWL for Protocols or
OWL-P, which can be used to create publishable specification of protocols from which
role skeletons can be extracted. We are implementing this as part of a multiagent archi-
tecture which embodies the spirit of Figure 3.

108

References

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

BPEL. Business process execution language for web services, version 1.1, May 2003. www-
106.ibm.com/developerworks/webservices/library/ws-bpel.

A. Chopra and M. P. Singh. Nonmonotonic commitment machines. In F. Dignum, editor,
Advances in Agent Communication: Proceedings of the 2003 AAMAS Workshop on Agent
Communication Languages, LNAI, pages 183-200. Springer-Verlag, 2003.

B. Cox, J. Tygar, and M. Sirbu. Netbill security and transaction protocol. In Proceedings of
the First USENIX Workshop on Electronic Commerce, pages 77-88, 1995.

DAML-S. DAML-S: Web service description for the semantic Web. In Proceedings of the
1st International Semantic Web Conference (ISWC), July 2002. Authored by the DAML
Services Coalition, which consists of (alphabetically) Anupriya Ankolekar, Mark Burstein,
Jerry R. Hobbs, Ora Lassila, David L. Martin, Drew McDermott, Sheila A. Mcllraith, Srini
Narayanan, Massimo Paolucci, Terry R. Payne and Katia Sycara.

ebXML. Electronic business using eXtensible markup language, 2002. Technical Specifica-
tions release, URL: http://www.ebxml.org/specs/index.htm.

N. Fornara and M. Colombetti. Operational specification of a commitment-based agent
communication language. In Proceedings of the Ist International Joint Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS), pages 535-542. ACM Press, July 2002.
F. Guerin and J. Pitt. Denotational semantics for agent communication languages. In Pro-
ceedings of the Fifth International Conference on Autonomous Agents, pages 497-504. ACM
Press, 2001.

N. R. Jennings. Commitments and conventions: The foundation of coordination in multi-
agent systems. Knowledge Engineering Review, 2(3):223-250, 1993.

T. W. Malone, K. Crowston, and G. A. Herman, editors. Organizing Business Knowledge:
The MIT Process Handbook. MIT Press, Cambridge, MA, 2003.

L. G. Meredith and S. Bjorg. Contracts and types. Communications of the ACM, 46(10):41—
47, Oct. 2003.

R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, parts I and II. LFCS
Technical Report 89-85, Univeristy of Edinburgh, 1989.

J. Parrow. An introduction to the -calculus. In J. A. Bergstra, A. Ponse, and S. A. Smolka,
editors, Handbook of Process Algebra, pages 479-543. Elsevier, 2001.

M. Robin. Communicating and Mobile Systems: the pi-Calculus. Cambridge University
Press, 1999.

RosettaNet. Home page, 1998. www.rosettanet.org.

M. P. Singh. Agent communication languages: Rethinking the principles. IEEE Computer,
31(12):40-47, Dec. 1998.

M. P. Singh. An ontology for commitments in multiagent systems: Toward a unification of
normative concepts. Artificial Intelligence and Law, 7:97-113, 1999.

L. Wischik. Process calculi for Web choreography, Mar. 2003. http://www.wischik.com/lu/
research/ lucian-piforweb-w3c-mar2003-handout.pdf.

WSCI. Web service choreography interface 1.0, July 2002. wwws.sun.com/ software/ xml/
developers/ wsci/ wsci-spec-10.pdf.

Workflow process definition interface: XML process definition language, version 1.0, Oct.
2002. http://www.wfmc.org/standards/docs.htm.

P. Yolum and M. P. Singh. Commitment machines. In Proceedings of the Sth Interna-
tional Workshop on Agent Theories, Architectures, and Languages (ATAL-01), pages 235—
247. Springer-Verlag, 2002.

109

MASAQ: A Multi-Agent System for Answering
Questions Based on an Encyclopedic Knowledge Base!

Qiangze Feng, Cungen Cao, Yuefei Sui, Yufei Zheng and Qianfu Qin

Key Laboratory of Intelligent Information Processing, Institute of Computing Technology,
Chinese Academy of Sciences, Beijing 100080, China
{qgzfeng, cgcao, yfsui,yfzheng}@ct. ac.cn

Abstract. In this paper, we present a multi-agent system, called MASAQ, for
answering users’ queries based on an encyclopedic knowledge base. MASAQ
has three major components: (1) a natural language interface; (2) an executable
specification language (EASL) for developing multi-agent systems for answer-
ing or reasoning about users’ queries; (3) an encyclopedic knowledge base cov-
ering twenty-one domains. In addition to those features, another novel feature
of MASAQ is that the agents can run on the Internet as a distributed system, on
a supercomputer as a parallel system, or on a desktop PC as a centralized sys-
tem.

1 Introduction

A long-term research project was initiated in 1999 to develop a shareable encyclope-
dic knowledge base from various knowledge sources [6, 7, 10], such as WWW, do-
main handbooks and encyclopedias. So far, the knowledge base covers 21 domains,
including traditional Chinese medicine [10], western medicine [3], history [4], geog-
raphy [22], biology [14], military [16], music [13], ethnics [20], and archaeology [21].

In this paper, we present a multi-agent system, called MASAQ, for answering us-
ers’ questions based on the knowledge base. The system consists of four major com-
ponents. First, it has a natural language user interface [11]. Second, MASAQ has an
encyclopedic knowledge base covering 21 domains [e.g. 3,4, 5, 6, 7, 8, 10, 13, 14, 16,
20, 21, 22]. Third, it uses a communication protocol based XML and KQML [12, 15].
Finally, MASAQ provides an executable agent specification language (EASL) for
developing domain-specific multi-agent systems for answering or reasoning about
users’ questions, and the target systems can be deployed on the Internet as a distrib-
uted system, on a parallel supercomputer as a parallel system, or on a desktop PC as a
centralized system.

! This work is supported by the Natural Science Foundation (#60073017 and #60273019), the
Ministry of Science and Technology (#2001CCA03000 and #2002DEA30036), and Institute
of Computing Technology of Chinese Academy of Sciences (#2003-12-11).

110

In the following, we will mainly focus on the knowledge base and multi-agent
components of the MASAQ system.

When receiving a complex query, inference is often necessary since there may be
no direct answers retrievable from the knowledge base. For example, when a user
asks “Is New York located in North America”, the MASAQ needs to infer as follows:
Since USA is a country and New York is a city of USA, New York is a part of USA.
Furthermore, because USA is located in North America, it can be concluded that New
York is located in North America. This line of reasoning uses the following facts of
country(USA), city-of(New York City, USA), and located(USA, North America), and
the rules of city-of(x, y) — geo-part-of(X, y), country(x) — geo-entity(x), geo-part-
of(x, y) — part-of(x, y), and geo-entity(x) & part-of(y, x) & located(x, z) — lo-
cated(y, z).

Reasoning in a huge knowledge base is a great challenge. The key problem is effi-
ciency. In the MASAQ, every agent has a rule base for making inferences, and a
meta-rule base for controlling inferences. In addition, each agent shares a huge fact
base, i.e. the EKB (encyclopedic knowledge base). MASAQ have a number of advan-
tages over a single reasoning machine:

1. EKB has 21 domains and every domain has some individual categories.

Every category has its own actions and plans, and it can be well described by
a single agent.

2. Modularity can aid efficiency. Knowledge can be located more quickly and

fewer rules need to be considered for firing at once.

3. We distribute the agents on multiple computers or/and on a parallel machine

for parallel inference.

The rest of the paper is organized as follows. Section 2 presents the general archi-
tecture of MASAQ. Section 3 introduces knowledge representation in MASAQ. Sec-
tion 4 presents an executable agent specification language (EASL). Section 5 dis-
cusses agent communication. Section 6 presents algorithms and implementation de-
tails of MASAQ. Section 7 gives an experiment, and section 8 summarizes the work.

2 Architecture of MASAQ

The MASAQ is comprised of a number of agents, which represent distinct entities or
subjects (such as people or mathematics) that are capable of making decisions and
interacting with each other.

We use multiple agents to reason about a query (also called goal or task if no con-
fusion is caused). At the knowledge level, each agent is generally composed of four
major components: a rule base (RB) which is further divided into private and public
rules, a meta-rule base (MRB), a common encyclopedic knowledge base (EKB), and
a belief base (BB).

As shown in Fig. 1, agents are organized in a hierarchical manner, and they per-
form tasks simultaneously. Higher-level agents can call lower-level agents, and
lower-level agents can inherit public rules from their super-agents. There is one top-
level agent called the root agent. The function of the root agent is to receive queries

111

from users and to invoke relevant lower-level agents using its control rules. The final
result of the query is assembled at the root agent, and then delivered to the user

Query

Root agent |22 _EKB_|
oot agen
RBM RBQ RBn
RB.
agent,, BBM agent12 agent,, 55,
. |Eed] = ==/ o e
98T feef) [29°"22ffeE) [29" 2o ffmef) - | 29°" 20|,

Reasoning Result

Fig. 1. Architecture of MASAQ

3 Knowledge Representation and Organization

Each agent has a private rule base, public rule base and a meta-rule base. Each rule
has an identifier, a number of antecedents and a number of consequents. An antece-
dent or consequent is a conjunction of predicates. Formally, a rule is represented as a
Horn clause of the format [9, 17]:

d:P &P, &... &Pk > Q& Q& ... & Qn

In the rule, Pi(i=1...k) are antecedents, and Q;(j=1...m) are consequents. As illus-
tration, let us consider the fourth rule in the introduction, i.e. geo-entity(x) & part-
of(y, x) & located(x, z) — located(y, z). This rule is actually a Horn clause, where
geo-entity(x), part-of(y, x) and located(x, z) are antecedents, and located(y, z) is the
only consequent.

In rules, predicates can be user-defined and built-in predicates. User-defined
predicates may include, say, geo-part-of(X,Y) and located(X,Y), depending on the
concrete application under development. Built-in predicates are provided by the sys-
tem, and further classified into two categories:

1. Common predicates: eq(X, Y), leq(X, Y), geq(X, Y), gt(X, Y), subset(X, Y),
psubset(X, Y), diff(X, Y), in(X,Y), nin(X,Y), isa(X, Y), subcategory(X, Y),
supercategory(X, Y), has-stages(X, Y), part-of(t1, t2)

2. Goal predicates: subtask(called-agent, G, direction, strategy) which calls a
particular agent to assign a goal G to it, and may possibly recommend a

112

search direction and strategy to the called agent, and ifask(G) which indicates
the current goal is G.

Arguments of a predicate are called terms. A term is a variable, a constant, or a

function. Functions are classified into two categories:

1. Standard functions. We have designed a long list of standard functions, in-
cluding arithmetic functions, such as sum(X, Y), sub(X, Y), div(X, Y),
times(X, Y), sqrt(X), root(n, X), power(n, X), log(n, X), In(X), abs(X),
ceil(X), floor(X), factorial(X); trigonometric functions, such as sin(x), cos(x),
and tan(x); and other functions, such as card(X), ged(X, Y), lem(X, Y), and
reciprocal(X).

2. KAPI functions. The EKB provides a knowledge application programming
interface (KAPI) for application developers. In table 1, we present a number
of functions that have been already defined and implemented in the EKB.

Table 1. KAPI Functions

Operations or Predicates Meaning

getValue(C, A) Retrieve the value of attribute A of concept C.
A(C) Another form of getValue(C, A).

isValue?(C, A, V) True if V is the value of attribute A of concept C.
A(C, V) Another form of isValue?(C, A, V).
equal?(getValue(C, A), V) | True if the value of attribute A of concept C is V.
insert(K) Adds clause K to a BB if'it is not present.
remove(K) Removes the clause K from a BB.

getConcept(A, V) Retrieve the concepts whose value of A is V
getAttributes(C) Retrieve all the attributes of concept C

A meta-rule base is a collection of meta-rules. Meta rules use the same representa-
tion as (object-level) ones except that the former contain special built-in predicates
and terms, such as subtask() and ifask().

In the past years, we have developed several methods for extracting knowledge
from domain texts [3, 4, 5, 6, 7, 8, 10, 13, 14, 16, 20, 21, 22]. So far, we have con-
structed an encyclopedic knowledge base containing more than 3,000,000 assertions
covering 21 domains. The EKB is encapsulated with a knowledge application pro-
gramming interface (or KAPI) [8]. For details of KAPI, see Table 1.

The EKB is classified into two levels. The first level consists of domain categories
(e.g. COUNTRY), which are organized into a hierarchical structure. The second level
consists of instances with their category labels. Fig. 2 depicts an instance of
COUNTRY (i.e. Cambodia). In the figure, the value of the attribute ‘formal-English-
names’ of Cambodia is ‘the Kingdom of Cambodia’.

113

definstance COUNTRY Cambodia

{
formal-English-names: the Kingdom of Cambodia
previous-formal-English-names: the Khmer Republic
informal-Chinese-names: 5 &
formal-Chinese-names: b 3 %%
date-of-independence: November 9, 1953
be-in-the-southeast-of: Asia

Fig. 2. An Instance of COUNTRY

4 Executable Agent Specification Language (EASL)

At the knowledge level, an agent consists of five components: super agents, subordi-
nate agents, a meta-rule base, a public rule base and a private rule base. The first four
components are optional. The public rule base of an agent consists of (object-level)
problem-solving rules, which can be inherited by its subordinate agents, but private
rules are not shareable to others. The meta-rule base consists of meta-rules for con-
trolling the inference.

In MASAQ, agents are specified in a frame-like specification language called
EASL. The overall syntax is depicted in Fig. 3.

defagent <agent>
R

[Super-agents: <super agents>]
[Subordinate-agents: <subordinate agents>]
[<meta-rule base>]

[<public rule base>]

<private rule base>

Fig. 3. Knowledge-level Model of Agents

In our MASAQ, meta-rules are used in two situations. First, meta-rules are used
for subtasking. A subtasking meta-rule is in the format:

ifask(G) & P & ... & Q — subtask(called-agent, G, direction, strategy)
This meta-rule works as follows. Assume that the meta-rule belongs to agent A.

When agent A accepts a query G, and the antecedents P & ... & Q are true, then
agent A calls an agent (i.e. the called agent) and sends G to it. In addition to sending

114

G, agent A may also recommend a search direction (either forward or backward) and
a search strategy (either depth-first or breadth-first) to the called agent.

defagent geo-entity-agent
{
super-agents: root-agent
subordinate-agents: country-agent
meta-rulel: ifask(geo-entity(x)) — subtask(country, geo-entity(x), backward,
depth-first)
meta-rule2: ifask(geo-part-of(x, y)) — subtask(city, geo-part-of(x, y), backward,
depth-first)
private-rulel: geo-part-of(x, y) — part-of(x, y)
private-rule2: part-of(y, x) & geo-entity(x) & located(x, zZ) — located(y, z)
private-rule3: geo-entity(x) & geo-entity(y) & east(x,y) — west(y,x)
}
defagent country-agent
{
super-agents: geo-entity-agent
subordinate-agents: city-agent
public-rulel: eq(y, div(population(x), acreage(x))) — population-density(x, y)
private-rulel: country(x) — geo-entity(x)
private-rule2: eq(official-language(x),official-language(y))—equal-language(x, y)
}
defagent city-agent
super-agents: country-agent
subordinate-agents: NULL
private-rulel: city-of(x, y) — geo-part-of(x, y)
private-rule2: city-of(x, y) — leg(population(x), population(y))
}

Fig. 4. Three Agents in EASL

The second situation to use meta-rules is when several rules are invoked in an
agent. In this case, meta-rules in the agent are invoked to select a best rule to continue
with the inference. Such rules are called conflict-resolving rules, and they have the
format:

<rule statistics> & P & ... & Q — better-than(rulel, rule2)

The <rule statistics> part is a conjunction of a number of predicates about rules.

1. more-successful(rulel, rule2). It is true if rulel is more often invoked to an-
swer queries than rule2 does.

2. fewer-antecedents(rulel, rule2). It is true if rulel has few antecedents than
rule2.

3. cheaper(rulel, rule2).

115

Fig. 4 illustrates three geographical agents. ‘country-agent’ inherits from ‘geo-
entity-agent’, and ‘city-agent’ inherits from ‘country-agent’. The first meta-rule in the
‘geo-entity-agent’ indicates that it needs to call the agent ‘country-agent’ if the goal is
‘geo-entity(x)’.

5 Agent Communication

In a multi-agent system, agents need to communicate with each other for many pur-
poses. In MASAQ), there are three situations where agents communicate.

1. During reasoning, when an agent find a task (or goal) cannot be evaluated by
itself, the task needs to be assigned to a particular agent that can evaluate it
by corresponding meta-rule.

2. In task allocation and load balance, if there are multiple agents to fit, the cur-
rent agent needs to ask the loads of these agents and choose the one with
minimal cost.

3. When an agent has processed a (sub)query, it returns the results to the calling
agent or to the user through the user interface.

At run time, each agent is assigned with three queues for communication: Inbox,
Outbox, and Supbox. The Inbox keeps the messages that have been already received
from other agents, and the Outbox contains all the messages that have been sent out
to other agents. The Supbox is used during collaborative problem solving. When an
agent sends a (sub)query Q to another agent, it records the relevant information of Q
in its Supbox until it receives results from the other agent.

Messages in the Inbox and Outbox are expressed in a subset of KQML [12, 15].
The syntax of messages is given in Fig. 5, and the tags are explained in table 2.

<message>::=

‘<'action=<string>">'
‘<'sender'>’ <string> ‘<’/sender’>'
‘<'receiver>’ <string> ‘<'receiver>’
‘<reply-with">' <string> ‘<'/reply-with">'
‘<'in-reply-to">’ <label> ‘<’fin-reply-to'>’
‘<'content™>’ <string> '<’/content">’
‘<'ontology">' <string> ‘<'/ontology">’

‘<'[action">’

Fig. 5. Syntax of Agent Communication Language

In MASAQ, we have defined a list of actions, and some are shown in table 3. The
most important action is ask-if, and it asks the receiving agent to perform a query. An
ask-if statement contains the query, relevant data, search direction and search strategy
that are proposed by the sending agent.

116

Table 2. Typical Tags

TAG Meaning
action Type of communication
sender The agent who sends the message
receiver The agent who receives the message
reply-with The expected label in response to the current message
in-reply-to The expected label in response to a previous message

(same as the reply-with value of the previous message)
content The message content communicated between agents
ontology The ontology of the message content

Table 3. Actions in Messages

Action Meaning
ask-if An agent wants another agent to answer a query
tell An agent tells another agent the result of a query
stop An agent asks another agent to stop a QA task
ask-load An agent asks another agent of its current task load
tell-load An agent tells another agent of its current task load
join An agent joins another agent as a subordinate agent
withdraw An agent withdraws from its master agent

As illustration, Fig. 6 depicts a message that agent; sends to agent,. The message is
to ask agent, to answer which countries use German as the official language. agent,
also advises agent, to reason using the depth-first strategy in a backward direction.

<action=ask-if>

</action>

<sender> agent: </sender>

<receiver> agent, </receiver>

<reply-with> msg001 </reply-with>

<content> official-language(x, German), backward, depth-first </content>
<in-reply-to> msg000 </in-reply-to>

<ontology> NKI Ontology </ontology>

Fig. 6. A Message that agent; Sends to agent,

After receiving the message from agent,;, agent, processes it, and replies with the
message shown in Fig. 7, where the answer is Austria, Germany, and Switzerland.

117

<action=tell>

<sender> agent </sender>

<receiver> agent; </receiver>

<reply-with> msg002 </reply-with>

<in-reply-to> msg001 </in-reply-to>

<content> Austria, Germany, Switzerland
</content>

<ontology> NKI Ontology </ontology>

slantinn~

Fig. 7. A Message in Reply to msg001 from agent,

Now, we turn to the Supbox of an agent. The Supbox is used when an agent asks
another agent to answer a sub-query. In this situation, the sending agent needs to
suspend its inference of the current query to wait for the answer to the sub-query, and
continues with other queries to achieve parallelism. In order to resume the suspended
query, the sending agent preserves the relevant data into its Supbox.

Table 4. Data in Supbox

Field Meaning

current query Including data, content of query (including search strategy
and sender agent)

serial no Serial number used to identify the suspended query according
to the returned message from the other agent later

message The message sent to the other agent

time of sending | The time of sending the message

stack Containing information of every inference step of the query

In MASAQ, every agent is an autonomous process. Communication between
agents is implemented by MPI. MPI is a message-passing interface standard, and it is
the standard for multicomputer and cluster message passing introduced by the Mes-
sage-Passing Interface Forum in April 1994. The goal of MPI is to develop a widely
used standard for writing message-passing programs [1, 2].

Fig. 8 depicts the initialization of MPI. ‘MPI Init’ initializes MPI and starts a MPI
program. ‘MPI’ Comm rank’ gets the identifier of the current process.
‘MPI_Comm_size’ gets the number of agents. Fig. 9 describes a message communi-
cating course. The sender agent sends a message to the receiver agent by ‘MPI_Send’
and the receiver agent receives the message by ‘MPI_Recv’.

MPI_Init (&argc, &argv)
MPI_Comm_rank (MPI_COMM_WORLD, &rank)
MPI_Comm_size (MPI_COMM_WORLD, &size)

Fig. 8. Initialization of MPI

118

MPI_Send (message, strlen(message), MPI_BYTE, mes-

Sendin;
& sane.receiver. 0. MPI COMM WORLD)

agent

messagel

Receiving MPI_Recv(message,MAX_SIZE,MPI_CHAR,MPI_ANY_SOU
agent RCE,0,MPI_COMM_WORLD, &status)

Fig. 9. Flow Chart of Message Communication

When an agent asks another agent to perform a goal, it needs to suspend the cur-
rent task, preserve the current state, and then perform the next task. When the result
of the task is returned, the agent needs to resume the corresponding reasoning scene
and continue the task.

6 Algorithms and Implementation Details

6.1 Agent Compilation

Since an EASL program consists of a number of defagent statements, the compiler
compiles the program statement by statement. For each such defagent statement, the
EASL compiler, the agent compiler performs the following steps:

Step 1: Checking Well-Definedness of Super-agents and Subordinate-agents

The values of super-agents and subordinate-agents are agent names. The super-agents
and subordinate-agents slots are well-defined if all the super-agents and subordinate-
agents are defined in the program, or registered in the MASAQ registry.

Step 2: Checking Well-Definedness of Private Rules, Public Rules and Meta-
Rules

Each predicate in a private, public or meta rule is defined in the Predicate Definition
Table (PDT). The PDT consists of a tuple for each predicate in an EASL program.
The fields of the table are: 1) predicate name: the name of the predicate. 2) user-
defined?: true if the predicate is user-defined; otherwise built-in. 3) arity: The arity of
the predicate. 4) type of argy, ..., type of arg,. Each type of argument is kept in the
PDT.

In addition to the PDT, MASAQ also has a separate Function Definition Table
(FDT). The FDT consists of a tuple for each function in an EASL program. The FDT
fields are: 1) function name: the name of the function. 2) user-defined: true if the
function is user-defined; otherwise built-in. 3) function type: the type of the function.
It can be one of basic types, such as Integer, Real, Boolean, and String; it can also be
compound types, Integers, Reals, Booleans, and Strings, representing sets of integers,

119

real numbers, booleans, strings, and respectively. 4) arity: The arity of the function. 5)
type of argy, ..., type of arg,. Each type of argument is kept in the FDT.

A rule is well-defined if it obeys the rule syntax shown in section 3.1, and each
predicate in the rule is well-defined according to the PDT.

Step 3: Compiling Rules into Internal Representation

First, the compiler uses type information supplied by predicate definitions to optimize
situations: Knowledge base manipulations are compiled into simple KAPI to retrieve
and calculate clauses, and some standard functions (E.g. sum and equal) are compiled
into particular code. Then the rule base of an agent is represented as a network, where
each rule is represented as a tree. For example, the rule “part-of(y, x) & geo-entity(x)
& located(x, z) — located(y, z)” can be represented as Fig. 10.

root

A 4

part-of geo-entity located located

o o6 do J

Fig. 10. Internal Representation of a Rule

Another important internal representation is an index table of the consequents of
the rules in an agent. The index table is used during the backward reasoning in an
agent to speed up search. Assume the current agent is Ay, and it has m rules. The
fields of the index table are: 1) predicate Pt, and 2) {<i,j>|1<i<m, rule[i].consequent[j]
has the same name as Pt}. In order to implement fast searching in the forward reason-
ing, we also produce an antecedent index table for each agent. The fields of the table
are: 1) predicate Pt, and 2) {<i,j>|1<i<m, rule[i].antecedent[j] has the same name as
Pt}

6.2 Evaluation of Predicate

Evaluation of predicate can be classified as predicate evaluation and argument
evaluation. KAPI’s are evaluated by retrieving knowledge bases, and standard func-
tions are evaluated by executing their code, and others are evaluated by reasoning.
How to evaluate a predicate (i.e. whether to make inference, directly retrieve from a
BB, or directly retrieve from the EKB) - is determined according to the PDT.

120

Evaluating a predicate determines the conditions under which it is true, i.e. the
bindings for variables such that the predicate is true. The predicate may succeed many
times, with different combinations of bindings, until all solutions are found.

Predicate matching is a consistent matching of two predicates in most general uni-
fication. If there is a most general unification between two homonymous predicates,
then the predicates matching is succeed, and we’ll replace all relevant variables in the
predicate and rule with the value of the variables in the general unification. Predicate
matching is the most frequent function during reasoning. Predicate P; matches predi-
cate P, in the following condition: 1) They are homonymous, and 2) their arguments
are matched with each other.

6.3 Inference Engines

Each agent owns an inference engine — a rule interpreter, and all the inference en-
gines are exactly the same. The inference engine has two search directions, i.e. for-
ward and backward, and two search strategies, i.e. depth-first and breadth-first. The
default search direction is backward, and the default search strategy is depth-first.

As shown in Fig. 11, subtasking rules of an agent can determine which reasoning
machine to choose for a goal. Now we have developed two inference engines: back-
ward depth-first and forward breadth-first. According to the type of goal (predicate or
rule), every engine can be further divided into predicate inference engine and rule
inference engine. Predicate inference engine can be further divided into predicate-
evaluator and argument-evaluator. So we have six inference engines actually.

subtask rule

start

N

backward depth-first

forward breadth-first

backward backward forward
predicate reasoning rule reasoning predicate reasoning|

\ /N

backward forward
argument-evaluator predicate-evaluator:

forward
rule reasoning

backward
predicate-evaluator

forward
argument-evaluator

Fig. 11. Multiple Inference Modes

The predicate-evaluator determines if a goal is true, e.g. official-language(British,
English). The argument-evaluator finds the values of the variables in the goal, e.g.
official-language(x, English). In two engines above, the goal is a predicate. But the

121

goal is a rule, e.g. official-language(x, English)—located(x, Europe) in the rule infer-
ence engine, which determines if the rule is true.

6.4 Query Answering

To use the multi-agent system, the user can raise a query in the form of a predicate or
a rule. In the first case, the system evaluates the predicate or reason backward or
forward according to defined strategies.

When the query is a rule, e.g. city-of(x, y)—part-of(x, y), we say the query repre-
sents a verification task. It is transformed into predicate reasoning by adding the ante-
cedents of the rule to the data base, and its consequents as the goal. For above exam-
ple, we can transform it into “data=city-of(x, y), goal=part-of(x, y)”, and then per-
form predicate evaluation. And we have to find the bindings of variables such that the
antecedents are true, and deduce that the consequents are true when the bindings are
applied. If the consequents are true for all bindings, then the goal is true.

6.5 Load Balance

A query can be performed by multiple agents, so load balance is necessary. However,
it is difficult to balance load when the agents are selecting subtasks in a distributed
manner [18, 19]. Load balance in MASAQ includes load measurement, transmission
strategy and placement strategy.
Information measurement determines the load of an agent. The load of an agent is

determined by the following factors:

1. The number of task on the agent

2. Average processing time of task on the agent

3. Difficulty of task

4. Difficulty of task can be valued by the following method. Diff(P, agenti)

means difficulty of task P on agent;

1, if the task can be valued distinctly (KAPI or standard function)
Diff(P, agent;)= {

Max {Diff1(P, agent;, rule,[0]), Diff1(P, agent;, rule,[1]), ...} , else

Diff(P,agenty), if the consequent of rule,[i] is subtask(agenty, ...)

Diff1(P, agent;, rule,[i])= {
2 {Diff(rule[i].prem[k], agent;)} , else

rule,;: the collection of rules whose one consequent is P in the current agent

prem: antecedents of the current rule

Fig. 12. Calculating Difficulty of Task for Load Balance

A transmission strategy judges if we transmit a task on one agent. If the load of the
agent is greater than a and the task waiting time is greater than t, then we need trans-
mitting.

122

Placement strategy chooses the task transmitted and its destination. The task
transmitted must be a large task and have little transmission cost. We use the polling
method to determine the receiving agent. Firstly, select an arbitrary agent from those
ones that have not been checked. Secondly, check if the load of the agent exceeds the
limit when the task reaches. If the load exceeds the limit, then the agent is the destina-
tion of the task; otherwise we continue to select another agent to check until we find
the destination or detecting time exceeds a limit.

6.6 Implementation

We have implemented a multi-agent parallel system in ANSI C on Win-
dows2000/Linux/Unix. The MASAQ agents can be deployed on the Internet as a
distributed system, on a parallel supercomputer as a parallel system, or on a desktop
PC as a centralized system.

Query: Is New York City located in North America

agent=root-agent
goal=located (New York, North America)
1
agent=geo-entity-agent
goal=located (New York, North America)
rule=private_rule2
2 7 11
agent=geo-entity-agent agent=geo-entity-agent agent=geo-entity-agent
goal=part-of (New York, x) goal=geo-entity (USA) goal=located (USA, North America)
rule=private rulel rule=meta_rulel Retrive_EKB Value=TRUE
3] l
8 12
agent=geo-entity-agent agent=country-agent
goal=geo-part-of (New York, x) goal=geo-entity (USA)
rule=meta_rule2 rule=private_rulel
4] J!
agent=city-agent agent=country-agent 10
goal=geo-part-of (New York, x) goal=country (USA) —
rule=private_rulel Retrive_ EKB Value=TRUE
J
agent=city-agent 6
goal=city-of (New York, x) —
Retrive_ EKB x=USA

Fig. 13. An Instance of Multi-agent Reasoning

123

7 Experiment

We suppose that a user asks “Is New York City located in North America”, the sys-
tem receives the goal ‘located (New York, North America)’, and the root agent calls
the ‘geo-entity-agent’, as shown in Fig. 4. The line of reasoning is depicted in Fig. 13.

The goal matches the second private-rule ‘part-of(y, x) & geo-entity(x) & lo-
cated(x, z) — located(y, z)’, and then we instantiate the antecedents of the rule and
get three sub-goals: ‘part-of(New York, x)’, ‘geo-entity(x)’ and ‘located(x, North
America)’.

The first sub-goal ‘part-of(New York, x)’ matches the first private-rule and gets its
sub-goal ‘geo-part-of(New York, x)’ which matches the second meta-level. At the
same time, the agent needs to call its subordinate ‘country-agent’. When the value of
the argument x is calculated by the ‘country-agent’, ‘geo-entity-agent’ continues with
inference.

We performed four experiments on geography which contains 9 agents and 520
rules. 1000 tasks were sent to the root agent, and detailed data is collected in Table 5.

Table S. Four Experiments of MASAQ

Number of Agent Execution
No. | Agent Deployment Communicatgion Time (ms)
1 On 1 PC 2646 4364
2 On 4 PCs 2887 2218
3 On 8 PCs 3013 1192
4 On 8 PCs and 1 3182 597
supercomputer

8 Conclusion

Answering questions based on large-scale domain knowledge is a challenging task.
The key problem is efficiency. We developed a multi-agent system based on an ex-
ecutable specification language, and the system can run on the Internet as a distrib-
uted system, on a parallel machine as a parallel system, or on a desktop PC as a
standalone system. In the multiple agents, there are a number of complicated tasks
such as multi-agent communication and load balance.

MASAQ is encoded in ANSI C, and it can runs on Windows2000/Linux/Unix.
Dozens of agents are distributed to eight PC computers and a supercomputer. The
number of PCs and parallel machines can be initiated in advance. Repeated tests and
experiments in the last two months have demonstrated our MASAQ can reason all the
knowledge of 21 domains efficiently.

At present, the format of rules we considered is standard horn. We find that horn
rules are not sufficient for representing the world depicted by domain knowledge.
Extension of horn rules is our future work. We will also enhance the capabilities of
MASAQ in abnormality handling.

124

References

10.
11.

12.

13.

15.

16.

17.
18.

20.

21.

22.

Adamo, J.M.: Multi-Threaded Object-Oriented MPI-Based Message Passing Interface:
the ARCH library. Kluwer Academic. 1998.

Alexandrov, V., Dongarra, J.: Recent Advances in Parallel Virtual Machine and Message
Passing Interface. Proc. the 5th European PVM/MPI User’s Group Meeting. 1998.

Cao, C.G: Medical Knowledge Acquisition from Encyclopedic Texts. Lectures in Com-
puter Science. vol.2101, 268-271. 2001.

Cao, C.G., Shi, Q.Y: Acquiring Chinese Historical Knowledge from Encyclopedic Texts.
In Proceedings of the International Conference for Young Computer Scientists. 1194-
1198, 2001.

Cao, C.G., Sui, Y.F.: Constructing Ontology and Knowledge Bases from Text.
ICCPOL’03. 34-42, 2003.

Cao, C.G., Wang, H.T., Sui, Y.F.: Acquiring Knowledge of Herbal Drugs and Formulae
from Text. To appear in International Journal of Artificial Intelligence in Medicine. 2004.
Cao, C.G., Wang, H.T.: An Ontology-Mediated Knowledge Programming Framework for
Rapidly Acquiring Domain Knowledge from Semi-Structured Text. Proceedings of the
Pacific Rim Knowledge Acquisition Workshop. 2002.

Cao C.G., Zheng Y.F.: Knowledge Application Programming Interface 1.1 (KAPI 1.1).
Technical Report. Institute of Computing Technology. Chinese Academy of Sciences.
2000.

Chandra, A., Harel, D.: Horn clause queries and generalizations. Journal of Logic Pro-
gramming. 1-5. 1985.

EOC Publisher: The Encyclopedia of China. China EOC Publisher. 1997.

Feng, Q., Cao, C.G.: A Uniform Human Knowledge Interface to the Multi-Domain
Knowledge Bases in the National Knowledge Infrastructure. ES2002. 163-176. 2002.
Finin, T., Weber,J.: Specification of the KQML: Agent Communication Language.
DRAFT. 1993.

Gao, Y., Cao, C.G.: Acquiring Musical Knowledge from Encyclopedic Text. Journal of
Coputer Science. 2003.

Gu, F., Cao, C.G.: Biological Knowledge Acquisition from the Electronic Encyclopedia
of China. Proceedings of the 16th International Conference for Young Computer Scien-
tists. 1199-1203, 2001.

Labrou, Y., Finin T.: A Proposal for a New KQML Specification. TR CS-97-03. 1997.
Lei, Y.X., Cao, C.G.: Acquiring Military Knowledge from the Encyclopedia of China. In
the Proceedings of the Sixth International Conferences for Young Computer Scientists.
368-372,2001.

Lloyd, J.: Foundations of Logic Programming. Springer-Verlag. 1987.

Krothapalli, N., Deshmukh, A.: Distributed Task Allocation in Multi-Agent Systems.
Proc. the 11th Industrial Engineering Research Conference. 2002.

Wallis, S., Moss, S.: Efficient Forward Chaining for Declarative Rules in a Multi-Agent
Modelling Language. CPM Report: 004. 1994.

Wang, L.L., Cao, C.G.: Acquiring Ethnic Knowledge from Encyclopedic Text. Journal of
Computer Science. 2003.

Zhang, C.X., Cao, C.G., Gu, F., Si, J.X.: A Domain-Specific Formal Ontology for Ar-
chaeological Knowledge Sharing and Reusing. The 4th International Conference on
Practical Aspects of Knowledge Management. Vol.2569, 213-225, 2002.

Zhang, D.H., Cao, C.G.: Acquiring Knowledge of Chinese Cities from the Encyclopedia
of China. In the Proceedings of the Sixth International Conferences for Young Computer
Scientists. 1111-1193, 2001.

125

Construction of an Agent-based Framework for
Evolutionary Biology: a Progress Report

YuPan PhanHuy Tu Enrico Pontelli Tran Cao Son

Department of Computer Science
New Mexico State University
{ypan,tphan,epontell,tson }@cs.nmsu.edu

Abstract. We report on the development of an agent-based system, dallec,

for the specification and execution of phylogenetic inference applications. We de-
tail the implementation of the main components of the system. In the process, we
discuss how advanced techniques developed in different research areas such as
domain-specific languages, planning, Web services discovery and invocation, and
Web services composition can be applied in the building ofth®G system.

1 Introduction

In the biological sciences, data is accumulating much faster than our ability to convert
it into meaningful knowledge. For example, the Human Genome Project and related
activities have flooded our databases with molecular data. The size of the DNA se-
quence database maintained by NCBI has surpassed 15 million sequences and keeps
growing at a rapid pace. Our modeling tools are woefully inadequate for the task of
integrating all that information into the rest of biology, preventing scientists from using
these data to draw meaningful biological inferences. Thus, one of the major challenges
faced by computer scientists and biologistgetheris the enhancement of information
technology suitable for modeling a diversity of biological entities, leading to a greater
understandindrom the influx of data. Instead of allowing the direct expression of high-
level concepts natural to a scientific discipline, current development techniques require
mastery of programming and access to low level aspects of software development.

The #LOG Project: ThedLOG project at NMSU is aimed at the development of
a computational workbench to allow evolutionary biologists to rapidly and indepen-
dently construct computational analysis processes in phylogenetic inference. Phyloge-
netic inference involves the study of evolutionary change of traits (genetic or genomic
sequences, morphology, physiology, behavior, etc.) in the context of biological entities
(genes, genomes, individuals, species, higher taxa, etc.) related to each other by a phylo-
genetic tree or genealogy depicting the hierarchical relationship of common ancestors.
The overall objective of théLOG framework is to allow biologists to design com-
putational analysis processes by describing them at the same level of abstraction com-
monly used by biologists to think and communicate—and not in terms of complex
low-level programming constructs and communication protocols. @G frame-
work automatically translates these high-level descriptions into executable programs—
commonly containing appropriately composed sequences of invocations to existing
bioinformatics tools (e.g., BLAST, DNAML).

126

ThePLOG framework is characterized by two innovative aspects: the us®of a
main Specific Language (DSkEp interface to the biologists and the adoption of an
agent-based platform for the execution®fOG programs. These aspects are dis-
cussed in the next subsections.

The #LOG Language: The LOG framework offers biologists Bomain Specific
Language (DSLjor the description of computational analysis processes in evolution-
ary biology. The DSL allows biologists to computationally solve a problem by program-
ming solutionsat the same level of abstraction they use for thinking and reasofring

the DSL approach, a language is developed to allow users to build software in an appli-
cation domain by using programming constructs that are natural for the specific domain.
A DSL results in programs that are more likely to be correct, easier to write and rea-
son about, and easier to maintain [12, 15, 20]. #h®G DSL has been extensively
described in [25]. The language provides:

e High-level data types representing the classes of entities typically encountered in
evolutionary biology analysis (e.g., genes, taxon, alignments). The set of types and
their properties have been derived as a combination of existing data description
languages (e.g., NEXUS [22]) and biological ontologies (e.g., Bio-Ontology [28]).

e High-level operations corresponding to the transformations commonly adopted in
computational analyses for evolutionary biology (e.g., sequence alignment, phylo-
genetic tree construction, sequence similarity search). The operations are described
at a high-level; the mapping from high-level operations to concrete computational
tools can be either automatically realized by tHeOG execution model, or ex-
plicitly resolved by the programmer.

e Both declarative as well as imperative control structures to describe execution flow.
Declarative control relies on high-level combinators (e.g., functions, quantifiers)
while imperative control relies on sequencing, conditional, and iterative constructs.

The #LOG Agent Infrastructure: An essential goal behind the development of
@dLOG is to provide biologists with a framework that facilitates discovery and use
of the variety of bioinformatics tools and data repositories publicly available. The Web
has become a mean for the widespread distribution of a large quantity of analysis tools
and data sources, each providing different capabilities, interfaces, data formats and dif-
ferent modalities of operation. Biologists are left with the daunting task of locating the
most appropriate tools for each specific analysis task, learning how to use them, dealing
with the issues of interoperability (e.g., data format conversions), and interpreting the
results. As a result of this state of things, frequently biologists make use of suboptimal
tools, are forced to perform time-consuming manual tasks, and, more in general, are
limited in the scope of analysis and range of hypothesis they can explore.

PLOG relies on an agent infrastructure, where existing bioinformatics tools and
data sources are viewedlaisinformatics servicesServices are formally described; the
agent infrastructure makes use of such formal descriptions and of the confdr®&f
programs to determine the appropriate sequence of service invocations required to ac-
complish the task described by the biologist. The reasoning component of the agent is
employed to select services and compose them, eventually introducing additional ser-
vices to guarantee interoperability. The rest of this paper describes in detail the structure
of such agent infrastructure.

127

Related Work: Relatively limited effort has been invested in the use of agent-based
technology to facilitate the creation of analysis processes and computational biology ap-
plications. TAMBIS [11] provides a knowledge base for accessing a set of data sources,
and it can map queries expressed in graphical form to sequences of accesses. Some
proposals have recently appeared addressing some of the aspects covétedGy

, such as ontologies for computational biology (e.g., BIOML [13] and Bio-Ontology
[28]), interoperability initiatives (e.g., the Bioperl Project [6], XOL project [21] and

the TAMBIS project [11]), low-level infrastructure for bioinformatics services (e.g.,
OmniGene [8], BioMOBY [10], and the DAS [24]), and generic bioinformatics com-
putational infrastructures (e.g., BioCorba [9] and BioSoft [14, 16]).

2 System Overview

The overall architecture of our system is illustrated in Figure 1. The execu-
tion of #LOG programs will be carried out by an agent infrastructure and will
develop according to the flow denoted by the arrows in Figure 1. In this frame-
work, bioinformatics tools are viewed a&keb servicesin turn, each agent treats
such services asactions and the execution oLOG programs is treated as an
instance of theplanning and execution monitoring probleff9]. Each data source
and tool has to be properly described—in terms of capabilities, inputs and outputs—
so that the agent can determine when a particular data source or tool can be used
to satisfy one of the
steps required by the oo spe gamTene S

®LOG program. This /

description process is N | Coniouraion g Plaming [|/
supported by ebioin- | %/®| Compiler B M| o et T R Vod

formatics ontologiefor

the description of the N —— |Service
entities involved in this Descriptions ’
process.#LOG pro-
grams will be processed
by a compiler and trans- Fig. 1: Overall System Organization

lated into anabstract plan that identifies the high-level actions (i.e., analysis steps)
required, along with their correct execution order. The abstract plan is processed by a
configuration componenthe output of the configuration component is a situation cal-
culus theory [26] and a ConGolog program [17]. The ConGolog program represents the
underlying skeleton of the plan required to perform the computation described in the
original ?LOG program. The action theory describes the actions that can be used in
such plan. These actions correspond to the bioinformatics services that can be employed
to carry out the tasks described by the high-level actions present in the abstract plan.
The descriptions of such actions are retrieved froservice brokerwhich maintains
(DAML-S) descriptions of all registered bioinformatics services.

The situation calculus theory and the ConGolog program are then processethy a

ner; the task of the planner is to develogancrete plapwhich indicates how to com-

pose individual bioinformatics services to accomplish the objectives described by the

Invocations

128

@dLOG programs. In the concrete plan, the high-level actions are replaced by invoca-
tion calls to concrete bioinformatics services; it might also include additional steps not
indicated in the origina®LOG program, required to support interoperation between
services (e.g., data format conversions) and to resolve ambiguities (e.g., tests to select
one of possible services). The creation of the concrete plan relies on the technology
for reasoning about actions and changehe planner is integrated with an execution
monitor, which is in charge of executing the concrete plan by repeatedly contacting the
broker to request execution of specific services. The execution monitor interacts with
the planner to resolve situations where a plan fails and replanning is required.

3 Service Description and Management

Bioinformatics services are described in our framework using DAML-S 0.7, a language
built on top of the DAML+OIL ontology for Web Services. We adopt DAML-S over
previously developed Web Service languages (e.g., WSDL or SDAG? its expres-
siveness and declarativeness. Furthermore, DAML-S has been designed to make Web
Services computer-interpretable, thus allowing the development of agents for service
discovery, invocation, and composition. As such, it is an ideal representation language
for describing bioinformatics services.

1

=]
—>

=

Geneldentification | | Phylogeny| ‘ DB_Search | | Align | ‘ CosrmidAssermbly |
!] I 1 I] I 1 I]
[1 [[[

‘ Databases ‘ | LinkageAnalysis | |Prnle|nAnaIysws | | SequenceAnalysis ‘
[1 I | I i | 1
[L [

— | | |

BibliographicDatabases ‘ | GenomeDatabases |
I |
[

Fig. 2. Part of Service Hierarchy

Service Description: Bioinformatics services i®LOG are classified according to a
type hierarchy. This classification facilitates the matching between the high-level ac-
tions present in @LOG program and the actual services. More details related to this
topic will be discussed in Section 5. A part of the service hierarchy is shown in Figures
2. The top class in this hierarchy is callBinformaticsServices and is spec-
ified by the following XML element:
<daml:Class rdf:ID="BiologyServices">

<rdfs:label>Biology Service</rdfs:label>

<rdfs:comment> ... </rdfs:comment>

<rdfs:subClassOf rdf:resource= "http://www.daml.org/services/

daml-s/0.7/ProfileHierarchy.daml#Information _Service" />

</daml:Class>
All the other classes are derived directly or indirectly from this class. As an example

! http://www.w3.0rg/TR/wsdI andhttp://ws.apache.org/soap/

129

(Figure 2),BibliographicDatabases andGenomeDatabases are subclasses
of the Databases class, which, in turn, is a subclass BibinformaticsSer-
vices . Both of them describe database-related services which allow users to access
different databases. This class includes services such as GDB [3] (Human genomic
information), OMIM [4] (Catalogue of human genetic disorders), and EMBASE [7]
(Excerpta Medica Database). Their representation is as follows.
<daml:Class rdf:ID="GenomeDatabases">

<rdfs:subClassOf rdf:resource="#Databases"/>
</daml:Class>
<daml:Class rdf:ID="BiliographicDatabases">

<rdfs:subClassOf rdf:resource="#Databases"/>
</daml:Class>
Information about the service classification is stored in thedfiatypes.dand In ad-
dition to the classification of services, this file contains information about the types of
biological entities that are important for the development of our system. As with ser-
vices, these objects are also organized as a class hierarchy to facilitate reasoning about
types of objects. For example, biological sequences are represented as objects of the
Sequences class. The fildatatypes.dandlso includes some predefined instances of
classes. Fig. 3 shows part of these hierarchies.

UnslignedDNASequences | | UnaligneaRmAsequentes |

[1 AlignedDNASAGUERTES | | RligretRMASEGURREES
L 1 L]

Fig. 3. Part of Biological Object Classification

These hierarchies help us to reason about the services needed to exét@&a
program, including reasoning about the types and the formats of service parameters.

Let us now describe the DAML-S representation of services through an example—
the representation of thelustalW service, a multiple sequence alignment program
[2]. In DAML-S, each service is characterized bprafile, representing the capabilities
and parameters of the servicggracess modelllustrating the workflow of the service,
and agroundingfile, specifying in details how to access the service. The DAML-S
representation of th€lustalW service is composed of four filédescribed below.

The first file clustalw-service.darfilstores information about the locations of the
profile, the process model, and the grounding:
<service:Service rdf:ID="Service _Clustalw">

2 http://lwww.cs.nmsu.edu/tphan/philog/nondet/datatypes.daml
3 The complete description can be foundwatw.cs.nmsu.edu/ tphan/philog
4 www.cs.nmsu.edu/"tphan/philog/nondet/clustalw-service.daml

130

<service:presents rdf:resource="&clw _profile;#Profile _Clustalw"/>
<service:describedBy rdf:resource="&clw _process;#Process _Clustalw"/>
<service:supports rdf:resource="&clw _grounding;#Grounding _Clustalw"/>

</service:Service>

The second fileglustalw-profile.dan?), is the profile for theClustalw service. It
defines the parameters needed for the invocation of this service and specifies the mem-
bership of this service in the service classification hierarchy. For exa@histalW
is specified as an instance of the cladign

<ftypes:Align rdf:ID="Profile _Clustalw"> .. <Iftypes:Align>
This file also contains input, output, and precondition elements defining the service’s
inputs, outputs, and preconditions, respectively. The type of each parameter (input or
output) is specified by theestrictedTo property, making use of the above biolog-
ical object classification.

The third file, the process model, provides the necessary information for an agent
to use the service, including specifying whether it is an atomic process or a composed
process or what are its inputs, outputs, and preconditions. For examp@ustalW
service is specified as an atomic process in its process fodel
<daml:Class rdf:ID="ClustalWProcess">

<rdfs:subClassOf rdf:resource="&process;#AtomicProcess" />
</daml:Class>
Similarly to the service profile, the process model also makes use of the above biological
classification to define its input and output parameters.

Finally the grounding model fa€lustalW specifies the details of how to access the
service—details having mainly to do with protocol and message formats, serialization,
transport, and addressing. It consists of two complementary parts (i) a DAML-S file
specifying the mapping between DAML processes/types and WSDL operations/messages,
and (ii) a WSDL file designating the binding of messages to various protocols and
formats. The first file is calledlustalw-grounding.daménd the second file is called
clustalw-grounding.wsdIBoth of them can be found dittp://www.cs.nmsu.
edu/"tphan/philog/

Service Management:The services, together with their classification, are registered
with the service broker, which is responsible for providing service descriptions to the
configuration module and fulfilling service execution requests from the execution mon-
itoring module. We employ the OAA system [29] in the development of the service bro-
ker. To facilitate these tasks)@kup agenand severaservice wrapperbave been de-
veloped. The lookup agent receives high-level action names from the compiler and will
match these actions with possible available services. For example, a request for a high-
level actionalign will be answered with the set of all available alignment services,
such aservice _clustalw andservice _dialign . This process will be detailed

in Section 5. Service wrappers have been developed for the purpose of executing the ser-
vices since most of the bioinformatics services are still offered through HTTP-requests
and not as Web services. Agents—playing the role of service wrappers—are ready for
the instantiation and execution of bioinformatics services.

5 www.cs.nmsu.edu/ tphan/philog/nondet/clustalw-profile.daml
& www.cs.nmsu.edu/"tphan/philog/nondet/clustalw-process.daml

131

4 &LOG Compiler

The objective of thebLOG compiler is to process a program writtendhOG and
produce as output a high-level sketch of the execution planghbistract plai and
a symbol table, describing the entities involved in the computation, in terms of their
names and types. The main tasks of¢h€G compiler include: syntax analysis, type
checking, and construction of the abstract plan.
Syntax Analysis: Each®&LOG program contains a sequence of declarations and a
sequence of statements. The declaration part is used to:

e Describe the data items (variables) used by the program;

e Allow users to select the computational components to be used during execution—

e.g., associate high-lev@l OG operations to specific bioinformatics tools;

e Provide parameters affecting the behavior of the different components.
Each data item used in the program must be properly declared. Declarations are of the
type <variable> : <type> [<properties>] and are used to explicitly describe
data items, by providing a namevariable>), a description of the nature of the values
that are going to be stored in iktype>) and properties of the item. For example,
genel : Gene (gi | 557882) declares an entity callegenel , of type Gene,
and identifies the initial value for this object—the gene with accession nubalF&82
in the GenBank database.

Declarations are also used to identify computational components to be used during
the execution—this allows the user to customize some of the operations performed. For
example, a declaration of the type
align _sequences : Operation(CLUSTALW -- alignment = full,

score type = percent, matrix = pam, pairgap = 4);
allows the user to configure the language operatilign _sequences —a $LOG
operation to perform sequence alignments—by associating this operation with the ClustalW
alignment program, with the given values for the input parameters.

Variable assignments are expressedastput variable> is <operation>(<input
variable>). In this prototype, we focused on a subset of the possible classes of
operations—i.e.<searchOp> , <alignOp> , <buildTreeOp> , and<specifi-
cOp>.

Type Checking: All variables used in @LOG program must be declared with spe-
cific types.®#LOG provides two classes of datatypes. The first class includes generic
(non-domain specific) datatypes, while the second class includes all those datatypes that
are domain-specific, like DNA Sequence, Protein, etc. These domain-specific types are
defined in our type system (see Fig. 3). There are two major types of type checking
e Type checking against attributes of objects;
e Type checking against input and output variables of operations.
Domain specific datatypes contain attributes that are specific to each type. Consider the
following #LOG program segment
gl : Gene (gi | 557882)
se : Sequence
se is sequence(gl)
It assigns to the variablgl the Gene having accession numi@r | 557882 and
extracts its sequence data, which is stored in the varsbl@he compiler must check

132

the datatype hierarchy to verify th@i|557882 is a legal value for an object of type
Gene—i.e., itis a well-formed accession number—and an attribute callgdence

with type Sequence exists for the typesene. Attribute and type mismatches will
cause compiling error. Type checking is also performed for each operation in the pro-
gram. Datatypes of input and output variables are defined in our services ontology (see
Figure 2). ThebLOG compiler must check the validity of such parameters; 3.,

is align(sl) performs a multi-sequence alignment operation on the datasiem
storing the result in data ites2 . To be able to perform the actios]l must be of type
UnalignedSequences (i.e., a set of unaligned sequences) a@dmust be of type
AlignedSequences

Operations Identification and Abstract Plan Assembly:As described in the syntax
analysis section, the current preliminary prototype focuses on a limited classes of oper-
ations (explored for feasibility purposes):

<operation> := <searchOp> | <alignOp> | <buildTreeOp> | <speci-
ficOp>
<searchOp> := <variable> : <variable> is <complexType> and

<attribute>(<variable>) <verb> <literal>

<alignOp> ::= align

<buildTreeOp> ::= build _tree
Database search operations are conveniently expressed using intensional sets. E.g.,

pis { x: x is Gene and name(x) contains "fever"
searches a nucleotide database—automatically inferred from the type of the collected
variablex—for all genes whose name contains the keywtever” , and the re-
sulting collection of genes is stored in the variaple

Each syntactic occurrence of an operations leads to the generation of one high-level
action in the abstract plan assembled by the compiler. The identification of the operation
is accomplished by navigating the services hierarchy, with the goal of locating the most
specific class of services corresponding to the specified operation. The operation pro-
vides a link to the most general class of services in the ontology corresponding to such
operation (e.g., thalign operation used in 2LOG program will link to the general
class of sequence alignment services in service hierarchy); the usage of the operation—
and, in particular, the type of the parameters, inputs, and outputs—will constraint the
focus on appropriate subclasses of services.

The #LOG language allows us also to directly refer to specific services (e.g., ei-
ther through a declaration, as illustrated in the previous section, or directly as an op-
eration). For examples is ClustalWw _JP(p) identifies theClustalW multi-
sequence alignment service locatedlastalw.genome.ad.jp . This operation is
described in the service hierarchy, with input tyygealignedSequences and out-
put typeAlignedSequences . However, use of specific service is not recommended
ina®LOG program because user then can not take use of the power of dynamic service
plan composition of théLOG framework.

As another example, the service hierarchy offers three subclasbefidf _tree
operation—used to construct a phylogenetic inference tree—that use different algo-
rithms: ParsimonyAlign , DistanceMatrixAlign , and MaximumLikely-
hoodAlign . These operations are differentiated by their input parameters and the

133

®LOG compiler must be able to find the correct match. For example,

p : UnalignedSequences

m : DistanceMatrix

s is align(p, m)
identifies the operatioBistanceMatrixAlign(p, m) because it has two inputs:

a set of unaligned sequences and a distance matrix.

The output produced by the compiler is an abstract plan. The abstract plan is a Con-
Golog program whose actions are high-level actions. Each service is described by a
three elements tupléA, IL, OL) whereA is the operation namédL is the list of A’s
input parameters and L is the list of A’s output parameters respectively. Each input or
output is of the form(name, type, value), wherename, type and value are the name,
type and value of the input/output respectively. The value of an input or output must be
either a constant or a variable.

In addition to the abstract plan, the output of the compiler also contains informa-
tion about all the variables used in t®€ OG program and a list of high-level actions.
Specifically, for each variabl& of typeT" in the program, there is a corresponding fact
var(X,T) in the output. As an example, consider tleOG program fragment:

p : UnalignedSequences;
s : AlignedSequences;
t : PhylogeneticTree;
pis x : x is Gene and name(x) contains "fever";
s is align(p);
t is build _tree(s);
This simple program defines a sequence of operations—first search a database finding
all the genes contains the keywori@vVer ”, then conduct a multiple sequence align-
ment operation on the returned sequence set, and finally build a evolution tree based on
the aligned sequence set. The output of the compiler is a list of three high-level actions
db_search, align ,andbuild _tree and the Prolog program
plan([(db _search, [(db,str,nucleotide),(term,str,fever)],
[(sequence,unalignedsequences,p)]),
(align, [(sequence,unalignedsequences,p)],
[(sequence,alignedsequences,s)]),
(build _tree,[(inFile,alignedsequences,s)],
[(outputFile,phylogenetictree,t)])]).
var(t,phylogenetictree). var(s,alignedsequences).
var(p,unalignedsequences).

The factplan(...) represents théLOG program and the set of facts of the form

var(.,.) list the variables used in the program.

5 Configuration Component

The configuration component plays an important role in preparin@ti@G pro-
gram for execution. Its input is an abstract plan from the compiler. Its output is a
ConGolog program with an underlying situation calculus theory, that will be used

134

by the Planning and Executio
monitoring module to execut

>

Abstract Plan

11°

Action Theories

the #LOG program. For the Hé;eh&fevse' R & GOLOB Frogram
background behind this design 'C* oo [pu gf_povuot L oum 'O"
and its advantages, we refer the e —lll A

PDDL files

[

reader to [27]. Figure 4 show

the phases of the configuratign Service
component. We next describje Foole

these phases in more detalil.

5.1 DAML-PDDL translator Fig. 4: Configuration Component

The DAML-PDDL translator, in concert with the services broker (which maintains the
service registry), is responsible for collecting of DAML-S service descriptions needed
for the execution of th@LOG program and converting them into PDDL files. The
lookup agent, after receiving the list of high-level actions from the compiler, will request
the broker for a list of bioinformatics services which can be used to realize the high-
level actions. This list of services, which contains information about service names and
their locations (URISs), is then forwarded to the translator. For exampletheearch

service is realized by the bioinformatics servicebi andblast athttp://www.
cs.nmsu.edu/"tphan/philog/ . For each service, the translator will download
the service descriptions from the specified URIs and convert them to PDDI files.

The DAML-PDDL translator used in this project, called PDDAML, is an automatic
translator between PDDL and DAML from [5]. It is worth noticing that this step could
be eliminated and replaced by a module that translates DAML-S service descriptions
directly into a situation calculus theory. However, we still adopt this path for several
reasons. First of all, the language DAML-S is still under development, and any changes
in its specification would also mean changes to our system. Secondly, the language
PDDL is well-known and accepted as the input language for many planning systems.
Furthermore, the DAML-S parser and analyzer are being developed and updated by the
DAML coalition. By using PDDAML, we make our system less sensitive to changes
in the DAML-S specification and avoid the need of writing programs for processing
DAML-S specifications.

Each DAML-S file (service, profile, process model, or grounding)—as described
in Section 3—is translated into a PDDL file, often referred to &8DDL domain
Each PDDL domain consists of several sections specifying the external domains that
are extended by the current domain and defining the domain’s entities and their rela-
tionships such as data types, objects, predicates, axioms, etc. E.g., the PDDL domain
representing the profile of the servi@ustaw ,® namedclustalw-profile-
ont , uses the external domairtustalw-service-ont (representing the ser-
vice) andclustalw-process-ont (representing the process model) and defines
objects namedProfile _ClustalW , Sequences , OutputSequences , etc.; it
also contains axioms describing the input, output, and precondition of the services.

" More precisely, the output is in WebPDDL format.
8 Space limitation does not allow us to display the output of the translator here. Readers inter-
ested in the details can find it latp://www.cs.nmsu.edu/"tphan/philog/

135

5.2 Generating the Situation Calculus Theory and the ConGolog Program

In the second phase, the configuration component takes the output from the DAML-
PDDL translator (a collection of PDDL files) and from the compiler (the abstract plan)
and generates the situation calculus theory and the ConGolog program for the Planning
and Execution module. This is done in two steps. First, the set of PDDL domains is com-
bined into a single Prolog file whose facts and rules represent the objects and axioms in
the PDDL files. To avoid naming conflicts between entities from different domains, we
associate to each domain a unique string, cabegdand prefix each entity of the do-
main with the corresponding tag. Consider, for example, the oBjeguences , that
represents the input @lustalW , and is defined in the PDDL domagtustalw-
profile-ont (originated fromclustalw-profile.dan)lwith the typeUnaligned-
Sequences . Assume that this domain is associated with theRag@. The object is
translated into a predicatsmalignedSequences(F17 _Sequences) of the Pro-
log program.

The final step in the configuration component is to generate the situation calculus
theory and to formulate the ConGolog program corresponding t@lt@G program.
This process involves collecting all the necessary information about a particular service
from the Prolog program produced in the previous step and from the abstract plan—the
output of the compilerdeeSection 4). This step is performed as follows.

Generating the Facts. Each variableX of typeT in theLOG program corresponds
to a factT'(X) in the action theory. Similarly, a consta@t of type T' has the corre-
sponding fact'(C). For example, for the output of thBLOG program described in
Section 4, the destination theory contains the following facts:

phylogenetictree(p). alignedsequences(s). unalignedsequences(t).

str(nucleotide). str(fever).
wherep, s andt are variables whilaucleotide andfever are constants.
Generating the Fluents. For each variable X used in theL. OG program, there is
a corresponding fluentariable(X) in the destination ConGolog program. In ad-
dition, there is one more fluehias _value(X) to indicate whether that variable has
been assigned some value or not. Initially, no variable has been assigned a value.

prim_fluent(variable(p)). prinfluent(variable(s)).

prim_fluent(variable(t)).

prim_fluent(hasvalue(X)) :- primfluent(variable(X)).

Besides, it might be the case in which an input of an action is required to have
some fixed value. For example, the abstract plan in Section 4 requires thatdili-the
search services havénucleotide” as the value of their first argument atfdver”
as the value of their second argument. To deal with this case, we use a fluent of the
form value(X, V) to say that the value of the inptXf must bel/. The meaning of this
kind of fluents will become more precise when we discuss the executability condition
of an action in the following parts. E.g., the translator will automatically generate the
following fluents for thePLOG program output above.

prim_fluent(value(f13db,nuclectide)). prinfluent(value(f13term,fever)).

prim_fluent(value(fQdb,nucleotide)). prinfluent(value(fQterm,fever)).
Furthermore, depending on the service description, the situation calculus might have
some additional fluents. E.g., since the preconditio@laktalWw involves the format

136

property, the theory will contain the fluefdrmat(X,V) , indicating that the format

of objectXis V.

Generating the Actions. Each service occurring in the previous step corresponds to

an action in the destination theory, whose parameters are the inputs and outputs of the

service. The translator will automatically assign a unique variable name for each input

and output of a service. E.g., the service ClustalW corresponds to the following action

in the action theory:

prim_action(serviceclustalw(input(F17sequences),output(FIoutputsequences))) :-
unalignedsequences(F5équences),
alignedsequences(Fbltputsequences).

It says that the service ClustalW has an inpl¥ _sequences and an outpuf17 _output

sequences ,whereF17 _sequences andF17 outputsequences are of the types

unalignedsequences andalignedsequences respectively.

In several cases, some services in the local database might be used to formulate
actions in the theory. For instance, we notice that we may need to do some kind of
format conversions for ouPLOG program. Hence, all the format conversion services
in the local database are looked up and included in the theory. In the future, the search
for related services will be done online, through the service broker.

Generating the Executability Conditions. The following is an example of the exe-
cutability condition for the ClustalW service.
executable(servicelustalw(input(F17Zsequences),output(Floutputsequences)),
and(format(F1Z%equences,gichbi),or(value(flZsequences,F13equences),
and(variable(F1&equences),haslue(F17sequences))))):-
unalignedsequences(Féquences),alignedsequences(Blifputsequences).

The intuition behind the above condition is that, for the service ClustalW to be ex-
ecutable, it requires each of its input parameters either to be a variable that is already
assigned to some value or to have some default value. In addition, it also requires that
the format of the inpuE17 _sequences issf _nchi .

Generating Effects. One type of effect of an action is that its outputs will be assigned
some value. E.g., the effect of the ClustalW service in the action theory looks like:
causesval(serviceclustalw(input(F17Zsequences),output(FIoutputsequences)),
hasvalue(F17outputsequences),true,true) :-
unalignedsequences(F$équences), alignedsequences(Blifputsequences).

The other type of effect relates to effects that are explicitly described in the service
description. For example, the BLAST search service has an effect stating that the format
of its output issf _blast . This is represented as follows.

causesval(serviceblast(input(F13db,F13term),output(F13utputsequences)),

format(F13outputsequences,slast),true,true) :-
str(F13db),str(F13term),unalignedsequences(EdBtputsequences).

Generating the Initial State. As mentioned, for thé@LOG program we are consider-
ing, initially no variable has been assigned any value. The ConGolog encoding is:

initially(variable(p),true). initially(variable(s),true).

initially(variable(t),true). initially(hassalue(t),false).

initially(has.value(s),false). initially(hasalue(p),false).

initially(value(f13.db,nucleotide),true).

initially(value(f13.term,nucleotide),true).

137

initially(value(fO_db,nuclectide),true).
initially(value(fO_term,fever),true).
Generating ConGolog Programs. Based on the abstract plan and the domain de-
scription, a ConGolog program representing the concrete plan can be constructed. The
following is an example of the ConGolog program for theOG program in Sect. 4.
proc(plan,[servicencbi(input(FQdb,FQterm),output(FOoutputsequences))
makedoable
servicedialign(input(F21sequence),output(F2iutputsequences)):
serviceclustalw(input(F17Zsequence),output(F1dutputsequences))
makedoable
servicetreeview(input(F29nputfile),output(F2%utputphylogenetictree)):
servicednaml(input(F25nputfile),output(F25outputphylogenetictree))]).
Notice that any pair of consecutive plan steps has a constrak_doable in-between.
This construct, introduced in [23], is a relaxation of ConGolog’s sequence construct.

6 Planning and Execution Monitoring Module

The input of the planning and execution monitoring module consists of a ConGolog
program and a situation calculus theory which represents the origirf@ program

and the bioinformatics services, respectively. The module’s job is to execute the Con-
Golog program. To do so, it repeatedly generates traces of the ConGolog program and
then executes them until at least one concrete plan succeeds, or all of them fail (Fig. 5).

6.1 Planning

The main job of this component is to find a possible trace of the ConGolog program
which can be succesg

fu”y exeCUtEd and ther Action Theories Execution
executes such a trace & GOLOG Program COncreIte Plan Output
Given a ConGolog prot [— '
M\ Modi < B
gram and the underlyy N ladiETl N
- Interpreter Monitor \/

ing situation calculus
theory, this problem ca
be solved in different Service A
ways by employing dif- Descriptions ’
ferent ConGolog inter
preters [17,19]. In this
paper, we use an off-
line ConGolog interpreter with the insertion constructor ‘malkable’ from [23] to
generate traces, which we will call hereaftencrete plans

We prefer the off-line interpreter over the on-line interpreter for different reasons. First
of all, the effects of the actions in our ConGolog programs do not change over time,
i.e., the execution of a service with the same set of input will yield the same output
regardless of its execution time. In this sense, domains in our application satisfy the
IPR condition of [23], and therefore this model of planning and execution monitoring is
suitable. In addition, there are some services whose runtime is large. As such, a service
should be invoked only if it can lead to a successful execution of the program at hand.

Failure

>

Service
Invocations

Fig.5: Planning and Execution Monitoring Module

138

This property cannot be satisfied by an on-line interpreter, since it does not guarantee
completeness [19].
The use of the insertion constructor allo#kOG 's users to writePLOG programs
without the need of worrying about the data conversion operator in their programs. This
simplifies the process of writingLOG programs considerably since the number of
data formats currently used by bioinformatics services is huge, and each service only
works with certain formats. During the planning phase, the interpreter will automati-
cally insert thedata format conversiooperators into the program, whenever needed.
Due to the frequent use of the format conversion utility, we decided to add the situa-
tion calculus representation of the format conversion service to every situation calculus
theory generated by the configuration component.
To illustrate this process, consider the ConGolog program and the corresponding situa-
tion calculus theory from the last section. A possible trace of this program is:
| ?- do(plan,s0,S).
S = do(service _treeview(input(s),output(t)),

do(service _clustalw(input(p),output(s)),

do(service _ncbi(input(nucleotide,fever),output(p)),s0)))) ?
Suppose that the output format of the service NCBI does not match the input format of
the service ClustalW. In this case, the output of the planning process is
| ?- do(plan,s0,S).
S = do(service _treeview(input(s),output(t)),

do(service _clustalw(input(p),output(s)),

do(conversion(input(p),output(p)),

do(service _blast(input(nucleotide,fever),output(p)),s0)))) ?
The actionconversion(input(p),output(p)) , that converts the output for-
mat ofservice _blast into a format suitable teervice _clustalw , is the difference
between the traces. It ensures that the sequence of actions is executatd® from

In order to deal with conditional and loop statement®@itOG programs we have

modified the ConGolog interpreter and its output so that it can deal with conditions
whose truth value can only be determined at runtime. We choose to do so instead of
using one of the available modified ConGolog interpreters, such as IndiGolog [18],
for the same reasons that make us favor an off-line over an on-line ConGolog in-
terpreter. Presently, whenever the interpreter cannot evaluate a condition in a condi-
tional/loop statement, the planning process will continue with the guess that the con-
dition is true/false, thus leaving the job of evaluating the condition for the execution
monitoring module. If the evaluation of the condition turns out to be not different than
the guess, the execution monitoring module will report a failure (i.e., a backtrack oc-
curs) and the planning process will continue with the opposite guess that the condi-
tion is false/true, respectively. To illustrate this, let us consider the ConGolog program
s1; ifv = 2 then s, else s3, which involves three services, s, s3 wheres; com-
putes the value of a parameter0 < v < 3. The off-line ConGolog interpreter will
fail to find a trace of this program since it cannot evaluate the conditien? if the
services; has not been executed. In our interpreter, the first output i = 2)7; s9
(obtained by guessing that = 2 is true). If a backtrack occurs, the next output is
s1; (—(v =2))7?; s3.

139

6.2 Execution Monitoring

The result of the planning process is a concrete plan which is a sequence of bioinfor-
matics services and test conditions. The execution monitoring component will execute
the concrete plan by sequentially executing each services or test for the correctness of
the condition of the plan. If the service fails or the condition is not satisfied, then the
plan execution fails.

It should be noted that if the low-level services occurring in the concrete plan are web
services, i.e., they are properly constructed and described using a web service markup
language (DAML and WSDL in our case), the invocation of the service is just a matter
of using a standard parser to parse the service grounding information and construct in-
vocation messages accordingly. In the current prototype we have created simple agent
wrappers for the services to support service invocation. Each wrapper agent must reg-
ister their functionalities with the OAA broker—in this case, the functionalities provide
the name of the service and the invocation parameters. E.g.,
oaa _Register(parent, 'ClustalW JP,

[clustalw _jp([(sequence, _Sequence)], Resp)],)

registers with OAA a service called 'ClustalWP’ which takes one input parameter
named 'sequence’. The service invocation is simply a request to the OAA broker for
execution of one particular service:

oaa _Solve(clustalw _jp([(sequence, Sequence)], Result), [])
The wrapper agent will handle the actual service invocation—i.e., building the connec-
tion between client and server, constructing the message using either HTTP GET or
POST method, parsing the returning message, and storing the result.

In case of execution failure—e.g., a time-out or loss of connection to the remote
provider—the monitor will take appropriate actions. Repair may involve either repeat-
ing the execution of the service or re-entering the configuration agent. The latter case
may lead to exploring alternative ways of instantiating the partial plan, to avoid the fail-
ing service. The replanning process is developed in such a way to attempt to reuse as
much as possible the part of the concrete plan executed before the failure.

7 Conclusions and Future Work

This paper reports the work that has been done so far iPb@G project. It demon-
strates the feasibility of applying agent technologies in phylogenetic inference applica-
tions. The main achievement in this phase is the development diltt€s compiler,

the configuration component, the execution monitor, and the integration of these com-
ponents within the OAA system and the ConGolog interpreter. The current system can
be used to work with a small class #1.OG programs. Much work is still needed
before we can get a system that can exe@lt®G programs as described in [25],

i.e., most generabLOG programs. This will be our concentration in the near future.
Among others, we plan to complete the compiler and the configuration component to
allow for control constructors i®LOG programs. This will also demand changes in the
planning and execution monitoring module. We would also like to improve the planning
and execution monitoring module so that results that have been computed by a failed
concrete plan can be reused as much as possible in the replanning process.

140

References

GAWNE

o0 ~N O

12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

20.

. Entrez, The Life Sciences Search Engiwauw.ncbi.nim.nih.gov/Entrez
. European Bioinformatics Institutéttp://www.ebi.ac.uk/clustalw/
. Gene Data Banlhttp://gdbwww.gdb.org/

OMIM, Online Mendelian Inheritance in Mamww.ncbi.nlm.nih.gov/omim .
PDDAML — An Automatic Translator Between PDDL and DAMLhttp://www.cs.
yale.edu/homes/dvm/daml/pddl_daml_translatorl.html

. The Bioperl Projectwww.biperl.org
. Human Genome Mapping Project Resource Cemterwv.hgmp.mrc.ac.uk/MANUAL/
. OmniGene: Standardizing Biological Data Interchange Through Web Services,

omnigene.sourceforge.net , 2001.

. BioCORBA Projectwww.biocorba.org , 2002.
10.
. P.G. Baker et al. TAMBIS: Transparent Access to Multiple Bioinformatics Information

The BioMOBY Projectbiomoby.org , 2002.

Sources. Irint. Conf. on Intelligent Systems for Molecular Biolpg®98.

T. Ball, editor. Proc. of the 2nd Conference on Domain-specific Languag€M Press,
2000.

R. Beavis. The Biopolymer Markup Language (BIOML). TR, ProteoMetrics, LLC, 1999.

S. Cao et al. Application of Gene Ontology in Bio-data WarehousestHmnnual Bio-
Ontologies Meeting2003.

W. Codenie, K. De Hondt, P. Stayaert, and A. Vercammen. From custom applications to
domain-specific framework€€ommunications of the ACM0(10):70-77, 1997.

F. Corradini, L. Mariani, and E. Merelli. A Programming Environment for Global Activity-
based Aplications. INVOA, Workshop on Agent003.

G. De Giacomo, Y. Legpance, and H. LevesqueéConGolog a concurrent programming
language based on the situation calculdificial Intelligence 121(1-2):109-169, 2000.

G. De Giacomo, H. J. Levesque, and S. Sadincremental execution of guarded theories.
ACM Transactions on Computational Log(4):495-525, 2001.

G. De Giacomo, R. Reiter, and M. Soutchanski. Execution monitoring of high-level robot
programs. IrKRR'98 pages 453-465. Morgan Kaufmann Publishers, 1998.

G. Gupta and E. Pontelli. Specification, Implementation, and Verification of Domain Spe-
cific Languages: a Logic Programming-based ApproachClnfrom LP into the Future
Springer, 2001.

A.H. Karp. Programming for Parallelisr@omputer 20, May 1987.

D. R. Maddison, D.L. Swofford, and W.P. Maddison. NEXUS: An Extensible File Format
for Systematic InformationSyst. Biol, 464(4):590-621, 1997.

S. Mcllraith and T.C. Son. Adapting golog for composition of semantic web services. In
(KR’2002) pages 482-493. Morgan Kaufmann Publisher, 2002.

S. Pearson. DAS: Open Source System for Exchanging Annotations of Genomic Sequence
Data. Technical report, Open Bioinformatics Foundation, 2002.

E. Pontelli et al. Design and Implementation of a Domain Specific Language for Phyloge-
netic Inferencel. of Bioinformatics and Computational Biolog®(1):201-230, 2003.

R. ReiterKNOWLEDGE IN ACTION: Logical Foundations for Describing and Implement-
ing Dynamical SystemMIT Press, 2001.

T.C. Son et al. An Agent-based Domain Specific Framework for Rapid Prototyping of Ap-
plications in Evolutionary Biology. Irist Workshop on Declarative Agent Languages and
Technologies2003.

R. Stevens. Bio-Ontology Reference Collectioncs.man.ac.uk/"stevens/
onto-publications.html .

R. Waldinger. Deductive composition of Web software agentsPrére. NASA Wkshp on
Formal Approaches to Agent-Based Systems, LNBp8nger-Verlag, 2000.

141

Norm Verification and Analysis
of Electronic Institutions

Wamberto W. Vasconcelos
Department of Computing Science, University of Aberdeen
Aberdeen AB24 3UE, United Kingdom

wvasconcelos@acm.org

Abstract. Electronic institutions are a formalism to define and analyse
protocols among agents with a view to achieving global and individual
goals. In this paper we propose a definition of norms for electronic insti-
tutions and investigate how these norms can be employed for verification
and analysis. We offer automatic means to perform the extraction of sub-
parts of an electronic institution in which norms hold true or can safely
be avoided. These sub-parts can be used to synthesise norm-aware agents
that will pursue or avoid commitments to norms.

1 Introduction

An important aspect in the design of heterogeneous multiagent systems (MAS,
henceforth) concerns the norms that should constrain and influence the be-
haviour of its individual components [1-3]. Electronic institutions have been
proposed as a formalism to define and analyse protocols among agents with a
view to achieving global and individual goals [4,5]. In this paper we propose a
definition for norms and a means of using this definition to verify properties of
electronic institutions. We also describe means to help designers analyse an elec-
tronic institution with a view to extracting alternative and restricted versions
of it in which norms are guaranteed to be fulfilled or versions in which norms
will never be adopted. We observe that restricted versions of an electronic insti-
tution can be used to synthesise agents that will either pursue norms or avoid
commitments to norms.

Electronic institutions define virtual environments in which agents interact.
Designers specify their electronic institutions which may become arbitrarily com-
plex. Tools and mechanisms ought to ensure that certain properties of electronic
institutions hold before they can be enacted (i.e. agents interact following the
specified order and kind of messages of an electronic institution). Some such
properties are well-formedness and reachability of all parts of the specification
by agents (i.e., absence of “dead parts” that are never used) [6].

Norms, as defined in this work, provide means to check for additional proper-
ties of electronic institutions. Our norms are of the kind: if agent = says M, and
agent y says M, then agent z is obliged to say M. Given an electronic institution
and a set of norms, we want to check if the agents taking part in an enactment
of it will indeed abide by the norms prescribed and whether the norms will have
any effect on them. We observe that the machinery required for the verification
of such properties can also be used to help designers analyse their specification
with a view to extracting sub-parts of it in which norms are guaranteed to hold
(or, alternatively, sub-parts in which agents will not commit to the norms).

Ours is a formal declarative approach. Declarative formal specifications have
many advantages [7, 8] over procedural notations. We capitalise on the ability

142

to use the very same specification to check for properties as well as to obtain
execution models of future systems to be devised using the specification [6,9].
We employ logic programming (in particular, Prolog) [10] to describe all our con-
cepts and proposed functionalities. Although we could have employed “cleaner”
formalisms to represent our concepts and solutions, Prolog is a good compromise
between a detailed implementation and abstract mathematical formulations.

In Section 2 we introduce a lightweight definition of electronic institutions
and a declarative representation for them. In Section 3 we introduce a definition
of norms and explain their incorporation to electronic institutions; we also show
how norms can be used to check if the agents of an electronic institution will ever
commit to a norm and, if they do, whether a norm will eventually be fulfilled.
In Section 4 we show how we can analyse electronic institutions with respect
to norms in order to extract sub-parts in which norms are fulfilled or never
committed to by any agents. We present our conclusions in Section 5, compare
our research with related work and give directions for future research.

2 Lightweight Electronic Institutions

Electronic institutions (e-institutions, for short) can be viewed as a variation of
non-deterministic finite state machines [11]. We present e-institutions here in a
“lightweight” version: those features not essential to our investigation have been
omitted. We refer readers to [4,5] for a complete description of e-institutions.

Our lightweight e-institutions are defined as sets of scenes related by tran-
sitions. We shall assume the existence of a communication language CL among
the agents of an e-institution as well as a shared ontology which allow them to
interact and understand each other. We first define a scene:

Definition 1. A scene is a tuple S = (R, W, wo, Wy, WA, WE, ©, \) where

— R={r1,...,r} is a finite, non-empty set of roles;

— W =A{wo,...,wn} is a finite, non-empty set of states;

— wg € W is the initial state;

— Wy C W is the non-empty set of final states;

— WA is a set of sets WA = {WA, C W, r € R} where each WA,., r € R, is
the set of access states for role r;

— WE is a set of sets WE = {WE, CW, r € R} where each WE,, r € R, is
the set of exit states for role r;

— O CW x W is a set of directed edges;

— A : O+ CL is a labelling function associating edges to messages in the
agreed language CL.

A scene is a protocol specified as a finite state machine where the states represent
the different stages of the conversation and the directed edges connecting the
states are labelled with messages of the communication language. A scene has a
single initial state (non-reachable from any other state) and a set of final states
representing the different possible endings of the conversation. There should be
no edges connecting a final state to any other state. Because we aim at modelling
multi-agent conversations whose set of participants may dynamically vary, scenes
allow agents to join or leave at particular states during an ongoing conversation,

143

depending on their role!. For this purpose, we differentiate for each role the sets
of access and exit states.
To illustrate this definition, in Figure 1 we provide a simple example of a

buyer request (B: buyer, al | : sel l er, buy(lten))
£ 4O >t

of fer(S:seller, B buyer,sell(ltemPrice)) nil

inforn(B:buyer,S:seller,reject(ltemPrice))

inforn(B: buyer, S:seller,accept(ltemPrice))
inforn(B: buyer, S:seller,reject(ltemPrice)) of fer(S:seller,B: buyer,sell(ltemPrice))

Fig. 1: Simple Agora Room Scene

scene for an agora room in which an agent willing to acquire goods interacts
with a number of agents intending to sell such goods. This agora scene has been
simplified — no auctions or negotiations are contemplated. The buyer announces
the goods it wants to purchase, collects the offers from sellers (if any) and chooses
the best (cheapest) of them. The simplicity of this scene is deliberate, in order
to make the ensuing discussion and examples more accessible. A more friendly
visual rendition of the formal definition is employed in the figure. Two roles,
buyer and seller, are defined. The initial state wq is denoted by a thicker cir-
cle (top left state of scene); the only final state, ws, is represented by a pair
of concentric circles (bottom left state). Access states are marked with a “»”
pointing towards the state with a box containing the roles of the agents that
are allowed to enter the scene at that point. Exit states are marked with a “p”
pointing away from the state, with a box containing the roles of the agents that
may leave the scene at that point. The edges are labelled with the messages to
be sent/received at each stage of the scene. A special label “nil” has been used
to denote edges that can be followed without any action/event.
We now provide a definition for e-institutions:

Definition 2. An e-institution is the tuple € = (SC, T,So,Sq, E, A\g) where

— 8C ={S4,...,Sn} is a finite, non-empty set of scenes;

— T ={t1,...,tm} is a finite, non-empty set of transitions;

— Sy € SC is the root scene;

— Sq € SC is the output scene;

— E = E'UEC is a set of arcs such that BT C WESXT is a set of edges from all
exit states WES of every scene S to some transition T, and EC C T x WAS
is a set of edges connecting all transitions to an access state WAS of some
scene S;

— Ag: B p(x1,...,2,) maps each arc to a predicate representing the arc’s
constraints.

! Roles in e-institutions are more than labels: they help designers abstract from in-
dividual agents thus defining a pattern of behaviour that any agent adopting that
role ought to conform to. Moreover, all agents with the same role are guaranteed the
same rights, duties and opportunities [4].

144

Transitions are special connections between scenes through which agents move,
possibly changing roles and synchronising with other agents. We illustrate the
definition above with an example comprising a complete virtual agoric market.
This e-institution has more components than the above scene: before agents can
take part in the agora they have to be admitted; after the agora room scene is
finished, buyers and sellers must proceed to settle their debts. In Figure 2 we
show a graphic rendition of an e-institution for our market. The scenes are shown

Admission e Ri - “==|| Departure

Fig. 2: E-Institution for Simple Agoric Market

in the boxes with rounded edges. The root scene is represented as a thicker box
and the output scene as a double box. Transitions are represented as triangles.
The arcs connect exit states of scenes to transitions, and transitions to access
states. The labels of the arcs have been represented as numbers. The same e-
institution is, of course, amenable to different visual renditions.

The predicates p(z1,...,x) labelling the arcs, shown above as numbers,
typically represent constraints on roles that agents ought to have to move into a
transition, how the role changes as the agent moves out of the transition, as well
as the number of agents that are allowed to move through the transition and
whether they should synchronise their moving through it. In the Agoric Market
above, the arc label 3 is:

ps(z,y) — id(x) A role(y) A y € {seller,buyer} A (z,y) € Ags (3)

that is, transition t¢3 is restricted to those agents = whose role y is either seller or
buyer— information on such agents is recorded in the set Ags. The complementary
arc label 3.1 leaving transition t3 is:

pai(z,z) — (x,y) € Ags N y/z € {seller/receiver, buyer/payer} (3.1)

that is, those agents (zr,y) € Ags that moved into ¢3 may move out of the
transition provided they change their roles: seller agents in the Agora Room
scene should become receiver agents in the Settlement scene, buyer agents
should become payer agents.

2.1 Representing E-Institutions

We have represented our e-institutions in a logical formalism [6] implemented in
Prolog [10], making them computer-processable. We show in Figure 3 our Prolog
representation for the agora room scene graphically depicted in Figure 1 above.
Each component of the formal definition has its corresponding representation.
Since many scenes may coexist within one e-institution, the components are
parameterised by a scene name (first parameter). The © and A components of
the definition are represented together in theta/2, where the second argument
holds a list containing the directed edge as the first and third elements of the
list and the label as the second element.

145

roles(agora, [buyer,seller]).

states(agora, [wO,wl,w2,w3]).

initial_state(agora,w0).

final_states(agora, [w3]).

access_states(agora,buyer, [w0]) .
access_states(agora,seller, [w0,w2]) .
exit_states(agora,buyer, [w3]) .

exit_states(agora,seller, [wl,w3]).

theta(agora, [w0,request (B:buyer,all:seller,buy(I)),wl]).
theta(agora, [wl,offer(S:seller,B:buyer,sell(I,P)),w2]).
theta(agora, [wl,nil,w2]).

theta(agora, [w2,0ffer(S:seller,B:buyer,sell(I,P)),w2]).
theta(agora, [w2,inform(B:buyer,S:seller,accept (I,P)),w3]).
theta(agora, [w2,inform(B:buyer,S:seller,reject(I,P)),w3]).
theta(agora, [w2,nil,w3]).

theta(agora, [w3, inform(B:buyer,S:seller,reject(I,P)),w3]).

Fig. 3: Representation of Agora Room Scene

Any scene can be conveniently and economically described in this fashion.
E-institutions are collections of scenes in this format, plus the extra components
of the tuple comprising its formal definition. In Figure 4 we present a Prolog
representation for the agora market e-institution. Of particular importance are
the arcs connecting scenes to transitions and vice-versa. In definition 2 arcs E
are defined as the union of two sets E = EY U E9, E! connecting (exit states
of) scenes to transitions, and E© connecting transitions to (access states of)

scenes ([admission,agora,settlement,departure]).

transitions([t1,t2,t3,t4,t5]).

root_scene(admission) . output_scene(departure) .

arc([admission,w3],pi,t1). arc(tl,pi.1,[departure,w0]).

arc([admission,w3],p2,t2). arc(t2,ps.1,[agora,w0]).
arc(t2,p2.1, [agora,w2]) .

arc([agora,w3],p3,t3). arc(t3,ps.1, [settlement,w0]).

arc([agora,wl] ,p4,t4). arc(t4,p4.1, [departure,w0]) .

arc([agora,w3],p4,t4).

arc([settlement,w3],ps,t5). arc(t5,ps.1, [departure,w0]).

Fig. 4: Representation of E-Institution

scenes. We represent the E! arcs as arc/3 facts: its first argument is a list
which holds a scene and one of its exit states, the second argument holds the
predicate (constraint) p; which enables the arc, and the third argument is the
destination transition. For simplicity, we choose to represent the arcs of E©
also as arc/3 facts, but with different arguments: the first argument holds the
transition, the second argument holds the constraint that enables the arc, and
the third argument holds (as a list) a scene and one of its access states.

3 Norms in E-Institutions

We adopt a pragmatic notion of norm as the prescription of a set of actions that
an agent is obliged to carry out during its participation in an e-institution enact-
ment. In our definition below, the actions contemplated by our norms concern
utterances that agents ought to issue, that is, messages that ought to be sent?.

As identical utterances in different contexts (e.g., saying “yes” to a waiter
serving you more wine and saying “yes” to a police officer asking if you committed
a crime) serve very different purposes and cause rather disparate obligations,
our actions will be uniquely identified as the pair (S,7) where S is a scene
and v € CL is an illocution from the agreed communication language [4]. The
complete set of actions of an e-institution is given by the union of all utterances

2 Other actions, such as manipulating data structures, updating internal beliefs, or
moving the arm of a robot, can easily be accommodated if we associate a message
(sent to an administrative agent) reporting that the action has been performed.

146

labelling the edges of each of its scenes [17]. Formally, given an e-institution
£ =(SC,T,S0,Sa,E,\g), then Actions®, its set of actions, is defined as

5. |3 € 5C.8 = (R, W, wy, Wy, WA, WE, 0,),
S| (w,w') € 0, M(w, w')) =

That is, all labels A((w,w’)) = v on edges (w,w’) € O of each one of its scenes
SesC.

Our norms are defined as two finite sets of actions, one the set of precon-
ditions, that is what causes the norm to be triggered, and the other the set of
actions that agents are obliged to perform:

Definition 3. A norm is the pair N¢ = (Pre, Obls) where:

— Pre C Actions® is the set of actions which must be performed (the precondi-
tions) in order for the norm to be triggered.

— Obls C Actions® is the set of actions that agents are obliged to perform after
the norm has been triggered.

This definition is a simplification of that introduced in [12] — in particular
we have dropped the boolean expression over variables. Another distinct fea-
ture of our formulation is the implicit logical operators in our norms: a norm
N¢ = (Pre, Obls) where Pre = {a{™,... al™} and Obls = {aP%, ... aQ%}
is, implicitly, (af™ A--- A al7®) — (aP% A~ A aOV5).

Designers associate a possibly empty set of norms N¢ = {N(‘)s7 ceey Nf;;} to
their e-institutions. For the pair (£, N¢) we introduce the term normatised e-
institituion. We show in Figure 5 below a sample norm for our e-institution of
Figure 2. The norm prescribes the implications of an agent B playing the role

{(agora, inform(B : buyer, S : seller, accept(Item, Price)))}
{(settlement, inform(B : payer, S : receiver, pay(Price)))}

Fig.5: A Sample Norm
of a buyer in the agora scene and sending a message to an agent S playing the
role of a seller: the message informs that B accepts the offered Price for Item.
If this holds then agent B is obliged to pay and should send a message in scene
settlement informing S that Price will have been paid. We show our sample norm
above represented in Prolog in Figure 6. We use the term norm(Name ,Pre,0bls)

norm(nl, [(agora,inform(B:buyer,S:seller,accept(Item,Price)))],
[(settlement,inform(B:payer,S:receiver,pay(Price)))]).

Fig. 6: Sample Norm in Prolog

to represent our norms in Prolog, where Name is a label to identify the norm,
Pre and Obls are lists of pairs (Scene,Illocution) storing the actions of the
preconditions and obligations, respectively.

3.1 Norm Verification of E-Institutions

An initial test designers need to perform is the well-formedness of a set of norms.
This is straightforward: all we need to do is to check if the actions in the sets

147

Pre and Obls of every Nf appear as labels on the edges of a scene in £. We also
need to check if all scenes referred to indeed have been defined in £.

A more useful check concerns the feasibility of a norm, that is, given an e-
institution we want to know if the Pre actions of a norm will ever take place and
if its Obls obligation actions will ever be fulfilled. We can verify this property
by checking for paths within the scenes and transitions of an e-institution, thus
trying to find at least one path connecting the initial state of the root scene to
a final state of the output scene in which the actions of a norm appear as labels.
The order of actions in norms is not important in our approach?: as long as the
action takes place (i.e., there is a label in a path) then we can tick the action
off as being performable.

We show in Figure 7 a straightforward implementation of this approach.

1 feasible_actions(_, []).

2 feasible_actions(Path,Actions) :-

Path = [(Scene,State)|_],

theta(Scene, [State,M,NewState]),

\+ member ((Scene,NewState) ,Path),

member ((Scene,M) ,Actions),

delete(Actions, (Scene,M),RestActions),

feasible_actions([(Scene,NewState) |Path] ,RestActions).
9 feasible_actions(Path,Actions) : -

10 Path = [(Scene,State)|_],

11 theta(Scene, [State,M,NewState]),

12 \+ member ((Scene,NewState) ,Path),

13 \+ member ((Scene,M) ,Actions),

14 feasible_actions([(Scene,NewState) |Path] ,Actions).

15 feasible_actions(Path,Actions) : -

16 Path = [(Scene,State)|_],

17 arc([Scene,State] ,_,Transition),

18 arc(Transition, [NewScene,NewState]),

19 feasible_actions ([(NewScene,NewState) |Path] ,Actions) .

Fig. 7: Program to Check Feasibility of Actions

00O ~JO Ui W

Predicate feasible actions/2 builds a path in its first argument and gradu-
ally removes from the list of actions in its second argument those elements it
finds labelling edges within the scenes of the e-institution. The path in the first
argument is required to avoid loops. Line 1 shows the condition for success-
ful termination: the list of actions is empty (and the contents of the path are
irrelevant).

Clause 2 (lines 2-8) addresses the case when a © edge is to be followed but
whose associated A label is an illocution in one of the actions — in this case the
matching action is removed (via built-in predicate delete/3) from the list of
actions and the remaining actions are recursively examined. Clause 3 (lines 9-
14) exploits a similar situation, but the illocution labelling the © edge does not
occur in the list of actions — in this case, feasible_actions/2 simply updates
the path and carries on examining the list of actions. Finally, clause 4 (lines

3 We are aware of the fact that in some situations the order of actions is essential.
In [17] we put forth a more expressive definition of norms in which the order of
events is taken into account. Our functionalities could be enhanced to account for
the ordering of actions since the dialogues are followed in the order that they take
place.

148

15-19) follows a transition from one scene to a new scene, carrying on the check
for feasibility into the new scene.

Termination is guaranteed: either the program stops at line 1, when all actions
are removed from the list Actions (2nd argument of feasible_actions/2) or
the program terminates because it cannot find an alternative path (all paths are
recorded in the 1st argument of feasible_actions/2) in which the actions in
Actions may take place. Correctness is also guaranteed: if at least one action
is not found in any of the dialogues of an institution, then the program fails —
no new adges can be found and the list Actions is not empty, causing a failure.
On the other hand, if the given list of actions is to be found in dialogues of the
institution, clause 2—-8 will remove each of them, one at a time.

The fragment of code above must be used twice for each norm: once to check
the Pre actions and another time to check for the Obls actions. An initial value
ought to be assigned to the path consisting of the root scene and its initial
state. A top-level definition of the check for the feasibility of a norm is shown
in Figure 8. Predicate feasible/1 takes as its only parameter the name of a

1 feasible (Norm) : -

2 norm(Norm,Pre,0Obls),

3 root_scene(Scene),

4 initial_state(Scene,State),

5 feasible_actions([(Scene,State)],Pre),

6 feasible_actions([(Scene,State)],0bls).
Fig. 8: Predicate to Check Feasibility of Norms

norm and returns “yes” if that norm is feasible or “no” otherwise. It works by
retrieving the definition of Norm (line 2), the root scene (line 3) and its initial
state (line 4), then calling predicate feasible_actions for the action list Pre
and 0bls. Only if both Pre and Obls are feasible is that Norm is considered
feasible.

Although the code above always terminates, its complexity is exponential in
the worst case, as it tries all possible paths. This complexity can be reduced,
however, via simple heuristics such as checking for all actions of each scene, using
the scenes’ definitions to control the checking loop. For instance, if we check for
all actions of a norm that should take place in a certain scene and we find that
at least one of them is not found, then we can stop the verification as the norm
is unfeasible.

We envisage two likely scenarios for norm verification. In the first scenario
designers willing to create norms for an existing e-institution can verify if these
new norms are feasible: designers may alter and change norms until they achieve
feasibility. In the second scenario designers in possession of a norm which cap-
tures a desirable property of agents and their illocutions may “tinker” with an
e-institution until it complies with the norm. The same feasibility verification
can thus lead to changes in the norm, in the e-institution or in both, depending
on the designers’ intention.

If we consider our actions to be ordered, then the code above has to reflect
this. The execution control should be guided by the list of actions to be searched
in the dialogues: for each action, check that it takes place in a dialogue, in the
order they appear in the list Actions.

149

4 Norm Analysis of E-Institutions

Normatised e-institutions provide a hitherto unexplored approach to the analysis
and engineering of multiagent systems: designers manipulate the normatised e-
institution with a view to extracting sub-portions of it. These sub-portions are
guaranteed to avoid or indeed cause specific obligations on those agents taking
part in the original e-institution. The more limited e-institution(s) can be used as
a guideline to synthesise agents which conform to the specification (as introduced
in [6,9]) but have restricted forms of behaviour.

Clearly, the removal of parts of an e-institution is a difficult and error-prone
task and designers need support to perform it. We propose the use of meta-
programmang [13,14] to help designers analyse and manipulate e-institutions
with a view to extracting sub-portions of it in which certain properties hold. A
meta-program is a program whose data denotes another (object) program, both
of which are in the same language.

We have designed a meta-interpreter, shown in Figure 9, to build a list with
those portions of the original e-institution used to compute a result. Predicate

1 meta((G,Gs) ,TmpEI,EI):-

2 meta (G, TmpEI,NewTmpEI) ,

3 meta(Gs,NewTmpEI,EI) .

4 meta(G,EI,EI):-

5 system(G),

6 call(G).

7 meta(G,EITmp,EI) : -

8 clause(G,Body),

9 update (EITmp,G,NewEITmp),
10 meta(Body,NewEITmp,EI) .

11 update(EI,G, [GIEI]):-
12 collectable(G),

13 \+ member (G,EI).
14 update(EI,_,EI).

15 collectable(roles(_,.)).
16 collectable(states(_,.)).

Fig. 9: Program to Collect Portions of E-Institution

meta/3 builds in its third argument a list with the components of the e-institution
that were used in the proof of its first argument. The second argument is a
temporary list with the components used so far in the proof and is initially
assigned the empty list.

The first clause (lines 1-3) caters for a conjunction of goals (G,Gs) and
recursively builds its list of goals used in the proof of G and uses it to build the
list of goals of Gs. The second clause (lines 4-6) addresses the built-in predicates,
those goals G that satisfy the built-in test system/1. The third clause (lines 7—
10) handles user-defined predicates: a clause from the program is selected via
the clause/2 built-in (line 8) whose head matches G and its body is returned in
Body. The goal G is then used to update (line 9) the list EITmp containing the
portions of the e-institution used so far — predicate update/3 defined in lines
1-14 inserts G as the head of its third argument if it is a collectable goal and

150

does not yet appear in the list. The body of the clause is recursively used with
the updated result (line 10).

The collectable goals defined via the collectable/1 predicate (lines 15 on-
wards) are all those used in the definition of an e-institution, such as roles/2,
states/2, and so on. These are the goals required to completely define an e-
institution and are the ones that should be collected during the execution of the
meta-interpreter. If a goal is not collectable, then the second clause of update/3
returns the same input e-institution.

4.1 Norm-Based Extraction

In order to extract sub-parts of the e-institution that make up a coherent whole,
we ought to make sure an agent can join it and find its way from an initial state
of the root scene to a final state of the output scene.

We have designed a program which captures the behaviours of a generic agent
within an e-institution. This program is shown in Figure 10: predicate loop/1
(lines 1-4) gathers information and makes an initial call to its auxiliary loop/2
(lines 5-19) predicate. Predicate loop/1 has only one argument Ag, an agent

1 loop(Ag) : -

2 root_scene(Scene), initial_state(Scene,State),
3 role_scenes(Scene,Roles), member (Role,Roles),
4 loop([Scene,State,Role,nil] ,Ag) .

5 loop([(Scene,State,_,)|.1,.):-

6 output_scene(Scene),

7 final_states(Scene,States),

8 member (State,States).

9 loop(Path,Ag) : -

10 Path = [(Scene,State,Role,_)|_],

11 theta(Scene, [State,M,NewState]),

12 illocution(Role,Ag,M,AcM),

13 \+ member ((Scene,State,Role,AcM),Path),

14 loop([(Scene,NewState,Role,AcM) |Path] ,Ag) .

15 loop(Path,Ag) : -

16 Path = [(Scene,State,Role,_)|_],

17 arc([Scene,State],_,Tr), arc(Tr,_, [NewScene,NewState]),
18 roles (NewScene,Roles), member(Role,Roles),

19 loop([(NewScene,NewState,Role,nil) |Path],Ag).

20 illocution(Role,Ag,M,M) : -
21 M =.. [,Ag:Role,_,.] ; M =.. [_,_,Ag:Role,].
22 illocution(_,_,_,nil).

Fig. 10: Generic E-Institituion Agent

identifier. It obtains the initial state in the root scene (line 2), then selects a role
(line 3) from the possible roles of the root scene. It then makes an initial call to
its auxiliary predicate loop/2 which defines a loop.

The first argument of predicate loop/2is a list of tuples (Scene,State,Role,
Illocution) storing a path an agent can follow within the e-institution and the
second argument is the unique identification of the agent. The first clause (lines
5-8) captures the termination condition when a final state of the output scene
is reached. The second clause (lines 9-14) addresses © edges within a scene,
making sure that the new state and message are not part of the current path
built. Finally, the third clause (lines 15-19) caters for transitions between two

151

scenes: the transitions out of the current scene and into the new scene are fol-
lowed in line 13, a role is picked for the new scene (line 14) and the loop carries
on recursively.

The second clause of predicate loop/2 makes use of an auxiliary predicate
illocution/4 (lines 20-22). This predicate obtains in its fourth argument the
actual message sent or received by an agent incorporating role Role: it may send
the message (first case of line 21), receive the message (second case of line 21)
or none of them (line 22 — a “nil” illocution is returned), depending on whether
its role matches the one specified in the A label.

We can put our meta-interpreter above to use in order obtain the parts of
an e-institution that guarantee that a norm will hold, by using the query

7- meta((loop(agl) ,feasible(nl)), [1,EI).
asking for the portions EI of the e-institution in which both loop(agl) and
feasible(nl) hold, that is, the subparts of the e-institution required for an
agent to find its way into and out of it and such that norm n1 (defined in Fig. 6)
holds.

If we use the query above with the definitions of Figures 3 and 4, then
we obtain in EI the parts of the e-institution definition required to prove that
norm n1l is feasible, that is, the portions of the e-institution required to allow
an agent to correctly navigate its way into and out of it and, in addition to
that, the parts ensure that the norm has both its preconditions and obligations
fulfilled. We show in Figures 11 and 12 the visual rendition of the fragments of,

buyer request (B: buyer, al | : sel l er, buy(lten))
= 4O D L0

offer(S:seller, B buyer,sell(ItemPrice))
buyer seller
ER© O Edl
inforn(B: buyer, S:seller,accept(ltemPrice)) .
of fer(S:seller,B:buyer,sell(ltemPrice))

Fig. 11: Portion of Agora Room Scene

respectively, the agora scene and the agoric market e-institution obtained with
the query above. The scene fragment shows the edges and labels that should

Fig. 12: Portion of Agoric Market E-Institution

be followed by agents in order for the pre-conditions of the norm to hold. The
fragment of the e-institution shows those scenes that ought to take place in order
for the obligations to be fulfilled — the alternative paths that bypass the agora
room are eliminated.

Alternatively, we can obtain the portions of an e-institution that allow agents
to join in and leave, but avoiding the conditions that would bind them to a norm.
In order to do that, we ought to get hold of a proper portion of the e-institution
(i.e. one that allows an agent join in and leave it) and in which the pre-conditions

152

of the norm does not hold. The auxiliary definition of Figure 13 captures the
conditions when a norm cannot be triggered. The definition is similar to that

1 untriggered(Norm) : -

norm(Norm,Pre,Obls),

root_scene(Scene) ,

initial_state(Scene,State),

\+ feasible_actions([(Scene,State)],Pre).
Fig. 13: Test for Untriggered Norms

T W N

in Figure 8, but here the feasible_actions/2 predicate is used in its negated
form. Moreover, only the preconditions of the norm are tested: an untriggered
norm is one whose preconditions do not occur in the e-institution.

The query below obtains the portions of the e-institution that allow an agent
to join in and leave it, but avoids triggering the norm by causing its precondi-
tions:

7- meta((loop(agl) ,untriggered(nl)), []1,EI).
that is, it obtains in EI the parts of the e-institution used to allow agent agl
to navigate it but these parts do not trigger the preconditions of norm ni. If
we use the query above with the e-institution of Figures 3 and 4, then we get
the fragments shown in Figures 14 and 15 (represented in their visual form).

buyer request (B: buyer, all :sel |l er, buy(lten))
e 0] >

of fer(S:seller,B:buyer,sell(ltemPrice)) nil

inforn(B: buyer, S:seller,reject(ltemPrice))

4@

i nforn(B: buyer, S:seller,reject(ItemPrice)) offer(S:seller,B: buyer,sell(ItemPrice))

Fig. 14: Another Portion of the Agora Room Scene

Figure 14 shows the agora scene but the edge labelled with the message that

t4 4.1

Fig. 15: Another Portion of the E-Institution

would trigger norm nl1 has been removed. This fragment of the agora scene
becomes part of the e-institution depicted in Figure 12. We have obtained only
those parts used to go from the root scene to the output scene via one of the
many existing paths.

Our formalisation of e-institutions exploits non-determinism to represent the
many different behaviours agents are allowed to have. When an e-institution is
analysed using our queries above, only one path in and out of the e-institution
is actually pursued. We can, however, exhaustively examine all paths obtaining
all sub-parts of the e-institution in which a norm is fulfilled or avoided. Our
approach allows any combination of any number of norms to be fulfilled and/or
avoided.

153

4.2 Norm-Aware Synthesis of Agents

In [6,9] we have shown how we can synthesise simple agents conforming to
a given specified e-institution. We have also shown how these simple agents
can be further customised into more sophisticated software. We notice that the
restricted e-institutions obtained via our approach explained above can be used
to synthesise agents — these agents will correctly follow the e-institution but will
pursue paths in which norms can be triggered (and fulfilled) or paths in which
norms cannot be triggered.

We envisage a scenario in which an initial normatised e-institution is manipu-
lated using the approach described above, giving rise to a number of alternative
e-institutions. Each of these alternative e-institutions is fully compatible with
the original one but they offer particular “views” in which norms are fulfilled or
avoided. The alternative e-institutions can be used to synthesise agents that will
adopt norm-avoiding or norm-fulfilling behaviour.

This approach is depicted in the diagram of Figure 16 below: an initial e-
institution £ is used to extract (simple arrow) a repertoire of e-institutions &/
each of which has particular features of avoiding or fulfilling norms. Each of
these extracted e-institutions is used to synthesise agents I7j; (double arrows).
The synthesised initial agents are then customised differently as I7j; ;; (triple

B N IRk

e e D —— N N (PR

Fig. 16: Extraction, Synthesis & Customisation o
arrows). The customised agents can take part in an enactment of e-institution

& as they will be in full compliance with it, but the agent will be adverse to
particular norms or eager to fulfil them.

5 Conclusions, Related Work and Directions of
Research

We have presented a formal definition of norms and shown how norms can be
incorporated in electronic institutions and employed to verify properties both of
norms and electronic institutions. We have also introduced automatic means to
obtain portions of an e-institution in which norms are guaranteed to hold and
portions in which norms can be safely avoided.

Clearly, not all kinds of norms can be represented in our approach. In par-
ticular, we focus on utterances: the only events we consider are those of issuing
messages. Additional events associated to, for instance, sensors or data struc-
tures, although important in many applications of multiagent systems, are not
considered in our approach.

The scenario we contemplate is one in which an electronic institution is
endowed with a layer of administrative (or institutional) agents, the governor
agents. These agents work as proxies of heterogeneous (external) agents that will
join in in the enactment of the institution. The governor agents guarantee that
the external agents will follow the specifications of the institution, sending the

154

appropriate messages in the prescribed order. The governor agents, plus a team
of other administrative agents, form a social layer to the institution [15]. Issues
of trust and sincerity are confined to the communication between the governor
agent and its external agent. Various mechanisms can be put in place to prevent
these issues from spreading to other parts of the institution.

Electronic institutions provide an ideal scenario within which alternative def-
initions and formalisations of norms can be proposed and studied. In [12] we find
an early account of norms relating illocutions of an e-institution. In [16] we find
a first-order logic formulation of norms for e-institutions: an institution conforms
to a set of norms if it is a logical model for them.

Our work is an adaptation and extension of [12] but our approach differs
in that we do not explictly employ any deontic notions of obligations [1]. Our
norms are of the form Pre — Obls, that is, if Pre holds then Obls ought to hold.
The components of Pre and Obls are utterances, that is, messages the agents
participating in the e-institution send. This more pragmatic definition fits in
naturally with the view of e-institutions as a specification of virtual environments
which can be checked for properties and then used for synthesising agents [6, 9].

We represent e-institutions in a non-deterministic fashion: all possible be-
haviours of agents that will perform within it are captured. However, this feature
causes an exponential number of possibilities to be considered when verifying
and analysing e-institutions — the behaviours of the agents are paths of a non-
deterministic finite-state machine. The functionalities described in this paper
all have the same undesirable property: in the worst case, their computational
complexity is exponential as they have to consider all possible behaviours.

Rather than extracting a complete e-institution as explained in Section 4.1,
we can offer a similar functionality that collects just a single path (or a set of
paths) that agents may follow in order to fulfil a norm or avoid it. Such a path
can be supplied (in various alternative formats) to heterogenous agents wanting
to join the e-institution or to institutional agents looking over the enactment of
an e-institution. The paths provide an agenda to help agents deliberate when
given choices of behaviour.

We would like to include prohibitions in our norms as a set of actions that
ought not to take place in an e-institution. Prohibitions would allow norms and
e-institutions to be checked for consistency: an agent cannot be obliged to per-
form an action and simultaneously be prohibited from doing it. Furthermore, we
have explored in [17] a more expressive notion of norms in which the ordering of
the events is taken into account and there can be arbitrary constraints on the
variables of our illocutions. Ideally this richer formalisation should be accompa-
nied by algorithms and tools to verify properties and perform distinct analyses
in electronic institutions. We are currently working on means to automate the
verification and analysis of these more expressive norms.

Acknowledgements: Thanks are due to J. Rodriguez-Aguillar and M. Esteva for their comments
and suggestions, and to Seumas Simpson for proofreading earlier versions of this document. Thanks
are also due to the anonymous reviewers whose comments helped improving this paper. Any remain-

ing mistakes are the author’s responsibility only.

155

References

1.

2.

10.
11.

12.

13.

14.

15.

16.

17.

Dignum, F.: Autonomous Agents with Norms. Artificial Intelligence and Law 7
(1999) 69-79

Lépez y Loépez, F., Luck, M., d’Inverno, M.: Constraining Autonomy Through
Norms. In: Proceedings of the 1st Int’l Joint Conf. on Autonomous Agents and
Multiagent Systems (AAMAS), ACM Press (2002)

Verhagen, H.: Norm Autonomous Agents. PhD thesis, Stockholm University (2000)
Esteva, M., Rodriguez-Aguilar, J.A., Sierra, C., Garcia, P., Arcos, J.L.: On the
Formal Specification of Electronic Institutions. Volume 1991. Springer-Verlag
(2001)

Rodriguez-Aguilar, J.A.: On the Design and Construction of Agent-mediated Elec-
tronic Institutions. PhD thesis, Institut d’Investigacié en Intel-ligéncia Artificial
(ITTA), Consejo Superior de Investigaciones Cientificas (CSIC), Spain (2001)
Vasconcelos, W.W., Robertson, D., Sierra, C., Esteva, M., Sabater, J., Wooldridge,
M.: Rapid Prototyping of Large Multi-Agent Systems through Logic Programming.
Annals of Mathematics and A.I. 41 (2004) Special Issue on Logic-Based Agent
Implementation.

Fuchs, N.E.: Specifications are (Preferably) Executable. Software Engineering
Journal (1992) 323-334

Lloyd, J.W.: Practical Advantages of Declarative Programming. In: Joint Confer-
ence on Declarative Programming, GULP-PRODE’94. (1994) Invited Paper.
Vasconcelos, W.W., Sierra, C., Esteva, M.: An Approach to Rapid Prototyping
of Large Multi-Agent Systems. In: Proc. 17th IEEE Int’l Conf. on Automated
Software Engineering (ASE 2002), Edinburgh, UK, IEEE Computer Society, U.S.A
(2002)

Apt, K.R.: From Logic Programming to Prolog. Prentice-Hall, U.K. (1997)
Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, U.S.A (1979)

Esteva, M., Padget, J., Sierra, C.: Formalizing a Language for Institutions and
Norms. Volume 2333. Springer-Verlag (2001)

Hill, P.M., Gallagher, J.: Meta-Programming in Logic Progamming. In: Hand-
book of Logic in Artificial Intelligence and Logic Programming. Volume 5., Oxford
University Press (1998) 421-498

Sterling, L., Shapiro, E.: The Art of Prolog: Advanced Programming Techniques.
2nd edn. MIT Press (1994)

Esteva, M., Rosell, B., Rodriguez-Aguilar, J.A., Arcos, J.L.: AMELIL: an Agent-
Based Middleware for Electronic Institutions. In: Proc. 3rd Int’l Joint Conf. on
Autonomous Agents & Multi-Agent Systems (AAMAS), New York, U.S.A., ACM
Press (2004)

Ibrahim, I.K., Kotsis, G., Schwinger, W.: Mapping Abstractions of Norms in Elec-
tronic Institutions. In: 12th. Int’l Workshop on Enabling Technologies: Infrastruc-
ture for Collaborative Enterprise (WETICE’03), Linz, Austria, IEEE Computer
Society (2003)

Esteva, M., Vasconcelos, W., Sierra, C., Rodriguez-Aguilar, J.A.: Verifying Norm
Consistency in Electronic Institutions. In: Proc. AAAI-04 Workshop on Agent
Organizations: Theory and Practice, San Jose, California, U.S.A., AAAI Press
(2004)

156
Model Checking Agent Dialogues

Christopher D. Walton*

Centre for Intelligent Systems and their Applications (CISA),
School of Informatics, University of Edinburgh, UK.
Email: cdw@inf.ed.ac.uk Tel: +44-(0)131-650-2718

Abstract. In this paper we address the challenges associated with the
verification of correctness of communication between agents in Multi-
Agent Systems. Our approach applies model-checking techniques to pro-
tocols which express interactions between a group of agents in the form of
a dialogue. We define a lightweight protocol language which can express
a wide range of dialogue types, and we use the SPIN model checker to
verify properties of this language. Our early results show this approach
has a high success rate in the detection of failures in agent dialogues.

1 Introduction

A popular basis for agent communication in Multi-Agent Systems (MAS) is the
theory of speech acts, which is generally recognised to have come from the work of
the philosopher John Austin [1]. This theory recognises that certain natural lan-
guage utterances have the characteristics of physical actions in that they change
the state of the world (e.g. declaring war). Austin identified a number of per-
formative verbs which correspond to different types of speech acts, e.g. inform,
promise, request. The theory of speech acts has been adapted for expressing
interactions between agents by many MAS researchers, and this is most visible
in the development of Agent Communication Languages (ACLs). The two most
popular ACLs are currently the Knowledge Query and Manipulation Language
(KQML) [21] and the Foundation for Intelligent Physical Agents ACL (FIPA-
ACL) [12]. In these languages, the model of interaction between agents is based
on the exchange of messages. KQML and FIPA-ACL define sets of performa-
tives (message types) that express the intended meaning of the messages. These
languages do not define the actual content of the messages and they assume a
reliable method of message exchange.

In order to connect the theory of speech acts with the rational processes of
agents, Cohen and Levesque defined a general theory of rational action [7]. This
theory is itself based upon the theory of intentional reasoning, developed by
the philosopher Michael Bratman [6], which introduced the notion that human
behaviour can be predicted and explained through the use of attitudes (mental

* This work is sponsored by the UK Engineering and Physical Sciences Research Coun-
cil (EPSRC Grant GR/N15764/01) Advanced Knowledge Technologies Interdisci-
plinary Research Collaboration (AKT-IRC).

157

states), e.g. believing, fearing, hoping. In the general theory, speech acts are
modelled as actions performed by agents to satisfy their intentions. The FIPA-
ACL specification recognises this theory by providing a formal semantics for
the performatives expressed in Belief-Desire-Intension (BDI) logic [22]. A BDI
semantics for KQML has also been developed [17]. The combination of speech
acts and intentional reasoning provides an appealing theoretical basis for the
specification and verification of MAS [26]. Similarly, the KQML and FIPA stan-
dards provide useful frameworks for the implementation of MAS based upon
these theories, e.g. JADE [2].

Nonetheless, there is a growing dissatisfaction with the mentalistic model
of agency as a basis for defining inter-operable agents between different agent
platforms [23, 16]. Inter-operability requires that agents built by different organ-
isations, and using different software systems, are able to reliably communicate
with one another in a common language with an agreed semantics. The problem
with the BDI model as a basis for inter-operable agents is that although agents
can be defined according to a commonly agreed semantics, it is not generally pos-
sible to verify that an agent is acting according to these semantics. This stems
from the fact that it is not known how to assign mental states systematically to
arbitrary programs. For example, we have no way of knowing whether an agent
actually believes a particular fact. For the semantics to be verifiable it would be
necessary to have access to an agents’ internal mental states. This problem is
known as the semantic verification problem and is detailed in [27].

To understand why semantic verification is a highly-desirable property for an
inter-operable agent system it is necessary to view the communication between
agents as part of a coherent dialogue between the agents. According to the
theory of rational action, the dialogue emerges from a sequence of speech acts
performed by an agent to satisfy their intentions. Furthermore, agents should
be able to recognise and reason about the other agents intentions based upon
these speech acts. For example, according to the FIPA-ACL standard, if an agent
receives an inform message then it is entitled to believe that the sender believes
the proposition in the message. There is an underlying sincerity assumption in
this definition which demands that agents always act in accordance with their
intentions. This assumption is considered too restrictive in an open environment
as it will always be possible for an insincere agent to simulate any required
internal state, and we cannot verify the sincerity of an agent as we have no
access to is mental states.

In order to avoid the problems associated with the mentalistic model, and
thereby express a greater range of dialogue types, a number of alternative seman-
tics for expressing rational agency have been proposed. The two approaches that
have received the most attention are a semantics based on social commitments,
and a semantics based on dialogue games [18].

The key concept of the social commitment model is the establishment of
shared commitments between agents. A social commitment between agents is
a binding agreement from one agent to another. The commitment distinguishes
between the creditor who commits to a course of action, and the debtor on whose

158

behalf the action is done. Establishing a commitment constrains the subsequent
actions of the agent until the commitment is discharged. Commitments are stored
as part of the social state of the MAS and are verifiable. A theory which combines
speech acts with social commitments is outlined in [11].

Dialogue games can trace their origins to the philosophical tradition of Aris-
totle. Dialogue games have been used to study fallacious reasoning, for natural
language processing and generation, and to develop a game-theoretic semantics
for various logics. These games can also be applied in MAS as the basis for inter-
action between autonomous agents. A group of agents participate in a dialogue
game in which their utterances correspond to moves in this game. Different rules
can be applied to the game, which correspond to different dialogue types, e.g.
persuasion, negotiation, enquiry [25]. For example, a persuasion dialogue begins
with an assertion and ends when the proponent withdraws the claim or the oppo-
nent concedes the claim. A framework which permits different kinds of dialogue
games, and also meta-dialogues is outlined in [19].

There is an additional problem of verification of the BDI model, which we
term the concurrency verification problem. A system constructed using the BDI
model defines a complex concurrent system of communicating agents. Concur-
rency introduces non-determinism into the system which gives rise to a large
number of potential problems, such as synchronisation, fairness, and deadlocks.
It is difficult, even for an experienced designer, to obtain a good intuition for
the behaviour of a concurrent protocol, primarily due to the large number of
possible interleavings which can occur. Traditional debugging and simulation
techniques cannot readily explore all of the possible behaviours of such systems,
and therefore significant problems can remain undiscovered. The detection of
problems in these systems is typically accomplished through the use of formal
verification techniques such as theorem proving and model checking.

In order to address the concurrency verification problem, a number of at-
tempts have been made to apply model checking to models of BDI agents [3,
28, 5]. The model checking technique is appealing as it is an automated process,
though it is limited to finite-state systems. A model checker normally performs
an exhaustive search of the state space of a system to determine if a partic-
ular property holds and, given sufficient resources, the procedure will always
terminate with a yes/no answer.

One of the main issues in the verification of software systems using model
checking techniques is the state-space explosion problem. The exhaustive nature
of model checking means that the state space can rapidly grow beyond the avail-
able resources as the size of the model increases. Thus, in order to successfully
check a system it is necessary that the model is as small as possible. However, it
is a fundamental concept of the BDI model that communicative acts are gener-
ated by agents in order to satisfy their intentions. Therefore, in order to model
check BDI agents we must represent both rational and communicative processes
in the model. This problem has affected previous attempts to model-check multi-
agent systems e.g. [28], which use the BDI model as the basis for the verification
process, limiting the applicability to very small agent models.

159

In this paper we do not adopt a specific semantics of rational agency, or
define a fixed model of interaction between agents. Our belief is that in a truly
heterogeneous agent system we cannot constrain the agents to any particular
model. For example, web-services [4] are rapidly becoming an attractive alterna-
tive to BDI-based MAS. Instead, we define a model of dialogue which separates
the rational process and interactions from the actual dialogue itself. This is ac-
complished through the adoption of a dialogue protocol which exists at a layer
between these processes. This approach has been adopted in the Conversation
Policy [13] and Electronic Institutions [10] formalisms, among others. The def-
inition presented in this paper differs in that dialogue protocol specifications
can be directly executed. We define a lightweight language of Multi-Agent dia-
logue Protocols (MAP) as an alternative to the state-chart [14] representation
of protocols. Our formalism allows the definition of infinite-state dialogues and
the mechanical processing of the resulting dialogue protocols. MAP protocols
contain only a representation of the communicative processes of the agents and
the resulting models are therefore significantly simpler.

Dialogue protocols specify complex concurrent and asynchronous patterns of
communication between agents. This approach does not suffer from the semantic
verification problem as the state of the dialogue is defined in the protocol itself,
and it is straightforward to verify that an agent is acting in accordance with the
protocol. Nonetheless, our experiences with defining dialogue protocols in MAP
have shown that it is a difficult task to define correct protocols, even for simple
dialogues. The problem is not related to the internal states of the agent, but
rather as a result of unexpected interactions between agents. For example, the
receipt of a stale bid may adversely affect an auction. In general, the prediction
of undesirable behaviour in our dialogue protocols is non trivial. Thus, the focus
of this paper if on the verification of dialogue protocols specified in MAP.

We use the SPIN model checker [15] to verify our MAP protocols, as we
have no desire to construct our own model checking system. The SPIN model
checker has been in development for many years and includes a large number of
techniques for improving the efficiency of the model checking, e.g. partial-order
reduction, state-compression, and on-the-fly verification. SPIN accepts design
specifications in its own language PROMELA (PROcess MEta-LAnguage), and
verifies correctness claims specified as Linear Temporal Logic (LTL) formula.
The verification of our dialogue protocols is achieved by a translation from the
MAP language to an abstract representation in PROMELA. We use this rep-
resentation in SPIN to check a number of properties of the protocols, such as
termination, liveness, and correctness. Our approach to translation is similar
to [5], though we are primarily interested in checking general properties of inter-
agent communication rather than specific BDI properties.

Our presentation in this paper is structured as follows: in Section 2 we define
the syntax of the Multi-Agent Protocol (MAP) language. In Section 3 we specify
the essential features of a translation from MAP to PROMELA which enables
us to perform model checking of our protocols, and discuss our initial model
checking results. We conclude in Section 4 with a discussion of future work.

160

2 The MAP Language

The MAP language is a lightweight dialogue protocol language which provides
a replacement for the state-chart representation of protocols found in Electronic
Institutions [10]. The underlying semantics of our language is derived from pro-
cess calculus. In particular MAP can be considered a heavily-sugared variant of
the Calculus of Communicating Systems (CCS) [20]. We have redefined the core
of the Electronic Institutions framework to provide an executable specification,
while retaining the concepts of scenes, and roles.

The division of agent dialogues into scenes is a key concept in our proto-
col language. A scene can be thought of as a bounded space in which a group
agents interact on a single task. The use of scenes divides a large protocol into
manageable chunks. For example, a negotiation scene may be part of a larger
marketplace institution. Scenes also add a measure of security to a protocol, in
that agents which are not relevant to the task are excluded from the scene. This
can prevent interference with the protocol and limits the number of exceptions
and special cases that must be considered in the design of the protocol. Addi-
tional security measures can also be introduced into a scene, such as placing
entry and exit conditions on the agents, though we do not deal with these here.
However, we assume that a scene places barrier conditions on the agents, such
that a scene cannot begin until all the agents are present, and the agents cannot
leave the scene until the dialogue is complete.

P i=n(r{M}H* (Scene)
M ::= method(¢™) = op (Method)
op =« (Action)
| op1 then ops (Sequence)
| op1 or op: (Choice)
| op1 par ops (Parallel)
| waitfor op; timeout ops (Tteration)
| call(e®) (Recursion)
o n=¢ (No Action)
| v=p@®) (Decision)
| M =>agent (¢!, ¢?) (Send)
| M <=agent(¢!, ¢?) (Receive)
M == p(¢p™)) (Performative)
¢ s==_|lal|lr|clw (Terms)

Fig.1. MAP Abstract Syntax.

The concept of an agent role is also central to our definition of a dialogue
protocol. Agents entering a scene assume a fixed role which persists until the

161

end of the scene. For example, a negotiation scene may involve agents with the
roles of buyer and seller. The protocol which the agent follows in a dialogue will
typically depend on the role of the agent. For example, an agent acting as a
seller will typically attempt to maximise profit and will act accordingly in the
negotiation. A role also identifies capabilities which the agent must provide. For
example, the buyer must have the capability to make buying decisions and to
purchase items. Capabilities are related to the rational processes of the agent
and are encapsulated by decision procedures in our definition.

The abstract syntax of MAP is presented in Figure 1. We have also defined a
corresponding concrete XML-based syntax for MAP which is used in our imple-
mentation. A scene protocol P is uniquely named n and defined as a (non-empty)
sequence of roles r, each of which define a set of methods M. Agents have a fixed
role for the duration of the protocol, and are individually identified by unique
names a. A method M can be considered a procedure where ¢(*) are the argu-
ments. The initial protocol for an agent is specified by setting ¢*) to be empty
(i.e. kK = 0). Protocols are constructed from operations op which control the flow
of the protocol, and actions a which have side-effects, and can fail. The interface
between the protocol and the rational process of the agent is achieved through
the invocation of decision procedures p. Interaction between agents is performed
by the exchange of messages M which contain performatives p. Procedures and
performatives are parameterised by terms ¢, which are either variables v, agent
names a, role names r, constants ¢, or wild-cards _. Variables are bound to
terms by unification which occurs in the invocation of procedures, the receipt of
messages, or through recursive calls.

REJECT(B, y/ \{JECT(S, B)

PROPOSE(B, S)
>/ SELLER

BUYER
DELIBERATE

OFFER(S, B)

DELIBERATE

PROPOSE(S, B)

ACCEF’T(B,&\ /CCEPT(S, B)

ACCEPT

Fig. 2. Negotiation Protocol

162

We will now define a simple negotiation protocol, which will illustrate the
MAP language and act as an example for model-checking. Before we present
the definition of this protocol in MAP, we consider a state-based description of
the protocol, as shown in Figure 2. The state-based description is similar to a
specification of the protocol in the Electronic Institutions framework. It is worth
noting that MAP can also express protocols for which there is no finite-state
representation, e.g. protocols with parallel actions.

Our negotiation protocol is an attempt to simulate a standard bargaining
process between two parties (a buyer and a seller). We do not impose artificial
constraints, such as turns or rounds, on the participants in the protocol. The
negotiation begins with an offer from the seller to the buyer, which we denote
with the message OFFER(S, B). Upon receipt of the initial offer, the buyer en-
ters a deliberative state, in which a decision is required. The buyer can accept
or reject the offer in which case the protocol terminates. The buyer can also
make a proposal to the seller PROPOSE(B, S), e.g. an offer at a lower price. If
a proposal is made to the seller, then the seller enters a deliberative state. The
seller can in turn accept or reject the proposal, or make a counterproposal. If a
counterproposal is made, the buyer deliberates further. Thus, the negotiation is
effectively captured by a sequence of proposals and counter-proposals between
the buyer and the seller.

A definition of the negotiation protocol in MAP syntax is presented in Fig-
ure 3. For convenience, we distinguish between the different types of terms by
prefixing variables names with $, and role names with %. We define two roles:
%buyer and Y%seller. Each of these roles has three associated methods which
define the protocol states for the roles.

When exchanging messages through send and receive actions, a unification of
terms in the definition agent (¢!, ¢?) is performed, where ¢' is matched against
the agent name, and ¢ against the agent role. For example, when the buyer
receives the initial offer, in line 5 of the protocol, the terms will match any agent
whose role is a %seller, and $seller will be bound to the name of the seller.

The semantics of message passing corresponds to reliable, buffered, non-
blocking communication. Sending a message will succeed immediately if an agent
matches the definition, and the message M will be stored in a buffer on the recip-
ient. Receiving a message involves an additional unification step. The message
M supplied in the definition is treated as a template to be matched against any
message in the buffer. For example, in line 19 of the protocol, a message must
match accept ($sellvalue), and the variable $sellvalue will be bound to the
content of the message if the match is successful. Sending a message will fail
if no agent matches the supplied terms, and receiving a message will fail if no
message matches the message template.

The send and receive actions complete immediately and do not delay the
agent. For this reason, all of the receive actions are wrapped by waitfor loops
to avoid race conditions. For example, in line 18 the agent will loop until a
message is received. If this loop was not present the agent may fail to find
a response and the protocol would terminate prematurely. The advantage of

17

negotiate[
%buyer{
method() =
waitfor
(offer($value) <= agent($seller, Jseller) then
call(deliberate, $value, $seller))
timeout (e)

method(deliberate, $value, $seller) =
($newvalue = acceptOffer($value, $seller) then
accept($value) => agent($seller, Y%seller))
or ($newvalue = counterPropose($value, $seller) then
propose($newvalue) => agent($seller, %seller) then
call(wait, $newvalue))
or reject($value) => agent($seller, Yseller)

method(wait, $value) =
waitfor
(accept ($sellvalue) <= agent($seller, Yseller)
or reject($oldvalue) <= agent($seller, Yseller)
or (propose($newvalue) <= agent($seller, Yseller) then
call(deliberate, $newvalue, $seller)))
timeout (call(wait, $value))}

%hseller{
method ()
$value = getValue() then
offer($value) => agent(_, %buyer) then
call(wait, $value)

method(wait, $value) =
waitfor
(accept($sellvalue) <= agent($buyer, %buyer)
or reject($oldvalue) <= agent($buyer, %buyer)
or (propose($newvalue) <= agent($buyer, %buyer) then
call(deliberate, $newvalue, $buyer)))
timeout (call(wait, $value))

method(deliberate, $value, $buyer) =
($newvalue = acceptOffer($value, $buyer) then
accept ($value) => agent($buyer, Jbuyer))
or ($newvalue = counterPropose($value, $buyer) then
propose($newvalue) => agent($buyer, buyer) then
call(wait, $newvalue))
or reject($value) => agent($buyer, ’%buyer)}]

Fig. 3. MAP Negotiation Protocol.

163

164

non-blocking communication is that we can check for the receipt of a number
of different messages. For example, in lines 19, 20, and 21 the protocol, the
agent waits for either an accept, reject, or propose message respectively. The
waitfor loop includes a timeout condition which is triggered after a certain
interval has elapsed. The timeout is defined to restart the loop (in lines 23 and
37), though we could define an alternative behaviour, such as withdrawing from
the negotiation. Timeouts give us a measure of fault tolerance in the presence
of delays or failures.

At various points in the protocol, an agent is required to perform various
tasks, e.g. making a decision, or retrieving some information. This is achieved
through the use of decision procedures. As stated earlier, a decision procedure
provide an interface between the dialogue protocol and the rational processes of
the agent. In our language, a decision procedure p takes a number of terms as
arguments and returns a single result in a variable v. The actual implementation
of the decision procedure is external to the dialogue protocol. For example, the
acceptOffer decision procedure in line 31 of the dialogue refers to an external
decision procedure, which can be arbitrarily complex, e.g. based on reputation,
or according to some negotiation strategy.

The operations in the protocol are sequenced by the then operator which
evaluates op; followed by opo, unless op; involved an action which failed. The
failure of actions is handled by the or operator. This operator is defined such
that if op; fails, then opy is evaluated, otherwise opy is ignored. Our language
also includes a par operator which evaluates op; and op, in parallel. This is
useful when an agent is involved in more than one action simultaneously, though
we do not use this in our example.

External data is represented by constants ¢ in our language. We do not at-
tempt to assign types to this data, rather we leave the interpretation of this data
to the decision procedures. For example, in line 27 the starting value is returned
by the getValue procedure, and interpreted by the acceptOffer procedure in
line 10. Constants can therefore refer to complex data-types, e.g. currency, flat-
file data, XML documents.

It should be clear that MAP is a powerful language for expressing multi-
agent dialogues. It is important to note that MAP is only intended to express
protocols, and is not intended to be a general-purpose language for computation.
Therefore, the relative paucity of features, e.g. no user-defined data-types, is en-
tirely appropriate. Furthermore, MAP is designed to be a lightweight protocol
language and only a minimal set of operations has been provided. It is intended
that MAP protocols will be automatically generated, e.g. from a planning sys-
tem, or from visual tools such as ISLANDER [9].

A formal semantics for the MAP language has previously been presented
in [24], together with an encoding of an auction protocol. We have used our
language to specify a wide range of other protocols, including a range of popular
negotiation and auction protocols. We have also restated the semantics of the
FIPA-ACL performatives in MAP. Figure 4 gives a flavour of this transformation,
with a (simplified) encoding of the FIPA inform performative.

165

FIPA Semantics: < i, inform(j,) >
RE: B;®
MAP Encoding: method (inform, $p, $i, $j) =

believe($i, $p) then

not (believe($i, bif($j, $p)) then
not (believe($i, uif($j, $p)) then
inform(p) => agent($j, _) then
assert(believe, $j, $p)

Fig. 4. Encoding of FIPA inform Performative.

3 Model Checking MAP

The first step in the application of SPIN model checking to MAP protocols is
the construction of an appropriate system model. The underlying framework for
modelling in SPIN is the Kripke structure, though this is well hidden underneath
its own process meta-language PROMELA. SPIN translates the PROMELA lan-
guage into Kripke structures, through a (loose) mapping of processes to states
and channels to transitions. To generate the appropriate model for our MAP
protocols, we perform a a translation from the MAP language to an abstract
representation in PROMELA. Of particular importance in this translation is the
level of abstraction of the model on which the verification is performed. If the
level of abstraction is too low-level, the state space will be too large and ver-
ification will be impossible. For example, it would be possible to construct a
meta-interpreter for MAP protocols in PROMELA, but this would be unlikely to
yield a sufficiently compact representation. Conversely, if the level of abstraction
is too high then important issues will be obscured by the representation. Our
chosen method of representation is a syntax-directed translation of the MAP
protocols into PROMELA.

At an intuitive level there are a number of apparent similarities between MAP
and PROMELA. For example, both are based on the notion of asynchronous
sequential processes (or agents), and both assume that communication is per-
formed via message passing. These high-level similarities significantly simplify
the translation as we can translate MAP agents directly into PROMELA pro-
cesses and agent communication into message passing over buffered channels.
Nonetheless, the translation of the low-level details of MAP is not so straight-
forward as there are significant semantic differences in the execution behaviour
of the languages.

There are essentially three points of semantic mismatch between MAP and
PROMELA which we must address. The first of these concerns the order of ex-
ecution of the statements. In MAP, we assume a depth-first execution order,
while PROMELA is based on guarded commands [8]. The MAP language makes
use of unification for the invocation of decision procedures, for recursion, and in

166

message passing, while PROMELA has a call-by-value semantics. Furthermore,
MAP assumes that messages can be retrieved in an arbitrary order (by unifi-
cation), while PROMELA enforces a strict queue of messages. Finally, we must
consider how to represent MAP decision procedures in our specification. We will
now sketch how these semantic differences are handled in our translation system.

We cannot readily represent the MAP execution tree in PROMELA as the
language does not permit the definition of complex data structures. Our adopted
solution involves flattening the execution tree through the translations shown in
Figure 5. The templates shown are applied recursively, where T'(op) denotes
a further translation of the operation op. We use a reserved variable fail to
indicate whether a failure has occurred. This variable is tested on the execution
of then and or operations. If a failure occurs, we skip all of the intermediate
operations until an or node is encountered at which point the execution resumes.
In this way we simulate the essential behaviour of the depth-first algorithm.

MAP: op1 then op2 op1 or op2
PROMELA: fail = false ; fail = false ;

T'(op1) ; T(op1) ;

if if
(fail == false) —-> :: (fail == true) —->
T (op2) fail = false ; T'(op2)

:: else -> skip :: else -> skip
fi fi

Fig. 5. Control Flow Translation.

Pattern matching is an essential part of the MAP language as it is used
in method invocation, and in the exchange of messages. Pattern matching is
achieved through the unification of terms, which may bind variables to values.
As PROMELA does not support pattern matching, we must perform a match
compilation step in order to unfold the unification into a sequence of conditional
tests. We do not describe the match compilation further here as there are many
existing algorithms for performing this task.

We have previously stated that messages are stored in buffered channels in
PROMELA, and we define a separate message buffer for each agent. However, a
message buffer acts as a FIFO queue, and the messages must be retrieved in a
strict order from the front of the queue. By contrast, messages in MAP are re-
trieved by unification and any message in the queue may be returned as a result.
To simulate the required behaviour, we must remove all of the messages in the
queue in turn and compare them with the required message by unification. The
first message that is successfully matched is stored and the remaining messages
are returned to the queue. We note that it is not enough simply to examine all
the messages in the queue in-place, as we must also remove a matching message.

167

A remaining issue in the translation process is the treatment of decision
procedures, which are references to external rational processes. For example, in
our negotiation the buyer may make a counterproposal, expressed in line 12:
$newvalue = counterPropose($value, %seller). The separation of rational
processes from the communicative processes is a key feature in MAP. Nonethe-
less, the decision procedures are ultimately responsible for controlling the proto-
col and must be represented in some manner by our translation to PROMELA.
To address this issue we make the observation that the purpose of a decision
procedure is to make a yes/no decision. Similarly, the purpose of the model
checking process is to detect errors in the protocol and not in the decision pro-
cedures. Thus, based on these observations we can in principle replace a decision
procedure with any code that returns a yes/no decision. Furthermore, if this
code returns a non-deterministic decision, the exhaustive nature of the model
checking process will mean that all possible behaviours of the protocol will be
explored. In other words, the model checker will explore all consequences for the
protocol where the decision was yes, and where the decision was no.

Our translation of decision procedures into PROMELA is achieved by exploit-
ing the non-determinism of guarded commands in the language. The semantics
of guarded commands is such that if more than one guard is executable in a
given situation, a non-deterministic choice is made between the guards. There-
fore, the code fragment presented in Figure 6 can act as a suitable substitute
for the counterPropose decision procedure. The decision is marked as atomic
as this improves the efficiency of the model checking operation.

/* Decision: counterPropose */
atomic {
if
:: true -> fail = true
: true -> newvalue = PROC_COUNTERPROPOSE
fi }

o O W

Fig. 6. Translation of counterPropose Decision Procedure.

‘We have now sketched the essence of the translation from MAP to PROMELA.
There are a number of residual implementation issues, such as the implementa-
tion of parallel composition, but these can be readily represented in PROMELA.
The result of the translation is an specification of a protocol in PROMELA which
replicates the semantics of the protocol as defined in MAP.

Our initial model checking experiments with the SPIN model checker have
focused on the termination of MAP protocols. This is an important considera-
tion in the design of protocols, as we do not (normally) want to define scenes
that cannot conclude. Non-termination can occur as a result of many different
issues such as deadlocks, live-locks, infinite recursion, and message synchronisa-
tion errors. We also want to ensure that protocols do not simply terminate due

168

to failure within the protocol. The termination condition is the most straightfor-
ward to validate. Given that progress is a requirement in almost every concurrent
system, the SPIN model checker automatically verifies this property by default.
Every PROMELA process has one or more associated end states, which denote
the valid termination points. The final state of a process is implicitly an end
state. The termination condition states that every process eventually reaches a
valid end state. This can be expressed as the following LTL formula, where end1
is the end state for the first process, and end2 is the end state for the second
process, etc: O(&(endl A end2 A end3 A ---)). We append the PROMELA
code in Figure 7 to the end of each translated process. The test in line 2 will
block if a failure has occurred, and the process will be prevented from reaching
the end-state in line 3, i.e. the process will not terminate.

1 /* Check For Failure */
fail == false ;
3 end: skip

Fig. 7. Test for Protocol Failure.

One of the main pragmatic issues associated with model checking is producing
a state space that is sufficiently small to be checking with the available resources
(1GB memory in our case). Hence, it is frequently necessary to make a number
of simplifying assumptions in order to work within these limits. The negotiation
protocol which we have defined does not place any restriction on the length of the
deliberation process and is therefore in effect an infinite protocol. Model checking
is restricted to finite models, and therefore we must set a limit on the length of
the negotiation. We therefore set a limit of 50 cycles before the negotiation if
forced to terminate.

An issue that was uncovered in the verification of the negotiation protocol is
the treatment of certain decision procedures. Our protocol was designed under
the assumption that the getValue() procedure would always return a value to
be used as the starting value of the negotiation. However, our translation makes
no such assumption as it substitutes a non-deterministic choice for each decision
procedure. Therefore, the result is that if the getValue() procedure fails, then
the seller agent will terminate with a failure, and the buyer will timeout. The
issue with decision procedures was resolved by introducing a new type of pro-
cedure into the MAP language, corresponding to a simple procedure that does
not fail. We have found that it is often useful in the design of MAP protocols to
have simple procedures which perform basic tasks, such as recording or returning
values, and performing calculations. Amending the negotiation protocol with a
simple getValue () procedure resulted in a model which successfully passed the
model checking process.

169

4 Results and Conclusions

In this paper we have presented a novel language for representing Multi-Agent
Dialogue Protocols (MAP), and we have outlined a syntax-directed translation
from MAP into PROMELA for use in conjunction with the SPIN model checker.
Our translator has been applied to a number of protocols, including the nego-
tiation example in this paper. We were pleased to find that the model checking
process uncovered issues in these protocols which had remained hidden during
simulation. We believe that this is a significant achievement in the design of
reliable agent dialogue protocols. In contrast with existing approaches to model
checking MAS, our protocols remain acceptable in terms of memory and time
consumption. Furthermore, we verify the actual protocol that will be executed,
rather than an abstract version of the system.

Our MAP protocol language was designed to be independent of any partic-
ular model of rational agency. This makes the verification applicable to hetero-
geneous agent systems. Nonetheless, we recognise that the BDI model is still
of significant importance to the agent community. To address this issue, we are
currently defining a system which translates FIPA-ACL specifications into MAP
protocols. We believe this will allow us to overcome the problems of the BDI
model highlighted in the introduction, and will yield models that do not suffer
from state-space explosion.

The translation system which we have outlined in this paper is designed to
perform automatic checking of MAP protocols. This makes the system suitable
for use by non-experts who do not need to understand the model checking pro-
cess. However, this approach places restrictions on the kinds of properties of the
protocols that we can check. In our negotiation example, we can check that the
protocol terminates, but we cannot check for a particular outcome. This is a
result of our abstraction of decision procedures to non-deterministic entities.

Our current research is aimed at extending the range of properties of dialogue
protocols that can be checked with model checking. In order to check a greater
range of properties we must augment the PROMELA translation with additional
information about the protocol. This information, and the resulting properties
that we can check, are specific to the protocol under verification. We have been
able to verify protocol-specific properties with a hand-encoding of the decision
procedures as PROMELA macros, but this relies on a detailed knowledge of the
translation system. The provision of a general solution to the specification of
protocol-specific properties remains as further work.

References

1. J. L. Austin. How to Do Things With Words. Oxford University Press, Oxford,
UK, 1962.

2. F. Bellifemine, A. Poggi, and G. Rimassa. JADE: A FIPA-compliant agent frame-
work. In Proceedings of the 1999 Conference on Practical Application of Intelligent
Agents and Multi-Agent Technology (PAAM’99), pages 97-108, London, UK, April
1999.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20

170

M. Benerecetti, F. Giunchiglia, and L. Serafini. Model Checking Multiagent Sys-
tems. Journal of Logic and Computation, 8(3):401-423, June 1998.

D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion, C. Ferris, and D. Or-
chard. Web Services Architecture. World-Wide-Web Consortium (W3C), August
2003. Available at: www.w3.org/TR/ws-arch/.

R. H. Bordini, M. Fisher, C. Pardavila, and M. Wooldridge. Model Checking
AgentSpeak. In Proceedings of the Second International Joint Conference on Au-
tonomous Agents & Multiagent Systems (AAMAS), pages 409-416, Melbourne,
Australia, July 2003. ACM.

M. E. Bratman. Intention, Plans, and Practical Reason. Harvard University Press,
Cambridge, MA, 1987.

P. R. Cohen and H. J. Levesque. Rational interaction as the basis for communica-
tion. Intentions in Communication, pages 221-256, 1990.

E. W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of
programs. Commaunications of the ACM, 18(8):453-457, August 1975.

M. Esteva, D. de la Cruz, and C. Sierra. ISLANDER: an electronic institutions
editor. In Proceedings of the First International Joint Conference on Autonomous
Agents & Multiagent Systems (AAMAS), pages 1045-1052, Bologna, Italy, July
2002. ACM press.

M. Esteva, J. A. Rodriguez, C. Sierra, P. Garcia, and J. L. Arcos. On the Formal
Specification of Electronic Institutions. In Agent-mediated Electronic Commerce
(The European AgentLink Perspective), number 1991 in Lecture Notes in Artificial
Intelligence, pages 126-147, 2001.

R. A. Flores and R. C. Kremer. Bringing Coherence to Agent Conversations. In
Proceedings of Agent-Oriented Software Engineering (AOSE 2001), volume 2222
of Lecture Notes in Computer Science, pages 50—-67, Montreal, Canada, January
2002. Springer-Verlag.

Foundation for Intelligent Physical Agents. Fipa specification part 2 - agent com-
munication language. Available at: www.fipa.org, April 1999.

M. Greaves, H. Holmback, and J. Bradshaw. What is a Conversation Policy? In
Proceedings of the Workshop on Specifying and Implementing Conversation Poli-
cies, Autonomous Agents ’99, Seattle, Washington, May 1999.

D. Harel. Statecharts: A Visual Formalism for Computer System. Science of
Computer Programming, 8(3):231-274, 1987.

G. J. Holzmann. The SPIN Model Checker: Primer and Reference Manual. Addison
Wesley, September 2003.

Y. Labrou and T. Finin. Comments on the specification for FIPA ’97 Agent Com-
munication Language. Available at: www.cs.umbc.edu/kqml/papers/, February
1997.

Y. Labrou and T. Finin. Semantics and conversations for an agent communica-
tion language. In Proceedings of the Flfteenth International Joint Conference of
Artificial Intelligence (IJCAI-97), pages 584-591, Nagoya, Japan, August 1997.
N. Maudet and B. Chaib-draa. Commitment-based and Dialogue-game based
Protocols—News Trends in Agent Communication Language. The Knowledge En-
gineering Review, 17(2):157-179, 2002.

P. McBurney and S. Parsons. Games that agents play: A formal framework for di-
alogues between autonomous agents. Journal of Logic, Language and Information,
11(3):315-334, 2002.

R. Milner. Communication and Concurrency. Prentice-Hall International, 1989.

21

22.

23.

24.

25.

26.
27.

28.

171

R. Patil, R. F. Fikes, P. F. Patel-Schneider, D. McKay, T. Finin, T. Gruber, and
R. Neches. The DARPA Knowledge Sharing Effort: Progress Report. In Bern-
hard Nebel, Charles Rich, and William Swartout, editors, KR’92. Principles of
Knowledge Representation and Reasoning: Proceedings of the Third International
Conference, pages 777-788. Morgan Kaufmann, San Mateo, California, 1992.

A. S. Rao and M. Georgeff. Decision procedures for BDI logics. Journal of Logic
and Computation, 8(3):293-344, 1998.

M. P. Singh. Agent Communication Languages: Rethinking the Principles. IEEE
Computer, pages 40-47, December 1998.

C. Walton. Multi-Agent Dialogue Protocols. In Proceedings of the Eighth Inter-
national Symposium on Artificial Intelligence and Mathematics, Fort Lauderdale,
Florida, January 2004.

D. N. Walton and E. C. W. Krabbe. Commitment in Dialogue: Basic Concepts of
Interpersonal Reasoning. SUNY Press, 1995.

M. Wooldridge. Reasoning about Rational Agents. MIT Press, 2000.

M. Wooldridge. Semantic issues in the verification of agent communication lan-
guages. Autonomous Agents and Multi-Agent Systems, 3(1):9-31, 2000.

M. Wooldridge, M. Fisher, M. P. Huget, and S. Parsons. Model Checking Multi-
agent systems with MABLE. In Proceedings of the First International Conference
on Autonomous Agents and Multiagent Systems (AAMAS-02), Bologna, Italy, July
2002.

172

Modeling and Verification of Distributed
Autonomous Agents using Logic Programming*

L. Robert Pokorny and C. R. Ramakrishnan

Department of Computer Science,
State University of New York at Stony Brook
Stony Brook, New York, 11794-4400, U.S.A.
E-mail: pokorny@xsb.com, cram@cs.sunysb.edu

Abstract. Systems of autonomous agents providing automated services
over the Web are fast becoming a reality. Often these agent systems
are constructed using procedural architectures that provide a framework
for connecting agent components that perform specific tasks. The agent
designer codes the tasks necessary to perform a service and uses the
framework to connect the tasks into an integrated agent structure. This
bottom up approach does not provide an easy mechanism for confirming
global properties of constructed agent systems. In this paper we propose
a declarative methodology based on logic programming for modeling such
procedurally constructed agents and specifying their global properties as
temporal logic formulas. This methodology allows us to bring to bear
a body of work for using logic programming based model checking to
verify certain global properties of procedurally constructed Multi-Agent
Systems.

1 Introduction

The Internet is fast becoming a venue for automated services. The advent of
the Semantic Web and Web Services fosters an environment where complex
services can be provided that are composed of a number of tasks. The tasks
that compose the service are often accomplished by a group of autonomous
agent programs. These agents communicate asynchronously over a LAN or the
Internet to provide the desired service. Ideally, specifying agents as programs in
a declarative logic programming language both facilitates the implementation of
agent systems for desired service and also provides a formal model for proving
that the implemented agent system performs the service with expected results.

While a number of high-level formalisms for specifying multi-agent systems
have been proposed (see, e.g. [19, 3,17]), many agent systems are being currently
implemented in a procedural language such as Java. Development and deploy-
ment of agent systems using traditional languages such as Java has been simpli-
fied by the presence of frameworks that provide a rich array of services ranging

* This research was supported in part by NSF grants CCR-9876242, 11S-0072927,
CCR-0205376, and CCR-0311512.

173

from communication and database interfaces to persistence and fault-tolerance
(e.g., the Cognitive Agent Architecture, Cougaar [2]). It should be noted that
the standardization efforts in the web services community (e.g. BPEL4AWS [1])
have been oriented towards languages for specifying agent interfaces (e.g. the
services offered and the types of data exchanged) to facilitate service discovery
and composition, while leaving the implementation of the agents themselves un-
specified. Although these developments alleviate some of the drudgery involved
in constructing agents and provide facilities to compose agent systems, they do
not provide mechanisms to give formal assurances about the behavior of agent
systems. The interesting problem here is to develop methods and techniques to
ensure that agent systems built in this manner exhibit certain desired properties.
We outline here a declarative approach to addressing this problem.

Using a procedural agent architecture such as Cougaar, described in Sec-
tion 2, agent systems are most easily developed in a bottom-up fashion. Individ-
ual agent programs are first built to perform specific tasks and then the allowable
communications between agents are defined. The key to formally verifying the
behavior of agent systems implemented in this manner is to first develop a formal
model of the agent architecture itself. The main contribution of this paper is the
development of a formal model of the main parts of the Cougaar architecture,
including its persistence and fault-tolerance features. We then develop a frame-
work, based on this model, to formally describe an agent system by specifying
the behavior of the individual agent programs. The internal behavior of an agent
is modeled as an extended finite-state automaton (EFSA), i.e., an automaton
where states may be associated with variables and transitions may be guarded
by constraints on values of the variables). In particular, the EFSA models a
state transition system where there are a finite number of control states but
potentially an infinite number of data states that can be partitioned into a finite
number of data types. This is outlined in Section 3.

The intra-agent processes of an agent are presented as Horn clauses repre-
senting state transitions between control states in the EFSA. The EFSA for an
agent describes the intra-agent actions. The behavior of the agent system can
then be obtained as a concurrent composition of individual agent EFSAs and
the architecture model that accounts for the possible synchronizations due to
inter-agent communications.

The service being provided by an agent system is most easily described as
a temporal process in which certain changes to occur to a set of objects in a
certain order. This is a workflow-centric view of the service where its global
properties are enumerated. The workflow describes the desired or, at least, an-
ticipated outcomes of the service without making any explicit statements about
the implementation details of the system of agents providing the service. While
a graph-based workflow formalism can be used to easily specify certain required
(or prohibited) behaviors of an agent system at a high-level, a more expressive
temporal logic formalism can be used to describe complex properties such as
availability, resilience to failure, etc.

174

We choose to represent workflow properties as temporal logic formulas for
two reasons. First, temporal logic formulas make statements about infinite ex-
ecutions of EFSAs and, in particular, Linear Temporal Logic (LTL) [13] can
represent fairness properties. Second, this formulation allows us to directly use
the logic-based model checking techniques that have been developed in the past
few years, (in which properties expressed in temporal logics can be directly veri-
fied for state transition models), to determine whether an agent implementation
possesses certain high-level behavioral properties. Therefore in this paper, we use
generalized linear temporal logic (GLTL), described in Section 4, which allows
for statements about properties of states and labels on state transitions. GLTL is
extended with data variables as the formalism for specifying behavioral proper-
ties. In Section 5 we present workflow properties represented in GLTL. We have
developed model checkers for verifying GLTL properties for transition systems
expressed as logic programs [15]. We can user this model checker to verify GLTL
properties that depend on the control structure or data types in the model as
long as the the GLTL formula being checked does not make starements that de-
pend on the values of specific data objects. We also compare this to other work
where agent systems expressed in Belief-Desire-Intension (BDI) agent languages
are model checked for properties described in BDI temporal logics.

2 Cougaar, an implementation architecture for
distributed autonomous agents

Cougaar is a Java based procedural implementation architecture for building
systems of autonomous agents. It was originally funded by DARPA and is now
maintained by an open-source community. It uses a design framework that han-
dles both intra-agent data manipulation and inter-agent communications in a
manner that provides transparency to the agent system designer. The architec-
ture uses a distributed blackboard for inter-agent as well as intra-agent commu-
nication. This design framework provides persistence and recovery for individual
agents and also system resilience against the loss of agents.

Data is stored and persisted at the agent level. Each agents keeps only the
data necessary to perform its own functions. Data needed by more than one agent
is shared by copying data objects from one agent to another. This distributed
data model has the advantage that data is only stored where needed and dose
not have to be made continuously available to all agents in the system. The
disadvantage is that agents needing to share data are responsible for maintaining
synchronization of that data. It is the responsibility of the agent designer to
insure this synchronization.

At the agent level, all data is stored in a communal blackboard. The black-
board contains objects that are instantiations of Java classes representing items
of interest to the agent. Objects are added to the blackboard either through
communication with another agent or by an agent subprocess called a plugin.
Plugins can also change or delete objects on the blackboard. Plugins are designed
to be stateless processes that handle the computation required of the agent.

175

Plugins subscribe to objects on the blackboard and execute a defined proce-
dure in response to changes in those objects. The executed procedure can query
the blackboard about objects; add, change, or delete objects and publish these
changes to the blackboard; change the plugin’s subscription; or interact with the
environment outside the agent system. Data on the blackboard is changed by
the plugins, but the data changes are persisted by the agent control structure.

- N

Agent ‘
Society ‘ Inter- Agent Communication Service ‘

!

Agent Manager

e Pending
Blackboard) (Subscription) (' Eyecution

/ List List
Controller/

K Cougaar Agent

Persistence
File

Fig. 1. Cougaar Architecture

The agent control structure is illustrated in Figure 1. When an agent starts
up, it first instantiates a agent manager which contains a blackboard, subscrip-
tion list, and plugin pending execution list and an inter-agent communication
service. It then instantiates its component plugins. When a plugin is instantiated,
it runs a subscribe method which notifies the agent manager about the objects in
which it is interested. Once all plugins have been instantiated and have run their
subscribe methods, the agent checks to see if any objects have been added to
the blackboard which match a plugin’s subscription. If so, that plugin is queued
to run an execute method which can publish changes that add, modify, or delete
blackboard objects. Whenever a change is published to the blackboard, plugin
subscriptions are checked and the plugins affected by the change are added to
the pending execution list and scheduled to run by the plugin controller.

Blackboard objects can also be communicated to other agents. The inter-
agent messenger service sends copies of these objects as messages to other agents
and also publishes added objects to the blackboard when they are received as
messages from other agents. The state of the blackboard, subscription list, and

176

plugin pending execution list is persisted by saving to a file before every sent
message and after every received message.

If an agent crashes and is then restored, the restoration proceeds in a similar
fashion to agent initialization. The main difference is that agent state is restored
from the persisted state file written during the last inter-agent communication
before the crash. This method of restoring an agent coupled with the fact that
copies of data objects are passed between agent blackboards means that when
an agent is restored, it will have internal consistency but its blackboard might
be out of synchronization with other agents in the system. In the Cougaar imple-
mentation it is up to the agent designer to provide inter agent synchronization if
needed. Also Cougaar assumes that any state information that individual plugins
need is embodied in data objects that the plugins publish to the blackboard.

We will use an order processing system as a running example of a Cougaar-
based multi-agent system. In this example, a simple Cougaar agent would contain
order objects on its blackboard. New orders would be received from other agents
and cause order objects to be added to the blackboard. The order objects would
contain a status flag that is set to received when the order is added. This order
agent might have a capacity setting so that when the number of orders on the
blackboard reaches a certain level no more orders will be accepted. Processing
of orders in the agent would be handled by plugins. In the simplest case, a
plugin would subscribe to order objects on the blackboard and be notified when
orders are added. When notified, the plugin would execute and check an external
database for credit and inventory information and change the status of the order
to shipped, rejected, or back-ordered. The agent would then communicate these
revised statuses to other agents in the system by sending a copy of the order
object to the appropriate agent. An order with a shipped status might go to
a billing agent, a rejected order to a customer notification agent, and a back-
ordered order to a production scheduling agent. Once copies of the order objects
are sent to these other agents the objects would then be removed from the
processing agent’s blackboard. As order objects are removed the capacity to
receive and process new orders is correspondingly increased.

In summary, the plugins in each agent can be considered as actions taken
by an agent with each plugin representing a specific action. The agent system
is developed by specifying, albeit in a procedural form, the behavior of each
plugin. Note that the development of an agent focuses on the detailed behaviors
of the plugins. Combining the models of behaviors of each plugin with a detailed
formal model of the behavior of the Cougaar architecture itself, we can derive
the agent-wide and system-wide behaviors. Note, however, that the Cougaar
architecture itself does not directly support the specification of global agent-
wide and system-wide behaviors. Hence it is possible that the actual agent or
system behavior deviates from its expected behavior. In the next section we
introduce a declarative model of the Cougaar Agent Architecture.

177

3 A Declarative Model of the Cougaar Architecture

We now develop a high-level model of the Cougaar architecture. The model
for an agent consists of a set of concurrent automata, one automaton for each
component: the blackboard and agent manager, the communication interface,
and the components representing plug-ins. The automata have a finite number
of control locations with local variables, and transitions in the automaton may
be guarded by conditions on the valuation of these variables. Each automaton,
formalized as an extended finite-state automaton (EFSA) can be simply described
by a logic program that represents its transition relation [18].

We represent the transition relation of an automaton in our model using the
ternary relation trans. A tuple in this relation of the form trans(S, A, T)
represents a transition from state S to state T labeled with action A. The states
may be in general be terms representing both the control information (e.g. the
program counter value at an agent state) and data values at a state. The action
labels represent events: communication with other automata, or simply compu-
tation steps internal to the automaton. The labels for internal computations may
specify additional parameters that qualify the computation. Labels for commu-
nication operations are written as terms either of the form f(¢1,...t,) where f
is a function symbol, or of the form f(¢1,...,t,). The two are usually taken to
represent an input action (where f stands for the channel or port over which the
communication takes place), and an output action, respectively. In our case we
do not distinguish between input and output actions; rather than considering
communication as a transmission of data from one automaton to another, we
generalize the approach of CCS [14] and view communication as an agreement
of data values in two automata. Two concurrent automata synchronize by si-
multaneously taking transitions with complemenary labels: e.g. f(¢1) and f(t2).
At synchronization, the terms t; and ty are unified. In general, synchronization
takes place only when the labels of the two transitions unify.

The transition relation model captures the details of the operational behavior
of a Cougaar agent. However, such an explicit representation may become tedious
to develop (and consequently, error-prone) when used to model large systems.
Hence we represent the transition relation by a set of Horn clauses defining the
relation, rather than as an explicit set of tuples.

We divide agent models into two parts: a generic part consisting of services
provided by the Cougaar architecture, such as the blackboard service, commu-
nication service, etc; and a part specific to a particular agent instance, which is
described by the behaviors of the plug-ins in the agent. The Cougaar architec-
ture provides a rich variety of common services to simplify agent development
and deployment. In terms of the behavioral models, this means that an agent
model can be obtained by composing models of generic services (developed once
and subsequently reused for all agents) with models describing the behaviors of
the specific plugins. We first describe the models for Cougaar’s generic services.

178

3.1 A Model of Cougaar’s Generic Sevices

The blackboard service is central to a Cougaar agent. The blackboard serves as
a storehouse for passive information— the objects manipluated by the different
plugins within the agent— and at the same time actively participates in agent
behaviours such as serving object change notifications to plug-ins, handling per-
sistance, scheduling certain communication operations, etc.

The storage used by the blackboard service comprises of the following com-
ponents:

1. the set of objects in the agent’s blackboard (data)
2. the set of plugins pending execution in response to changes to data objects

(pending)
3. the set of object subscriptions in which each plugin is interested (subscription)

We represent these three areas collectively by store(D,P,S) where D, P and
S represent the above three storage areas respectively. In addition, to enable
recovery from faults, an agent checkpoints its execution by saving the blackboard
state at each intra-agent communication point. We model this persistence by
representing a blackboard’s state by state(Current, Saved) where Current is
the representation of the current storage (a term of the form store(...)) and
Saved is the representation of the storage at the last checkpoint.

The data part of a blackboard’s storage is simply a set of objects. We use
a notation borrowed from F-logic [12] to denote objects and use F-logic’s mech-
anisms for representing an object store using attribute-value, subclass and in-
stance relations. For instance, an object Obj belonging to class Cls and whose
status field holds the value new, represented in F-logic by 0bj:Cls [status->new],
will be stored in the blackboard’s storage as tuples instance(Obj, Cls) and
attr(Obj, status, new). Evaluation of attribute values follow F-logic’s inher-
itance mechanisms.

The pending list is a set of pairs of the form (plugin, object) where a change
to the object matches the plugin subscription. The set of subscriptions associates
a plugin with subscription patterns which are of the form (class, change), where
class is the class of objects and change is the change flag for this subscription.

The blackboard is the arbiter of data and communication between the plugins
and other Cougaar services in an agent. Plugins communicate synchronously
with the blackboard using the following four primitives:

1. query: check the presence or absence of an object in the data area, and to
retrieve information from objects in the data area
. modify: add/delete objects to/from the data area
. subscribe: add/remove self from subscription lists
4. publish: notify the rest of the agent system about changes made to the
blackboard objects by this plugin

w N

Apart from the data access operations from the agent’s plugins, the black-
board also services communication requests from other agents. Although the
Cougaar implementation separates the data service provided by the blackboard

179

from the communication services, it vastly simplifies the model to combine the
two. A Cougaar agent may receive a put request to place an object in its black-
board from another agent; and may send objects, when requested to do so by its
plugins, to other agents. Each of these requests (from plugins or other agents)
represent events; the behavior of the generic services of Cougaar in response to
these events (or when generating these events) is captured by the Horn clause
rules in Figure 2 defining the trans relation.

Plugins are executed under the control of a plugin scheduler. Initially, the
plugin scheduler invokes the subscribe method of each plugin which enables
them to register with the blackboard service for object modification notifica-
tions. After the initialization phase is complete, the scheduler enters a loop,
nondeterministically selecting a plugin to execute from the pending set in the
blackboard, and invoking the corresponding plugin. The plugins, may in gen-
eral, be run on a separate thread from the scheduler. We model the simpler and
more common case where the plugins are sequentialized in the same thread as
the scheduler. The transition relation of the scheduler’s automaton can then be
written as illustrated in Figure 3.

In the above, we assume that the subscribe (Pin,C) and and execute ((Pin,
0bj),C) correpond to the entry points of the subscribe and execute methods of
a plugin Pin. The second argument C is the continuation: the state to which the
methods return.

States of a system composed of two concurrent automata are represented
by terms of the form par(P1, P2) where P1 and P2 represent the local states
of the component automata. Operationally, an interleaving of the executions of
two concurrent automata is an execution of the composition. In addition, the
two automata may synchronize by unifying their action labels. The behavior
of the concurrent composition of two automata is captured by the transition
rules in Figure 4. It should be noted that synchronization by unification general-
izes CCS’s agreement-based synchronization for non-value-passing systems and
synchronization by substitution for value-passing systems.

Note that with the above notation, it is straightforward to extend the model
to deal with agents with multi-threaded plugins: instead of the sequential com-
position encoded by execute((Pin,0bj),C), the scheduler loop will spawn Pin
in an available concurrent thread and return immediately to picking up another
plugin to notify.

When an agent crashes, the current state of the blackboard and other generic
services is lost, and so are the local states of the plugins and the scheduler. When
the agent recovers, it refreshes its state from the one saved at the last checkpoint,
and resumes the scheduler loop. Thus, the crash and the eventual recovery of an
agent can be captured by the transition rules given in Figure 5.

The crash and recover labels can be used in the model checker to specify
properties to specify fair behaviors, considering only paths where crash occurs
only finitely often, or those where recover occurs infinitely often.

180

% QUERY
trans(S, present(Q), S) :-

S = state(store(Data,_,_),_), Q € Data.
trans(S, absent(Q), S) :-

S = state(store(Data,_,),.), Q ¢ Data.

% MODIFY
trans(S, add(Q), T) :-
S = state(store(Data,P,Subs), Saved),
Data’ = Data U {Q},
T = state(store(Data’,P,Subs), Saved).
trans(S, delete(Q), T) :-
S = state(store(Data,P,Subs), Saved),
Data’ = Data — {Q},
T = state(store(Data’,P,Subs), Saved).

% SUBSCRIBE
trans(S, subscribe(Pin, Class, Change), T) :-
S = state(store(D,P,Subs), Saved),
Subs’ = Subs U {sub(Pin, Class, Change)},
T = state(store(D,P,Subs), Saved).
trans(S, unsubscribe(Pin, Class, Change), T) :-
S = state(store(D,P,Subs), Saved),
Subs’ = Subs — {sub(Pin, Class, Change)},
T = state(store(D,P,Subs), Saved).

% PUBLISH
trans(S, publish(Obj, Change), T) :-
S = state(store(D,Pending,Subs), Saved),
Notify = {Pin | subs(Pin, Class, Change) € Subs, Obj:Class},
Pending’ = Pending U Notify,
T = state(store(D,Pending’,Subs), Saved).

% PENDING_EXECUTION
trans(S, select(Pin, 0bj), T) :-
S = state(store(D,Pending,Subs), Saved),
Pending’ = Pending — {Pin},
T = state(store(D,Pending’,Subs), Saved).
% PUT
trans(S, put(Obj), T) :-
S = state(store(Data,Pending,Subs), .),
Data’ = Data U {0bj}
Notify = {Pin | subs(Pin, Class, add) € Subs, Obj:Class},
Pending’ = Pending U Notify,
SavedStore = store(Data’, Pending’,Subs),
T = state(SavedStore, SavedStore).

% SEND

trans(S, put(Obj), T) :-
S = state(Current, .),
Current = store(Data,P,Subs),
Data’ = Data — {send(0bj)}
NewStore = store(Data’,P,Subs)
T = state(NewStore, Current).

Fig. 2. Transition Relation for Generic Cougaar Services

181

% INITIALIZE

trans(scheduler, initialize, init(Pins, scheduler_loop)). :-
initial_plugins(Pins).

trans(init([], S), A, T) :- trans(S, A, T).

trans(init ([Pin|Pins], S), A, T) :-
trans (subscribe(Pin, init(Pins, S)), A, T).

% EXECUTE
trans(scheduler_loop, select(Pin, Obj), execute((Pin, Obj), scheduler_loop)).

Fig. 3. Transition Relation for the Plugin Scheduler

% INTERLEAVE

trans(par(P1, P2), A, par(Ql, P2)) :-
trans(P1, A, Q1).

trans(par(P1, P2), A, par(P1, Q2)) :-
trans (P2, A, Q2).

% SYNCHRONIZE

trans(par(P1, P2), tau, par(Q1, Q2)) :-
trans(P1, A, Q1),
trans (P2, B, Q2),
complement (A, B).

complement (L(X), L(X)).

complement (L(X), L(X)).

Fig. 4. Transition Relation for Parallel Composition

3.2 Modeling Specific Cougaar Agents

Having developed a detailed model for the generic Cougaar services, we can
instantiate an agent by simply specifying (a) the set of plugins in the agent, and
(b) the behaviors of their subscribe and execute methods. We illustrate such
an instantiation by considering a simple order processing agent with a plugin
process_order which takes an object of class order whose status field is new,
and changes the order status field to one of shipped, back_ordered or rejected.
For the purposes of this illustration, we will replace the logic for determining
the status field with a nondeterministic choice. Orders processed by the agent

% CRASH
trans(agent (par(state(_,Saved), _)), crash, agent_crashed(Saved)).

% RECOVER
trans (agent_crashed(Saved), recover,
agent (par (state(Saved,Saved), scheduler_loop))).

Fig. 5. Transition Relation for Crash and Recovery

182

then need to be transmitted to the other agents. The transition system for the
execute method of this plugin can be written as:

trans (execute((process_order,order(0Order)), C),
delete(Order[status->new]), order_1(Order, C)).
trans (order_1(0rder, C)), add(Order[status->NS]), order_2(Order, C)) :-
choose_status (NS).
trans (order_2(0rder, C)), send(Order) order_3(Order, C)).
trans (order_3(0rder, C)), publish(Order, modify) C).

choose_status(shipped) .
choose_status(back_ordered) .
choose_status(rejected) .

Since plugins typically have a simple structure (e.g. no thread creation, and
usually no loops), we can simplify the specification of plugin behaviors by using
a DCG-like notation that makes the states implicit. For instance, the above order
plugin may be written as:

order (Order) -->
[delete(Order[status->new]) 1,
{choose_status(NS) },
[add(Order[status->NS]) 1,
[send(Order) 1,
[publish(Order, modify) J.

Each terminal symbol in the above DCG specifies only the action label of a tran-
sition, leaving the source and destination states implicit. It is easy to convert the
above specification to the explicit transition rules given earlier. We can thus de-
rive models of agent systems by modeling each plugin separately and combining
these models with the models of generic services.

4 Linear Temporal Logic

We now review Linear Temporal Logic (LTL) and its extensions that are used
for specifying temporal properties of finite-state systems. In particular we de-
scribe Generalized LTL (GLTL) which can make statements about properties of
system states as well as action labels on transitions between states. GLTL has
the following syntax (P is the finite set of propositions and A is the finite set of
action labels):

U — AD | ED
S—pl|lpla|-a|PANP|PVP|PUP|PR P|XD peEP,aCA

Formulas derived from & are called path formulas and formulas derived from ¥
are state formulas Traditionally, GLTL is defined to include only A®; we consider
the trivial addition of E® since the model checking procedure we discuss is based
on such formulae.

The semantics of GLTL is given in terms of infinite paths (called runs) of a
Labeled Transition System (LTS). Runs are infinite sequences of states of the

183

LTS. The formal definition of GLTL semantics is standard (see, e.g. [6,5]) and is
omitted. Briefly, the semantics expresses how a run can satisfy a path formula.
A formula @ is true if @ is true in the first state of a run. If @ is p then p is
a proposition that must hold in this state for @ to be true. If @ is « then the
transition from the first state to the second state in the run must be labelled
with an element in « for @ to be true. For =p and —«, p must be false and the
transition label must not be an element of « respectively to make & true. X® is
true if @ is true in the next state of a run, &1 A @5 is true if both &, and &, are
true for a given run. @, U @5 is true of a run if @, holds in every state until a
state where @5 holds. @1 R @5 is true of a run if @5 holds in every state or until
a state where @1 holds. AQ is true for state s if @ is true for all runs originating
in s and E® is true if @ is true for some run originating in s.

A and V are duals. Similar to Aand V, U and R areduals (i.e., 7(¢1 U ¢2) =
—¢1 R —¢2), E and A are duals (i.e., Ay = E—¢)), and X is its own dual (i.e.,
—X¢ = X—¢). It is easy to see that the standard semantics respects this duality.

To write more legible GLTL formulae, we define the following shorthand
constructs for common GLTL formulas:

G¢ = false R ¢
Fop=true U ¢
p= =0V

G is the global temporal quantifier. It is used to describe a property that is
always true along a given path. F is the eventual temporal operator and describes
a property that eventually becomes true along a path. The third shorthand is
the standard logical implication.

Finally, GLTL can be enhanced by allowing terms containing logical variables
to replace propositions. In the next section we describe the encoding of workflow
properties about the expected global behaviors of agent systems in GLTL.

5 Workflows as Property Specifications

Agents and systems of communicating agents are built to provide specific ser-
vices. Often these services are explicitly described by a workflow. Even when
such an explicit definition is lacking, there is an implicit workflow which de-
scribes the anticipated outcome from invoking a service. The standard view of
a workflow with respect to agents is that the workflow is a specification for the
agent. In contrast, we consider the workflow as a specification of a property that
the agent must exhibit.

Workflows have been directly represented in Transaction Logic [9]. One ap-
proach to showing that an agent system possesses a behavior expressed as a
workflow would be to use Theorem Proving Techniques to show that the Trans-
action Logic representation of the workflow and the agent were equivalent. We
believe a better approach is to express the workflow property in GLTL and use

184

Logic Programming based model checking to show that the GLTL formula holds
for the EFSA model of the agent system.

GLTL is uniquely suited for representing workflow properties and more ex-
pressive than Transaction Logic for temporal properties. Workflows, in essence
are temporal graphs that express sequences of events. Consider a simple work-
flow in which an order is first received and then shipped. The workflow implies
an order to these two events, but no absolute time period between them. This
is precisely the type of property that is easy to describe in GLTL.

If we let dependency(¢,)) stand for the GLTL state formula

G(o = X(Fy))

We can write the following GLTL formula to describe the ordering property
expressed in the above workflow as:

A(dependency({received}, {shipped}))

This states that along all paths if a received action occurs it is eventually followed
by a shipped action.

Since the Cougaar agent model described above can crash, this property
would not hold for it. The agent could crash between the received and shipped
actions and never recover. This leads to describing fairness properties for which
GLTL is also well suited. We would like to have the above property hold as long
as the agent recovers from every crash. This can be written as:

A(GF (recover) = dependency({received}, {shipped})

Notice that neither the workflow or the above formulas say anything about
what order is received or shipped. Implicit in the workflow is the idea that
the workflow describes the events for a specific order. This can be handled by
parameterizing the received and shipped actions, leading to:

A(GF (recover) = dependency({received(orderl)}, {shipped(orderl)})

Finally, the agent system is designed to run multiple instances of the specify-
ing workflow so that we could be interested in properties that express ordering
between workflow instances. For instance, we may want orders to be shipped in
the order they were received. Enhancing GLTL with logical variables allows us
to express these type of properties. We define ordered_events(¢, 1)) to stand for
the GLTL formula:

FOANFYA—p U ¢

which express that ¢ occurs before ¥). We can now express the property that
orders are shipped in the order they are received as:

A(ordered_events({received(order(X))}, {received(order(Y))}) =
ordered_events({shipped(order(X))}, {shipped(order(Y))}))

185

This shows that GLTL is a logic that is well suited for specifying global
properties of agent systems either as specifications of workflow properties or
directly as fairness properties. GLTL also allows us to take advantage of logic
programming for verification of these properties.

6 Ongoing Work and Concluding Remarks

Having been able to declaratively model a real world agent architecture as an
EFSA and also express specifications for that system as temporal logic proper-
ties, we are now in a position to apply model checking techniques to verifying
properties of agent systems.

We have been developing and using model checkers for finite and several
classes of infinite systems based on logic programming [16,10,4]. We have also
developed a model checker that can verify GLTL properties of labeled transi-
tion systems [15]. This model checker, implemented as a logic program, first
constructs a Biichi automaton from a given GLTL formula, constructs the prod-
uct of the given system model and the automaton, and performs good-cycle
detection, i.e. cycles that meet the acceptance conditions of the automaton, to
complete the model checking. Subsequently, we have also developed a constraint-
based model checker where system models as well as properties are expressed
using EFSAs [18]. This model checker can be directly used to verify properties
of a Cougaar-based agent system. This model checker can verify certain class of
infinite-state systems called data independent systems: those whose control be-
havior is independent of the domain of the data values. This is especially useful
for the verification of agent systems since many aspects of their behaviors are
data independent. For instance, the behavior of the ordering agent is indepen-
dent of the domain of identifiers associated with different order objects. Thus
we can use a constraint-based model checker to verify properties like the order
of receiving and shipping of a specific order object with or without a fairness
constraint on the agent crashing. It also allows us to check properties about the
ordering of events. There is a complexity price to pay for this added capabil-
ity. Standard model checking of finite-state systems runs in time linear in the
size of the model. The constraint-based model checker in in the worst case ex-
ponential. Our future work will explore the limits and efficiency of using Logic
Programming-based Model Checking to verify global behaviors of procedurally
constructed MAS.

The main limitation of our approach is the representation of the blackboard.
The blackboard is a part of an agent’s state and we have to bound the number of
objects that may be present simultaneously in the blackboard in order to ensure
termination of verification runs.

The main contribution of this paper is the development of a logic-based high-
level model of agent systems built using a procedural framework such as Cougaar.
Since there are many such frameworks being proposed and implemented to ad-
dress providing Web Services, this concept could have significant application. A
secondary contribution of this modeling technique is that it allows us to verify

186

properties of MAS that are data independent infinite-state systems with finite
control structures.

We want to point out how our work compares to other efforts in the field.
There have been a number of presentations of applying model checking to ver-
ifying properties of MAS including [8,20], These presentations model MAS in
languages that have a direct translation to a finite-state labelled transition sys-
tem and express properties to be verified in Belief-Desire-Intention (BDI) logics
which can be transformed into propositional LTL properties. Our goal was to
be able to verify properties of MAS developed in a procedural framework like
Cougaar where global behavior is emergent and non-obvious. Also, by modelling
such systems as EFSAs we do not need to limit our model to finite-state systems,
but can consider properties of infinite-state data independent systems. This al-
lows us to verify properties concerned with the general ordering of events. Our
model also allows us to investigate fault tolerance of MAS expressed as GLTL
fairness properties. There is an interesting parallel between Cougaar agents and
BDI agents. Data on the Cougaar blackboard is similar to BDI beliefs, plugin
subscriptions have a similar flavor to BDI desires, and plugins pending execution
are similar BDI intentions. We feel that this similarity should be investigated,
especially since properties expressed in BDI logics can easily be incorporated
into an expansion of GLTL and be directly verified using our model checker. We
see this as a fertile area for future work.

There has also been a considerable amount of work addressing workflows as
specifications. Workflows have been represented in Transaction Logic [7] and
their properties as theorems that satisfy these models [9]. In addition, [11]
presents workflows modeled as UML Activity Diagrams and using LTL model
checking to verify properties of these models. These approaches look at work-
flows as the model about which properties are stated. In our work we view the
workflow as specifying global properties for a model of an independently con-
structed agent system. There are also a number of efforts to declaratively specify
connectivity of autonomous agents using XML such as BPEL4WS cited earlier.
These are primarily focused on finding and connecting agents that can com-
pose a service, but they do not provide any method of verifying the behavior of
the composition. What we propose allows the agent designer to use a procedural
framework like Cougaar to build an agent system and gain some assurance about
the conditions under which that system will exhibit expected behaviors.

References

1. Business process execution language for web sevices (BPEL4WS).
http://www.ibm.com/developerworks/library/ws-bpel/.

2. Cougaar: Cognitive agent architecture. http://www.cougaar.org.

3. J. Alferes, A. Brogi, J. A. Leite, and L. M. Pereira. Logic programming for evolving
agents. In Intl. Workshop on Cooperative Information Agents (CIA’08), number
2782 in LNAI, pages 281-297. Springer Verlag, 2003.

4. S. Basu, K. N. Kumar, L. R. Pokorny, and C. R. Ramakrishnan. Resource-
constrained model checking of recursive programs. In TACAS, volume 2280 of
LNCS, pages 236250, 2002.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

187

G. Bhat, R. Cleaveland, and A. Groce. Efficient model checking via beuchi tabeau
automata. In Computer Aided Verification (CAV), 2001.

G. Bhat, R. Cleaveland, and O. Grumberg. Efficient on-the-fly model checking for
CTL*. In IEEE Symposium on Logic in Computer Science. IEEE Press, 1995.

A. Bonner and M. Kifer. An overview of transaction logic. Theoretical Computer
Science, 133:205-265, 1994.

R. H. Bordini, M. Fisher, C. Pardavila, and M. Wooldridge. Model checking
AgentSpeak. In Second Internatonal Joint Conference on Autonomous Agents
and Multi-Agent Systems (AAMAS), 2003.

H. Davulcu, M. Kifer, C. R. Ramakrishnan, and I. V. Ramakrishnan. Logic based
modeling and analysis of workflows. In ACM Symposium on Principles of Database
Systems (PODS), pages 25-33. ACM, 1998.

X. Du, C. R. Ramakrishnan, and S. A. Smolka. Tabled resolution + constraints:
A recipe for model checking real-time systems. In IEEE Real Time Systems Sym-
posium (RTSS), Orlando, Florida, 2000.

R. Eshuis. Semantics and Verification of UML Activity Diagrams for Workflow
Modelling. PhD thesis, University of Twente, 2002.

M. Kifer, G. Lausen, and J. Wu. Logical foundations of object-oriented and frame-
based languages. Journal of the ACM, 42(4):741-843, 1995.

7. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems:
Specification. Springer Verlag, 1991.

R. Milner. Communication and Concurrency. International Series in Computer
Science. Prentice Hall, 1989.

L. R. Pokorny and C. R. Ramakrishnan. Model checking linear temporal logic
using tabled logic programming. In Workshop on Tabling in Parsing and Deduction
(TAPD), 2000.

Y. S. Ramakrishna, C. R. Ramakrishnan, I. V. Ramakrishnan, S. A. Smolka, T. L.
Swift, and D. S. Warren. Efficient model checking using tabled resolution. In CAV,
1997.

A.S. Rao. AgentSpeak(L): BDI agents speak out in a logical computable language.
In Seventh Workshop on Modelling Autonomous Agents in a Multi-Agent World
(MAAMAW), number 1038 in LNAI, pages 42-55. Springer Verlag, 1996.

B. Sarna-Starosta and C. R. Ramakrishnan. Constraint based model checking
of data independent systems. In Intl. Conf. on Formal Engineering Methods
(ICFEM), LNCS, 2003.

V. S. Subrahmanian, P. Bonatti, J. Dix, T. Eiter, S. Kraus, and F. Ozcan. Het-
erogenous Agent Systems. MIT Press, 2000.

M. Wooldridge, M. Fisher, M.-P. Huget, and S. Parsons. Model checking multi-
agent systems with MABLE. In First Internatonal Joint Conference on Au-
tonomous Agents and Multi-Agent Systems (AAMAS), pages 952-959. ACM Press,
2002.

188

A Protocol for Resource Sharing in
Norm-Governed Ad Hoc Networks

Alexander Artikis!, Lloyd Kamara?, Jeremy Pitt?, and Marek Sergot!

! Department of Computing, SW7 2BZ
2 Electrical & Electronic Engineering Department, SW7 2BT
Imperial College London
{a.artikis, 1.kamara, j.pitt, m.sergot}@imperial.ac.uk

Abstract. Ad hoc networks may be viewed as computational systems
whose members may fail to, or choose not to, comply with the rules
governing their behaviour. We are investigating to what extent ad hoc
networks can usefully be described in terms of permissions, obligations
and other more complex normative relations, based on our previous work
on specifying and modelling open agent societies. We now propose to
apply our existing framework for the management of ad hoc networks,
exploiting the similarities between open agent societies and ad hoc net-
works viewed at the application level. We also discuss the prospects of
modelling ad hoc networks at the physical level in similar terms. We
demonstrate the framework by constructing an executable specification,
in the event calculus, of a common type of protocol concerning one of
the issues that typically needs to be addressed during the life-time of an
ad hoc network, namely the control of access to shared resources.

1 Introduction

Ad Hoc Network (AHN) is a term used to describe a transient association of
mobile nodes which inter-operate largely independently of any fixed support in-
frastructure [15]. An AHN is typically based on wireless technology and may be
short-lived, supporting spontaneous rather than long-term interoperation [16].
Such a network may be formed, for example, by the devices of the participants
in a workshop or project meeting (for sharing and co-authoring documents); by
consumers entering and leaving an 802.11 wireless hot spot covering a shopping
mall (for buying/selling goods C2C-style by matching potential buyers and sell-
ers); or by emergency or disaster relief workers, where the usual static support
infrastructure is unavailable.

An AHN may be visualised as a continuously changing graph [15]: connection
and disconnection may be controlled by the physical proximity of the nodes or,
it could be controlled by the nodes’ continued willingness to cooperate for the
formation, and maintenance, of a cohesive (but potentially transient) community.
An issue that typically needs to be addressed when managing and maintaining
an AHN is that of resource sharing: the participating nodes compete over a set
of limited resources (for example, bandwidth, processor cycles, file storage, and
so on). These resources are controlled by the participants of a network.

189

Further key issues in the management of AHNs are reliability and adaptabil-
ity. The aim of our present research is to investigate to what extent these issues
can be addressed by viewing AHNs as instances of norm-governed systems. We
want to examine this question both at the application level and at the physical
level. At the application level, an AHN can be viewed as an open agent soci-
ety [1-3], that is, a computational (agent) community exhibiting the following
characteristics:

— Members are programmed by different parties — moreover, there is no direct
access to a member’s internal state and so we can only make inferences about
that state.

— Members do not necessarily share a notion of global utility — they may fail
to, or even choose not to, conform to the community specifications in order
to achieve their individual goals.

— The members’ behaviour and interactions cannot be predicted in advance.
In previous work [1-3] we presented a theoretical framework for specifying open
agent societies in terms of concepts stemming from the study of legal and social
systems. The behaviour of the members of an open agent society is regulated
by rules expressing their permissions, obligations and other more complex nor-
mative relations that may exist between them [9]. Software tools enable formal
specifications of these rules to be executed and analysed in various ways. We
propose to use this framework for the management of AHNs. In this paper we
focus on the issue of resource sharing and employ the theoretical framework to
specify a common family of protocols for controlling access to shared resources.

We believe that there may also be value in viewing an AHN as an instance of
a norm-governed system at the physical level. This is because it is possible, even
likely, that system components will fail to behave as they ought to behave — not
from wilfulness or to seek advantage over others but simply because of the inher-
ently transient nature of the AHN. It is therefore meaningful to speak of system
components failing to comply with their obligations, of permitted/forbidden ac-
tions, and even of ‘sanctions’ (though clearly not of ‘punishments’). A secondary
aim of our research is to investigate to what extent the methods we have previ-
ously used to model open agent societies can be applied to this new setting.

The remainder of this paper is divided into three main parts. First, we review
a line of research on resource sharing, namely floor control protocols. Second, we
present a specification of a protocol for resource sharing in norm-governed AHNSs.
The presentation of the protocol specification includes a description of the rele-
vant parts of the theoretical framework mentioned above. Third, we summarise
the presented work and outline directions for future research.

2 Floor Control Protocols

In the fields of Collaborative Multimedia Computing (CMC) and Computer-
Supported Co-operative Work (CSCW), the term floor control denotes a service
guaranteeing that at any given moment only a designated set of users (subjects)

190

may simultaneously work with or on the same objects (shared resources), thus,
creating a temporary exclusivity for access on such resources [4].

“[...F]loor control lets users attain exclusive control over a shared re-
source by being granted the floor, extending the traditional notion as the
“right to speak” [18] to the multimodality of data formats in networked
multimedia systems. We understand floor control as a technology to im-
plement group coordination, but use both terms synonymously in this
paper.” [6, p.18]

An example in the context of AHNs is the document co-authoring application
mentioned in the introduction.

Sharing a resource may be achieved by executing Floor Control Protocols
(FCPs) and Session Control Protocols (SCPs). FCPs prescribe ways for mu-
tually exclusive access to shared resources amongst the subjects. A number of
properties of such protocols have been identified [4,5]: safety (each floor request
is eventually serviced), fairness (no subject ‘starves’, each floor request is ser-
viced based on a common metric), and so on. SCPs prescribe ways for, amongst
other things, joining a FCP (or session), withdrawing from a session, inviting to
join a session, determining the resources to be shared, and determining the policy
of a session, that is, the ways in which a floor may be requested or granted. Ex-
ample policies are chair-designated (an elected participant is the arbiter over the
usage of specific floors), election (participants vote on the next subject holding
the floor), and lottery scheduling (floor assignment operates on a probabilistic
basis).

It is our assumption that the abstractions of floor control and session control
are applicable to the issue of resource sharing in AHNs. Clarifying what ‘being
granted the floor’ or ‘holding the floor’ implies is one of the aims of the formal-
isation presented in later sections. The concept of session control (or conference
management [20]) is applicable to the formation of an AHN, and to the man-
agement and maintenance of such a network in general. In this paper, however,
we will focus on the issue of floor control, assuming that an AHN and a FCP
within that network have already been established. The issue of session control
will be addressed elsewhere.

We will present a specification of a simple chaired Floor Control Proto-
col (¢cFCP). (We apologise for the unfortunate mixed metaphor.) The chair-
designated policy was chosen simply to provide an example of a FCP — we
could have equally chosen an election, or some other policy type. Moreover, we
have intentionally omitted to address several of the design issues set out in the
literature on FCPs (for instance, a protocol should provide mutually exclusive
resource access in ‘real-time’ [4,5]). Our point here is to illustrate that, in settings
in which there is no enforcement of the protocol rules, any protocol specification
for resource sharing (following a chair-designated, lottery scheduling or any other
policy type, stemming from the CSCW, CMC, or any other research field) needs
to express what a participant is permitted to do, obliged to do, and, possibly,
additional normative relations that may exist between them.

191

(@/(f)

(a)

a) request_floor(S;, C)

b) assign_floor(C, S)

<) extend_assignment(C, S)
d) release_floor(S)

e) revoke_floor(C)

f) manipulate_resource(S)

L)/(0)/(e)

resource

(
(
(
(
@ E

(D/(D

Fig. 1. A two-role chaired floor control protocol.

Two factors that characterise a FCP are [6]: (i) the mechanism and node
topology that determine the ways in which floor information (for instance, floor
requests, the status of the floor, and so on) is communicated amongst the par-
ticipants, and (ii) the policy followed in the protocol. Factor (i) is the major
design decision for a group coordination protocol and determines, amongst other
things, which policies are established in a protocol. We adopt a high-level view
of FCPs: we specify the rules prescribing the ways in which a floor is requested
and granted without making any explicit assumptions about the node topology
and distribution of floor information in general.

3 A Protocol for Resource Sharing in Ad Hoc Networks

In this section we present a chaired Floor Control Protocol (cFCP). For sim-
plicity, we present a cFCP specification concerning a single resource, a single
floor (associated with the resource), and a single chair, that is, a distinguished
participant determining which other participant is actually given the floor. In
this setting, the allocation of several resources in an AHN may be performed by
several parallel executions of FCPs (following a chair-designated, election or any
other policy type). Our cFCP specification includes the following roles:

— Subject, the role of designated participants performing the following actions:
request_floor (requesting the floor from the chair), release_floor (releasing
the floor), and manipulate_resource (physically manipulating the resource).
Sometimes we will refer to the subject holding the floor as a ‘holder’.

— Chair, the controller for the floor, that is, the participant performing the fol-
lowing actions: assign_floor (assigning the floor for a particular time period
to a subject), extend_assignment (extending the time holding the floor), and
revoke_floor (revoking the floor from the holder).

The floor can be in one of the following states: (i) granted, denoting that a
subject has exclusive access to the resource (by the chair), or (ii) free, denot-
ing that no subject currently holds the floor. In both cases, the floor may or
may not be requested by a subject (for example, the floor may be granted to

192

subject S’ and requested by subject S” at the same time). We make the follow-
ing comments concerning our cFCP specification. First, there are no time-outs
(deadlines) prescribing when a request should be issued, a floor should be as-
signed, or an assignment should be extended. Second, there is no termination
condition signalling the end of the protocol. There is no particular difficulty
in including timeouts and termination conditions in the formalisation but it
lengthens the presentation and is omitted here for simplicity. See [2,3] for ex-
ample formalisations of deadlines and termination conditions in the context of
protocol specifications.

Figure 1 displays the possible interactions between the entities of a cFCP,
that is, the subjects S, ..., Sy, the chair C, and the resource. The actions of our
protocol specification may be classified into two categories: (i) communicative
actions and, (ii) physical actions. The first category includes the request_floor ac-
tion whereas the second category includes the assign_floor, extend_assignment,
release_floor, revoke_floor, and manipulate_ resource actions®). Consider an ex-
ample in which the shared resource is hard disk space. In this setting, the action
of assigning the floor could be realised as creating an account on the file server
so that the holder can manipulate the resource, that is, store files.

4 An Event Calculus Specification

In previous work we employed two action languages with direct routes to imple-
mentation to express protocol specifications:
1. The C'+ language [8], a formalism with explicit transition systems semantics

(see [3] for C'+ specification of a dispute resolution protocol).

2. The Event Calculus (EC) [12], a formal, intuitive and well-studied action

language (see [2] for an EC specification of a contract-net protocol).
Each formalism has its advantages and disadvantages (see [1, Section 6.12] for
a discussion about the utility of the C'+ language and EC on protocol speci-
fication). In this paper we will use EC mainly because an EC implementation
(in terms of logic programming) has proved to be more efficient than a C+
implementation (in terms of the Causal Calculator, a software tool supporting
computational tasks regarding the C'+ language).

First, we briefly present EC. Second, we specify the social constraints (or
protocol rules) governing the behaviour of the cFCP participants. We maintain
the standard and long established distinction between physical capability, insti-
tutionalised power and permission (see, for instance, [10,13] for illustrations of
this distinction). Accordingly, our specification of social constraints expresses: (i)
the externally observable physical capabilities, (ii) institutional powers, and (iii)
permissions and obligations of the cFCP participants; in addition, it expresses
(iv) the sanctions and enforcement policies that deal with the performance of
forbidden actions and non-compliance with obligations.

3 The following convention is adopted in the figures of this paper: physical actions
are represented by an underlined letter (for example, (b)) whereas communicative
actions are represented with no underlining (for example, (a)).

193

Table 1. Main Predicates of the Event Calculus.

Predicate Meaning
happens(Act, T') Action Act occurs at time T
initially(F' = V) The value of fluent F is V at time 0
holdsAt(F = V, T) The value of fluent F'is V at time T'

initiates(Act, F = V,T) The occurrence of action Act at time T'
initiates a period of time for which
the value of fluent F' is V

terminates(Act, F = V, T) The occurrence of action Act at time T'
(weakly) terminates a period of time
for which the value of fluent F'is V'

4.1 The Event Calculus

The Event Calculus (EC), introduced by Kowalski and Sergot [12], is a formalism
for representing and reasoning about actions or events and their effects. In this
section we briefly describe the version of the EC that we employ. EC is based
on a many-sorted first-order predicate calculus. For the version used here, the
underlying time model is linear and it may include real numbers or integers.
Where F is a fluent (a property that is allowed to have different values at
different points in time) the term F = V denotes that fluent F' has value V.
Boolean fluents are a special case in which the possible values are true and false.
Informally, F' = V holds at a particular time-point if F' = V has been initiated
by an action at some earlier time-point, and not terminated by another action
in the meantime.

An action description in EC includes axioms that define, amongst other
things, the action occurrences (with the use of happens predicates), the effects
of actions (with the use of initiates and terminates predicates), and the values of
the fluents (with the use of initially and holdsAt predicates). Table 1 summarises
the main predicates of EC. Variables (denoted with an upper-case first letter)
are assumed to be universally quantified unless otherwise indicated. Predicates,
function symbols and constants start with a lower-case letter.

The following sections present a logic programming implementation of an EC
action description expressing our cFCP specification. A detailed account of this
action description (including the main axioms of the employed dialect of EC)
can be found at http://www.doc.ic.ac.uk/~aartikis/cfcp.txt.

4.2 Physical Capability

Table 2 displays a number of the fluents of the EC action description expressing
our cFCP specification. The utility of these fluents will be explained during the
presentation of the protocol specification. This section presents the specification
of the externally observable physical capabilities of the cFCP participants. The

194

Table 2. Main Fluents of the cFCP Specification.

Fluent Domain Textual Description
requested (S, T') boolean subject S requested the floor at time T'
status {free, granted(S, T)} the status of the floor: status = free

denotes that the floor is free whereas
status = granted(S, T') denotes that the
floor is granted to subject S until time T

best_candidate agent identifiers the best candidate for the floor
can(Ag, Act) boolean agent Ag is capable of performing Act
pow(Ag, Act) boolean agent Ag is empowered to perform Act
per(Ag, Act) boolean agent Ag is permitted to perform Act
obl(Ag, Act) boolean agent Ag is obliged to perform Act
sanction(Ag) /A the sanctions of agent Ag

Table 3. Physical Capability and Institutional Power in the cFCP.

Action can pow
assign_floor(C, S) status = free -
extend_assignment(C, S) status = granted(S, T') -
revoke_floor (C) status = granted (S, T') -
release_floor(S) status = granted(S, T') -
manipulate_resource(S) status = granted(S, T') -
request_floor(S, C) T —requested (S, T')

second column of Table 3 presents the conditions that, when satisfied, enable the
participants to perform the actions displayed in the first column of this table.
We will refer to these conditions as expressing ‘physical capability’ though the
term ‘practical possibility’ might have been employed instead. (In Table 3, C
represents an agent occupying the role of the chair and S represents an agent
occupying the role of the subject.)

The chair is capable of assigning the floor to a subject if and only if the
floor is free (see Table 3). The performance of such an action always changes the
status of the floor as follows:

initiates(assign_floor(C, S), status = granted(S,T"),T) «—
role_of(C, chair), role_of (S, subject), (1)
holdsAt(status = free,T), (T’ :=T +5)

After assigning the floor to a subject S at time T', the floor is considered granted
until some future time (say T'+5). The first two conditions of axiom (1) refer to

195

the roles of the participants. We assume (in this version) that the participants of
a cFCP do not change roles during the execution of a protocol, and so role_of is
treated as an ordinary predicate and not as a time-varying fluent. Notice that the
practical capability condition is included here as part of the initiates specification.
There are other possible treatments of the practical capability conditions but we
do not have space for discussion of alternative treatments here.

Note also that the chair can assign the floor to a subject that has never
requested it. In some systems, this type of behaviour may be considered ‘unde-
sirable’ or ‘wrong’. Section 4.4 presents how ‘undesirable’ behaviour in the cFCP
is specified by means of the concept of permitted action.

If an assignment concerns a subject that has requested the floor, represented
by the requested fluent (see Table 2), then this request is considered serviced,
that is, the associated requested fluent no longer holds:

initiates(assign_floor(C, S), requested(S,T") = false, T) «—
role_of(C, chair),
holdsAt(status = free,T),
holdsAt(requested(S,T") = true,T)

(2)

The chair can extend the assignment of the floor to a subject S if and only if S
is holding the floor. Moreover, extending the assignment of the floor changes its
status as follows:

initiates(extend_assignment(C, S), status = granted(S,T"),T) «
role.of(C, chair), (3)
holdsAt(status = granted(S,T"),T), (T" :=T' +5)

In other words, if the floor was granted to S until time 7", after the extension
it will be granted until time 77 + 5. Note, again, that the chair is capable of
extending the floor even if the holder has not requested such an extension.

A subject S can release the floor if and only if S is the holder (irrespective
of whether or not the allocated time for the floor has ended). Releasing the floor
changes its status as follows:

initiates(release_floor(S), status = free,T) «

holdsAt(status = granted(S,T"),T) @)

In a similar manner we express when an agent is capable of performing the
remaining physical actions of the protocol as well as the effects of these actions.
In this example cFCP there is only one communicative action, that of re-
questing the floor. We have specified that a subject is always physically capable
of communicating a request for the floor to the chair. For the specification of the
effects of this action, it is important to distinguish between the act of (‘success-
fully’) issuing a request and the act by means of which that request is issued.
Communicating a request for the floor, by means of sending a message of a
particular form via a TCP/IP socket connection, for example, is not necessarily

196

‘successful’, in the sense that the request is eligible to honoured by the chair. It
is only if the request is communicated by an agent with the institutional power
to make the request that it will be ‘successful’. An account of institutional power
is presented in the following section.

4.3 Institutional Power

The term institutional (or ‘institutionalised’) power refers to the characteristic
feature of organisations/institutions — legal, formal, or informal — whereby
designated agents, often when acting in specific roles, are empowered, by the
institution, to create or modify facts of special significance in that institution,
usually by performing a specified kind of act. Searle [21], for example, has distin-
guished between brute facts and institutional facts. Being in physical possession
of an object is an example of a brute fact (it can be observed); being the owner
of that object is an institutional fact.

According to the account given by Jones and Sergot [10], institutional power
can be seen as a special case of a more general phenomenon whereby an action,
or a state of affairs, A — because of the rules and conventions of an institution
— counts, in that institution, as an action or state of affairs B (such as when
sending a letter with a particular form of words counts as making an offer, or
banging the table with a wooden mallet counts as declaring a meeting closed).

In some circumstances it is unnecessary to isolate and name all instances
of the acts by means of which agents exercise their institutional powers. It is
convenient to say, for example, that ‘the subject S requested the floor from the
chair C” and let the context disambiguate whether we mean by this that S per-
formed an action, such as sending a message of a particular form via a TCP/IP
socket connection, by means of which the request for the floor is signalled, or
whether S actually issued a request, in the sense that this request is eligible to
be honoured by C. We disambiguate in these circumstances by attaching the
label ‘valid’ to act descriptions. We say that an action is valid at a point in time
if and only if the agent that performed that action had the institutional power
(or just ‘power’ or ‘was empowered’) to perform it at that point in time. So,
when we say that ‘the subject S requested the floor from the chair C” we mean,
by convention, merely that S signalled its intention to request the floor; this act
did not necessarily constitute the request eligible to be honoured. In order to
say that a request is eligible to be honoured, we say that the action ‘subject S
requested the floor’ was valid: not only did S signal its intention to request the
floor, but also S had the institutional power to make the request. Similarly, in-
valid is used to indicate lack of institutional power: when we say that the action
‘subject S requested the floor’ is invalid we mean that S signalled its intention
to request it but did not have the institutional power to do so at that time (and
so the attempt to make the request eligible to be serviced was not successful).

197

We express the institutional power to request the floor as follows:

holdsAt(pow(S, request_floor(S,C)) = true,T) «—
role_of(C, chair), role_of (S, subject), (5)
holdsAt(requested(S,T") = false,T')

Axiom (5) expresses that a subject S is empowered to request the floor from the
chair C if S has no pending valid requests.

The existence of a valid request is recorded with the use of the requested
fluent:

initiates(request_floor(S, C), requested(S,T) = true,T) « (©)
holdsAt(pow(S, request_floor(S,C)) = true,T)

There is no corresponding fluent for invalid requests.

4.4 Permission and Obligation

Now we specify which of the cFCP acts are permitted or obligatory. Behaviour
which does not comply with the specification is regarded as ‘undesirable’. Such
behaviour is not necessarily wilful. When an AHN member performs a non-
permitted act or fails to perform an obligatory act, it could be deliberate, as
when an agent (at the application level) seeks to gain an unfair advantage, but
it could also be unintentional, and it could even be unavoidable, due to network
conditions outside that member’s control.

The definitions of permitted actions are application-specific. It is worth not-
ing that there is no fixed relationship between powers and permissions. In some
computational societies an agent is permitted to perform an action if that agent
is empowered to perform that action. In general, however, an agent can be em-
powered to perform an action without being permitted to perform it (perhaps
temporarily). The specification of obligations is also application-specific. It is
important, however, to maintain the consistency of the specification of permis-
sions and obligations: an agent should not be forbidden and obliged to perform
the same action at the same time.

Table 4 displays the conditions that, when satisfied, oblige or simply permit
the ¢cFCP participants to perform an action. (In this table, CurrentTime rep-
resents the time that the presented conditions are evaluated.) There are other
possible specifications of permitted and obligatory actions. The presented ones
were chosen simply to provide a concrete illustration of cFCP.

The chair is permitted and obliged to assign the floor to a subject S provided
that: (i) the floor is free, and (ii) S is the best candidate for the floor (see Table
4). The procedure calculating the best candidate for the floor at each point in
time is application-specific. For the sake of this example, the best candidate is
defined to be the one with the earliest (valid) request. In more realistic scenarios
the calculation of the best candidate would consider additional factors such as
how urgent the request is, how many times the requesting subject had the floor

198

Table 4. Permission and Obligation in the cFCP.

Action per obl
assign_floor(C, S) status = free, status = free,
best_candidate = S best_candidate = S
extend_assignment(C, S) status = granted(S, T), status = granted(S, T),
best_candidate = S best_candidate = S
revoke_floor(C') status = granted(S, T'), status = granted(S, T),
CurrentTime > T, CurrentTime > T,
best_candidate # S best_candidate = S,
S £S5
release_floor(.S) T status = granted (S, T),

CurrentTime > T,
best_candidate = S’,

S #£S
manipulate_resource(S) status = granted(S, T), 1
(CurrentTime < T)
request_floor(S, C) T 1

in the past, and so on*. There is no difficulty in formulating such definitions in
the formalism presented here. Indeed, the availability of the full power of logic
programming is one of the main attractions of employing EC as the temporal
formalism.

According to the above specification of permission, when the floor is free the
chair is only permitted to assign it to the best candidate (if any). At the same
time, however, the chair is capable of assigning it to any subject participating
in the cFCP (see Table 3).

The chair is permitted to revoke the floor if: (i) the floor is currently granted
to a subject, (ii) the allocated time for the floor has ended, and (iii) the subject
holding the floor is currently not the best candidate for the floor. Note that the
chair can revoke the floor even if the allocated time for the floor has not ended
or if the subject holding the floor is currently the best candidate for it.

The chair is permitted to revoke the floor (after the allocated time for the
holder has ended) even if there is no subject requesting the floor. If there is a
subject requesting the floor, however, and that subject is the best candidate,
then the chair is not only permitted, but obliged to revoke the floor:

holdsAt(obl(C, revoke_floor(C)) = true,T) «
role_of(C, chair),
holdsAt(status = granted(S,T"),T), (T >T"),
holdsAt(best_candidate = S’,T), (S # S')

(7)

4 The best candidate is picked from the set of subjects having pending (valid) requests,
not from the set of all subjects participating in a cFCP.

199

We have chosen to specify that a subject is always permitted to release the floor,
although releasing the floor is not always physically possible. Alternatively, we
could have specified that the permission to release the floor coincides with the
physical capability to do so.

A subject S is permitted to manipulate the resource if S is holding the floor
and the allocated time for it has not ended. After this time ends, S is forbidden
to manipulate the resource, although still capable of doing so (until the floor
is released or revoked). Permitted or not, S is never obliged to manipulate the
resource. Similarly, a subject is never obliged to request the floor — it is always
permitted, however, to do so.

4.5 Sanctions

Sanctions and enforcement policies are a means of dealing with ‘undesirable’
behaviour. In the cFCP, we want to reduce or eliminate the following types of
‘undesirable’ behaviour:
— the chair extending the assignment of, and revoking the floor when being
forbidden to do so, and
— non-compliance with the obligation to assign, revoke and release the floor.

One possible enforcement strategy is to try to devise additional controls
(physical or institutional) that will force agents to comply with their obligations
or prevent them from performing forbidden actions. When competing for hard
disk space, for example, a forbidden revocation of the floor may be physically
blocked, in the sense that it is not possible to delete the holder’s account on the
file server. The general strategy of designing mechanisms to force compliance
and eliminate non-permitted behaviour is what Jones and Sergot [9] referred to
as regimentation. Regimentation devices have often been employed in order to
eliminate ‘undesirable’ behaviour in computational systems (see, for instance,
interagents [19], controllers [14] and sentinels [11]). It has been argued [9], how-
ever, that regimentation is rarely desirable (it results in a rigid system that may
discourage agents from entering it [17]), and not always practical. Moreover,
even in the case of a full regimentation of permissions and obligations, violations
may still occur (consider, for instance, a faulty regimentation device). For all
of these reasons, we have to allow for sanctioning and not rely exclusively on
regimentation mechanisms.

For the present example, we employ an additive fluent, sanction(Ag), to
express each participant’s sanctions (see Table 2): initially, the value of this
fluent is equal to zero and it is incremented every time a participant exhibits
the type of ‘undesirable’ behaviour mentioned above. Consider the following
example: the chair is sanctioned if it assigns the floor to a subject S while it is
obliged to assign the floor to another subject S’

initiates(assign_floor(C, S), sanction(C) = U',T) «—
role_of (S, subject),
holdsAt(obl(C, assign_floor(C,S")) = true,T), (S # 5'),
holdsAt(sanction(C) = U,T), (U :=U + 1)

(8)

200

According to axiom (8), every time the chair C fails to comply with its obligation
to assign the floor the value of the associated sanction(C') fluent is incremented
by one. Similarly, we update the value of sanction(Ag) when the remaining
participants exhibit ‘undesirable’ behaviour. We would ordinarily also include a
means for decreasing the value of a sanction(Ag) fluent, for instance if Ag has
not performed forbidden (‘undesirable’) actions for a specified period of time.
We have omitted the details for simplicity of the presentation.

One way of discouraging the performance of forbidden actions and non-
compliance with obligations (at the application level) is by penalising this type
of behaviour. We specify the following penalties for the aforementioned sanctions
(the presented specification is but one of the possible approaches, chosen here
merely to provide a concrete illustration). Consider the following example:

holdsAt(pow(S, request_floor(S,C)) = true,T') «
role_of(C, chair), role_of (S, subject),
holdsAt(requested(S,T") = false,T),
holdsAt(sanction(S) = U,T), (U < 5)

(5)

The above formalisation is a modification of the axiom expressing the power to
request the floor (that is, axiom (5)), in the sense that it considers the sanctions
associated with a subject S: when the value of sanction(S) is greater or equal
to five (say) then S is no longer empowered to request the floor. One may argue
that once that happens, S is no longer an ‘effective’ participant of the protocol,
in the sense that S may no longer ‘successfully’ request the floor. It may be the
case, however, that the chair does not abide by the protocol rules and assigns
(and even extends the assignment of) the floor to S, even though S has not
‘successfully’ requested the floor.

We anticipate applications in which agents participate in a Session Control
Protocol (SCP) before taking part in a cFCP in order to acquire a set of roles that
they will occupy while being part of that cFCP. Given the value of sanction(C),
a chair C' may be:

— suspended, that is, C' is temporarily disqualified from acting as a chair in
future cFCPs. More precisely, C' may not ‘effectively’ participate, for a spec-
ified period, in a SCP and, therefore, may not acquire the role of the chair.

— banned, that is, C' is permanently disqualified from acting as a chair.

Being deprived of the role of the chair means, in this example, being deprived of
the permission and, more importantly, the physical capability to assign, extend
the assignment of, and release the floor. Alternatively, a sanctioned chair may
be suspended or banned from acting as a subject in future FCPs (not necessarily
chaired-designated ones), thus, not being able to compete for, and access other
shared resources in an AHN. The axiomatisation of the penalties associated
with a sanctioned chair and a detailed discussion about SCPs in general will be
presented elsewhere (see, however, [2, Section 3.2], [1, Section 4.5]) for a brief
presentation of role-assignment in open agent societies).

At the physical level, where the members of the AHN are network devices,
the question of discouraging ‘undesirable’ behaviour or imposing penalties clearly

201

(d\(g)

(@) request_floor(S, C)

(b) assign_floor(C, S)

(c) extend_assignment(C, S)

(d) release_floor(S)

(e) revoke_floor(C)

(f) manipulate_resource(FCS, M)

(9) request_to_manipulate(S;, M, FCS')

(b)\e)\e)

(2)\(d)
(@)

resource

Fig. 2. A three-role chaired floor control protocol.

(d)\(9)

does not arise. There is a possible role for ‘sanctions’, nevertheless. In the present
example, the value of the sanction(Ag) fluent can be seen as a measure of Ag’s
reliability. When the value of that fluent passes the specified threshold, floor
assigning capabilities (say) may be suspended (and usually passed to another
network member) not as a ‘punishment’ but as a way of adapting the network
organisation. To what extent this view gives useful insights in practice is a topic
of our current research.

5 A Few Notes on cFCP

In the FCP literature, a cFCP usually includes a third role, that of the Floor
Control Server (FCS) [20]. Figure 2 displays the possible interactions between
the entities of a three-role cFCP. In such a setting, only the FCS can physically
manipulate the resource. A subject holding the floor may only request from the
FCS to manipulate the resource, describing the type of manipulation M — it
is up to the FCS whether this request will be honoured or not. The chair still
assigns, extends the assignment of, and revokes the floor. These actions, however,
are now communicative ones, they are multi-casted to the holder and the FCS.
Similarly, releasing the floor is now a communicative action, multi-casted to the
chair and the FCS.

In order to illustrate the difference between the two-role and three-role cFCP,
we outline the physical capabilities and institutional powers associated with a
holder in each setting. In a two-role cFCP, a holder S has the physical capability
to manipulate the shared resource. In a three-role cFCP, a holder S has the
institutional power to request (from the FCS) to manipulate the shared resource.
Unlike the two-role setting, in a three-role cFCP a holder may not succeed in
manipulating the shared resource (for example, if the FCS disregards S’s valid
requests for manipulation of the resource, thus, not complying with the protocol
rules). Developing a complete specification of a three-role cFCP and comparing
that with a specification of a two-role cFCP is left for future research.

202

6 Discussion

We have presented a specification of a simple protocol for resource sharing
in norm-governed AHNs that exhibits a clear distinction between institutional
power, permission, physical capability and sanction. We have employed a formal-
ism (EC) to provide a declarative representation of these concepts. The protocol
specification is expressed as a logic program and is therefore directly executable
providing a clear route to (prototype) implementations. In previous work [2]
we presented ways of executing an EC action description expressing a protocol
specification. The cFCP executable specification may inform the participants’
decision-making at run-time, for example, by allowing the powers, permissions,
obligations, and sanctions current at any time to be determined. Moreover, be-
fore the commencement of the run-time activities, agents (and their designers)
may execute the protocol specification in order to decide whether or not they
will participate (deploy their agents) in the protocol.

Sadighi and Sergot [7] argue that when dealing with access control in het-
erogeneous computational systems without centralised enforcement of the social
constraints (such as AHNSs), the concepts of permission and prohibition are inad-
equate and need to be extended with that of entitlement: “entitlement to access
a resource means not only that the access is permitted but also that the con-
troller of the resource is obliged to grant the access when it is requested” [7]. We
are currently working towards a treatment of this and related senses of ‘entitle-
ment’ as they arise in the context of our cFCP specification. More precisely, we
are identifying the conditions in which a subject holding the floor can be said
to be ‘entitled’ to it, and what the consequences are, and the circumstances in
which it is meaningful to say that a subject not holding the floor is ‘entitled’/not
‘entitled’ to it, and what the consequences are.

There are two further directions for future work. The first direction is to
define and prove various properties of our protocol specification. We want to be
able to prove, for instance, that a protocol specification is ‘safe’ and ‘fair’ (see
Section 2), that no agent is forbidden and obliged to perform an action at the
same time, non-compliance with the obligation to assign the floor always leads
to a sanction, and so on (see [3] for a way to prove properties of a protocol
specification). The second direction is to formalise session control protocols,
taking place in conjunction with floor control protocols.

Acknowledgements

This work has been supported by the EPSRC project ‘Theory and Technology
of Norm-Governed Self-Organising Networks” (GR/S74911/01).

References

1. A. Artikis. FExecutable Specification of Open Norm-Governed Computational Sys-
tems. PhD thesis, University of London, November 2003. http://www.doc.ic.ac.
uk/~aartikis/publications/artikis-phd.pdf.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

203

A. Artikis, J. Pitt, and M. Sergot. Animated specifications of computational soci-
eties. In Proceedings of AAMAS, pages 1053-1062. ACM Press, 2002.

A. Artikis, M. Sergot, and J. Pitt. An executable specification of an argumentation
protocol. In Proceedings of ICAIL, pages 1-11. ACM Press, 2003.

H.-P. Dommel and J. J. Garcia-Luna-Aceves. Design issues for floor control pro-
tocols. In Proceedings of Symposium on Electronic Imaging: Multimedia and Net-
working, volume 2417, pages 305-316. IS&T/SPIE, 1995.

H.-P. Dommel and J. J. Garcia-Luna-Aceves. Floor control for multimedia confer-
encing and collaboration. Multimedia Systems, 5(1):23-38, 1997.

H.-P. Dommel and J. J. Garcia-Luna-Aceves. Efficacy of floor control protocols
in distributed multimedia collaboration. Cluster Computing Journal, Special issue
on Multimedia Collaborative Environments, 2(1):17-33, 1999.

B. Firozabadi and M. Sergot. Contractual access control. In Proceedings of Work-
shop on Security Protocols, 2002.

E. Giunchiglia, J. Lee, V. Lifschitz, N. McCain, and H. Turner. Nonmonotonic
causal theories. Artificial Intelligence, 153(1-2):49-104, 2004.

A. Jones and M. Sergot. On the characterisation of law and computer systems: the
normative systems perspective. In Deontic Logic in Computer Science: Normative
System Specification, pages 275-307. J. Wiley and Sons, 1993.

A. Jones and M. Sergot. A formal characterisation of institutionalised power.
Journal of the IGPL, 4(3):429-445, 1996.

M. Klein, J. Rodriguez-Aguilar, and C. Dellarocas. Using domain-independent
exception handling services to enable robust open multi-agent systems: the case of
agent death. Journal of AAMAS, 7(1-2), 2003.

R. Kowalski and M. Sergot. A logic-based calculus of events. New Generation
Computing, 4(1):67-96, 1986.

D. Makinson. On the formal representation of rights relations. Journal of Philo-
sophical Logic, 15:403-425, 1986.

N. Minsky and V. Ungureanu. Law-governed interaction: a coordination and con-
trol mechanism for heterogeneous distributed systems. ACM Transactions on Soft-
ware Engineering and Methodology (TOSEM), 9(3):273-305, 2000.

A. Murphy, G.-C. Roman, and G. Varghese. An exercise in formal reasoning about
mobile communications. In Proceedings of Workshop on Software Specification and
Design, pages 25—-33. IEEE Computer Society, 1998.

C. Perkins. Ad Hoc Networking, chapter 1. Addison Wesley Professional, 2001.
H. Prakken. Formalising Robert’s rules of order. Technical Report 12, GMD —
German National Research Center for Information Technology, 1998.

H. Robert. Robert’s Rules of Order: The Standard Guide to Parliamentary Proce-
dure. Bantam Books, 1986.

J. Rodriguez-Aguilar, F. Martin, P. Noriega, P. Garcia, and C. Sierra. Towards
a test-bed for trading agents in electronic auction markets. AI Communications,
11(1):5-19, 1998.

H. Schulzrinne. Requirements for floor control protocol. Internet Engi-
neering Task Force, January 2004. http://wuw.ietf.org/internet-drafts/
draft-ietf-xcon-floor-control-req-00.txt.

J. Searle. What is a speech act? In A. Martinich, editor, Philosophy of Language,
pages 130-140. Oxford University Press, third edition, 1996.

204

A Paraconsistent Approach for Offer Evaluation
in Multiagent Negotiation

Fabiano M. Hasegawa, Braulio C. Avila and Marcos A. H. Shmeil

Pontifical Catholic University of Parand — PUCPR, Brazil
{fmitsuo, avila, shm@ppgia.pucpr.br

Abstract. This paper presents a Paraconsistent Approach based on a
heuristic of multi-valued decrement list followed by formalization into
Evidential Paraconsistent Logic to evaluate offers in a negotiation ses-
sion. The mission of an organization stands for its goals and also leads
corrections likely to occur in the posture adopted by the organization
before the society. In order to fulfill the goals of the organization, this
one needs to interact with other components of the society. Within an or-
ganization each individual responsible for the sale and purchase of either
commodities or services detains knowledge concerning possible values of
the criteria used to represent a determined commodity or service which
may be either offered or accepted in a negotiation. So, a offer may be seen
as an inconsistency aroused between the previous individual knowledge
of the negotiator and the incoming offer. When compared to the Utility
Value Approach, the Paraconsistent one converges toward the negotiation
ending with fewer interactions.

1 Introduction

Within an organization, each individual responsible for the sale and purchase
of commodities or services detains knowledge concerning possible values of the
criteria used to represent a determined commodity or service which may be either
offered or accepted in a negotiation. This knowledge is part of the organizational
knowledge that stands for the “truth” about the world, the world from the
organization’s point of view. In a negotiation, an offer may arouse a conflict
with the previous individual knowledge of the negotiator. This conflict may be
seen as an intra-case inconsistency [1]. In the intra-case inconsistency the case
which is stored in a base arouses contradiction with the previous knowledge of
such case.

This work describes a new approach based on a multi-valued decrement list
heuristic followed by formalization into Evidential Paraconsistent Logic (EPL)
[2,3] to evaluate offers in a negotiation. The EPL is used to represent the rules
and offers that describe how consistent the offer is according to the individual
knowledge of the negotiator. If an offer is consistent and is “true” for the ne-
gotiator, it is then accepted. The ARTOR — ARTificial ORganizations [4] —
is a Multiagent System (MAS) which simulates the partnership of organizations

205

— each organization owns agents responsible for the operations of purchasing
and selling either commodities or services. Within this MAS a new approach is
undertaken by the supply executor agent and by the selection executor agent
which are, respectively, responsible for the operations of purchase and sale.

Section 2 presents how a negotiation using the Utility Value Approach is
achieved in the ARTOR. In section 3 the Paraconsistent Approach is detailed
and explained. Section 4 presents the results of tests as well as the comparison
between the Paraconsistent Approach and the Utility Value Approach. Finally,
in section 5 some conclusions are inferred.

2 Negotiation in ARTOR

The ARTOR provides an environment which simulates a society of artificial orga-
nizations by accounting for both the intra-organizational and inter-organizational
dimensions [4]. Each organization is composed of three classes of agents: the cover
agent which stands for the organization, the administrator agent responsible for
planning and coordination and the ezecutor agent responsible for operational
tasks. Another important component of the society is the mewsstand, a pub-
lic blackboard known by every organization. The newsstand is used for news
exchanging — about business — among organizations.

2.1 Offer Evaluation

In the ARTOR, the commodity or service the organization is willing to sell is
represented by a Criteria List (CL) [4]. The CL composed of Selection Criteria
(SC) which determines the dimensions used to describe and assess the commod-
ity or service. The CL is defined by!:

CLproductl(Sclv SCZ; teey SCn)

each SC; is the tuple SC;(Id;, Vd;, Tp;,Va;, Pr;, Sm;), where:

Id;: is the identification of the SC;

Vd;: is the value that satisfies the executor agent;

— T'p;: contains information about the type of value. Represented by (Tv; :
TUn; : Un;), where:

e T;: indicates the attribute domain which belongs to the set {discreet, continuous};
e TUn;: type of value which may be {unit, real, date};
e Uny;: is the value of a unit. For instance, 30 for a unit of the date type.

— Va;: is represented by the ordered pair (Vac;, Fed;), where:

e Vac;: is a list of valid values for SC; if Tv;, = discreet. If Tv; =
continuous then Va; will be the ordered pair (Min, Max), where Min
is the minimum value for the SC; and Max maximum one;

e Fed; € {left,right,none}, where:

! This representation of the CL was modified to bear continuous values.

206

x left: the values that better satisfy are on the left of Vd;;
x right: the values that better satisfy are on the right of Vd;;
* none: any value satisfy.
— Pr;: utility of the SC; for organization;
— Sm;: stands for the status of the SC according to the instantiation of the
value, where:
e grounded: the first offer using the SC; will be made with a value;
o free: the first bid using the SC; will be made without a value.

The agents responsible for the negotiation use a Possibility Space (PS) —
defined from a CL which contains the possible values for each SC — to evaluate
and to create offers. A PS is defined by:

PSeCL = DSCl X Dsci X ... X DSC,,L

The PS may be represented by Table 1

Size Model Color |Price/Payment Term|Quantity
Satisfy More 5 120 80
Satisfy m, g|sport, regular|blue, black| 10 90 65
Satisfy less 30 0 50

Table 1. Example of Possibility Space.

Each SC has a weight according to its utility for the organization — a type
of SC may be more important than other. The utility, in Economics, is an an-
alytical concept which represents a subjective pleasure, the advantage or the
satisfaction derived from the consumption of commodities, and explains how
consumers divide their limited resources among the commodities consumed [5].

The offer utility value is used to assess the offer and according to the result
it will be either accepted or not. The offer utility value is defined by the sum of
all utility values of the dimension instances of the CL:

of fer_utility = Zzzo instance_utility;.
The instance utility value is obtained as follows:
instance_utility = (Pr; x relative_instance_value)

The relative instance value for a continuous SC'is the relative position of
the value in the domain of values Vaci of the SC;. If the relative instance value
is positioned on the side that better satisfies — the side indicated by Fed; in
relation to the value that satisfies Vd; — the relative value will be positive,
otherwise it will be negative. The relative instance value of a discreet value will
be 1 if it exists in the domain of the values Vac;, otherwise the relative value
will be —1.

207

3 Offer Evaluation through the Paraconsistent Approach

The Paralog_e [7, 8] is an interpreter of EPL based on Annotated Paraconsistent
Logic [2,3,9]. The EPL is infinitely valued and its truth values belong to the
lattice 7 = (|7, <), where:

| ={pl eRO<z <1} x {p2e R0 <z <1}

In the EPL a preposition p owns two annotated values p : [ul,u2]. The
annotated value 1 is the favorable evidence to p and the value p2 is the contrary
evidence to p — Figure 1.

T
pi(ul, n2)
T =(1, 1) = inconsitent
f =0, 1) = false
f t t =(1,0) = true
L =(0, 0) = ideterminate
1

Fig. 1. Example of lattice with resolution four.

It is possible to obtain from the [u1, 42] the Contradiction Degree (CtD) and
the Certainty Degree (CD) in which the preposition lies [2]. The CtD stands for
the distance between the inconsistent (T) and the undetermined () truth values.
The CD stands for the distance between the true (v) and the false (f) truth
values.

In the paraconsistent approach the PS is a little different? from the PS pre-
sented in the previous session. Now each SC; is the tuple C'S;(Id;, Tp;, Va;, Pr;, Sm;),
where:

— Id;: is the identification of the SCj;
— T'p;: contains information about the type of value. Represented by (Tv; :
TUn; : Un;), where:
e Tv;: indicates the domain of the value that belongs to the set {discreet, continuos};
e TUn;: is the type of value that may be {unit, real, date};
e Un,;: is the value of a unit. For instance 30 for a unit of the date type.

2 Due to the use of the EPL it is not necessary to use a reference value that indicates
the satisfaction point to assess a SC. The evidential values associated to the SC
indicate the negotiator?s satisfaction in relation to the instance value of this SC.

208

— Va;: if Tv; = discreet then Va; will contain a list of valid values for the SC;.
If Tv; = continuous then Va; will be the ordered pair (S_less,S_more),
where S_less is the value that less satisfies and S_more is the value that
more satisfies;

— Pry: utility of the SC;;

— Sm;: stands for the status of the SC according to the instance value, where:

o grounded: the first bid using the SC; will be made with a value;
e free: the first bid using the SC; will be made without a value.

3.1 Paraconsistent Approach Architecture

The offer evaluatin by using the Paraconsistent Approach — see Figure 2 —
begins when an offer is received by the agent executing the selection. First the
offer is translated into facts that use the representation formalism of the EPL
— Subsection 3.2. After this operation the rules of evaluation are created —
Subsection 3.2 — having as a basis the facts. So it is obtained as output a text
file that contains the facts that represent the offer and the rules of evaluation.
The text file is loaded in the Paralog_e and a query of the rules is made. The
outcome of this query is the favorable evidence (u1) and the contrary evidence
(12) in relation to the offer. The CD and the CtD are obtained from [ul, 2]
and they are converted into discrete values by the algorithm Para-Analyzer —
Subsection 3.3 — into resulting logical status. The resulting logical status is
used to assess the offer. If the resulting logical status is ¢t so the offer is accepted.
Otherwise, a decrement value is chosen according to the resulting logical status
and used in the creation of a counter-offer.

3.2 Translating Offers to the EPL Representation Formalism

In the ARTOR, the offer contained in a message of negotiation is a list composed
of ordered pair (SC;D, SCyalue). For instance:

[[color, black], [price, 5], [payment_term, 0], [quantity, 80]]

The paraconsistent_mapping module is responsible for translating the SC’s of
an offer into evidential facts. It is also responsible for creating the rules that will
evaluate the offer. The value of a SC is mapped into evidential values [ul, u2]
according to the organization PS and the restrictions?.

If the SC belongs to a discrete domain then the SC instance value is mapped

into evidential values as follows:

— SC_IDValue) : [1,0] if Value € Va;
— SC_IDValue) : [0,0] if Value ¢ Va;
— SC_ID(Value) : [0,1] if the value fits a restriction for the SC.

3 The restrictions indicate, for a determined SC, which values are not accepted. The
restriction may be applied to bigger, smaller or equal values to a determined value.

209

Offer

Offer translation and
rules and fact file
creation

Rules and facts in
the EPL representation

formalism
Evaluation Rule
Quer:
Rules and facts — Y Rule query
-
temporary text file ParalogE creation
ul and p2
Offer
Para—Analyser CD and CtD CD and CtD
algorithm Calculation
Resulting
logical status
Accept offer Counter offer Counter offer
——

or

generation
Choose decrement value

Decrement
value

Fig. 2. Offer evaluation architecture through Paraconsistent Approach.

If the SC belongs to the continuous domain then the SC instance value is
mapped into evidential values as follows:

— SC_ID(Value) : [ul, u2] is equal to e, where e € E (e = [ul, u2]) according
to the index k obtained by the function P(x);

— SC_IDValue) : [1,0] if S_less < S_more and Value > S_less and Value >
S_more;

— SC_IDValue) : [0,1] if S_less < S_more and Value < S_less and Value <
S_more;

— SC_ID(Value) : [1,0] if S_less > S_more and Value < S_less and Value <
S_more;

— SC_ID(Value) : [0,1] if S_less > S_more and Value > S_less and Value >
S_more;

— SC_ID(Value) : [0,1] if the value fits a restriction for the SC.

The function P(z) returns the index k which is associated to the element e
(e = [ul, u2]) — belonging to the set E — which corresponds to the evidential
values, of the instance value, in relation to the PS contained in the individual
knowledge base of the negotiator agent. The function P(z) is defined by:

210

— P(z) = -1if x < S.less;
— P(z) =0if z = S less;
- Pla)= @ X (Value_S"/Céfs_less) if:

Vvd
less < x < S_more;
less > x > S_more.
=10 if z > S_more.

— Pz

The evidential values contained in the set E were created through an id-
iosyncratic heuristic. The set E used in this work corresponds to E = {—1—0:
1,0-0:0,1—0.1:0.0,2—0.2:0.8,3—0.3:0.7,4—0.4: 0.6,5—0.5 : 0.5,6—0.6 :
04,7-0.7:0.3,8—-0.8:0.2,9—-0.9:0.1,10—1: 0}.

The offer evaluation in the Paraconsistent Approach uses a set of rules which
are composed of the facts that represent the SC’s of an offer. As in the facts, a rule
represented on the formalism of the LPF also owns associated evidential values.
The facts are grouped in the rules according to their utility for the organization.
Three zones of utility that group the facts were defined, and are defined by the
utility_zone/2 predicate:

utility_zone(high, [10, 9, 8]).
utility_zone(mid, [7, 6, 5]).
utility_zone(low, [4, 3, 2, 1]).

Thus, the respect for the utility of the facts is guaranteed. For instance, a fact
that represents a SC with low utility and fulfills perfectly what the organizations
seeks, will not have much influence on the offer acceptance.

After grouping of the facts in the rules, the evidential values of the rules are
obtained in a similar manner to the one used to find the evidential values of
the facts. The rule_evidences/2 predicate represents all possible combinations
of evidential values that may be used in the rules:

rule_evidences(Utl, L).

There are ten rule_evidences/2 predicates and each one corresponds to a
utility (Utl)* associated to a set L, which contains the evidential values® to be
mapped into a rule. The set L, used for the mapping of a determined rule, will
be chosen according to the SC of bigger utility. Because, the SC of bigger utility
dominates the other SC’s which compose the rule.

Once the set L — associated to a utility — was chosen, the rule will take
the evidential values indicated by the element [(I = [p1, p2]) of the set L. The
element [is found through the index j (0 < i < 10) through the function R(z):

__ 10 n
R(z) = § x (im0 Evly)
4 In this work it was assumed that the minimum utility is 1 and the maximum one is
10.
5 The values of the evidential values contained in the set L were also created from a
idiosyncratic heuristic.

211

In R(z), N indicates the quantity of facts the rule owns, and Fvl; is the
favorable evidence of each fact belonging to this rule.

The output of the paraconsistent_mapping module is a temporary text file®
which contains the SC’s of an offer and the respective evaluation rules.

3.3 Offer Evaluation Through the Para-Analyzer Algorithm

The offer evaluation is made by the Para-analyzer algorithm [2], the Para-
analyzer algorithm input is the Ctd and the CD — see Section 3 — and the
output is a logical status. It is possible to define a lattice with more logical
statuses than the basic set — | 7 |= {T,t, f, L}. The more logical statuses the
greater the precision in the analysis of the CtD and of the CD. This work uses
a lattice with 12 logical statuses — Figure 3.

Contradiction Degree

+17
T
T=>f|T—>t
e
‘ f A>T AT t E
I 1 I T =
-1 Af—> L At—> L +1jQ
US‘
1>t] 1> °
1
-

Fig. 3. Lattice with 12 logical status represented in the CtD and CD graphic.

Where:

T: inconsistent;

— T — t: inconsistent toward truth;

T — f: inconsistent toward false;

— t: truth;

At — T: almost truth toward inconsistent;
— At — L: almost truth toward indeterminate;

6 Every time the negotiator agent receives an offer the file is erased.

212

— f: false;

— Af — T: almost false toward inconsistent;
— Af — L: almost false toward indeterminate;
— 1: indeterminate;

— 1 — t: indeterminate toward truth;

1 — f: indeterminate toward false;

The Para-Analyzer algorithm achieves a discretization of the CtD and of the
CD interpolating them in the lattice and the convergence point is the resulting
logical status. The sensibility of extreme values may be regulated by using the
control limits — see Figure 4. There are four limit values:

— Sccv: Superior Certainly Control Value limits the CD next to the truth;

— Iccv: Inferior Certainly Control Value limits the CD next to the false;

— Sctev: Superior Contradiction Control Value limits the CtD next to the in-
consistent;

— Ictcv: Inferior Contradiction Control Value limits the CtD next to the inde-
terminate;

Contradiction Degree

+17
L Sctev=0.5
1%
[}
(s}
<
I a
=)
& E
| | | | a
I 1 I 1 <
Y] v}
-1 a 0 +1 &
[=
1 8
>
|93
=2
Ictev=-0.5 |
_H

Fig. 4. Example of Control limits set to 0.5 represented in the CtD and CD graphic.

In this work the value used for the Sccv was 0.6, and for the other superior and
inferior limits 0.5 and —0.5, respectively. According to tests, the increase of the
Scev corresponds to an increase of the minimum utility so that the organization
accepts the offer. The increase of the Iccv corresponds to a decrement in the
relaxation when an organization offer anew.

213

Each resulting logical status may be used to generate either simple or complex
actions in the agent. In this piece of work the resulting logical status determines
the decrement value which will be used to generate a new offer or counter-offer.
The closer a resulting logical status of an offer is to the state ¢ the smaller the
decrement to be used in the counter-offer will be.

4 Results From Tests

The scenario used in the tests describes an organization that wishes to buy a
determined product in the market. To achieve it the organization broadcasts an
announcement urging the society and all organizations interested in providing
such a product to contact and begin negotiations. There are two situations that
were approached in the tests:

— An organization responds to the announcement;
— Two organizations respond to the announcement.

In the situations presented above, both offer evaluation approaches were used
for the organization that wishes to buy the product as well as for the supplier
ones — see Table 2.

Consumer Org.|Supplier Org. 1|Supplier Org. 2

Utility Value Utility Value —

Utility Value Paraconsistent —
Paraconsistent Utility Value —
Paraconsistent Paraconsistent —

Utility Value Paraconsistent Utility Value
Paraconsistent | Paraconsistent Utility Value

Table 2. Use of the approaches in possible situations of the scenario used in the tests.

The values” contained in the PS’s of the organizations were the same ones
used in both approaches. The Consumer organization (CO) uses the values pre-
sented in Table 3 while the Supplier organizations (SO) use the values present
in Table 4.

According to the strategy used, the initial offer made by the CO is the maxi-
mization of the continuous values contained in its PS — see Table 5. For discrete
values the choice is at random, once any value of the set satisfies the CO.

In the tests, the negotiation session was limited to a number of 50 interac-
tions. If at the end of a session a SO does not make an offer that the CO accepts,
so the negotiation is closed without winners.

" For SC’s that belong to the continuous domain, the first value corresponds to the
value that satisfies less and the second value corresponds to the value that satisfies
more.

CS Possible Values|Priority

Size {M, L} 1
Model {sport, regular} 1
Color {blue, black} 1
Price {5,30} 10

Payment Term {0,120}

Quantity

7
{50, 80} 1

Table 3. Values used in the EP of the CO.

CS Possible Values|Priority
Size {S, M} 4
Model {sport, regular} 4
Color {blue, black} 4
Price {5,40} 5
Payment Term {0,120} 5
Quantity {50,80} 10

Table 4. Values used in the EP of the SO’s.

CS Value
Size M
Model sport
Color blue
Price 5
Payment Term| 120
Quantity 80

Table 5. Values used in the initial offer made by the CO.

214

215

4.1 Scenario with two Organizations that Use the Same Offer
Evaluation approach

The values of decrement used in the tests with the Utility Value Approach are
5, 10 and 15%. In the tests all the combinations of organizations and values of
decrement were used. In the first tests the CO sets the decrement and the SO
assumes a different decrement at each negotiation session — see Tables 6, 7 and
8. The approach used in the tests is the utility value one.

CO|SO|Interactions|Utility| Result Accepted Offer

515 23 -4 |contracted| [m, sport, blue, 6, 120, 52]
5110 12 -9 |contracted|[m, sport, blacko, 8, 120, 56]
5115 24 -28 |contracted| [m, sport, blue, 10, 120, 56]

Table 6. Results of negotiation between the CO with decrement value set at 5 and
the SO with several decrement values, both using the Utiliti Value Approach.

CO|SO|Interactions|Utility| Result Accepted Offer

10| 5 24 -5 |contracted| [m, sport, black, 6, 120, 52]
10 |10 16 -8 |contracted| [m, sport, blue, 8, 120, 56]
10|15 32 -29 |contracted|[m, sport, black, 10, 120, 56]

Table 7. Results of negotiation between the CO with decrement value set at 10 and
the SO with several decrement values, both using the Utiliti Value Approach.

CO|SO|Interactions|Utility| Result Accepted Offer

15| 5 21 -5 |contracted|[m, sport, black, 6, 120, 52]
15|10 14 -8 |contracted| [m, sport, blue, 8, 120, 56]
15|15 28 -27 |contracted|[m, sport, blue, 10, 120, 56]

Table 8. Results of negotiation between the CO with decrement value set at 15 and
the SO with several decrement values, both using the Utiliti Value Approach.

In the Paraconsistent Approach the decrement values used were 2—10, 5—15,
4—20°. Similarly to the tests carried out for the value approach, the CO sets the

decrement values in each test while the C'O uses each of the decrement values in
the tests — see Tables 9, 10 e 11.

8 The values are idiosyncratic

® Where, 2—10 = {2,4,6,8,10}, 5—15 = {5,7,10, 13,15} and 4—20 = {4, 8,12, 16, 20}.

216

CO| SO |Interactions|CD| Result Accepted Offer
2-10(2-10 12 0.6 |contracted|[m, sporte, blue, 11, 120, 56]
2-10(5-15 7 0.7 |contracted|[m, regular, blue, 8, 120, 56]
2-10{4-20 5 0.8 |contracted| [m, sport, blue, 8, 120, 64]

Table 9. Results of negotiation between the CO with decrement value ranging 2—10and
the SO with several decrement values, both using the Paraconsistent Approach.

CO| SO |Interactions|CD| Result Accepted Offer
5-15|2-10 11 0.6 |contracted|[m, regular, black, 11, 120, 56]
5-15|5-15 7 0.7 |contracted| [m, sport, blue, 8, 120, 56]
5-15(4-20 5 0.8 |contracted| [m, regular, black, 8, 120, 64]

Table 10. Results of negotiation between the CO with decrement value ranging 5— 15
and the SO with several decrement values, both using the Paraconsistent Approach.

4.2 Scenario with two Organizations that used Different Approaches
for Offer Evaluation

In the first part of the tests the CO uses the Utility Value Approach while the
SO uses the Paraconsistent one — see Tables 12, 13 e 14.

In this part of the tests the C'O uses the Paraconsistent Approach while the
SO uses the utility value one — see Tables 15, 16 e 17.

4.3 Scenario with Three Organizations

For this scenario the decrement values used by the CO and SO?%s were chosen
through the analysis of the results of previous negotiation sessions'® — see Sec-
tions 4.1 and 4.2. The decrement value of the C'O chosen for the value approach
was 5 and for the paraconsistent one 5 — 15, because the latter presents a better
gain — see Tables 6, 7 and 8 — in relation to price and term for payment that
have the two highest utilities for the CO — see Tables 3. For the SO (SOU)
which uses the valuated approach the decrement value chosen was 15, and for
the SO (SOP) which uses the paraconsistent approach the range of values was

10 The same PS was used for both SO’s

CO| SO |Interactions| CD| Result Accepted Offer

4-20(2-10 10 0.6 |contracted|[m, sport, blue, 11, 120, 56
4-20|5-15 7 0.7 |contracted |[m, sport, black, 8, 120, 56
4-20|4-20 5 0.8 |contracted|[m, sport, black, 8, 120, 64]

Table 11. Results of negotiation between the C'O with decrement value ranging 4 — 20
and the SO with several decrement values, both using the Paraconsistent Approach.

217

CO| SO |Interactions|Utility| Result Accepted Offer

5 12-10 13 -18 |contracted|[m, sport, blue, 9, 120, 56
5 [5-15 12 -8 |contracted|[m, sport, blue, 8, 120, 56
5 14-20 8 44 |contracted|[m, sport, blue, 6, 120, 64

Table 12. Results of negotiation between the CO with decrement value set at 5 and
the SO with several decrement values.

CO| SO |Interactions|Utility| Result Accepted Offer

10 |2-10 16 12 |contracted| [m, sport, blue, 6, 120, 56]
10 |5-15 8 2 |contracted|[m, regular, black, 7, 120, 56|
10 |4-20 7 45 |contracted| [m, regular, blue, 6, 120, 64]

Table 13. Results of negotiation between the CO with decrement value set at 10 and
the SO with several decrement values.

CO| SO |Interactions|Utility| Result Accepted Offer

15 |2-10 14 23 |contracted|[m, regular, blue, 5, 120, 56]
15 |5-15 21 -19 |contracted| [m, sport, black, 9, 120, 56]
15 |4-20 6 53 |contracted| [m, sport, black, 5, 120, 64]

Table 14. Results of negotiation between the C'O with decrement value set at 15 and
the SO with several decrement values.

CO |SO|Interactions| CD| Result Accepted Offer

2-10| 5 16 0.6 |contracted| [m, sporte, blue, 10, 120, 52
2-10| 10 9 0.7 |contracted| [m, sporte, black, 8, 120, 56
2-10| 15 6 0.6 |contracted|[m, sporte, black, 10, 120, 56]

Table 15. Results of negotiation between the C'O with decrement value ranging 2 — 10
and the SO with several decrement values.

CO |SO|Interactions| CD| Result Accepted Offer

5-15| 5 16 0.6 |contracted| [m, sport, blue, 10, 120, 52]
5-15| 10 9 0.7 |contracted| [m, sport, black, 8, 120, 56]
5-15[15 6 0.6 |contracted|[m, regular, blue, 10, 120, 56]

Table 16. Results of negotiation between the CO with decrement value ranging 5— 15
and the SO with several decrement values.

CO |SO|Interactions| CD| Result Accepted Offer

4-20| 5 16 0.6 |contracted|[m, regular, blue, 10, 120, 52]
4-20(10 9 0.7 |contracted| [m, sport, blue, 8, 120, 56]

4-20(15 6 0.6 |contracted| [m, sport, blue, 10, 120, 56]

Table 17. Results of negotiation between the C'O with decrement value ranging 4 — 20
and the SO with several decrement values.

218

4 — 20. Both values of the SO%s present — see Tables 6, 7 and 8 — a gain in
quantity which is the SC the one which has more utility — see Table 4 — for
these organizations. The Table 18 presents the results of this scenario.

CO |SOP|SOU|Interactions| Utility/ CD|Winner Accepted Offer
5 |4-20(15 8 44 SOP |[m, sport, blue, 6, 120, 64
5-15(4-20| 15 5 0.8 SOP |[m, sport, blue, 8, 120, 64

Table 18. Results of negotiation between the CO and SOP and SOU.

5 Conclusions

The Paraconsistent Approach converges toward the end of negotiation with fewer
interactions when compared to the value approach — see Table 18. Due to the
very nature of a negotiation, it is impossible to infer that the result obtained was
the best one. In the tests carried out one could observe that the selection agent
that used the Utility Value Approach obtained a bigger utility for itself when
it negotiated with a supplier agent that used the same approach — see Table
6. However, the same agent obtained an even better result when it negotiated
with a supplier agent that used the Paraconsistent Approach — see Table 12, in
this case both organizations succeeded because the negotiation was ended with
fewer interactions and both the C'O and SO reached the best utility in the last
offer, the same happens when both agents uses the Paraconsistent Approach —
see Table 18.

The use of the EFPL in this work is due to the formalism representation offered
to the problem. The gain in the approach is due to the use of a list of decrements
instead of a set one. The ELP allows that the list of decrements to be used in
a suitable manner, according to a logical interpretation. The EPL provides an
interpretation which is closer to the one of the human beings in the case of an
offer evaluation or counter-offer evaluation in relation to what the person wants
in a determined negotiation.

The results obtained in this work may be improved if different decrement
values and evidential values are used, besides the use of different actions in
relation to the resulting logical statuses. The time of an offer evaluation using
the Paraconsistent Approach is 654 milliseconds and the average time of an offer
evaluation using the Utility Value Approach is 2 milliseconds. As this work aimed
at developing a new approach, there was not interest in optimizing the time.

References

1. Racine, K., Yang, Q.: On the consistency management of large case bases: the case
for validation. In: Verification and Validation Workshop 1996. (1996)

o

219

da Costa, N.C.A.e.a.: Légica Paraconsistente Aplicada. Atlas, Sdo Paulo (1999)
Subrahmanian, V.S.: Towards a theory of evidential reasoning in logic programming.
In: Logic Colloquium ’87, Spain, The European Summer Meeting of the Association
for Symbolic Logic (1987)

Shmeil, M.A.H.: Sistemas Multiagente na Modelacdo da Estrutura e RelagGes de
Contratagdo de Organizacgdes. PhD thesis, Faculdade de Engenharia da Universi-
dade do Porto, Porto (1999)

. Samuelson, P.A., Nordhaus, W.D.: Economia. McGraw-Hill de Portugal Lda, Por-

tugal (1990)

Maubert, J.F.: Negociar: A Chave Para o Exito. Edi¢des CETOP, Portugal (1991)
da Costa, N.C.A., Prado, J.P.A., Abe, J.M., Avila, B.C., Rillo, M.: Paralog: Um pro-
log paraconsistente baseado em légica anotada. In: Colegao Documentos. Number 18
in Série: Légica e Teoria da Ciéncia. Instituto de Estudos Avangados, Universidade
de Sao Paulo (1995)

Avila, B., Abe, J., Prado, J.: Paralog_e: A paraconsistent evidential logic program-
ming language. In: XVII International Conference of the Chilean Computer Science
Society, Chile, IEEE Computer Science Society Press (1997)

Blair, H.A., Subrahmanian, V.S.: Paraconsistent foundations for logic programming.
Journal of Non-Classical Logic 5 (1988) 45-73

220

Partial Deduction for Linear Logic—The
Symbolic Negotiation Perspective

Peep Kiingas', Mihhail Matskin?

! Norwegian University of Science and Technology
Department of Computer and Information Science
Trondheim, Norway
peep@idi.ntnu.no
2 Royal Institute of Technology
Department of Microelectronics and Information Technology
Kista, Sweden
misha@imit.kth.se

Abstract. It has been demonstrated earlier [8] how symbolic negotia-
tion could be presented using Partial Deduction (PD) in Linear Logic
(LL). However, the previous papers didn’t provide formalisation of the
PD process in LL. In this paper we fill the gap by providing formalisation
of PD for I-Horn fragment of LL. The framework can be easily adapted
to other fragments of LL. We consider soundness and completeness of
the formalism. It turns out that, given a certain PD procedure, PD for
LL in !-Horn fragment is sound and complete.

1 Introduction

Partial Deduction (PD) (or partial evaluation of logic programs, which was first
introduced by Komorowski [7]) is known as one of optimisation techniques in
logic programming. Given a logic program, PD derives a more specific program
while preserving the meaning of the original program. Since the program is more
specialised, it is usually more efficient than the original program.

For instance, let A, B, C and D be propositional variables and A — B,
B — C and C — D computability statements in a logical framework. Then
possible partial deductions are A - C, B — D and A — D. It is easy to notice
that the first corresponds to forward chaining (from facts to goals), the second
to backward chaining (from goals to facts) and the third could be either forward
or backward chaining or even their combination.

Although the original motivation behind PD was deduction of specialised
logic programs with respect to a given goal, our motivation for PD is a bit dif-
ferent. Namely, it turns out that PD could be applied to finding partial solutions
of problems written in logical formalisms. In our case, given the formal specifica-
tion of a problem, if we fail to solve the entire problem, we apply PD to generate
partial solutions.

This approach supports detection of subgoals during distributed problem
solving. If a single agent fails to solve a problem, PD is applied to solve the prob-
lem partially. As a result subproblems are detected, which could be solved further

221

by other agents. This would lead to a distributed problem solving mechanism,
where different agents contribute to different phases in problem solving—each
agent applies PD to solve a fragment of the problem and forwards the modified
problem to others. As a result the problem becomes solved in the distributed
manner. Usage of PD in such a way provides foundations for advance interactions
between agents.

As a logical formalism for application of PD we use Linear Logic [2]. LL
has been advocated [4] to be a computation-oriented logic and, because of its
computation-oriented nature, LL has been applied to symbolic multi-agent ne-
gotiation in [8].

Although PD has been formalised for several frameworks, including fluent
calculus [9], normal logic programs [13], etc., it turns out that there is no work
considering PD for LI. Our goal is to fill this gap by providing a formal founda-
tion of PD for LL as a framework for symbolic negotiation between agents such
as it was introduced in [8].

The rest of the paper is organised as follows. Section 2 gives a short introduc-
tion to LL. Section 3 gives basic definitions of PD. Section 4 focuses on proofs of
soundness and completeness of PD for I-Horn fragment of LL (HLL) [4]. Section
5 demonstrates the relationship between PD and symbolic negotiation. In Sec-
tion 6 we review some of the PD strategies, which could be applied for guiding
PD. Section 7 reviews the related work and Section 8 concludes the paper and
discusses further research directions.

2 Linear logic

LL is a refinement of classical logic introduced by J.-Y. Girard to provide means
for keeping track of “resources”. In LL two assumptions of a propositional con-
stant A are distinguished from a single assumption of A. This does not apply in
classical logic, since there the truth value of a fact does not depend on the num-
ber of copies of the fact. Indeed, LL is not about truth, it is about computation.

We consider !-Horn fragment of LL (HLL) [4] consisting of multiplicative
conjunction (®), linear implication (—) and “of course” operator (!). In terms
of resource acquisition the logical expression A® B - C'® D means that resources
C and D are obtainable only if both A and B are obtainable. After the sequent
has been applied, A and B are consumed and C and D are produced.

While implication A — B as a computability statement clause in HLL could
be applied only once, (A — B) may be used an unbounded number of times.
When A — B is applied, then literal A becomes deleted from and B inserted
to the current set of literals. If there is no literal A available, then the clause
cannot, be applied. In HLL ! cannot be applied to formulae other than linear
implications.

In order to illustrate some other features of LL, not presented in HLL, we
can consider the following LL sequent from [11]—(D ® D ® D ® D ® D) +
(He C®(0&S)R!F @ (PaI)), which encodes a fixed price menu in a fast-food
restaurant: for 5 dollars (D) you can get an hamburger (H), a coke (C), either

222

onion soup O or salad S depending, which one you select, all the french fries
(F) you can eat plus a pie (P) or an ice cream (I) depending on availability
(restaurant owner selects for you). The formula !F here means that we can use
or generate a resource F' as much as we want—the amount of the resource is
unbounded.

Since HLL could be encoded as a Petri net, then theorem proving complexity
in HLL is equivalent to the complexity of Petri net reachability checking and
therefore decidable [4]. Complexity of other LL fragments have been summarised
by Lincoln [12].

3 Basics of partial deduction

In this section we present the definitions of the basic concepts of partial deduction
for HLL.

3.1 Basic definitions

Definition 1. A program stack is a multiplicative conjunction

& .
i=1
where A;,i = 1...n is a literal.

Definition 2. Mapping from a multiplicative conjunction to a set of conjuncts
is defined as follows:
n
&) 4
i

Definition 3. Consumption of formula A; from a program stack S is a mapping

= {A1,..., A}

A®.. . A ITRARAN®... QA 2s 4 AiR...RAITRAM®...QA,,

where A;.j =1...n could be any valid formula in LL.

Definition 4. Generation of formula A; to a program stack S is a mapping

A®. . QA 1RAN®.. QA s, A1®... QA 10ADAL®...® A,

where A;,j =1...n and A; could be any valid formulae in LL.

Definition 5. A Computation Specification Clause (CSC) is a LL sequent
FI—yO,

where I and O are multiplicative conjunctions of any valid LL formulee and f
is a function, which implements the computation step. I and O are respectively

consumed and generated from the current program stack S, when a particular
CSC is applied.

223

It has to be mentioned that a CSC can be applied only, if [I] C [S]. Although
in HLL CSCs are represented as linear implication formulae, we represent them
as extralogical axioms in our problem domain. This means that an extralogical
axiom F I —o; O is basically equal to HLL formula (I —; O).

Definition 6. A Computation Specification (CS) is a finite set of CSCs.
Definition 7. A Computation Specification Application (CSA) is defined as
I''SEG,
where I' is a CS, S is the initial program stack and G the goal program stack.
Definition 8. Resultant is a CSC
FI—xuy, a0t O,n>0,

where f is a term representing a function, which generates O from I by applying
potentially composite functions over aq,...,ay.

CSA determines which CSCs could be applied by PD steps to derive resultant
F S —xai,.,a..; G,n > 0. It should be noted that resultants are derived by
applying PD steps to the CSAs, which are represented in form A F B. The
CSC form is achieved from particular programs stacks by implicitly applying
the following inference figure:

N, Ar Al BI—Béd_O
FA—p "W A" BB
AF B Cut

While resultants encode computation, program stacks represent computation
pre- and postconditions.

3.2 PD steps
Definition 9. Forward chaining PD step R¢(L;) is defined as a rule

BgCkFG

ACFG Ry(Li)

where L; is a labelling of CSCH A —or, B. A, B, C and G are multiplicative
conjunctions.

Definition 10. Backward chaining PD step Ry,(L;) is defined as a rule

SFAgC

SrBoc k)

where L; is a labelling of CSC+ A —y, B. A, B, C and S are multiplicative
conjunctions.

224

PD steps R;(L;) and Ry(L;), respectively, apply CSC L; to move the initial
program stack towards the goal stack or vice versa. In the Ry (L;) inference figure
formulae B ® C' and A ® C denote respectively an original goal stack G and a
modified goal stack G’. Thus the inference figure encodes that, if there is an
CSC F A —;,, B, then we can change goal stack B ® C to A ® C. Similarly, in
the inference figure R;(L;) formulae B ® C' and A ® C denote, respectively, an
original initial stack S and its modification S’. And the inference figure encodes
that, if there is a CSC + A —oy, B, then we can change initial program stack
AC to BeC.

In order to manage access to unbounded resources, we need PD steps R¢,,
Ri,, Rw, and Ry, (n).

Definition 11. PD step R¢, is defined as a rule

USIA®BFC 5
A2 BFC G

where A is a literal, while B and C are multiplicative conjunctions.
Definition 12. PD step Ry, is defined as a rule

A BFC R»
A@BFC h

where A is a literal, while B and C are multiplicative conjunctions.
Definition 13. PD step Rw, is defined as a rule

B+-C
1A BFC

Ruw,
where A is a literal, while B and C are multiplicative conjunctions.

Definition 14. PD step Ry, (n),n > 0 is defined as a rule

AA"®BFC
A9 B+ C

Rlz (n)

where A is a literal, while B and C are multiplicative conjunctions. A™ =
AR...Q A, forn > 0.
~—— —

n

Considering the first-order HLL we have to replace PD steps Ry(L;) and
Ris(L;) with their respective first-order variants R y(L;(z)) and Ry(L;(z)). Other
PD steps can remain the same. We also require that the initial and the goal
program stack are ground.

Definition 15. First-order forward chaining PD step Ry(Li(z)) is defined as
a rule

BCFG ‘
Aworg ki)

225

Definition 16. First-order backward chaining PD step Ry(Li(z)) is defined as
a rule

SHFA®C
orAWL L.
SFBoC Rb(z(ﬁ))
In the above definitions A, B, C are LL formulae and L;(z) is defined as
F (VzA' —op, ;) B'). Additionally we assume that a def ai,as,...is an ordered
set of constants, def %1,%2,... is an ordered set of variables, [a/z] denotes

substitution, and X = X'[a/z]. When substitution is applied, elements in a and
x are mapped to each other in the order they appear in the ordered sets. These
sets must have the same number of elements.

3.3 Derivation and PD

Definition 17 (Derivation of a resultant). Let R be any predefined PD step.
A derivation of a resultant Ry is a finite sequence of resultants: Ry = R =
Ry =R ... > R,, where =5 denotes to an application of a PD step R.

Definition 18 (Partial deduction). Partial deduction of a CSA I'; S+ G is
a set of all resultants R; derivable from CSCF S — G.

It is easy to see that this definition of PD may generate the whole proof tree

for CSA I'; S+ G.

Definition 19. A CSA I'; S + G is executable, iff given I' as a CS, resultant
FS —xai,...an.7 G, > 0 can be derived such that derivation ends with resultant
R,,, which equals to - A — A, where A is a program stack.

4 Soundness and completeness of PD in HLL

4.1 PD steps as inference figures in HLL
In this section we prove that PD steps are inference figures in HLL.

Proposition 1. Forward chaining PD step R¢(L;) is sound with respect to LL
rules.

Proof. The proof in LL follows here:

— 1 —— u
ara Br B
A, (A B rs °7°
5 (—L;)
Id Lg
crco A®(A—g, B)F B
R®
C,AQ(A o, B)FrB®C
Id Agiom Lg =——
ARCFAQC F (4 —pr, B) ARCR(A—op, B)FBRC BRCFG
R® Cut
ABCHA®C®(A—or, B) ARC®(A—r, BIFG

Cut
AQRCFG

226

Proposition 2. Backward chaining PD step Ry(L;) is sound with respect to LL
rules.

Proof. The proof in LL follows here:

— [— 1
AL A BF B
A, (A —p, B)F B

—o

L®

cFrcC AQ(A—p, B)FH
Aziom R®

SFARC +(A—op, B) C,AQ(A —p, BYF BRC
R® L®

SFARQC®(A —p,; B) ARC®(A—p, BYF BRC
Cut

SFB®C

Proposition 3. PD step R¢, is sound with respect to LL rules.

Proof. The proof in LL follows here:

— i ——— Id
1A 1A LA b
1A, A FTAR!IA .
—_— ! — 1
1A FIA®'A BF B
R®
1A, B FIAQ!A ® B
el ek el L -
1AQ@ BHAQIAQ® B ® IAR!IA® B + C

Cut
IAQ B+ C

Proposition 4. PD step Ry, is sound with respect to LL rules.

Proof. The proof in LL follows here:

Id
Ak A

Lt
TAF A BrB .o
IABFAQB
L®
IAQBFA®B AQBFC
Cut
AR BF C "

Id

Proposition 5. PD step Rw, is sound with respect to LL rules.

Proof. The proof in LL follows here:

Id
w!

L
1AQBFB ® %rec

'AQ BFC

BF B
1A,B+ B

Proposition 6. PD step Ry, is sound with respect to LL rules.

Proof. The proof in LL follows here:
TAQ A" @ B+ C
1AQA®BFC
L2097 " ° Ry,

1AQIAQBFC
AABZ Y Re
IA® B - C l

Proposition 7. First-order forward chaining PD step Ry(L;(z)) is sound with
respect to first order LL rules.

227

Proof.
— i o I
AF A B+ B
2
A, (A —op (q) BYF B
Id L®
crc AR (A —op (q)B)FB
i (e R
C.AQ(A—op (q) B)FB&C
i (a e
A®C®(A40Li(g) B)F B® C
————— Id YN Auiom 7 5 LY
ARCFAQC Fva(Al —p . (p) B") AR C®(VzA' —p () BIFBRC BQCFG
R® Cut
A®C*)—A®C®(V£A’—0Li(l) B') A®C*®(V£A'—0Li(1) B)r G

Cut,
ARCFQG

Proposition 8. First-order backward chaining PD step Ry(L;(z)) is sound with
respect to first order LL rules.

Proof. The proof in LL is the following

—_— 1 = Id
AL A B+ B

A (A —p (4 B FB

7d L®
craC A (A —y, (,) BJF B
ile R®
C,A® (A —p (q)BIFB®C
N — Y Auwiom s LR
SFA®C Fvzal —p (5 B') ARC®(A—p (q)B)FB&C
n " R® 7 ; LY
SFAQRCQ®(VzA wLi(E)B) ARC R (VzA wLi(l)B)l—B(XC
Cut
SFBQRC

4.2 Soundness and completeness
Soundness and completeness are defined via executability of CSAs.

Definition 20 (Soundness of PD of a CSA). A CSCF S' — G’ is exe-
cutable, if a CSC+ S — G is executable in a CSA I';S + G and there is a
derivation S — G = ...=>rE S — G'.

Completeness is the converse:

Definition 21 (Completeness of PD of a CSA). A CSCF S — G is
executable, if a CSCF 8" — G' is executable in a CSA I'; S' + G' and there is
a derivation F S — G = ... >rF S — G'.

Our proofs of soundness and completeness are based on proving that deriva-
tion of a resultant is a derivation in a CSA using PD steps, which were defined as
inference figures in HLL. However, it should be emphasised that soundness and
completeness of PD as defined here have no relation with respective properties
of (H)LL.

Lemma 1. A CSCF S — G is executable, if there is a proof of I';)S F G in
HLL.

Proof. Since the derivation of a resultant is based on PD steps, which represent
particular inference figures in HLL, then if there is a HLL proof for I'; S + G,
based on inference figures in Section 4.1, then the proof can be transformed to
a derivation of resultant F .S — G.

228

Lemma 2. Resultants in a derivation are nodes in the respective HLL proof tree
and they correspond to partial proof trees, where leaves are other resultants.

Proof. Since each resultant - A — B in a derivation is achieved by an applica-
tion of a PD step, which is defined with a respective LL inference figure, then it
represents a node A F B in the proof tree, whereas the derivation of F 4 — B
represents a partial proof tree.

Theorem 1 (Soundness of propositional PD). PD for LL in propositional
HLL is sound.

Proof. According to Lemma 1 and Lemma 2 PD for LL in propositional HLL is
sound, if we apply propositional PD steps. The latter derives from the fact that,
if there exists a derivation - S — G = ... =>rF 8" — (@, then the derivation
is constructed by PD in a formally correct manner.

Theorem 2 (Completeness of propositional PD). PD for LL in proposi-
tional HLL is complete.

Proof. When applying PD with propositional PD steps, we first generate all
possible derivations until no derivations could be found, or all proofs have been
found. If CSC F S’ — @ is executable then according to Lemma 1, Lemma 2
and Definition 19 there should be a path in the HLL proof tree starting with
CSC F S — G, ending with F A — A and containing CSC F S’ — G’. There is
no possibility to have a path from CSC F S’ — G' to = A — A without having
a path from CSC F S — G to CSC F S’ — G’ in the same HLL proof tree.
Then according to Lemma 1 and Lemma 2, derivation - S — G = ... =+
S'" — G’ would be either discovered or it will be detected that there is no such
derivation. Therefore PD for LL in HLL fragment of LL is complete.

Theorem 3 (Soundness of PD of a first-order CSA). PD for LL in first-
order HLL is sound.

Proof. The proof follows the pattern of the proof for Theorem 1, with the dif-
ference that instead of applying PD steps Ry(L;) and R;(L;), we apply their
first-order counterparts Ry (L;(z)) and R;(L;(z)).

Theorem 4 (Completeness of PD of a first-order CSA). PD for LL in
first-order HLL is complete.

Proof. The proof follows the pattern of the proof for Theorem 2, with the dif-
ference that instead of applying PD steps Ry(L;) and Ry(L;), we apply their
first-order counterparts Ry (Li(z)) and R (L;(z)).

In the general case first-order HLL is undecidable. However, Kanovich and
Vauzeilles [5] determine certain constraints, which help to reduce the complexity
of theorem proving in first-order HLL. By applying those constraints, theorem
proving complexity could be reduced to PSPACE. Propositional HLL is equiva-
lent to Petri net reachability checking, which is according to Mayr [15] decidable.

229

5 Application of PD to symbolic negotiation

In this section we demonstrate usage of PD symbolic negotiation. We consider
here communication only between two agents and show only offers, which are
relevant to demonstration of our framework. However, in more practical cases
possibly more agents can participate and more offers can be exchanged. In par-
ticular, if agent A cannot help agent B to solve problem then A might consider
contacting agent C', to get help in solving B-s problem. This would lead to many
concurrently running negotiations.

Definition 22. An agent is defined with a CSA I';S v+ G, where I'; S and G
represent agent’s capabilities, what the agent can provide, and what the agent
requires, respectively.

Definition 23. An offer A&+ B is a CSC with I’ = ().

In our scenario we have two agents a traveller 7 and an airline company F.
The goal of T is to make a booking (Booking). Initially 7 knows only its starting
(From) and final (To) locations. Additionally the agent has two capabilities,
findSchedule and getPassword, for finding a schedule (Schedule) for a journey
and retrieving a password (Password) from its internal database for a particular
Web site (Site). Goals, resources and capabilities of the traveller T are described
in LL with the following formulae.

G7 = {Booking},
St = {From ® To},

_ F From ® To —ofindSchedule Schedule,

I'r= .
T = Site —getPassword Password.

For booking a flight agent 7 should contact a travel agent or an airline
company. The airline company agent F does not have any explicit declarative
goals that is usual for companies, whose information systems are based mainly
on business process models. The only fact F can expose, is its company Web
site (Site). Since the Site is unbounded resource (includes !), it can be delivered
to customers any number of times.

F has two capabilities bookFlight and login for booking a flight and iden-
tifying customers plus creating a secure channel for information transfer. Goals,
resources and capabilities of the airline company F are described in LL as the
following formulae.

Gr={1},

Sy = {1Site},

230

_ F SecureChannel ® Schedule —osookriignt Booking,

I'r = F Password —ojogn Secure Channel.

Given the specification agent 7 derives and sends out the following offer:

Schedule F Booking.

The offer was deduced by PD as follows:

Schedule b Booking
From @ To F Booking

Ry (findSchedule)
Since F cannot satisfy the proposal, it derives a new offer:

Schedule & Password & Schedule.
The offer was deduced by PD as follows:

Schedule - Password ® Schedule

Schedule - SecureChannel ® Schedule gbgé(;golkn}li ht)
Schedule & Booking b g
Agent T deduces the offer further:
Schedule F Site @ Schedule R (get Password)

Schedule F Password @ Schedule

and sends the following offer to F:

Schedule F Site ® Schedule.

For further reasoning in symbolic negotiation, we need the following defini-
tions. They determine the case where two agents can achieve their goals together,
by exchanging symbolic information.

Definition 24. An offer A+ B is complementary to an offer C+ D, if AQ D+
B&®C is a theorem of LL. A, B, C and D represent potentially identical literals.

The logical justification to merging complementary offers could be given from
the global problem solving/theorem proving viewpoint. Having two complemen-
tary offers means that although two problems were locally (at a single agent)
unsolvable, they have a solution globally (the problems of many agents together).

Proposition 9. If two derived offers are complementary to each-other, then the
agents who proposed the initial offers (which led to the complementary offers)
can complete their symbolic negotiation by merging their offers.

231

Proof. Since the left hand side of an offer encodes what an agent can provide
and the right hand side of the offer represents what the agent is looking for, then
having two offers, which are complementary to each other, we have found a solu-
tion satisfying both agents, who sent out the initial offers and whose derivations
led to the complementary offers.

Now agent F constructs a new offer:

Site - 1
1Site - 1

However, instead of forwarding it to T, it merges the offer with the received
complementary offer:
Site ® Schedule b Site ® Schedule Id (=57 égom
Site ® Schedule - Site ® Schedule ® 1

Thereby T composed (with the help of F) a composite service, which exe-
cution achieves the goals of agents 7 and F (in the current example, the goal
of F is represented as constant 1). The resulting plan (a side effect of sym-
bolic negotiation) is graphically represented in Figure 1. The rectangles in the
figure represent the agent capabilities applied, while circles denote information
collection/delivery nodes. The arrows denote symbolic information flow.

bookFlight

Agent T Agent F

Fig. 1. The distributed plan.

6 Partial deduction strategies

The practical value of PD is very limited without defining appropriate PD strate-
gies. These are called tactics and refer to selection and stopping criteria. Success-
ful tactics depend generally quite much on a specific logic application. Therefore

232

we only list some possible tactics here. From agent negotiation point of view the
strategies represent to some extent agents’ policies—they determine which offers
are proposed next.

Tammet [18] proposes a set of theorem proving strategies for speeding up LL
theorem proving. He also presents experimental results, which indicate a good
performance of the proposed strategies. Some of his strategies remind usage of
our inference figures. Thus some LL theorem proving strategies are implicitly
handled in our PD framework.

We also would like to point out that by using LL inference figures instead of
basic LL rules, PD, as we defined it here, could be more efficient than pure LL
theorem proving.

Definition 25. Length | of a derivation is equal to the number of the applica-
tions of PD steps R in the derivation.

Definition 26. Two derivations are computationally equivalent, regardless of
the length of their derivations, if they both start and end with the same resultant.

6.1 Selection criteria

Selection criteria define which formulae and PD steps should be considered next
for derivation of a resultant. We consider the following selection criteria.

— Mixed backward and forward chaining—a resultant is extended by interleav-
ing backward and forward chaining.

— Different search methods—depth-first, breadth-first, iterative deepening, etc
could be used. While breadth-first allows discovering shorter derivations
faster, depth-first requires less computational overhead, since less memory
is used for storing the current search status.

— Prefer resultants with smaller derivation length the strategy implicitly leads
to breadth-first search.

— Apply only one PD step at time.

— Combine several PD steps together. The approach is justified, if there is some
domain knowledge available, which states that certain CSCs are executed in
sequence.

— Priority-based selection some literals have a higher weight, which is deter-
mined either manually by the user or calculated by the system according to
predefined criteria. During PD literals/resultants having higher weights are
selected first.

We would like to emphasise that the above criteria are not mutually exclusive
but rather complementary to each other.

6.2 Stopping criteria

Stopping criteria define when to stop derivation of resultants. They could be
combined with the above-mentioned selection criteria. We suggest the following
stopping criteria:

233

— The derived resultant is computationally equivalent to a previous one—since
the resultants were already derived and used in other derivations, proceeding
PD again with the same resultant does not yield neither new resultants
nor unique derivations (which are not computationally equivalent with any
previously considered one).

— A generative cycle is detected if we derived a resultant F A — B ® C
from a resultant F A — C, then by repeatedly applying PD steps between
the former resultants we end up with resultants F A — B"” ® C, where
n > 1. Therefore we can skip the PD steps in further derivation and rea-
son analytically how many instances of literal B we need. The approach is
largely identical to Karp-Miller [6] algorithm, which is applied for state space
collapsing during Petri net reachability checking. A similar method is also
applied by Andreoli et al [1] for analysing LL programs.

— Maximum derivation length [is reached—given that our computational re-
sources are limited and the time for problem solving is limited, we may not
be able to explore the full search space anyway. Then setting a limit to
derivation length helps to constrain the search space.

— The resultant is equal to the goal—since we found a solution to the problem,
there is no need to proceed further, unless we are interested in other solutions
as well.

— Stepwise—the user is queried before each derivation in order to determine,
which derivations s/he wants to perform. This stopping criterion could be
used during debugging, since it provides the user with an overview of the
derivation process.

— Exhaustive—derivation stops, when no new resultants are available.

7 Related work

Although PD was first introduced by Komorowski [7], Lloyd and Shepherd-
son [13] were first who formalised PD for normal logic programs. They showed
PD’s correctness with respect to Clark’s program completion semantics. Since
then several formalisations of PD for different logic formalisms have been de-
veloped. Lehmann and Leuschel [9] developed a PD method capable of solving
planning problems in the fluent calculus. A Petri net reachability checking algo-
rithm is used there for proving completeness of the PD method.

Analogically Leuschel and Lehmann [10] applied PD of logic programs for
solving Petri net coverability problems while Petri nets are encoded as logic
programs. De Schreye et al [17] presented experiments related to the preceding
mechanisms by Lehmann and Leuschel, which support evaluation of certain PD
control strategies.

Matskin and Komorowski [14] applied PD to automated software synthesis.
One of their motivations was debugging of declarative software specification. The
idea of using PD for debugging is quite similar to the application of PD in sym-
bolic agent negotiation [8]. In both cases PD helps to determine computability
statements, which cannot be solved by a system.

234

Our formalism for PD, through backward chaining PD step, relates to abduc-
tion. Given the simplification that induction is abduction together with justifica-
tion, PD relates to induction as well. An overview of inductive logic programming
(ILP) s given by Muggleton and de Raedt [16].

Forward and backward chaining for linear logic have been considered by Har-
land et al [3] in the logic programming context. In this article we define backward
and forward chaining in PD context. Indeed, the main difference between our
work and the work by Harland et al could be characterised with a different
formalism for different purposes.

There is a similarity between the ideology behind an inductive bias in ILP
and a strategy in PD. This means that we could adapt some ILP inductive
biases as strategies for PD. In ILP #-subsumption is defined to order clauses
partially and to generate a lattice of clauses. For instance clause parent(X,Y) «
mother(X,Y), mother(X, Z) 6-subsumes clause parent(X,Y) < mother(X,Y).
The approach could be useful a PD strategy in our formalism. However, the idea
has not been evaluated yet.

8 Conclusions

In this paper we formalised PD for LL, more specifically for !-Horn fragment of
LL. The main reason for choosing the particular LL fragment was that (!)Horn
fragment of LL has been designed for rule-based applications. Therefore it suits
well for formalising symbolic negotiation.

We proved that for both propositional and first-order HLL the PD method
is sound and complete. It was also demonstrated how PD could be applied in
symbolic negotiation. The theorems proposed here can be easily adapted for
other fragments of LL, relevant to symbolic negotiation.

Indeed, we have implemented an agent system, where PD is applied for sym-
bolic negotiation. The system is based on JADE and can be download from
http://www.idi.ntnu.no/ peep/symbolic. Although in the current version of
the agent software the derived offers are broadcasted, we are working on heuris-
tics, which would allow us to limit the number of offer receivers. In the long
term we would like to end up with a P2P agent software where a large number
of agents would apply symbolic negotiation for concurrent problem solving.

Acknowledgements

This work was partially supported by the Norwegian Research Foundation in the
framework of Information and Communication Technology (IKT-2010) program—
the ADIS project. Additionally I would like to thank the anonymous referees for
their comments.

References

1. J.-M. Andreoli, R. Pareschi, T. Castagnetti. Static Analysis of Linear Logic Pro-
gramming. New Generation Computing, Vol. 15, pp. 449-481, 1997.

10.

11.

12.

13.

14.

15.

16.

17.

18.

235

J.-Y. Girard. Linear Logic. Theoretical Computer Science, Vol. 50, pp. 1-102, 1987.
J. Harland, D. Pym, M. Winikoff. Forward and Backward Chaining in Linear Logic.
In Proceedings of the CADE-17 Workshop on Proof-Search in Type-Theoretic Sys-
tems, Pittsburgh, June 20-21, 2000. Electronic Notes in Theoretical Computer
Science, Vol. 37, 2001.

M. I. Kanovich. Linear Logic as a Logic of Computations. Annals of Pure and
Applied Logic, Vol. 67, pp. 183 212, 1994.

. M. I. Kanovich, J. Vauzeilles. The Classical AI Planning Problems in the Mirror

of Horn Linear Logic: Semantics, Expressibility, Complexity. Mathematical Struc-
tures in Computer Science, Vol. 11, No. 6, pp. 689 716, 2001.

R. M. Karp, R. E. Miller. Parallel program schemata. Journal of Computer and
Systems Sciences, Vol. 3, No. 2, pp 147-195, May 1969.

J. Komorowski. A Specification of An Abstract Prolog Machine and Its Applica-
tion to Partial Evaluation. PhD thesis, Technical Report LSST 69, Department
of Computer and Information Science, Linkoping University, Linkoping, Sweden,
1981.

P. Kiingas, M. Matskin. Linear Logic, Partial Deduction and Cooperative Problem
Solving. To appear in Proceedings of the First International Workshop on Declar-
ative Agent Languages and Technologies (in conjunction with AAMAS 2003),
DALT 2003, Melbourne, Australia, July 15, 2003, Springer-Verlag.

H. Lehmann, M. Leuschel. Solving Planning Problems by Partial Deduction. In
Proceedings of the 7th International Conference on Logic for Programming and Au-
tomated Reasoning, LPAR’2000, Reunion Island, France, November 11-12, 2000,
Lecture Notes in Artificial Intelligence, Vol. 1955, pp. 451-467, 2000, Springer.
M. Leuschel, H. Lehmann. Solving Coverability Problems of Petri Nets by Partial
Deduction. In Proceedings of the 2nd International ACM SIGPLAN Conference
on Principles and Practice of Declarative Programming, PPDP’2000, Montreal,
Canada, September 20-23, 2000, pp. 268-279, 2000, ACM Press.

P. Lincoln. Linear Logic. ACM SIGACT Notices, Vol. 23, No. 2, pp. 29 37, Spring
1992.

P. Lincoln. Deciding Provability of Linear Logic Formulas. In J.-Y. Girard, Y. La-
font, L. Regnier (eds). Advances in Linear Logic, London Mathematical Society
Lecture Note Series, Vol. 222, pp. 109 122, 1995.

J. W. Lloyd, J. C. Shepherdson. Partial Evaluation in Logic Programming. Journal
of Logic Programming, Vol. 11, pp. 217 242, 1991.

M. Matskin, J. Komorowski. Partial Structural Synthesis of Programs. Fundamenta
Informaticae, Vol. 30, pp. 23-41, 1997.

E. Mayr. An Algorithm for the General Petri Net Reachability Problem. STAM
Journal on Computing, Vol. 13, No. 3, pp. 441 460, 1984.

S. Muggleton, L. de Raedt. Inductive Logic Programming: Theory and Methods.
Journal of Logic Programming, Vol. 19/20, pp. 629 679, 1994.

D. De Schreye, R. Gliick, J. Jgrgensen, M. Leuschel, B. Martens, M. H. Sgrensen.
Conjunctive Partial Deduction: Foundations, Control, Algorithms and Experi-
ments. Journal of Logic Programming, Vol. 41, No. 2-3, pp. 231-277, 1999.

T. Tammet. Proof Strategies in Linear Logic. Journal of Automated Reasoning,
Vol. 12, pp. 273-304, 1994.

236

A Lightweight Coordination Calculusfor Agent Systems

David Robertson
Informatics, University of Edinburgh
dr@inf.ed.ac.uk

No Institute Given

Abstract. The concept of asocial normisused in multi-agent systems to specify
behaviours required of agents interacting in a given social context. We describe
a method for specifying social norms that is more compact than existing meth-
ods without loss of generaity and permits simple but powerful mechanisms for
analysis and deployment. We explain the method and how to compute with it.

1 Introduction: A Broad View of Social Norms

The Internet raises the prospect of engineering large scale systems that are not engi-
neered in the traditional way, by tightly integrating modest numbers of components
familiar to asingle design team, but are assembled opportunistically from components
built by disparate design teams. Ideally such systems would make it easy for new com-
ponentsto be designed and deployed in competition with existing components, allowing
large systemsto evolve through competitive design and service provision. That requires
standardisation of the languages used for description of the interfaces between com-
ponents - hence Web service specification efforts such as DAML-S (in the Semantic
Web community) and performative-based message passing protocols such as FIPA-
ACL and KQML (in the agent systems community). Although helpful these are, in
themselves, insufficient to coordinate groups of disparate componentsin away that al-
lows substantial autonomy for individual agents while maintaining the basic rules of
socia interaction appropriate to particular coordinated tasks. Thisis especialy difficult
in unbounded, distributed systems (like the Internet) because coordination depends on
each component “being aware” of the state of play in its interaction with others when
performing a shared task and being able to continue that interaction in a way likely to
be acceptable to those others. This is the broad sense in which “social norm” is used
in this paper, recognising that it possesses more specific connotations for part of the
multi-agent systems community.

Solving coordination problems reguires some description of the focus of coordina-
tion. One way of doing thisis by the use of policy languages (e.g. [7]). By enforcing
appropriate policies we may provide a safe envel ope of operation within which services
operate. Thisis useful but not the same as specifying more directly the interactions re-
quired between services. For thisit has been more natural to use concepts from temporal
reasoning to represent the required behaviours of individual services (e.g. [1]); shared
models for coordinating services (e.g. [4]) or the process of composing services (e.g.
[9,11]). As recognised in earlier studies on conversation policies [5] the constraints

237

on interaction between agents often are more “fine grained” than those anticipated in
standard performative languages like FIPA-ACL. One solution to this problem is the
concept of an electronic institution [3, 2] to which we return in the next section.

In what follows we shall present an approach to coordination that we intend to be
consistent with the views described above but which is also comparatively lightweight
to use. We begin, in Section 2, by summarising the concept of social norms using the
Islander system as an example. In Section 3 we introduce the Lightweight Coordina-
tion Calculus (LCC) which is a process calculus for specifying social norms. A basic
example of itsuseisin Section 4. LCC is acomparatively simple but flexible language
and can be supplied with a straightforward method for constraining the behaviour of an
individual agent in a collaboration, as described in Section 5. It is then possible to con-
struct simple, general-purpose mechanisms for multi-agent coordination that harness
this method (see Section 6). LCC is intended as a practical, executable specification
language and has been used for a variety of purposes which we summarisein Section 7.
Finally, in Section 8 we return to mainstream performative languages and show how
L CC may be used to describe the socia norm aspects of those types of system.

2 ldander: A Meansof Enforcing Social Norms

Thelslander system [2] is sketched here as an example of atraditional means of enforc-
ing social norms. In this section we introduce the approach and main representational
features of Islander. In Section 3 we shall return to these when introducing the LCC
notation. The framework for describing agent interactions in Islander relies upon a (fi-
nite) set of state identifiers representing the possible stages in the interaction. Agents
operating within this framework must be allocated roles and may enter or leave states
depending on the illocutions (via message passing) that they have performed. In order
to structure the description, states are grouped into scenes. Aningtitution is then defined
by a set of scenesand a set of connections between scenes with constraints determining
whether agents may move across these connections. A sceneis defined as a collection of
thefollowing sets. roles; stateidentifiers; aninitia stateidentifier; final state identifiers;
access state identifiers for each role; exit state identifiers for each role; and cardinality
constraints on agents per role. A socia norm for an agent is defined by an antecedent
(defined as alist of scene-illocution pairs) and a consequent (the predicates obliged to
be true if the antecedent illocutions have taken place). This thumbnail sketch of the
main components of an institution model suffices to give the reader an overview of the
approach. Later we shall revisit these componentsin more detail.

This sort of state transition model has been shown to be adequate for constraining
multi-agent dialogue in situations, such as auctions, where social norms are essential
for reliable behaviour. It also permits a style for enforcement of the model during de-
ployment, in which the state-based model of interaction is used to check that the agents
involved do indeed conform to the model. It suffers, however, from two weaknesses.
The first weakness is its reliance on representing the entire model of interaction as a
single (albeit structured) state transition model. This makes enforcement of the model
difficult except via some form of representation of the global state of the interaction as
it applies to the group of agentsinvolvedin it.

238

Thusfar, the only solutionsto this problem have been to maintain asingleinstitution
model with which all agents must synchronise or to have synchronised distribution of a
single model. Both these solutions undermine the distributed nature of the computation
by enforcing centralised control over interactions between agents. The second weakness
(related to the first) is that its focus on global state of multi-agent interaction makes it
difficult to disentangle the specification of constraints on individual agent processes
contributing to that state. This is of practical importance because al current efforts
on large scale agent deployment via standardised Web services (e.g. DAML-S) use
process models specific to individual agents. The relevance of LCC to the modelling
and deployment of semantic web services has previously been argued in [10,12]. In
the current paper we concentrate on the related but separable issue of its relevance
to multi-agent social norms. The system described in the remainder of this paper isa
process calculus that can be used to describe social norms as complex as those of state-
based systems such as Islander, with the advantage that these can be deployed without
requiring centralised control.

3 LCC Syntax

L CC borrows the notion of role from institution based systems, as described in the pre-
vious section but reinterprets this as aform of typing on aprocessin aprocess calculus.
Process calculi have been used before to specify social norms (see for example [3]) but
LCC is, to our knowledge, the first to be used directly in computation for multi-agent
systems. Socia normsin LCC are expressed as the message passing behaviours asso-
ciated with roles. The most basic behaviours are to send or receive messages, where
sending a message may be conditional on satisfying a constraint and receiving a mes-
sage may imply constraints on the agent accepting it. The choice of constraint language
depends on the constraint solvers used, athough the LCC constraints used in current
implementations are in first order predicate calculus. More complex behaviours are
specified using the connectives then, or and par for sequence, choice and paralleli-
sation respectively. A set of such behavioural clauses specifies the message passing
behaviour expected of a social norm. We refer to this as the interaction framework. Its
syntax isgivenin Figure 1.

Although LCC looks different to state-based systemslike Islander it providesall the
representational features we saw in Section 2. These are:

Role and scene identification : These are described by the agent type definition (T'ype
in Figure 1) which permits any structured term to be used to describe the agent type,
hence this structure could include the agent’s scene and role.

Initial state : Although LCC does not require a single initial state we can choose to
have one of the clauses (an instance of Clause in Figure 1) determine the scene
and role of the agent that initiates the interaction.

Final and exit states : Although states are not labelled in LCC each agent can de-
termine its current position in the interaction protocol by using the definition of
protocol closure described in Figure 3.

M ovement between states : Each agent moves between states by following its clause
in the protocol. LCC allows changes of scene/role and recursion over scenes/roles

239

Framework := {Clause, ...}
Clause := Agent :: Def
Agent := a(Type, Id)
Def := Agent | Message | Def then Def | Def or Def | Def par Def | null < C
Message := M = Agent | M = Agent+ C|M < Agent| M < Agent + C
C:=Term |CANC|CVC
Type := Term
M :=Term

Where null denotes an event which does not involve message passing; Term isastructured term
in Prolog syntax and Id iseither avariable or aunique identifier for the agent. The operators +—, A
and V are the normal logical connectives for implication, conjunction and disunction. M = A
denotes that a message, M, issent out to agent A. M <« A denotes that a message, M, from
agent A isreceived. The implication operator dominates the message operators, so for example
M = Agent + Cisscopedas (M = Agent) + C

Figure 1. Syntax of LCC interaction framework

(recall that states and roles are described in LCC using structured terms so these
can be used to describe recursive orderings).

Accessto protocol for agents : Agents can access aprotocol by selecting an appropri-
ate clause. The means of distributing protocols described in Section 6 allow agents
hitherto unaware of a protocol to be “invited into” an interaction, so LCC-enabled
agents may either initiate interaction or reactively join interactions.

Constraintson individual agents : Constraints can be applied to sending messages,
accepting messages and to change of scene/role (see use of C' in Figure 3). In
order to keep the LCC language simple there is no specia notation in LCC for
representing temporal constraints (such as timeouts or temporal prohibitions) so
one must construct these from normal first-order expressions.

Constraintson groups of agents : Although L CC clauses are used by individual agents
it is easy to “thread” information through a group of interacting agents via argu-
ments in the structured terms defining each agent’s type (T'ype in Figure 1). Con-
straints relevant to the group (such as cardinality constraints on the set of agents
participating in an interaction) can then be checked by constraints on the individual
agents.

In Section 7 we describe aspects of LCC that go beyond current abilities of systems
such as Islander. First we give an illustrative example of LCC in use.

4 Example LCC Interaction Framework

Figure 2 shows an example of a protocol in LCC for a basic multi-agent auction. There
are two initial roles - a bidder and an auctioneer - with the auctioneer’s role changing
during the interaction between that of acaller of bidsand avendor collecting offersfrom

240

bidders (notice the use of mutual recursion between auctioneer and vendor in clauses 2
and 4). Thelist of bidders known to the auctioneer (the variable named S in clauses 1
to 4) is assumed to be fixed throughout the auction but it is straightforward to extend
the protocol to allow new bidders to join - for example we could add a clause for an
introductory bidder that would ask for entry to the auction and then become a bidder;
then extend clause 4 to alow acceptance of an invitation to bid.

The point of Figure 2 is not to describe an optimal auction protocol but to give the
reader a flavour of what it is like to describe protocolsin LCC. For those familiar with
logic programming the style of description should be reassuringly familiar, since each
clause of the protocol can be read similarly to a Horn clause with the “head” of the
clause being the agent role and the “body” being the definition of its behaviour when
discharging that role. Our preliminary effortsat teaching thislanguageto first year post-
graduate students encourages us to believe that teaching LCC as a form of declarative
programming language is comparable in difficulty to teaching other declarative lan-
guages, such as Prolog. LCC is, however, alanguage for coordinating distributed pro-
cesses so forms of debugging and analysis appropriateto asynchronoussystemsalso are
required to support LCC engineers. For example, model checking has been performed
for avariant of LCC [12], analogousto model checking applied to systemslike Islander
[6].

Although analytical techniques like model checking help support engineers, asim-
ple and predictable computational model of the behaviour of protocolsin deployment
is fundamental to good engineering. In the next two sections we describe this model
for LCC, beginning in Section 5 with the most basic computational step of accessing
and updating the protocol; then in Section 6 showing how this is harnessed to provide
flexible styles of multi-agent coordination.

5 Clause Expansion

To enable an agent to conform to a L CC protocaol it is necessary to supply it with away
of unpacking any protocol it receives; finding the next movesthat it is permitted to take;
and recording the new state of dialogue. There are many ways of doing this but perhaps
the most elegant way is by applying rewrite rules to expand the dialogue state. In this
section we describe an expansion agorithm, showing in Section 6 how to use it with a
selection of coordination systems.

The mechanism described below for coordinating agents using L CC assumes some
means by which messages may be sent to a message exchange system and some means
by which messages may be read from that system. The means of transmitting messages
is not prescribed by LCC so this could be done using any appropriate distributed com-
munication infrastructure. L CC does, however, make the following assumptions rel ated
to the format of messages:

— A message must contain (at least) the following information, which can be encoded
and decoded by the sending and receiving mechanisms attached to each agent:
e Anidentifier, I, for the social interaction to which the message belongs. This
identifier must be unique and is chosen by the agent initiating the social inter-
action.

241

Therole of an auctioneer, A, isperformed by performing the role of an auctioneer for anitem, X,
with a set of bidders, S, at initial reserve price, R, and an initial empty list, [], of bids. The con-
straint item (X, R) determinestheinitial reserve price for theitem and the constraint bidders(.S)
determines the set of bidding agents.

a(auctioneer,A) = a(auctioneer(X,S,R,[]),A) « item(X,R) A bidders(S) (1)

An auctioneer isfirst acaller for bids and then becomes a vendor.

a(auctioneer(X, S, R, Bids), A) : a(caller(X,S,R),A) then 2
a(vendor(X, S, R, Bids), A)
A caller recurses through the list, S, of bidders, sending each an invitation to bid.

a(caller(X,S,R), A) :: (invitebid(X,R) = a(bidder,B) < S = [B|Sr] then a(caller(X, Sr, R), A)) or
null + S =]
©)
A vendor receives a bid which is added to its current collection of bids, C, to give the updated
set, C,,. It then does one of the following: sells to the highest bidder if there is one at the current
reserve price; continues as a vendor if not all of the bids are collected; reverts to being an auc-
tioneer if all the bids are in but there is no highest bidder or the highest bid exceeds the current
reserve,

a(vendor(X,S,R,C),A) : addbid(B,,V,,C,Cr) + bid(X,Vs) < a(bidder,B,) then
(sold(X,Vy) = a(bidder, Bs) «+ allbid(S,C,) A highest_bid(Cy, Bs,Vs) A Vs =R) or
(a(vendor(X, S, R,Cr), A) <+ not(allbid(S,Cr))) or
(a(auctioneer(X, S, R,[]), A) « allbid(S,Cr) A not(highest_bid(Chr,-))) or
(a(auctioneer(X, S, Rn,[]), A) + allbid(S,Cr) A highest_bid(Crn,Rn) A Rn > R)

4)

A bidder receives an invitation to bid from an auctioneer agent; then sends a bid to that agent (in

itsrole as vendor); then either receives amessage informing it that the item has been sold to it or

it reverts to being a bidder again.

a(bidder,B) : invitebid(X,R) < a(auctioneer(X,_,_,), A) then
bid(X,Vy) = a(vendor(X,_, _,-),A) < bidat(X,R,V,) then
(sold(X,Vs) < a(vendor(X, ., -,), A) or a(bidder, B))
©)

Figure 2. LCC framework for an auction example

242

A unique identifier, A, for the agent intended to receive the message.

Therole, R, assumed of the agent with identifier A with respect to the message.

The message content, M , in the syntax defined in Section 3.

The protocoal, P, for continuing the social interaction. Thisconsistsof: aset, C,

of LCC clauses defining the dialogue framework (see Section 3); and a set, KC,

of axioms defining any common knowledge assumed during the social inter-
action. This provides a way of preserving information context as the protocol
moves between agents.

— The agent must have a mechanism for satisfying any constraints associated with
its clause in the dialogue framework. Where these can be satisfied from common
knowledge (the set K above) it is possible to supply standard constraint solvers
with the protocol. Otherwise, thisis the responsibility of the agent.

Given these assumptions about message format, the basic operation an agent must
perform when interacting via LSS is to decide what its next steps for its role in the
interaction should be, using the protocol information carried with the message it ob-
tains from some other agent. Recall that the behaviour of an agent in a given role is
determined by the appropriate LCC clause. Figure 3 gives a set of rewrite rules that are
applied to give an expansion of aLCC clause C; in terms of protocol 7 in response to
the set of received messages, M, producing: anew LCC clause C,; an output message
set O,, and remaining unprocessed messages M, (asubset of M;). These are produced
by applying the protocol rewrite rules above exhaustively to produce the sequence:

M; ,M;41,P,0; M,,—1,M,,,P,On
e o,

<Cl Ci+17 ey Cnfl Cn)
We refer to the rewritten clause, C,,, as an expansion of the original clause, C;. In
the next section this basic expansion method is used for multi-agent coordination.

6 Coordination Mechanisms

Figure 4 depicts two methods of distributed coordination using LCC. Both use the
clause expansion mechanism given in Section 5, the only difference between them be-
ing intheway the state of theinteractionis preserved during interactions. For simplicity,
the diagrams of Figure 4 depict an interchange between only two agents (Agent 1 and
Agent 2), with amessage (Message 1) being sent from Agent 1 to Agent 2 and another
message (Message 2) being returned in response. We describe below thefirst coordina-
tion mechanism in detail, then explain the second as a specia case of thefirst.

Method 1 of Figure 4 depicts an instance of the coordination method described in
detail asfollows (from the point of view of Agent 2 in the diagram):

— Anagent with uniqueidentifier, A, retrievesamessage of theform (I, M, R, A, P)
where: [is a unique identifier for the coordination; M is the message; R the role
assumed of the agent when receiving the message; A the agent’s unique identifier;
and P the attached protocol consisting of a set of clauses, C, and a set of axioms,
K, describing common knowledge. The message is added to the set of messages
currently under consideration by the agent - giving the message set M ;.

243

The following ten rules define a single expansion of a clause. Full expansion of a clause is
achieved through exhaustive application of these rules. Rewrite 1 (below) expands a protocol
clause with head A and body B by expanding B to give anew body, E. The other nine rewrites
concern the operators in the clause body. A choice operator is expanded by expanding either side,
provided the other is not already closed (rewrites 2 and 3). A sequence operator is expanded by
expanding the first term of the sequence or, if that is closed, expanding the next term (rewrites 4
and 5). A parallel operator expands on both sides (rewrite 6). A message matching an element
of the current set of received messages, M;, expands to a closed message if the constraint, C,
attached to that message is satisfied (rewrite 7). A message sent out expands similarly (rewrite 8).
A null event can be closed if the constraint associated with it can be satisfied (rewrite 9). An agent
role can be expanded by finding a clause in the protocol with a head matching that role and body
B - the role being expanded with that body (rewrite 10).

M;,M,,P,0 M;,Mo,P,0

A:B —/———" A:FE if B E
A or Ay w) E if —closed(As) N Ax —)Mi’M°’7)’O E

Ay or Ay MR, if closed(A1) N A MiMo PO,

Ay then Ay, MitMe PO popen A, if 4 MiMePO g

Ay then A, MM PO, Ay then E if closed(A1) N As Mi Mo PO, p

Ay par Ay MM P OO g By if Ay MiMa POV g g MaMoP O

M;,M;—={M <= A}, P.,0

C+ M<A (M < A)if (M < A) € M; A satisfy(C)

M= A«o MMP=Aar o A) if satisfied(C)

null «+ ¢ MM PP, e(null) if satisfied(C)

a(R,I) <« C Mo Mo 70, a(R,I):: B if clause(P,a(R,I):: B) A satisfied(C)

A protocol term is decided to be closed, meaning that it has been covered by the preceding
interaction, as follows:

closed(c(X))

closed(A or B) « closed(A) V closed(B)
closed(A then B) < closed(A) A closed(B)
closed(A par B) < closed(A) A closed(B)
closed(X :: D) « closed(D)

satisfied(C) istrueif C can be solved from the agent’s current state of knowledge.

satis fy(C) istrueif the agent’s state of knowledge can be made such that C' is satisfied.
clause(P, X) istrueif clause X appears in the dialogue framework of protocol P, as defined in
Figure 1.

Figure 3. Rewrite rules for expansion of a protocol clause

244

Method 1: LCC clauses distributed with protocol (carried with message); used and retained on

appropriate agent.

Message 2

LCC protocol

Message 1

Agent 2

Clause

LCC protocol

i

Method 2: LCC clauses distributed with protocol (carried with message); used by appropriate

agent but stored with protocol.

Message 2
LCC protocol

Clause store

Message 1

LCC protocol

Clause store

:|—>

Figure 4. Two methods of coordination

245

— The agent checks its internal store of dialogue clauses to see if it already has a
clause, C;, indexed under coordinationidentifier 1. If so, it selectsit. If not it makes
acopy of C; as an element of C, thus determining its part of the dialogue.

— Therewrite rules of Figure 3 are applied to give an expansion, C ,, of C; in terms
of protocol P in responseto the set of received messages, M ;, producing: a new di-
alogue clause C,,; an output message set O,, and remaining unprocessed messages
M,, (asubset of M;).

— The agent’s original clause, C, is then replaced in P by C,, to produce the new
protocal, P,,.

— The agent can then send the messages in set O ,,, each accompanied by a copy of
the new protocol P,,.

In Method 1 the clauses determining the behaviours of the interacting agents are
distributed among the agents as the protocol is passed between them - these are the
clauses named C'; in the algorithm above. The state of the interaction is described by
the set of these distributed clauses. Notice that each agent must retain only the clause
(or clauses if it has multiple roles) appropriate to it. Agents do not need to retain the
whole protocol because this is passed with the message, so will return to the agent if
other messages arrive as part of the appropriate interaction.

Method 1 is comparatively lightweight because it requires only that an agent can
perform clause expansion, as described in Section 5, and that it can store its own copies
of LCC clauses. It is possible, however, to place even less burden on individual agents
if we haveinteractionsthat are linear, in the sense that (regardless of how many agents
interact) at any given time exactly one agent alters the state of the interaction. An ex-
ample of alinear interaction is a dialogue between two agents where each agent takes
aternate turn in the interaction. An example of a non-linear interaction is an auction
involving a broadcast call for bids (like the one in Figure 2). When the interaction is
linear then we can store agents' clauses (named C'; in the algorithm above) with the
message rather than with the agent. This is the “Clause store” depicted in the lower
diagram of Figure 4. Agents then look up their clauses from this clause store, and the
state of the whole interaction is preserved by the message as it passes between agents.

7 Computingwith LCC

LCC can be used to tackle a variety of different forms of coordination problem, from
those in which agents' behaviours are tightly constrained by the protocol to those in
which agents are constrained only in terms of the message sequences they may send.
The difference between these two extremes is made by the number and rigidity of the
constraints included with the protocol. A tightly constrained protocol has many con-
straints, all of which have a precise interpretation determined by the protocol designer
(Figure 2 is an example), in which case the interaction is similar to a traditional dis-
tributed computation with the participating agents acting as processors for the computa-
tion described by the LCC protocol. A loosely constrained protocol has few constraints,
any of which may have an interpretation given to it by the agent designers, in which case
the agentsinvolved may have agreater degree of autonomy within the message passing
framework set by the protocol.

246

Since constraints attach to messages or roles, it has proved most natural in practice
for those writing LCC protocols to begin by specifying the (unconstrained) sequences
of messages and changes of role for each of the roles in an interaction. Then, once
this skeletal structure is in place, constraints can be added to tighten the protocol in
whatever way suits the application. The form of refinement is similar to the style of
design used in conventional relational and functional programming where a skeletal
control structure often is described as a precursor to detailed design. Thisis why it is
advantageous for LCC to resemble these kinds of traditional language, despite being
also aprocess calculus.

Although recent, LCC has been used for a variety of practical purposes:

— In simulation, where we have built simulators for empirical comparison of LCC
protocols under controlled conditions. For example, we have compared the per-
formance of different protocols for resource mediation under varying supply and
demand regimes. The simulators needed for this sort of empirical analysis have
been simple to construct for LCC because we re-use the expansion algorithm of
Section 5 within the simulation harnesses.

— Inmodel checking, where we have written atranslator from avariant of LCC (Wal-
ton’s MAP language) to the Promelalanguage which can then be fed into the SPIN
model checker.

— In congtraint solving, where we have extended the basic clause expansion mecha
nism to preserve the ranges of finite-domain constraints on variables. This allows
agents to restrict rather than simply instantiate constraints when interacting, thus
allowing alessrigid interaction.

— To permit human interaction, where we have built a generic user interface (in Tcl-
TK interacting with SICStus Prolog) for accepting, viewing and replying to LCC
messages. This is intended for prototyping to get a feel for the sort of interaction
occurring between agents.

8 LCC and Performative L anguages

Although LCC was not intended for direct comparison to performative languages such
as FIPA-ACL or KQML, there is a relationship that may be of practical value. Perfor-
mative languages provide a language for communication between agents that is ori-
ented to the demands of dialogue. They provide ways of describing basic “ speech acts’
such as asking for information or telling an agent some new information, via performa-
tive expressions. Thisis of benefit because an agents receiving a message with content
“wrapped” within performative expressions can have someidea of the role of that mes-
sage in dialogue. Such languages are, however, limited in the extent to which they can
describe dialogue:

— When an agent receives a message this iswrapped only in asingle performative, so
it can know for example that the message is a“tell” but it is not given any further
reference to the broader dialogue of which this message may be a part.

247

— The semantics of performativesis defined (more or less formally depending on the
performative language) in documents describing the language but it is entirely up
to the engineers of individual agents to ensure that they adhere to an appropriate
semantics. Thus, the sender of a performative has no way of helping the recipient
to understand what is meant by it, nor of checking that it was used appropriately.

Theremainder of this section shows how L CC overcomesthese limitations, offering
comparable precision in description of semantics plus the practical benefit of linking
these more closely to the mechanics of actual agent dialogue.

There are various ways of describing the semantics of performatives but acommon
form of description is by defining preconditions and postconditions on the performative
message. Preconditions “indicate the necessary states for an agent to send a perfor-
mative and for the receiver to accept it and successfully process it”. Postconditions
“describe the states of the sender after the successful utterance of a performative, and
of the receiver after the receipt”.

An example of this sort of definition is the tell(A, B, X') performative in KQML
which describes the act of agent A telling agent B some information, X. Below are
the constraints given for thisin [8] (ignoring the issue of how the agent knows what it
should be telling another agent about). We use the predicates: k(A, X) to denote that
A knows X; b(A, X) to denote that A believes X; i(A, X) to denote that A intends
to know X and w(A, X) to denote that A wants to know X . These correspond to the
predicates know, bel, intend and want in [8].

— Preconditions:
e Agent A believes X and knows that agent B wants to know about X :
b(A, X) A ©)
k(A,w(B, k(B, X)))

e Agent B intendsto know that B knows X:
i(B,k(B, X)))

— Postconditions:
e Agent A knowsthat agent B knowsthat A believes X:

k(A, k(B,b(A, X)) (8)

e Agent B knowsthat agent A believes X :
k(B,b(4, X)) ©)

These are the basic constraints on tell according to [8]. A more sophisticated set of
constraints (described informally in [8]) would accommodate refusal of atell message
by the recipient agent (for example by replying with a sorry or error performative).
This alows for more sophisticated dialogue constraints than in expressions 8 and 9
abovebut isasimilar specification task so, to save space, we limit ourselvesto the basic
interaction.

A difficulty in practice when constraining the use of performatives such as 'tell’,
above, isin ensuring that the constraints set in the specification of these performatives

248

actually hold during the course of a dialogue. How, for example, can both agents (A
and B) ensure that B wants to know about X (as preconditions 6 and 7 require)? How
can agent A be sure, after it sent the messagetell(A, B, X), that postcondition 9 holds,
since (for instance) its message may by accident never have been delivered to B. Using
LCC we can tackle this problem as follows.

First, it is necessary to define the dialogue associated with the 'tell’ performative. In
order to provide acknowledgement of receipt of this message we require a confirmatory
response from the recipient (B). For thiswe add a’ heard’ performative. The message
passing framework for the "tell’ protocol is then as shown in expressions 10 and 11,
with thefirst clause requiring the agent doing thetelling (in role T',,) to tell the recipient
(inrole T},) and await confirmation that the recipient has heard. KQML pre- and post-
conditions 6 and 8 are added to apply the appropriate constraints on Agent A’s beliefs.
The second clause obliges the recipient to receive the information and confirm that it
has heard, again with appropriate constraints 7 and 9.

a(Ty, A) = tell(X) = a(Ty, B) + (10)
() A

(4,2
(k(A, w(B, k(B,)))) then
k(A k(B,b(A,X))) < heard(X) < a(Ty,B)

~ o

a(Ty,B) :: i(B,k(B, X)) + tell(X) < a(T,,A) then (12)
heard(X) = a(T,,A) < k(B,b(A,X))

In the example above we included the constraints imposed on the semantics of a
performativein the definition of the constraintsembedded in our dial ogue protocol. This
makes them explicit so, if the application demands high reliability, they could be part
of a system of automatic checking or endorsement. This is not intrinsic to traditional
performative languages.

9 Conclusions

LCC isalanguagefor describing social norms as interacting, distributed processes. Al-
though it is comparatively simple in design (comparable to traditional logic program-
ming languages) it is able to represent concepts generally considered to be essential for
representing and reasoning about social norms. A primary aim of LCC (as with other
socia norm systems) isto interfere aslittle as possible with the design and operation of
individual agents. We have coded (separately for Prolog and Java) compact algorithms
for unpacking LCC protocols to yield the illocutions implied by them in whatever is
the current state of interaction (see Section 5). Little more than thisis required beyond
a method for parsing incoming and outgoing L CC-enabled messages (on whatever is
the chosen message passing infrastructure) and for satisfying the constraints (if any)
associated with appropriate clauses in the protocol.

L CC protocolsare modular in the sense that they can be understood separately from
the agents participating in the interactions they describe and are neutral to the imple-
mentation of those agents. The clauses within an LCC protocol also are modular, so
individual roles within an interaction are easy to identify. This makes it comparatively

249

straightforward to design different models of coordination for LCC depending on the
demands of the problem. Section 6 describes three such models.

Since LCC is an executabl e specification language, work continues on both aspects

of the system. On the specification side we have translations from LCC to other more
traditional styles of temporal specification, currently a modal logic and a form of situ-
ation calculus. On the deployment side we are investigating ways of making the LCC
protocol s adaptablein ways which preservethe intent of the social normsthey describe.
We are aso investigating how LCC may be adapted to support workflow in computa-
tional grids.

References

1

2.

10.

11

12.

K. Decker, A.S. Pannu, K. Sycara, and M. Williamson. Designing behaviors for information
agents. In Proceedings of the First International Conference on Autonomous Agents, 1997.
M. Esteva, D. de la Cruz, and C. Sierra. Islander: an electronic institutions editor. In Pro-
ceedings of the 1st International Joint Conference on Autonomous Agents and MultiAgent
Systems, pages 1045-1052, 2002.

. M. Esteva, J. Padget, and C. Sierra. Formalizing a language for ingtitutions and norms. In

Intelligent Agents V111, Lecture Notesin Artificial Intelligence, volume 2333, pages 348-366.
Springer-Verlag, 2002.

. JA. Giampapa and K. Sycara. Team-oriented agent coordination in the retsina multi-agent

system. Technical Report CMU-RI-TR-02-34, Robotics Institute, Carnegie Mellon Univer-
sity, December 2002.

. M. Greaves, M. Holmback, and J. Bradshaw. What is a conversation policy? In F. Dignum

and F. Greaves, editors, Issues in Agent Communication, pages 118-131. Springer-Verlag,
1999.

. M. Huget, M. Esteva, S. Phelps, C. Sierra, and M. Wooldridge. Model checking electronicin-

stitutions. In Proceedings of ECAI Workshop on Model Checking and Artificial Intelligence,
Lyon, France, 2002.

. L. Kagal, T. Finin, and A. Joshi. A policy language for pervasive systems. In Fourth IEEE

International Workshop on Policies for Distributed Systems and Networks, 2003.

. Y. Labrou and T. Finin. A semantics approach for KQML: a general purpose communi-

cation language for software agents. In Third International Conference on Knowledge and
Information Management, 1994.

S. Mcllraith and T. Son. Adapting golog for composition of semantic web services. In
Proceedings of the Eighth International Conference on Knowledge Representation and Rea-
soning, pages 482-493, 2002.

D. Robertson. A lightweight method for coordination of agent oriented web services. In
Proceedings of AAAI Sporing Symposium on Semantic Web Services, California, USA, 2004.
M. Sheshagiri, M. desJardins, and T. Finin. A planner for composing services described in
daml-s. In International Conference on Automated Planning and Scheduling, 2003.

C. Walton. Model checking multi-agent web services. In Proceedings of AAAI Spring Sym-
posium on Semantic Web Services, California, USA, 2004.

250

Reasoning about agents’ interaction protocols
inside DCaseLLP

M. Baldonif, C. Barogliof, I. Gunguif, A. Martellif,
M. Martellif, V. Mascardif, V. Pattif, C. Schifanella

1 Dipartimento di Informatica
Universita degli Studi di Torino, Italy
E-mail: {baldoni,baroglio,mrt,patti,schi}@di.unito.it
1 Dipartimento di Informatica e Scienze dell’Informazione
Universita degli Studi di Genova, Italy
1995s133@educ.disi.unige.it, {martelli,mascardi}@disi.unige.it

Abstract. Engineering systems of heterogeneous agents is a difficult
task; one of the ways for achieving the successful industrial deployment
of agent technology is the development of engineering tools that support
the developer in all the steps of design and implementation. In this work
we focus on the problem of supporting the design of agent interaction
protocols by carrying out a methodological integration of the MAS pro-
totyping environment DCaseLP with the agent programming language
DyLOG for reasoning about action and change.

1 Introduction

Multiagent Systems (MASs) involve heterogeneous components which have dif-
ferent ways of representing their knowledge of the world, themselves, and other
agents, and also adopt different mechanisms for reasoning. Despite heterogene-
ity, agents need to interact and exchange information in order to cooperate or
compete not only for the control of shared resources but also to achieve their
aims; this interaction may follow sophisticated communication protocols.

For these reasons and due to the complexity of agents’ behavior, MASs are
difficult to be correctly and efficiently engineered. Even developing a working
prototype may require a long time and a lot of effort. In fact, some general aspects
of the MAS can be better specified and verified using ad-hoc languages, and the
prototype can involve heterogeneous agents that cannot be easily implemented
using the same language'. The “one-size-fits-all” approach, which means using
the same specification language for all the aspects of the MAS, and the same
implementation language for all the agents, does not take the heterogeneity into
account and represents a very rigid solution to a problem that requires as much
flexibility as possible.

! Unless otherwise stated, by “implementation language” we mean the language used
to implement the running prototype, which may be different from the language used
in the final application.

251

According to [26], the successful industrial deployment of agent technology
requires techniques that reduce the inherent risks in any new technology and
there are two ways in which this can be done: presenting a new technology as an
extension of a previous, well-established one, or providing engineering tools that
support industry-accepted methods of technology deployment. In this paper we
present an ongoing research that follows the second outlined solution, aimed at
developing a “multi-language” environment for engineering systems of hetero-
geneous agents. This environment will allow the prototype developer to specity,
verify and implement different aspects of the MAS and different agents inside the
MAS, choosing the most appropriate language from a given set. In particular,
the discussion will be focused on the advantages of integrating an agent pro-
gramming language for reasoning about actions and change (using the language
DyLOG [9,7]) into the DCaseLP [4,19,24] MAS prototyping environment.

The paper has been structured as follows: Section 2 explains the core ideas
of the project, Section 3 overviews the DCaselLP environment while Section 4
introduces the DyLOG language. Finally, Section 5 outlines the integration of
DyLOG into DCaseLLP and discusses its outcomes in reasoning about conversa-
tion protocols; conclusions follow.

2 An integrated environment to engineer agent systems
and to reason about interaction

The development of a prototype system of heterogeneous agents can be carried
out in different ways. The “one-size-fits-all” solution consists of developing all
the agents by means of the same implementation language and to execute the
obtained program. If this approach is adopted, during the specification stage it
would be natural to select a specification language that can be directly executed
or easily translated into code, and to use it to specify all the agents in the MAS.
The other solution is to specify each “view” of the MAS (that includes its ar-
chitecture, the interaction protocols among agents, the internal architecture and
functioning of each agent), with the most suitable language in order to deal with
the MAS’s peculiar features, and then to verify and execute the obtained spec-
ifications inside an integrated environment. Such a multi-language environment
should, therefore, offer the means not only to select the proper specification lan-
guage for each view of the MAS, but also to check the specifications exploiting
formal validation and verification methods and to produce an implementation of
the prototype in a semi-automatic way. The prototype’s implementation should
be composed of heterogeneous pieces of code created by semi-automatic transla-
tions of heterogeneous specifications. Moreover, the multi-language environment
should allow these pieces of code to be seamlessly integrated and capable of
interacting.

The more complexity associated with the latter solution is proportional to
the advantages it gives in respect to the former. In particular, by allowing differ-
ent specification languages for modeling different aspects of the MAS, it provides
the flexibility needed to describe the MAS from different points of view. More-

252

over, by allowing different specification languages for the internal architecture
and functioning of each agent, it respects the differences existing among agents,
namely the way they reason and the way they represent their knowledge, other
agents, and the world. Clearly, this solution also has some drawbacks in respect
to the former. The coherent integration of different languages into the same
environment must be carefully designed and implemented by the environment
creators, who must also take care of the environment maintenance. It must be
emphasized that the developer of the MAS does not have to be an expert of all
the supported languages: he/she will use those he/she is more familiar with, and
this will lead to more reliable specifications and implementations.

Although solid and complete environments that focus on the integration of
heterogeneous specification and implementation languages in a seamless way do
not exist yet, some interesting results have already been achieved with the de-
velopment of prototypical environments for engineering heterogeneous agents.
Just to cite some of them, the AgentTool development system [2] is a Java-
based graphical development environment to help users analyze, design, and
implement MASs. It is designed to support the Multiagent Systems Engineer-
ing (MaSE) methodology [12], which can be used by the system designer to
graphically define a high-level system behavior. The system designer defines
the types of agents in the system as well as the possible communications that
may take place between them. This system-level specification is then refined
for each type of agent in the system. To refine the specification of an agent,
the designer either selects or creates an agent’s architecture and then provides
detailed behavioral specification for each component in such architecture. Zeus
[30] is an environment developed by British Telecommunications for specifying
and implementing collaborative agents, following a clear methodology and us-
ing the software tools provided by the environment. The approach of Zeus to
the development of a MAS consists of analysis, design, realization and runtime
support. The first two stages of the methodology are described in detail in the
documentation, but only the last two stages are supported by software tools.
DCaseLP (Distributed CaseLP, [4,19,24]) integrates a set of specification and
implementation languages in order to model and prototype MASs. It defines a
methodology which covers the engineering stages, from the requirements analysis
to the prototype execution, and relies on the use of AUML (Agent UML, [6]) not
only during the requirements analysis, but also to describe the interaction pro-
tocols followed by the agents. The description of other prototyping environments
can be found starting from the UMBC Web Site (http://agents.umbc.edu)
and following the path Applications and Software, Software, Academic,
Platforms. The reader can refer to [13] for a comparison between some of them,
including the predecessor of DCaseLP (CaseLP).

In respect to the existing MAS prototyping environments, DCaseLLP stresses
the aspect of multi-language support to cope with the heterogeneity of both the
views of the MAS and the agents. This aspect is usually not considered in depth,
and this is the reason why we opted to work with DCaseLP rather than with
other existing environments.

253

The choice of AUML to represent interaction protocols in DCaseLLP is moti-
vated by the wide support that it is obtaining from the agent research commu-
nity. Even if AUML cannot be considered a standard agent modeling language
yet, it has many chances to become such, as shown by the interest that both
the FIPA modeling technical committee (http://www.fipa.org/activities/
modeling.html) and the OMG Agent Platform Special Interest Group (http:
//www.objs.com/agent/) demonstrate in it.

In DCaseLP, interaction protocols can be described using UML and /or AUML,
and can be animated by creating agents whose behavior adheres to the given
protocols. The idea of translating UML and AUML diagrams into a formalism
and check their properties by either animating or formally verifying the result-
ing code is shared by many researchers working in the agent-oriented software
engineering field [20,25,28]. We followed an animation approach to check that
the interaction protocols produced during the requirement specification stage
are the ones necessary to describe the system requirements and, moreover, that
they are correct. The “coherence check” is done by comparing the results of
the execution runs with the interaction specification [4]. Despite its usefulness,
this approach does not straightforwardly allow the formal proof of properties of
the resulting system a priori: indeed, a key issue in the design and engineering
of interaction protocols, that DCaseLP does not address, is the use of formal
methods to verify properties of the interactions occurring between the agents.
For instance, in the line of [21], it would be interesting to perform validation
tests, i.e. to check the coherence of the AUML description with the specifica-
tions derived from the analysis. To this aim, it is possible to use model checking
techniques [10]. Another kind of verification that could be executed (a priori as
well) is the conformance test, i.e. a test that verifies if the implementation is
coherent with the AUML specification. Moreover, when using a declarative lan-
guage for the implementation, it is also possible to exploit reasoning techniques
to prove further properties of the interaction.

One step in this direction is to integrate the ability of reasoning about the
agent interaction protocols, into DCaseLLP. To achieve this, we propose to imple-
ment AUML sequence diagrams into the DyLOG programming language, and
then to integrate DyLOG into DCaseLLP. The choice of DyLOG is motivated by
our interest in the aspects of specification, that are related to communication
between agents; in fact, the DyLOG language includes a fully integrated “com-
munication kit”, that allows not only to specify both communicative acts and
conversation protocols, but also to reason upon the latter. Moreover, it is pos-
sible to prove in a formal way that a DyLOG implementation is conformant to
the AUML specification of an interaction protocol, according to the definitions
given in [8] (i.e. that all the conversations that it produces respect the protocol
specification) and to partially automate the implementation process. Section 5
briefly illustrates the translation procedure. DyLOG also allows reasoning about
the conversations defined by a protocol, basically to check if there is a conversa-
tion after whose execution a given set of properties holds. This characteristic can
be exploited to determine which protocol, from a set of available ones, satisfies a

254

goal of interest, and also to compose many protocols for accomplishing complex
tasks. After proving desired properties of the interaction protocols, the devel-
oper can animate them thanks to the facilities offered by DCaseLP, discussed in
Section 3.

This integration of DyLOG into DCaseLP is a methodological integration:
it extends the set of languages supported by DCaseLLP during the MAS engi-
neering process and augments the verification capabilities of DCaseLP, without
requiring any real integration of the DyLOG working interpreter into DCaseL.P.
Nevertheless, DyLOG can also be used to directly specify agents and execute
them inside the DCaseLLP environment, in order to exploit the distribution, con-
currency, monitoring and debugging facilities that DCaseLP offers. This physical
integration of DyLOG into DCaseLP is briefly discussed in Section 5.

3 The DCaseLP environment

DCaseLP is a prototyping environment where agents specified and implemented
in a given set of languages can be seamlessly integrated. It provides an agent-
oriented software engineering methodology to guide the developer during the
analysis of the MAS requirements, its design, and the development of a working
MAS prototype. The methodology is sketched in Figure 1. Solid arrows represent
the information flow from one stage to the next one. Dotted arrows represent
the iterative refinement of previous choices. The first release of DCaseL.P did not
realize all the stages of the methodology. In particular, as we have pointed in last
section, the stage of properties verification was not addressed. The integration
of DyLOG into DCaseLP discussed in Section 5 will allow us to address also
the verification phase. The tools and languages supported by the first release of

Knowledge ":jj:::x\

(specification RSN
Role model .
specification Analysis
Architecture <32

(specification
Agent class
specification !

(Agent instance I
specification o

Verification Pro_p_ertlgs

verification

Prototype
implementation

Design \\ ‘.‘

Translation of speci—

fications into code

Prototype | Execution of the !
testing | Prototype
Fig. 1. DCaseLP’s methodology.

DCaseLP, discussed in [24,4], included UML and AUML for the specification of

255

the general structure of the MAS, and Jess [23] and Java for the implementation
of the agents.

DCaselLP adopts an existing multi-view, use-case driven and UML-based
method [5] in the phase of requirements analysis. Once the requirements of the
application have been clearly identified, the developer can use UML and/or
AUML to describe the interaction protocols followed by the agents, the general
MAS architecture and the agent types and instances. Moreover, the developer
can automatically translate the UML/AUML diagrams, describing the agents in
the MAS, into Jess rule-based code. In the following we will assume that AUML
is used during the requirements analysis stage, although the translation from
AUML into Jess is not fully automated (while the translation from pure UML
into Jess is).

The Jess code obtained from the translation of AUML diagrams must be
manually completed by the developer with the behavioral knowledge which was
not explicitly provided at the specification level. The developer does not need
to have a deep insight into rule-based languages in order to complete the Jess
code, since he/she is guided by comments included in the automatically gener-
ated code. The agents obtained by means of the manual completion of the Jess
code are integrated into the JADE (Java Agent Development Framework, [22])
middle-ware. JADE complies with the FIPA specifications [15] and provides a set
of graphical tools that support the execution, debugging and deployment phases.
The agents can be distributed across several machines and can run concurrently.
By integrating Jess into JADE, we were able to easily monitor and debug the
execution of Jess agents thanks to the monitoring facilities that JADE provides.

A recent extension of DCaseLP, discussed in [19], has been the integration
of tuProlog [29]. The choice of tuProlog was due to two of its features:

1. it is implemented in Java, which makes its integration into JADE easier, and
2. it is very light, which ensures a certain level of efficiency to the prototype.

By extending DCaseLLP with tuProlog we have obtained the possibility to
execute agents, whose behavior is completely described by a Prolog-like the-
ory, in the JADE platform. For this purpose, we have developed a library of
predicates that allow agents specified in tuProlog to access the communication
primitives provided by JADE: asynchronous send, asynchronous receive, and
blocking receive (with and without timeout). These predicates are mapped onto
the corresponding JADE primitives. Two predicates for converting strings into
terms and vice-versa are also provided, in order to allow agents to send strings
as the content of their messages, and to reason over them as if they were Prolog
terms.

A developer who wants to define tuProlog agents and integrate them into
JADE can do it without even knowing the details of JADE’s functioning. An
agent whose behavior is written in tuProlog is, in fact, loaded in JADE as an

ordinary agent written in Java. The developer just needs to know how to start
JADE.

256

4 Interaction protocols in DyLOG

Logic-based executable agent specification languages have been deeply investi-
gated in the last years [3,16,11,9]. In this section we will briefly recall the main
features of DyLOG, by focussing on how the communicative behavior of an agent
can be specified and on the form of reasoning supported (details in [9,7]).

DyLOG is a high-level logic programming language for modeling rational
agents, based on a modal theory of actions and mental attitudes where modalities
are used for representing actions, while beliefs model the agent’s internal state.
It accounts both for atomic and complex actions, or procedures. Atomic actions
are either world actions, affecting the world, or mental actions, i.e. sensing and
communicative actions producing new beliefs and then affecting the agent mental
state. Complex actions are defined through (possibly recursive) definitions, given
by means of Prolog-like clauses and by action operators from dynamic logic, like
sequence “”, test “?” and non-deterministic choice “U”. The action theory allows
coping with the problem of reasoning about complex actions with incomplete
knowledge and in particular to address the temporal projection and planning
problem in presence of sensing and communication.

Intuitively, DyLOG allows the specification of rational agents that reason
about their own behavior, choose courses of actions conditioned by their mental
state and can use sensors and communication for obtaining fresh knowledge. The
agent behavior is described by a domain description, which includes, besides a
specification of the agents initial beliefs, a description of the agent behavior
plus a communication kit (denoted by CKit®?"), that encodes its communicative
behavior. Communication is supported both at the level of primitive speech acts
and at the level of interaction protocols. Thus, the communication kit of an
agent ag; is defined as a triple (Il¢, IIep, IIsget): Ilc is a set of laws defining
precondition and effects of the agent speech acts; Il¢p is a set of procedure
axioms, specifying a set of interaction protocols, and can be intended as a library
of conversation policies, that the agent follows when interacting with others;
Isget is a set of sensing axioms for acquiring information by messages reception.

Speech acts are represented as atomic actions with preconditions and effect
on ag;’s mental state, of form speech_act(ag;, agj,), where ag; (sender) and ag;
(receiver) are agents and ! (a fluent) is the object of the communication. Effects
and preconditions are modeled by a set of effect and precondition laws. We use
the modality O to denote such laws, i.e. formulas that hold always, after every
(possibly empty) arbitrary action sequence.

We refer to a mentalistic approach, which is also adopted by the standard
FIPA-ACL [14], where communicative actions affect the internal mental state of
the agent. Some authors have proposed a social approach to agent communica-
tion [27], where communicative actions affect the “social state” of the system,
rather than the internal states of the agents. The social state records the social
facts, like the permissions and the commitments of the agents, which are created
and modified along the interaction. Different approaches enable different types
of properties to be proved [18]. For instance the mental approach is not well
suited for the verification of an “open” multi-agent system, where the history of

257

communications is observable, but the internal states of the single agents may
not be observable [27]. However, DyLOG is a language for specifying an indi-
vidual, communicating agent, situated in a multi-agent context. In this case it
is natural to have access to the agent internal state and we are interested in
proving different kind of of properties about communication. Basically, based on
a representation of the effects and preconditions of the interactions on the agent
mental state, we want to perform hypothetical reasoning about the effects of con-
versations on the agent mental state, in order to find conversation plans which
are proved to respect protocols and to achieve some desired goal. Therefore the
semantic of the speech acts is specified based on mental states, taking the point
of view of the agent. A DyLOG agent has a twofold representation of each a
speech act: one holds when it is the sender, the other when it is the receiver.
As an example, let us define the semantics of the inform speech act within the
DyLOG framework:

(B A B3 YOther] 5 (inform(Sel f, Other, 1)) T)

O([inform(Sel f, Other,)] MS¢lf BOther])

a(BSe BOther quthority(Sel f,1) O [inform(Sel f, Other,)] B3¢ BOther])
O(T D (inform(Other, Self,1))T)

d([inform(Other, Sel f,1)|B5¢f BOther])

O(B%f quthority(Other, 1) D [inform(Other, Sel f,1)]B%°/1)

In general, for each action a and agent ag;, [a®9] is a universal modalities ((a®9%)
is its dual). [a®9] means that a holds after every execution of action a by agent
ag;, while (a®%)a means that there is a possible execution of a (by ag;) after
which « holds. Therefore clause (a) states executability preconditions for the
action inform(Self, Other,1): it specifies the mental conditions that make the
action executable in a state. Intuitively, it states that Self can execute an in-
form act only if it believes | (we use the modal operator B to model the
beliefs of agent ag;) and it believes that the receiver (Other) does not know [. It
also considers possible that the receiver will adopt its belief (the modal operator
M is defined as the dual of B* intuitively M*9p means the ag; consid-
ers ¢ possible), clause (b), although it cannot be certain about it -autonomy
assumption-. If agent Self believes to be considered a trusted authority about
! by the receiver, it is also confident that Other will adopt its belief, clause (c).
Since executability preconditions can be tested only on the Self mental state,
when Self is the receiver, the action of informing is considered to be always
executable (d). When Self is the receiver, the effect of an inform act is that
Sel f will believe that [is believed by the sender (Other), clause (e), but Self
will adopt | as an own belief only if it thinks that Other is a trusted authority,
clause (f).

DyLOG supports also the representation of interaction protocols by means
of procedures, that build on individual speech acts and specify communication
patterns guiding the agent communicative behavior during a protocol-oriented
dialogue. Formally, protocols are expressed by means of a collection of proce-
dure axioms of the action logic of the form (po)e C (p1){(p2) ... (Pn)p, where pg
is the procedure name the p;’s can be ¢’s speech acts, special sensing actions

zeeoTe

@

f

258

for modeling message reception, test actions (actions of the form F's?, where
Fs is conjunction of belief formulas) or procedure names 2. Each agent has a
subjective perception of the communication with other agents; for this reason,
given a protocol specification, we have as many procedural representations as
the possible roles in the conversation (see example in the next section).

Message reception is modeled as a special kind of sensing action, what we
call get message actions. Indeed, from the point of view of an individual agent
receiving a message can be interpreted as a query for an external input, whose
outcome cannot be predicted before the actual execution, thus it seems natural
to model it as a special case of sensing. The get message actions are defined by
means of inclusion axioms, that specify a finite set of (alternative) speech acts
expected by the interlocutor.

DyLOG allows reasoning about agents’ communicative behavior, by support-
ing techniques for proving existential properties of the kind “given a protocol
and a set of desiderata, is there a specific conversation, respecting the protocol,
that also satisfies the desired conditions?”. Formally, given a DyLOG domain
description 1,4, containing a CKit"Y* with the specifications of the interaction
protocols and of the relevant speech acts, a planning activity can be triggered by
existential queries of the form (p1)(p2) ... {(pm)Fs, where each p (k =1,...,m)
may be a primitive speech act or an interaction protocol, executed by our agent,
or a get message action (in which our agent plays the role of the receiver). Check-
ing if the query succeeds corresponds to answering to the question “is there an
execution of py, ..., p, leading to a state where the conjunction of belief for-
mulas Fs holds for agent ag;?”. Such an execution is a plan to bring about Fs.
The procedure definition constrains the search space.

Actions in the plan can be speech acts performed or received by ag;, the
latter can be read as the assumption that certain messages will be received
from the interlocutor. The ability of making assumptions about which message
(among those foreseen by the protocol) will be received is necessary in order to
actually build the plan. Depending on the task that one has to execute, it may
alternatively be necessary to take into account all of the possible alternatives that
lead to the goal or just to find one of them. In the former case, the extracted
plan will be conditional, because for each get_message it will generally contain
many branches. Each path in the resulting tree is a linear plan that brings about
Fs. In the latter case, instead, the plan is linear.

5 Integrating DyLOG into DCaseLP to Reason about
Communicating Agents

Let us now illustrate, by means of examples, the advantages of adding to the
current interaction design tools of DCaseLP the possibility of converting AUML
sequence diagrams into a DyLOG program. Figure 2 represents the resulting ar-
chitecture. DyLOG is placed between the verification and the prototype stage. In

2 For sake of brevity, sometimes we will write these axioms as (po)p C
(pr;p2;.- s pn)e-

259

fact, being based on computational logic, we can exploit it both as implementa-
tion language and for verifying properties. In the first DCaseLLP release, AUML

Late req.
analysis;
design

{[luProlog][Java ” [Jess] Prototype
development

] and testing

[JADE

PC PC PC "

Fig. 2. Interating DyLOG into DCaseLP.

interaction protocols could be only translated into Jess code, which could not be
formally verified but just executed. The use of DyLOG bears some advantages:
on a hand it is possible to automatically verify that a DyLOG implementation is
conformant to the AUML specification [8], moreover, it is also possible to verify
properties of the so obtained DyLOG program. Property proof can be carried
out using the existing DyLOG interpreter, implemented in Sicstus Prolog [1].

Besides the methodological integration, DyLOG can be also integrated in a
physical way. The possibility to develop a Java interpreter for DyLOG and to take
advantage of some of the mechanisms already provided by tuProlog is currently
under evaluation. Once the physical integration will be completed, it will be
possible to animate complete DyLOG agents into DCaseLLP. This will mean that
agents specified in Jess, Java, DyLOG, tuProlog will be able to interact with
each other inside a single prototype whose execution will be monitored using
JADE.

In the rest of this section, however, we deal with the methodological integra-
tion. Let us suppose, for instance, to be developing a set of interaction protocols
for a restaurant and a cinema that, for promotional reasons, will cooperate in
this way: a customer that makes a reservation at the restaurant will get a free
ticket for a movie shown by the cinema. By restaurant and cinema we here mean
two generic service providers and not a specific restaurant and a specific cinema.
In this scenario the same customer will interact with both providers. The devel-

260

CUSTOMER CINEMA

Fedro-aue | !

D querylfavailable(Movie)) M

efuselnform(available(Movie))

inform(~available(Movie)),

inform(available(Movie))

- CUSTOMER CINEMA
esl_no_query

f v ! !
Qu[ecryv\?(lgr?‘eer:v’\gog;gz]no) D yes_no_query(available(Movie)
< L >
refuselnform(cinema_promg) 1 (available(Movie))
<
%)

_, ves_no_query(cinema_promo)

inform(~cinema_proma

| (available(Movie) ~cinema_promoj
_, Yes_no_query(pay_by(c_card))

<

inform(cinema_promo) 4

(available(Movie) ~cinema_promo,
pay_by(c_card))inform(cc_numbep
>

o
]

(available(Movie).cinema_promo)
inform(ft_numben)

(avallable(Movie) cinema_promo) | (available(Movie,~cinema_promo,

inform(reservation(Movie)) Eﬁ,bwc,ccvdn inform(reservation(Mox
(i) (ii)

CUSTOMER RESTAURANT

yes_no_query(available(Time)
L
! (available(Time))
D o informreservation(ime))
<

| (available(Time))
D o inform(cinema_promo)

(available(Time))

! inform(ft_numeber)

|_"_|:

(iii)

Fig. 3. AUML sequence diagrams representing the interactions between customer and
provider: (i) and (ii) are followed by the cinema service, (iii) is followed by the restau-
rant. Formulas in square brackets represent preconditions to speech act execution.

oper must be sure that the customer, by interacting with the composition (by
sequentialization) of the two protocols, will obtain what desired. Figure 3 shows
an example of AUML protocols, for the two services; (i) and (ii) are followed by
the cinema, (iii) by the restaurant. This level of representation does not allow
any proof of properties because is lacking of a formal semantics. Supposing that
the designed diagrams are correct, the protocols are to be implemented. It is de-
sirable that the correctness of the implementation w.r.t. the AUML specification
can be verified. If the protocols are implemented in DyLOG, this can actually be
done. In fact, if one restricts to the AUML operators message, alternative, loop,
and sub-protocol, described in the new proposal [6], it is possible to produce in
an automatic way a skeleton of a DyLOG implementation, by translating the
sequence diagram in a grammar, whose terminal symbols correspond to the set
of labels of the message operators in the diagram, and whose production rules
sketch the interaction protocol. Actually, for each protocol we obtain as many
procedures as agent roles because of the subjective view, that is characteristic
of DyLOG agents. All the conversations that are instances of the skeleton pro-

261

gram are legal w.r.t. the sequence diagram. Notice that the translation does not
produce a full implementation because the sequence diagrams do not define the
semantics of the speech acts, which is to be added, as well as an implementa-
tion of the tests described by words in the diagram. Nevertheless, the necessary
addings will only reduce the number of possible conversations, avoiding to in-
troduce illegal speech act sequences.

Let us describe one possible implementation of the two protocols in a Dy-
LOG program. Each implemented protocol will have two complementary views
(customer and provider) but for the sake of brevity, we report only the view
of the customer. It is easy to see how the structure of the procedure clauses
corresponds to the sequence of AUML operators in the sequence diagrams. The
subscripts next to the protocol names are a writing convention for representing
the role that the agent plays; so, for instance, () stands for querier, and C for
customer. The customer view of the restaurant protocol is the following:

(a) (reserv_restc(Self, Service, Time))p C
(yes_no_query (Sel f, Service, available(Time)) ;
B3 quailable(Time)? ;
get_info(Sel f, Service, reservation(Time)) ;
get_info(Sel f, Service, cinema_promo) ;
get_info(Sel f, Service, ft_number))p

(b) [get-info(Self, Service, Fluent)|y C [inform(Service, Sel f, Fluent)|y

Procedure (a) is the protocol procedure: the customer asks if a table is available
at a certain time, if so, the restaurant informs it that a reservation has been
taken and that it gained a promotional free ticket for a cinema (cinema_promo),
whose code number (ft_number) is returned. Clause (b) shows how get_info can
be implemented as an inform act executed by the service and having as recipient
the customer. The question mark amounts to check the value of a fluent in
the current state; the semicolon is the sequencing operator of two actions. The
cinema protocol, instead, is:

(c) (reserv_cinemac(Self, Service, Movie))p C
(yes_no_query (Sel f, Service, available(Movie)) ;
B quailable(Movie)? ;
yes_no_query,(Sel f, Service, cinema_promo) ;
-B% cinema_promo? ;
yes_no_query, (Self, Service, pay_-by(c_card)) ;
B pay by(c_card)? ;
inform(Sel f, Service, ccnumber) ;
get_info(Sel f, Service, reservation(Movie)))

(d) (reserv_cinemac(Self, Service, Movie))p C
(yes_no_query,(Sel f, Service, available(Movie)) ;
B%Y available(Movie)? ;
yes_no_query(Sel f, Service, cinema_promo) ;
B! cinema_promo? ;
inform(Sel f, Service, ft_.number) ;
get_info(Sel f, Service, reservation(Movie)))p

262

Supposing that the desired movie is available, the cinema alternatively ac-
cepts credit card payments (c) or promotional tickets (d). We can verify if the
two implementations can be composed with the desired effect, by using the rea-
soning mechanisms embedded in the language and answering to the query:

<reserv_restc (customer, restaurant, dinner) ;
reserv_cinemac (customer, cinema, movie))
(Beustomer cinema_promo A B“5°" ¢ reservation(dinner) A
Beustomer reservation(movie) A BEUHOMET BT £ number)

This query amounts to determine if it is possible to compose the interaction
so to reserve a table for dinner (B<“st°™m¢"reservation(dinner)) and to book a
ticket for the movie movie (B<“$*°™¢"reservation(movie)), exploiting a promo-
tion (Beustomer cinema_promo). The obtained free ticket is to be spent (Beustomer
Beinema £t number), i.e. customer believes that after the conversation the cho-
sen cinema will know the number of the ticket given by the selected restaurant.
If the customer has neither a reservation for dinner nor one for the cinema or a
free ticket, the query succeeds, returning the following linear plan:

querylf (customer, restaurant, available(dinner)) ;

‘ inform(restaurant, customer, available(dinner)) ; ‘

inform(restaurant, customer, reservation(dinner)) ;
inform(restaurant, customer, cinema_promo) ;
inform(restaurant, customer, ft_number) ;

querylf (customer, cinema, available(movie)) ;

‘ inform(cinema, customer, available(movie)) ; ‘

querylf(cinema, customer, cinema_promo) ;
inform(customer, cinema, cinema_promo) ;
inform(customer, cinema, ft_number) ;
inform(cinema, customer, reservation(movie))

This means that there is first a conversation between customer and restaurant
and, then, a conversation between customer and cinema, that are instances of
the respective conversation protocols, after which the desired condition holds.
The linear plan, will, actually lead to the desired goal given that some assump-
tions about the provider’s answers hold. In the above plan, assumptions have
been outlined with a box. For instance, an assumption for reserving a seat at a
cinema is that there is a free seat, a fact that can be known only at execution
time. Assumptions occur when the interlocutor can respond in different ways
depending on its internal state. It is not possible to know in this phase which
the answer will be, but since the set of the possible answers is given by the pro-
tocol, it is possible to identify the subset that leads to the goal. In the example
they are answers foreseen by a yes_no_query protocol (see Figure 3 (i) and [7]).
Returning such assumptions to the designer is also very important to understand
the correctness of the implementation also with respect to the chosen speech act
ontology.

Using DyLOG as an implementation language is useful also for other pur-
poses. For instance, if a library of protocol implementations is available, a de-
signer might will to search for one that fits the requirements of some new project.

263

Let us suppose, for instance, that the developer must design a protocol for a
restaurant where a reservation can be made, not necessarily using a credit card.
The developer will, then, search the library of available protocol implementa-
tions, looking for one that satisfies this request. Given that search_service is
a procedure for searching in a library for a given category of protocol, a pro-
tocol fits the request if there is at least one conversation generated by it after
which —B%¢™i¢cc_number; such a conversation can be found by answering to
the existential query:

search_service(restaurant, Protocol) ; Protocol(customer, service, time
b b b b
(Beustomer s Bservice .o pumber A B reservation(time))

which means: find a protocol with at least one execution after which the cus-
tomer is sure that the provider does not know his/her credit card number and
a reservation has been taken.

6 Conclusions and future work

In this paper we have discussed the methodological and physical integration of
DyLOG into DCaseLP in order to reason about communication protocols. A
methodology for semi-automatically generating a DyLOG implementation from
a AUML sequence diagram is described in a similar way as it has been done
for the AUML — Jess translation [4]. Such an integration allows to support the
MAS developer in many ways. In fact, by means of this integration we add to
DCaseLLP the ability of reasoning about the properties of the interactions that
occur among agents before they actually occur, during the design phase of the
MAS; this feature is not offered by DCaseLP (without DyLOG) since protocols
can only be translated into Jess code and executed. The ability of reasoning
about possible interactions is very useful in many practical tasks. In this paper we
have shown a couple of examples of use: selection of already developed protocols
from a library and verification of compositional properties. It would be also
interesting to use formal methods for proving other kind of properties of the
interaction protocols. We mean to study the application of other techniques
derived from the area of logic-based protocol verification [17] where the problem
of proving universal properties of interaction protocols (i.e. properties that hold
after every possible execution of the protocol) is faced. Such techniques could
be exploited to perform the validation stage [21] in order to check the coherence
of the AUML description with the specifications derived from the analysis. This
is usually done by defining a model of the protocol (AUML) and expressing the
specification by a temporal logic formula; thus model checking techniques test if
the model satisfyies the temporal logic formula.

The physical integration is in progress; in particular, we are implementing
a new DyLOG interpreter in Java (inspired by tuProlog) that will be used in
DCaseLP also as an implementation language for the definition of agents, in the
same way as Jess and (recently) tuProlog are currently used.

264

Acknowledgement

This research is partially supported by MIUR, Cofin 2003 “Logic-based develop-
ment and verification of multi-agent systems” national project.

References
1. Advanced logic in computing environment. Available at
http://www.di.unito.it/"alice/.
2. AgentTool development system. http://www.cis.ksu.edu/"sdeloach/ai/

10.
11.

12.

13.

14.

15.
16.

17.

projects/agentTool/agentool.htm.

K. Arisha, T. Eiter, S. Kraus, F. Ozcan, R. Ross, and V.S. Subrahmanian. IM-
PACT: a platform for collaborating agents. IEEE Intelligent Systems, 14(2):64-72,
1999.

E. Astesiano, M. Martelli, V. Mascardi, and G. Reggio. From Requirement Spec-
ification to Prototype Execution: a Combination of a Multiview Use-Case Driven
Method and Agent-Oriented Techniques. In J. Debenham and K. Zhang, edi-
tors, Proceedings of the 15th International Conference on Software Engineering
and Knowledge Engineering (SEKE’03), pages 578-585. The Knowledge System
Institute, 2003.

E. Astesiano and G. Reggio. Knowledge Structuring and Representation in Re-
quirement Specification. In Proceedings of SEKE 2002. ACM Press, 2002.

AUML Home Page. http://www.auml.org.

M. Baldoni, C. Baroglio, A. Martelli, and V. Patti. Reasoning about self and others:
communicating agents in a modal action logic. In C. Blundo and C. Laneve, editors,
Theoretical Computer Science, 8th Italian Conference, ICTCS’2003, volume 2841
of LNCS, pages 228241, Bertinoro, Italy, October 2003. Springer.

M. Baldoni, C. Baroglio, A. Martelli, and V. Patti. Reasoning about logic-based
interaction protocols. In Proc. of CILC 2004, 2004. to appear.

M. Baldoni, L. Giordano, A. Martelli, and V. Patti. Programming Rational Agents
in a Modal Action Logic. Annals of Mathematics and Artificial Intelligence, Special
issue on Logic-Based Agent Implementation, 2004. To appear.

E. Clarke, O. Grumberg, and D. Peled. Model Checking. The MIT Press, 2000.
G. De Giacomo, Y. Lespérance, and H. J. Levesque. CONGOLOG, a concurrent
programming language based on situation calculus. Artificial Intelligence, 121:109—
169, 2000.

S. A. DeLoach. Methodologies and Software Engineering for Agent Systems, chapter
The MaSE Methodology. Kluwer Academic Publisher, 2004. To appear.

T. Eiter and V. Mascardi. Comparing Environments for Developing Software
Agents. AI Communications, 15(4):169-197, 2002.

FIPA. Fipa 97, specification part 2: Agent communication language. Technical re-
port, FIPA (Foundation for Intelligent Physical Agents), November 1997. Available
at: http://www.fipa.org/.

FIPA Specifications. http://www.fipa.org.

M. Fisher. A survey of concurrent METATEM - the language and its applications.
In D. M. Gabbay and H.J. Ohlbach, editors, Proc. of the 1st Int. Conf. on Temporal
Logic (ICTL’94), volume 827 of LNCS, pages 480-505. Springer-Verlag, 1994.

L. Giordano, A. Martelli, and C. Schwind. Specifying and Verifying Systems of
Communicating Agents in a Temporal Action Logic. In A. Cappelli and F. Turini,
editors, Proc. of the 8th Conf. of AI*IA, volume 2829 of LNAI Springer, 2003.

18

19.

20.

21.

22.
23.
24.

25.

26.

27.

28.

29.
30.

265

F. Guerin and J. Pitt. Verification and Compliance Testing. In M.P. Huget,
editor, Communication in Multiagent Systems, volume 2650 of LNAI, pages 98—
112. Springer, 2003.

I. Gungui and V. Mascardi. Integrating tuProlog into DCaseLLP to engineer het-
erogeneous agent systems. Proceedings of CILC 2004. Available at http://wuw.
disi.unige.it/person/MascardiV/Download/CILCO4a.pdf.gz. To appear.

M-P. Huget. Model checking agent UML protocol diagrams. Technical Report
ULCS-02-012, CS Department, University of Liverpool, UK, 2002.

M.P. Huget and J.L. Koning. Interection Protocol Engineering. In M.P. Huget,
editor, Communication in Multiagent Systems, volume 2650 of LNAI, pages 179—
193. Springer, 2003.

JADE Home Page. http://jade.cselt.it/.

Jess Home Page. http://herzberg.ca.sandia.gov/jess/.

M. Martelli and V. Mascardi. From UML diagrams to Jess rules: Integrating OO
and rule-based languages to specify, implement and execute agents. In F. Bucca-
furri, editor, Proceedings of the 8th APPIA-GULP-PRODE Joint Conference on
Declarative Programming (AGP’03), pages 275-286, 2003.

H. Mazouzi, A. El Fallah Seghrouchni, and S. Haddad. Open protocol design
for complex interactions in multi-agent systems. In C. Castelfranchi and W. L.
Johnson, editors, Proceedings of the First International Joint Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2002), pages 517-526. ACM
Press, 2002.

J. Odell, H. V. D. Parunak, and B. Bauer. Extending UML for agents. In Pro-
ceedings of the Agent-Oriented Information System Workshop at the 17th National
Conference on Artificial Intelligence. 2000.

M. P. Singh. A social semantics for agent communication languages. In Proc. of
1JCAI-98 Workshop on Agent Communication Languages, Berlin, 2000. Springer.
F. Stolzenburg and T. Arai. From the specification of multiagent systems by stat-
echarts to their formal analysis by model checking: Towards safety-critical applica-
tions. In M. Schillo, M. Klusch, J. Miiller, and H. Tianfield, editors, Proceedings of
the First German Conference on Multiagent System Technologies, pages 131-143.
Springer-Verlag, 2003. LNAT 2831.

tuProlog Home Page. http://lia.deis.unibo.it/research/tuprolog/.

ZEUS Home Page. http://more.btexact.com/projects/agents.htm.

266

Intensional Programming for Agent Communication*

Vasu S. Alagar, Joey Paquet, and Kaiyu Wan

Department of Computer Science
Concordia University
Montreal, Quebec H3G 1M8, Canada
{alagar,paquet,ky _wan}@cs.concordia.ca

Abstract. This article investigates the intensional programming paradigm for
agent communication by introducirggpntextas a first class object in the inten-
sional programming languadeicid. For the language thus extended;adculus

of contextsand alogic of contextsre provided. The paper gives definitions, syn-
tax, and operators for context, and introduces an operational semantics for eval-
uating expressions in extended Lucid. It is shown that the extended Lucid lan-
guage, called Agent Intensional Programming Language(AlIPL), has the general-
ity and the expressiveness for being an Agent Communication Language(ACL).
Keywords: Intensional Programming, Context, Lucid, Agent Communication
Language, KQML performatives, FIPA

1 Introduction

The goal of this paper is the investigation of Intensional Programming for agent commu-
nication by introducingontextsas a first class object in the intensional programming
languagelucid [18]. We provide acalculus of contextsand introduce theemantics
of contexts as valueim the language to add the expressive power required to write
non-trivial application programs. We demonstrate that Lucid, extended with contexts,
has the generality and the expressibility for beingAgent Communication Language
(ACL) [6]. We also briefly discuss an implementation framework for agent-based dis-
tributed programs written in the extended Lucid.

Intensional programming is a powerful and expressive paradigm based on Inten-
sional Logic. The notion of context isnplicit in intensional programs, i.e. contexts
are not ubiquitous in programs, as in most other declarative or procedural languages.
Intension expressed as Lucid programs, can be interpreted to yield valuesigs-
sion) using demand-driveaduction[18]. In this way, intensional programming allows
a cleaner and more declarative way of programming without loss of accuracy of inter-
preting the meaning of programs. Moreover, intensional programming dealénfisth
nite entitieswhich can be any ordinary data values such as a stream of numbers, a tree
of strings, multidimensional streams, etc. These infinite entities are first class objects in
Lucid and functions can be applied to these infinite entities. Information and their com-
putation can be abstracted and expressed declaratively, while providing the support for

* This work is supported by grants from Natural Sciences and Engineering Research Council,
Canada

267

their interpretation in different streams. Such a setting seems quite suitable to hide the
internal details of agents while providing them the choice to communicate their internal
states, if necessary, for cooperative problem solving in a community of agents. Inten-
sional programming is also suitable for applications which describe the behaviour of
systems whose state is changing with time, space, and other physical phenomena or ex-
ternal interaction in multidimensional formats. Agent communication where intensions
of agents have to be conveyed is clearly one such application.

The notion ofcontextwas introduced by McCarthy and later used by Guha [7] as
a means of expressing assumptions made by natural language expressions in Atrtificial
Intelligence (Al). Hence, a formula, which is an expression combining a sentence in Al
with contexts, can express the exact meaning of the natural language expression. The
major distinction between contexts in Al and in intensional programming is that in the
former case they amich objectsthat are notompletely expressibind in the later case
they areimplicitly expressible, i.e. one can write Lucid expressions whose evaluation
is context-dependent, but where the context is not explicitly manipulated. In extending
Lucid we add the possibility to explicitly manipulate contexts, and introduce contexts
as first class objects. That is, contexts can be declared, assigned values, used in expres-
sions, and passed as function parameters. In this paper we give the syntax for declaring
contexts, and a patrtial list of operators for combining contexts into complex expres-
sions. A full discussion on the syntax and semantics of the extended language appears
in [1]. The ACL that we introduce in this paper uses context expressions in messages
exchanged between communicating agents. The structure of message is similar to the
structure of performatives in KQML [5].

The paper is organized as follows: In Section 2 we review briefly the intensional
programming paradigm. Section 3 discusses the basic operators of Lucid and illustrates
the style of programming and evaluation in Lucid with simple examples. In Section 4
we discuss software agents and communication language for agents as standardized by
FIPA [6]. We discuss the extended Lucid language for agent communication as well.
The GIPSY [13], which provides a platform for implementation of extended Lucid is
briefly discussed in Section 5.

2 Intensional Programming Paradigm

Intensional Logic came into being from research in natural language understanding.
According to Carnap, the real meaning of a natural language expression whose truth-
value depends on the context in which it is uttered igitsnsion Theextensiorof that
expression is its actual truth-value in the different possible contexts of utterance [14],
i.e. the differenpossible worldsnto which this expression can be evaluated. Hence the
statementlt is snowing” has meaning in itself (its intension), and its valuation in par-
ticular contexts (i.e. its extention) will depend on each particular context of evaluation,
which includes the exact time and space when the statement is uttered.

Basically, intensional logics add dimensions to logical expressions, and non-intensional
logics can be viewed aonstanin all possible dimensions, i.e. their valuation does not
vary according to their context of utterance. Intensional operators are defimaed-to
igatein the context space. In order to navigate, some dimertsigs(or indexes) are
required to provide placeholders along dimensions. These dimension tags, along with

268

the dimension names they belong to, are used to define the context for evaluating inten-
sional expressions. For example, we can have an expression:

E: the average temperature for this month here is greaterdth@n

This expression is intensional because the truth value of this expression depends on
the context in which it is evaluated. The two intensional operators in this expression are
this monthand here which refer respectively to the time and space dimension. If we
"freeze” the space context to the city of Montreal, we will get the yearly temperature at
this space context, for an entire particular year (data is freely given by the authors). So
along the time dimension throughout a particular year, we have the following valuation
for the above expression, with and F' respectively standing fdrue andfalse where
the time dimension tags are the months of the year :

_JaFe Mr Ap Ma Jn Jl Au Se Oc No De
"FFFFTTTTTFTFF

So the intension is the expressiéntself, and a part of its extension related to this
particular year is depicted in the above table. According to Carnap, we are restricting the
possible world of intensional evaluation to Montreal, and extending it over the months
of a particular year. Furthermore, the intensionfbtan be evaluated to include the
spatial dimension, in contrast with the preceding, where space was made constant to
Montreal. Doing so, we extend the possible world of evaluation to the different cities in
Canada, and still evaluate throughout the months of a particular year. The extension of
the expression varies according to the different cities and months. Hence, we have the
following valuation for the same expression :

|Ja Fe Mr Ap Ma Jn JI Au Se Oc No De
MontrealF F F F T TTT TF F F
E'= OttawdF FF T TTTTTFFF
TorontaF F T T T TTTTT F F
VancouvetfF T T T T TTT T T T T

E

The Lucid intensional programming language retains two aspects from intensional
logic: first, at the syntactic level, are context-switching operators, catiieshsional
operators; second, at the semantic level, is the uspadsible worlds semanti¢%6].

3 Lucid

Lucid was invented as a tagged-token dataflow language by William Wadge and Edward
Ashcroft [18]. In the original version of Lucid, the basic intensional operators firste

next andfby. The following is the definition of three popular operators of the original
Lucid. [14]:

Definition 1 If X = (zo,21,...,2;,...) and Y = (yo, y1,..., ¥i,--.), then

(1) first X % (20, 20,..., 10, ...)

(Q)MX dgf ($1,$2,...7Ii+1,...)
lef

(3)X@ Y(§ (I07y07y17'~-7yi—1,...)

269

Clearly, analogues can be made to list operations, wiiveste corresponds tbd,
next corresponds ttl , andfby corresponds taons . The following example 1 is
a simple example of Lucid, which expresses ittifinite sequencef natural numbers,
whichis(0,1,2,3,...):

Example 1
N
where
N = 0 fby (N+1);
end

Lucid has eventually gone through several generalization steps and has evolved into
a multidimensional intensional programming language which enables functions and di-
mensions as first-class values [15]. To support this, two basic intensional operators are
added, which are used respectively for intensional naviga@umarid for querying the
current context of evaluation of the progra#).(Doing this, the Lucid language went
apart from its dataflow nature to the more general intensional programming paradigm
(often referred to amultidimensional indexical paradigm

The following example 2 is to extract a value from the stream representing the
natural numbers, beginning from the ubiquitous number 42. We arbitrarily pick the
third value of the stream, which is assigned tag number two (indexes starting at 0). We
also set the stream'’s variance in thdimension.

Example 2
N @d 2
where
dimension d;
N = 42 fby.d (N+1);
end;

Intuitively, we can expect the program to return the value 44. To see how the pro-
gram is evaluated, we rewrite it in terms of the ba@end# intensional operators. The
translation rules used for the rewriting of the program are presented in [14]. It is also
interesting to note that Lucid forms a family of languages, and that we have identified
a generic form (the one presented in this paper) into which all the other languages can
be syntactically translated without loss of meaning.

N @d 2
where
dimension d;
N = if (#.d <= 0) then 42 else (N+1) @.d (#.d-1);
end;

The implementation technique of evaluation for Lucid programs is an interpreted
mode calleceduction Eduction can be described @agged-token demand-driven data-
flow, in which data elements (tokens) are computed on demand following a dataflow

270

network defined in Lucid. Data elements flow in the normal flow direction (from pro-
ducer to consumer) ardémandslow in the reverse order, both beitaggedwith their
current context of evaluation.
Evaluation takes place by generating successive demands for the appropriate values
of Nin different contexts, until the final computation can be effected. The demand for
N @.d 2generates a demand fof @.d 1 which in turn generates a demand for
N @.d 0. The definition of the program explicitly states that the valu®of@.d 0
is 42. Once this is found, the successive addition operations are made on the demand
results, as required by the equatidn= 42 fby.d N+1 , giving a final result of 44.
For an in-depth description of the syntax and semantics of the language, see Section 4.4.
Lucid has been extended in several ways. Its variants have been used to specify
3D spreadsheets [17], real-time systems using Lustre (a variant of Lucid) [3], database
systems [17] and GLU (Granular Lucid) run-time system which illustrates how the mul-
tidimensional structure of a problem expressed in Lucid can be harnessed to produce
efficient parallel implementations of problems [8]. Currently, we are in the process of
implementing the GIPSY (General Intensional Programming System), which is an in-
vestigation platform (compiler, run-time environment, etc) for all members of the Lucid
family of intensional programming languages [13].

4 Agent Communication in Intensional Programming Language

Software agents, according to Chen et al [4], are personalized, continuously running
and semi-autonomous, driven by a set of beliefs, desires, and intentions (BDI). Agent
technology is being standardized by FIPA [6] with the goal of seamlessly integrating
their architectures and languages with various commercial application systems such as
network managemenE-commerceandmobile computing12]. In such applications
agents should have capabilities to exchange complex objects, their intentions, shared
plans, specific strategies, business and security policies. An Agent Communication
Language (ACL) must be declarative and have a small number of primitives that are
necessary to construct the structures required for achieving the above capabilities.

4.1 KQML and FIPA Languages

An ACL must supporinteroperabilityin an agent community while providing the free-
dom for an agent to hide or reveal its internal details to other agents. The two existing
ACLs areKnowledge Query and Manipulation Langug@@ML) [5] and the FIPA [6]
communication language. The FIPA language includes the basic concepts of KQML,
yet they have slightly different semantics. We summarize below the major points of con-
trasts between KQML and FIPA ACL, from the work of Labrou, Finin, and Peng [11].
KQML has apredefinedset ofreserved performativest is neither a minimal re-
quired set nor a closed set. That is, an agent may use only those primitives that it needs
in a communication, and a community of agents may agree either to use the union of the
sets of primitives required by each one of them or use some additional performatives
with a consensus on the semantics and protocols for using them. In the latter case, it
is not clear as to how the agents will construct the additional performatives and how a

271

semantics can be dynamically worked out. As an example of the former case, a KQML
message representing a query about the price of a share of IBM stock might be encoded
as follows [5]:

(askone

:content (PRICE IBM ?price)
:receiver STOCK-SERVER
:language LPROLOG
:ontology NYSE-TICKS)

Fig. 1. Theask-one performative of KQML

In this message, the KQML performative ask-one , the contentof the mes-
sage isPRICE IBM ?price , the ontologyassumed by the query is identified by
the tokenNYSE-TICKS, the receiverof the message is to be a server identified as
STOCK-SERVERNd thequeryis written in a language callddlPROLOGKQML also
provides a small number of performatives that the agents can use to define meta data. A
semantics of KQML in a style similar to Hoare logic is given in [9], [10].

The syntax of the FIPA ACL resembles KQML, however its semantics is formally
given by a quantified multi-modal logic [19]. The communication primitives in FIPA
ACL are calledcommunicative act@CA), yet they are the same as KQML primitives.

The semantics of the FIPA ACL is given in the formal language SL, which provides

the modal operators for beliefs (B), desires (D), intentions (persistent goals PG), and
uncertain goals (U). Actions of objects, object descriptions, and propositions can be
described in the language. Each formula in SL defines a constraint that the sender of
the message must satisfy in order for the sender to conform to the FIPA ACL standard.

In order to achieve cooperation and interoperability, both KQML and FIPA ACL
need to predefine a set of performatives, which is neither a minimal required set nor a
closed one. This creates a big problem for maintaining and extending the agents to face
the fast evolution of performatives. However, if we design the communication language
from a higher level and in a more abstract way in which the performatives befosine
class objectswe will be able to create additional performatives as contextual expres-
sions. In the AIPL, which we discuss next, we define contexts as first class objects and
encapsulate performatives in them. We define operators on contexts, that can be used to
create new contexts from existing contexts. Informally, when an ageinds a com-
municative actCA z to an agentB, we viewz as a collection (may be a sequence) of
objects, where each object is bound to some description on its interpretation, evaluation
criteria, temporal properties, constraints, and any other information that can be encoded
in the language. We view this collection as a context.

4.2 Contextsin AIPL

The approach of using intensional programming for agent communication is to make
a conservative extension of Lucid by introducing context as a first class object in Lu-
cid [1]. In our approach, the name of a performative is considered as an expression,

272

and the rest of the performative constituteamtextwhich can be understood azam-
munication contexteach field except the name in the messagensco contextThe
communication context will be evaluated by the receiver, by evaluating the expression at
the context obtained by combining the micro contexts. In some cases, the receiver may
combine the communication context with it€al contexto generate a new context.

Definitions of Contexts in AIPL In extended Lucid contexts are definedaasub-

set of a finite union of relationdet DIM = {dy, ds,...,d,} denote a finite set

of dimension names. With each dimension, a unique domain is associated. A domain
is a set, finite or infinite, of values. For instance, a domain maiNbéhe set of nat-

ural numbers, oR, the set of real numbers, or any arbitrary set of named objects.
Let DOM = {Dy, Ds,...,D,,} denote a finite set of domains. There exists a func-
tion fyimiodom : DIM — DOM, which maps eacld; € DIM to a unique domain
fdimtodom(di) in DOM.

Definition 2 Consider the relations
P; = {d;} X faimtodom(di) 1<i1<n

A contextC, given(DIM , faimtodom), IS a finite subset df)
context is| DIM |.

P;. Thedegreeof the

i=1,n

A context is written usingnumeratiorsyntax. The set enumeration syntax of a context
Cis

¢ = {(di,ﬂ?j) | d; € DIM7xj S fdimtodom(di)}
and the syntax used in extended Lucid is

[dil : 'Tjw' cey dik : .’I}]k]
If Cis acontext ovel(DIM, faimiodom), it iS true that

C C U, P c DIMxD, D=U", D,

i=1,n
Consequently, every subset@jzlm P; is a context, but not every subsetfM x D
is a context. However, iD; = D,..., = D,,everysubsetabIM x D is a context.
We say a context is simple(s_context), if [z;, y], [z; : y;] € C = z, # z;. A
simple contextC of degree 1 is called micro (m_context) context.

Example3Let DIM = {X,Y,Z,U}, D = {N,R,Q}, faimtodom(X) = N,
fdimtodom(U) - Nyfdimtodom(y) = Rr andfdimtOdOm(Z) = Q

1. ¢ = [X:1.5,Y :2]isnota valid context.

2. Gy = [Z: %]isamcontext.

3. C3 = [X:3,Y : 3]isascontext.

4. C4 = [X:3,X:4,Y :3,Y :235,Z: 18] is a context.

273

Several functions on contexts are predefined. The basic funafiengndiag are
to extract the set of dimensions and their associate domain values from a set of contexts.

Definition 3 Let M denote a set of ncontexts. We define functions
dimy, : M — DIM tag,, : M — TAG,,,

whereTAG,, = U,, ¢ » tagm (m), suchthatform = [z,y] € M, dim,(m) = =,
and tagm(m) =Y € fdimtodom(dimm(m))'

Definition 4 Let.S denote a set of contexts. We use functi@imns,, and tag,, to define
the functionsiim andtag on a set of contexts.

dim:S —-PDIM tag:S — PTAG,

whereTAG = |, ¢ sU,, ¢ s tagm(m)suchthatfos € S, dim(s) = {dimm,(m) | m €
s}, andtag(s) = {tagm(m) | m € s}.

Example 4 Consider the contexts introduced in Example 3. An application of dim and
tag functions to these contexts produces the following results:

1. dim and tag are not defined for conte{.
2. dimp,(C) = Z, tagm(Cs) = % .
3. dim(C3) = {X, Y}, tag(Cs) = {3,2}.

4. dim(Cy) = {X,Y,Z},tag(Cs) = {3,4,2.35,12}.

In general, a set of contexts may include contexts of different degrees. We use the
syntaxBoz[A | p] to introduce a finite set of contexts in which all contexts are defined
overA C DIM and have the same degred |.

Definiton 5 LetA = {d;,,...,d; }, whered;, € DIM r = 1,...,k,andpisa
k-ary predicate defined on the tuples of the relatidf c A fiimtodom (d). The syntax

Box[A|p] = {s|s = [diy : iy, di, - %]}

where the tupléz;, , ...,z), zi. € faimtodom(di.), 7 = 1,...k satisfy the predicate
p introduces a sef' of contexts of degrele For each context € S the values irtag(s)
satisfy the predicatg.

Example 5 Let prime(z) be the predicate that is true when € N is true.

1. The declarationBoz[X | prime(z)], wherefoimtodom (X) = {2,3,4,...,118}
introduces the set of montexts{m = [X : z| | prime(z)Az € NA2 < z <
118}

2. The set of contexts defined by

Bor[X,U | $+ ¢ <1,x€,uec Ul

fdimtodom(X) = fdimtadom(U) = Nis given by

[X:O,U:4],EX:0,U:5],[X:1,U:O],[X:1,U:1],
[X:1,U:2,[X:1,U:3],[X:2,U:0],[X:2,U :1],
[X:2,U:2,[X:3,U:0,[X:3,U:1],[X:4,U:0]}

274

4.3 Context Calculus

We provide a set of operators which can be applied on contexts to produce many kinds
of contexts according to the requirements of different applications. These operators in-
clude:constructor]_ : _], override& , differences , choice| , conjunctionr, disjunc-

tion U , undirected range= , directed range— , projection | , hiding 1 , substitution

/ , andcomparison=, D, C . The language allows user defined functions on contexts.
The definitions, properties, and examples of these operators are discussed in [1]. The
following are the definitions and examples of some of them.

Definition 6 Constructor operator constructs &_context for a given dimensioni,
and domairytdimtodom(d):

[7:7] td % fdimtodum(d) - M,

[d : t] = m € M. Using the set notation and the definitions for contexts, we construct
contexts.

Definition 7 Override operator takes two contexts ¢ € G, and returns a context
¢ € G, which is the result of the conflict-free union@fand c;, as defined below:

P:Gx G- G,

c=ca®a={m|(meaA--méeEc)VmE cn}

Example 6 Override operator: Let; = [d : 1], c2 = [e : 2], ¢3 = [e : 5],
ca =[d:2,e:5,f:4,¢c =1[d:2,d:3,f:4],
Then
6 P ey =[d:1,e:2],
2 @ ez =[e:b],
3 ® o =[e:2],

4 ®(a ®c)=[d:1,e:2,f:4],
(ca ® 1) @eg=1[d:l,e:2,f:4],
5 @ (1 @) =[d:1,d:2,e:2,f:4],
(s ®er)@eg=1[d:1,d:2,e:2,f:4]

Definition 8 Difference operator is similar to the set difference operator:

o:Gx G— G,

c=cq 8 c={m|meacA-mE€ec}
Example 7 Difference operator: Let; = [d:1, d:2, e: 3],
o =[d:1,e:4], g =[d:1],
Then

(Cs@CQ)@Clzg
c3 @(02601) = [dl]

275

Definition 9 Choice operator accepts a finite number@f ..., ¢, of contexts and
nondeterministically returns one of thes. The definitiore = ¢; | e | ...,| ¢
implies that c is one of the;, wherel < ¢ < k:

|2 @xGEx...xG— G,

Example 8 Choice operator:

Letey = [e: 2, d:1], o =[d:1],¢5 =[d:3],ca =1 | 2| ¢3,
Theney, = ¢; = [e:2,d:1]or

Cy = Cyp = [d 1}0!‘

C4 = C3 = [d3}

Definition 10 Hiding operator enables a set of dimensions D to be applied on a context
¢ € G, and the result removes all the_oontexts inc whose dimensions are in D:

T-:GxD— G,
¢c1TD={(d, t) e ¢cN-de D}

Example 9 Hiding operator:
Letey = [d: 1, e:4,f:3],¢ca =[d:3],e3=1[f:3],D={d, e}
Theney T D = [f: 3]
w1 D=9
s T D=1[f:3]

In order to provide a precise meaning for a context expression, we define the prece-
dence rules for all the operators. The precedence rules for the operators are shown
in Figure 2 (from the highest precedence to the lowest). Parentheses will be used to
override this precedence when needed. Operators having the same precedence will be
applied from left to right.

—
—
~

oA WNE
Al]L_@_:I_
L O F

n-
V)]

Fig. 2. Precedence Rules for Operators

As anillustration, consider the context expression ¢ @ ¢ T D. Applying the
precedence rules, this expression is equivaleftad (cs T D)) | (c2 @ (¢3 T D)).

276

4.4 Syntax and Semantics of Extended Lucid

The abstract syntax of the extended Lucid is defined in Figure 3. The op&isttine
navigation operator, which evaluates an expresdioim contextE’, where E’ is an
expression evaluating to a context. The operétd the context query operator, oper-
ating on the current evaluation context. The non-termiaknd) respectively refer

to expressiongnddefinitions The only change applied to the syntax of the language
in order to achieve contexts as first class objects comes in the syntactic rules presented
in bold. The older syntax for th@operator was of the formf @E’E" where, se-
mantically speakingE’ evaluated to a dimension, afid’ evaluated to a dimension tag
(as depicted in its semantic rule presented in Figure 5). In factEti®’ part of this
syntactic construct is representingra context, even though®’ and E” were evalu-
ated as separate semantic entities, and not to a context. In contrast, plagt of the
new £ @E’ semantically evaluates tora_contezt, thus introducing contexts as first
class objects. The syntactic constr{g} : E{, ..., E, : E!]is representing how
s_contexts are syntactically introduced in the language. Hiepart of theE @F’ rule

shall be eventually evaluating to something of this form, as is reflected B.the) and
Econtext S€EMantic rules. As for the operational semantics of Lucid, the general form of
evaluating in Lucid is as following:

E :=id
| E(Er, ..., E,)
| if F then E’ else E”
| #8
| E @QE'
| [E1:EY, ..., En: Ey]
| E where @

Q@ ::= dimension id
|id=FE
| id(idy,...,id,) = FE
Q@

Fig. 3. Abstract syntax for the Extended Lucid

DPFE:v

which means that in the definition environmept and in the evaluation contef,
expressiont’ evaluates ta. The definition environmeri retains the definitions of all
of the identifiers that appear in a Lucid program. It is therefore a partial function

D :1d — IdEntry

whereld is the set of all possible identifiers abdEntry has five possible kinds of
value such adDimensionsConstantsData OperatorsVariables andFunctions[14].

277

The evaluation contexp, associates a tag to each relevant dimension. It is therefore a
partial function:

P:Id - N

The complete operational semantics is defined in Figure 4 [14]. The rule for the
navigation operator &,), which corresponds to the syntactic expressio@r’,
evaluates¥ in contextE’. The function’ = P1[id — v”] means thaf’(z) is v”
if z = id, andP(z) otherwise. For example, the evaluation of the expresgi@; @

E, © E3 is done in the following order:

— computer’ = E, & E»
— computeE” = E' © E3
— evaluateE@z"

4.5 Message Structure and Evaluation in AIPL

The syntax of a message in AIPL(&, E’), whereFE is the message name afdis a
context. The message name in a Communicative@dof FIPA ACL or the name of a
performative in KQML is captured in AIPL by. In an implementatior corresponds

to a function. The context’ includes all the information that an agent wants to convey
in an interaction to another agent. Thus, a query from an agentan agent3 is of

the form(E 4, E/;). A response from aget® to agentA will be of the form(Eg, E}),
whereE7; will include the reference to the query for which this is a response in addition
to the contexts in which the response should be understood.

Query Evaluation The operational semantics in extended Lucid is the basis for query
evaluation in AIPL. The query from agedt (E,4, E’,) to agentB is evaluated as fol-
lows:

agentB obtains the contextz = E/ & Lg, whereLg is the local context foB.
agentB evaluatess, @'

agentB constructs the new conte&ly; that includes the evaluated result and infor-
mation suggesting the context in which it should be interpreted by afyearid
sends the responsé&z, E7) to agentA.

For example, the query in Figure 1 is represented in AIPL as the expreBs@a’,
E'=F @ E, ® E3 ® Ej.

E@[El® E2 @& E3 & E4]
where
E = "ask-one";

E1l = [content : (PRICE IBM ?price)];
E2 = [receiver: STOCK-SERVER];
E3 = [language: LPROLOG];

E4 = [ontology: NYSE-TICKS J;

end

278

D(id) = (const , c) g . D(id) = (dim)
D,PFid:c did- S Pprid:id

D(id) = (op, f) Bey : 20d) = (func ,id;, £)
D,PFid:id 4 D,Prid:id

Ecia :

Eopia :

D(id) = (var , E) D,PHE:v

Eviq : -
d D,PFid: v

D,PFE:id D(id) = (op, f) D,PFE;:v
Eop : .)

D,P"E(Eh.. ,En :f(Ul,...,Un)

D,P+E:id D(d) = (func ,id;, E') D,PF Efid — E]:v
D,PF E(Ey, ... Bn):0

Egct :

 D,PHE:true D,PFE:v
"D,Pt if E then E’ else E : v’

D,P+E:false D,PFE":v"
" D,Pt if E then E’ else E" : v"

D,PrE:id D(id) = (dim)
D,PF #E : P(id)

Etag :

5 DPFE:P DPLE: v
at(e) - D, PHE @ :v

D, P Edj 1 1d; D(ZdJ) = (dlm) D,P+ E,’] L v = P'i'[ldJ — ’Uj}

Econtext :
poxt D, Pt [Ea, : Eiy, Eay : Eiy,...,Eaq, : By : v

n

D,PFQ :D, P D, P'FE:v

Bw : D,PF E where @ : v

Qaim : D, P dimension id : Dffid — (dim)], Pt[id — 0]

Qia :

D,Prid=E : Df[idw (var ,E)|,P

Qfa : D, P Fid(idy,...,id,) = E : Df[id — (func ,id;,)], P
D77) }_ Q . DI7PI D/7PI |_ Ql . DH7PH

QQ: D,PFQQ : D', P"

Fig. 4. Semantic rules for Lucid

D,PHE:id D(d)=(dm) D,PFE' v DPtid— vk E:v
Eatora) : D,PFE@E E":v

Fig. 5. Semantic rule for for the ol@operation

279

The implementation will assure that the local contexBois sufficient to evaluate the
query and respond td within an acceptable time delay. This is an important issue
because we want the agents to be reactive (responds within acceptable time limits)
while the eduction is allowed to continue. The choice operator helps in achieving such
a goal. For example, the query:

E@[ElL® E2 @ E3 | E4 ® E5]
where
E = "ask-one";

E1l = [content : (PRICE IBM ?price)];

E2 = [receiver: STOCK-SERVER];

E3 = [language: LPROLOG];

E4 = [language: STANDARD _PROLOG J;
E5 = [ontology: NYSE-TICKS J;

end

gives the receiver, depending on its local context, choose ditPROLOGr STAN-
DARDPROLOGo ensure timeliness. The fields in the performative in Figure 1 can not
be dynamically changed in either FIPA or KQML. In our language, we form the context
expression” = E' 1 {language} @& [language : Java] to dynamically replace the
language requirement and construct a new query.

In general, an interaction between agents will laversationwhich can be ex-
pressed as a sequence, possibly infinite, of messages. That is, a conversation is

(a1, B1); + o5 (o, Br))s

wherea,; = (E;a, El,), andB; = (E;p, E/). A conversation is evaluated by evaluat-

ing each paifa;, ;) in the sequence according to the above semantics. A conversation
among an agent group, a finite set of simultaneously interacting agents, is handled by
combining the evaluation mechanisms described above.

In Lucid, a conversation can be representediagension streamshose values are
dimensions. An agent can conveypkan to another agent by annotating its messages
with different data structures such as a stream of numbers, two-dimensional tables, tree
of strings, and multidimensional objects. When an expression is evaluated by the com-
piler, if the compiler meets th@ the compiler first interprets all the contexts into a
context using the operators provided by the expression, then use this context to eval-
uate the expression. If the expression is reducible to the original form of Lucid, the
expression can directly be evaluated by the original compiler for Lucid, which has been
already implemented by GIPSY [13]. The interface that we plan to build in GIPSY will
handle the case when the expression is not directly reducible to standard Lucid form.

5 Conclusion

The Agent Communication Language AIPL that we have introduced in this paper has a
number of advantages:

280

— In KQML and FIPA, performatives, other than the primitive performatives defined
in the language, can be agreed upon by the community of agents involved in a
collaboration. That is, interoperability is proved. However, performatives are only
static status and not first class objects in the language. As a consequence, performa-
tives can not be changed dynamically, nor can they be used as a vehicle to commu-
nicate local state information of agents. In AIPL, by making context as first class
objects, we have removed the above limitations. In addition, we can define func-
tions on contexts and they can be used as parameters in programs. Thus, we have
enhanced botteroperabilityandflexibility in agent communication.

— AIPL is declarative and has a formal semantics.

— AIPL uses multidimensional streams of objects, which can be used to represent
plans and conversations in multiple streams.

— Multiple formats of communicatiorcan be supported since intensional program-
ming language deals with any kind of ordinary data type. Even the multimedia
streams between agents become feasible.

In our ongoing research, we are formalizing the semantics for plans and conver-
sations. We are developing a logic of contexts and proof rules for reasoning about
programs written in AIPL. Different variants of the Lucid family of languages have
been implemented for various purposes and application domains over the years. Lately,
we have undertaken the development of the GIPSY (General Intensional Programming
System) that is an integrated programming language investigation platform allowing
the automated generation of compiler components for the different variants of the Lu-
cid family of languages [13, 20, 21]. The GIPSY is designed as a framework in order to
reach for maximal flexibility and generality of application.

Being a functional language, Lucid programs can be evaluated in parallel or dis-
tributed execution mode. In such case, in order to augment the granularity of paral-
lelism, GIPSY programs can be written as hybrid programs, allowing Java functions to
be called by the Lucid part of the program. Interestingly, these Java functions can actu-
ally be the implementation of software agents. Then the Lucid part becomes a declar-
ative specification describing the relationships between agents, implicitly describing
how these agents are collaborating in a distributed execution. The AIPL described in
this paper is then used as a formal ACL in order to achieve transparent contextual com-
munication between agents. The semantics of the calculus of contexts being intrinsic
to each agent through the eduction engine embedded in each node, there is no need
to write agents that embed a parser and semantic analyzer and translator for the ACL
primitives that are exchanged between agents at run time.

Based on this system, communication between different categories of agents such
asinterface agentmiddle agenttask agentandsecurity agenf2] can be used as case
studies for AIPL. We will also investigate the use of AIPL for mobile agents communi-
cation and multimedia communication between agents.

References

1. V.S.Alagar, Joey Paquet, Kaiyu WaiContexts in Intensional Programmin{in prepara-
tion) Technical Report, Department of Computer Science, Concordia University, Montreal,
Canada, April 2004.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

281

. V.S.Alagar, J.Holliday, P.V.Thiyagarajan, B.Zhou. Agent Types and Their Formal Descrip-

tions. Technical Report, Department of Computer Engineering, Santa Clara University, Santa
Clara, CA, U.S.A., May 2002.

. P.Caspi, D,Pilaud, N.Halbwachs, J.A.PlaicElSTRE: A declarative language for program-

ming synchronous systenizO.P.L. 1987

. Q.Chen, M.Hsu, U.Dayal, M.Grisdlulti-Agent Cooperation, Dynamic Workflow and XML

for E-Commerce Automation. Proceedings Autonomous Agents 2000, June, Barcelona,
Spain, June 2000.

. Tim Finin, Richard Fritzson, Don McKay, Robin McEntir&kQML as an Agent Commu-

nication Language. Proceedings of the 3rd International Conference on Information and
Knowledge Management (CIKM'94), ACM Press, November 1994.

. FIPA Semantic Language SpecificatioRLPA Specification repositoryFIPA-specification

identifier XC00008G, September 2000 Foundation for Intelligent Physical Agents, Geneva,
Switzerland.

. R. V. Guha.Contexts: A Formalization and Some Applicatiof®.d thesis, Stanford Uni-

versity, February 10,1995.

. R.Jagannathan, C. Dodd, and I. AGLU: A High-Level System for Granular Data-Parallel

Programming.Concurrency: Practice and Experience, vol. 9,1997.

. Y. Labrou.Semantics for an Agent Communication Langudgectoral Dissertation, Com-

puter Science and Electrical Engineering Department, University of Baltimore, Baltimore
County, 1996.

Y. Labrou, T. Finin. Semantics for an Agent Communication Languagegent Theories,
Architectures, and Languages IV, M. Woodridge, J.P. Muller, and M. Tambe, eds., Lecture
Notes in Artificial Intelligence, Springer-Verlag, Berlin, 1998.

Y. Labrou, T. Finin, and Y. Pendgent Communication Languages: The Current Landscape.
IEEE Journal on Intelligent Agents, Amrch/April 1999, pp. 45-52.

A. Lingnau, O. Drobink. AN INFRASTRUCTURE FOR MOBILE AGENTS: REQUIRE-
MENTS AND ARCHITECTUREJohann Wolfgang Goethe University, Frankfurt am Main,
Germany, 1995.

Joey Paquet, Peter Krofthe GIPSY ArchitectureDCW 2000: 144-153

Joey Paquet. Intensional Scientific Programming. Ph.D. Thesis, Departement
d’Informatique, Universite Laval, Quebec, Canada, 1999

Joey Paquet and John Plaideimensions and Functions as ValuesProceedings of the
Eleventh International Symposium on Lucid and Intensional Programming, Sun Microsys-
tems, Palo Alto, California, USA, May 1998.

John Plaice and Joey Paquéhtroduction to Intensional Programming.In Intensional
Programming |, pages 1-14. World Scientific, Singapore, 1996

P.Rondogiammis, William Wadgktensional Programming Language?roceedings of the
First Panhellenic Conference on New Information Technologies, 1998

W.W.Wadge, E.A.AshcroftLucid, the dataflow programming languagéAcademic Press,
1985

Michael WooldridgeVerifiable Semantics for Agent Communication Languademceed-

ings of the Third International Conference on Multi-Agent Systems (ICMAS’'98).

Ai Hua Wu, Joey Paquet and Peter Grogdnesign of a compiler framework in the GIPSY
system.n Parallel and Distributed Computing and Systems - PDCS 2003, Marina Del Rey,
California, USA, 2003.

Ai Hua Wu and Joey Paquéfranslator generation in the general intensional programming
complier. In Eighth International Conference on Computer Supported Cooperative Work in
Design (CSCW2003). XiaMen, P.R. of China. May 24-28, 2004.

282

The logic of communication graphs

Eric Pacuit? and Rohit Parikh!

! Computer Science
The Graduate Center of CUNY,

365 5th Avenue, New York City, NY 10016
epacuit@cs.gc.cuny.edu,
WWW.cs.gc.cuny.edu/~epacuit
2 (S, Math and Philosophy
Brooklyn College™ and The Graduate Center of CUNY
365 5th Avenue, New York City, NY 10016
rparikh@gc.cuny.edu
www.sci.brooklyn.cuny.edu/~rparikh

Abstract. In 1992, Moss and Parikh studied a bimodal logic of knowl-
edge and effort called Topologic. In this current paper, Topologic is ex-
tended to the case of many agents who are assumed to have some private
information at the outset, but may refine their information by acquir-
ing information possessed by other agents, possibly via yet other agents.
Each agent’s information is represented by a partition over a set of pos-
sible states, and when an agent learns a new piece of information, its
partition is refined. The set of possible partitions is restricted to those
that can arise via communication among the agents.

Let us assume that the agents are connected by a communication graph.
In the communication graph, an edge from agent 7 to agent j means
that agent ¢ can directly receive information from agent j. Agent ¢ can
then refine its information by learning information that j has, including
information acquired by j from another agent, k. We introduce a multi-
agent modal logic with knowledge modalities and a modality representing
communication among agents. We show that the validities of Topologic
remain valid and that the communication graph is completely determined
by the validities of the resulting logic. Applications of our logic to the
Rice-Clarke dilemma are obvious.

1 Introduction

In [MP], Moss and Parikh introduce a bimodal logic intended to formalize reason-
ing about points and sets. This new logic called Topologic can also be understood
as an epistemic logic with an effort modality. Formally, the two modalities are: K
and <. The intended interpretation of K¢ is that ¢ is known; and the intended
interpretation of $¢ is that after some amount of effort ¢ is true. For example,
the formula

o= OK¢

** 2900 Bedford Avenue, Brooklyn, NY 11210

283

means that if ¢ is true, then after some “work”, ¢ is known, i.e., if ¢ is true, then
¢ can be known with some effort. What exactly is meant by “effort” depends
on the application. For example, we may think of effort as meaning taking a
measurement, performing a calculation or observing a computation. In this paper
we will think of effort as meaning consulting some agent’s database of known
formulas.

There is a temptation to think that the effort modality can be understood as
(only) a temporal operator, reading $¢ as “¢ is true some time in the future”.
While there is a connection between the logics of knowledge and time and logics
of knowledge and effort (see [H99,H00] and references therein for more on this
topic), following [MP] it is assumed that such effort leaves the base facts about
the world unchanged. In particular, in all topologics if ¢ does not contain any
knowledge modalities, then ¢ <> O¢ is valid. Thus, effort will not change the
base facts about the world — it can only change knowledge of these facts.

The family of logics introduced in [MP] and later studied by Dabrowski, Moss
and Parikh, Georgatos, Heinemann, and Weiss ([DMP,G93,G94,G97.H99,WP])
has a semantics in which the acquisition of knowledge is explicitly represented.
Familiar mathematical structures such as subset spaces, topologies, intersec-
tion spaces and complete lattices of subsets corresponding to natural notions of
knowledge acquisition are attached to standard Kripke structures.

Given a set W, a subset space is a pair (W, 0), where O is a collection of
subsets of W. A point z € W represents a complete observation about the world
in which all facts are settled, whereas a set U € O represents an observation.
The pair (z,U), called a neighborhood situation, can be thought of as an actual
situation together with an observation made about the situation. Formulas are
interpreted at neighborhood situations. Thus the knowledge modality K repre-
sents movement within the current observation, while the effort modality < rep-
resents a refining of the current observation. [MP] provides a sound and complete
axiomatization for all subset spaces. In [G93] and [G94], Georgatos provides a
sound and complete axiomatization for subset spaces that are topological spaces
and complete lattices. Dabrowski, Moss, and Parikh prove the same result using
an embedding into S4 ([DMP]). [G97] provides a sound and complete axiomati-
zation for treelike spaces, and Weiss ([WP]) has provided a sound and complete
axiomatization for intersection-spaces. Interestingly, it is shown in [WP] that an
infinite number of axiom schemes are necessary for any complete axiomatization
of intersection spaces. More recently, Heinemann [H99,H00] has looked at subset
spaces and logics of knowledge and time, and the connection between hybrid

logic and subset spaces [H02,H04].

In this paper, we present a multi-agent topologic in which the effort modality
< is intended to mean communication among agents. In order for any commu-
nication to take place, we must assume that the agents understand a common
language. Thus we assume a set @ of propositional variables, understood by all
the agents, but with only specific agents knowing their actual values at states
in our models. The agents will refine their information by acquiring informa-
tion possessed by other agents, possibly via other agents. This implies that if

284

agents are restricted in whom they can or cannot communicate with, then this
fact will restrict the knowledge theoretic formulas that can come to be true, i.e.,
knowledge theoretic formulas in the scope of the effort modality.

Consider the current situation with Bush and Tenet. If Bush wants some
information from a particular CIA operative, say Bob, he must get this in-
formation through Tenet. Suppose that ¢ is a formula representing the exact
whereabouts of Bin Laden and that Bob is the CIA operative in charge of main-
taining this information. In particular, Kg.,¢, and suppose that at the moment,
Bush does not know the exact whereabouts of Bin Laden (=Kgyusnh¢). Obviously
Bush can find out the exact whereabouts of Bin Laden (CKgysh¢) by going
through the appropriate channels, but of course, we cannot find out such in-
formation (—=OKep A -OK,¢) since we do not have the appropriate security
clearance. Presumably, going through the appropriate channels implies that as
a pre-requisite for Bush learning ¢, Tenet will also have come to know ¢. We can
represent this situation by the following formula:

_‘KBush¢ A D(Kﬂush¢ — KTenet¢)

where O is the dual of diamond.

Let A be a set of agents. A communication graph is a directed graph
G4 = (A, E) where E C A x A. Intuitively (4,5) € E means that ¢ can directly
receive information from agent j, without j knowing this fact. Thus an edge
between ¢ and j in the communication graph represents a one-sided relationship
between ¢ and j. Agent ¢ has access to any piece of information that agent j
knows. For example, during a lecture the students have access to the lecturer’s
information, but not vice versa. Another common situation that is helpful to
keep in mind is accessing a website. When there is an edge between i and j we
think of agent j as creating a website in which everything he currently knows
is available, and agent i can access this website without j being aware that the
site is being accessed. Of course, j may be able to access another agent’s website
and so update some of his information. Therefore, it is important to stress that
when i accesses j’s website, he is accessing j’s current information. It is of course
possible that another agent has no access to j’s website, or only indirectly.

The assumption that 4 can access all of j’s information is a significant ide-
alization from these common situations. This idealization rests on two assump-
tions: 1. all the agents share a common language, and 2. the agents make public
all possible pieces of information which they know and which are expressible in
this language. The fact that agents are assumed to share a common language is
discussed in Section 4. For the second assumption, consider the tension between
paparazzi and celebrities. This tension can be understood as the celebrities sim-
ply not wanting all of their current information made public. In other words,
they want to remove, or at least restrict, the connection in the communication
graph from the paparazzi to themselves. Or they may threaten a lawsuit between
the paparazzi and the public media. Such assumptions can be dealt with in our
framework, but a more detailed discussion will be reserved for the full version.

This paper is organized as follows. Section 2 formalizes what is meant by
“communication”. Section 3 presents the syntax and semantics of our logic, and

285

Section 4 proves the main technical result that the valid formulas characterize
the communication graph. Finally in Section 5 we conclude and discuss further
research.

2 Partition Spaces

In this section we develop our basic update operation. We first review some
relevant facts and definitions about partitions on a set and define a partition
space. Given a set W, a partition P on W is a collection of nonempty sets
P C 2% such that

1. uUP=W
2. For all P,P, € P, P, # P, implies PN P, = &

Elements of a partition P will be called partition cells. Given an element
w € W and a partition P on W, let P(w) be the partition cell that contains w.
That is P(w) = P, where P € P and w € P.

Definition 1 (Partition Space). A partition space is a tuple (W, P), where
W is a set and P be a (finite) collection of partitions on W.

Analogous to the subset spaces of [MP], a partition space is a set together
with the set of partitions that we are interested in. For example, P could be the
set of all possible partitions on W. We think of P as being the set of partitions
that could possibly arise in a given situation. In this case, we do not have to
consider “unlikely” partitions such as the singleton partition in which the agent
knows all true facts.

Let P and Q be two partitions on W. We say that P is a refinement of O,

denoted P < 9 if
VPeP,dQeQ :PCQ

It is easy to see that P is a refinement of Q (P =< Q) iff each partition cell in
@ € Q is a union of partition cells from P. It is also not difficult to see that <
is reflexive, transitive and antisymmetric; hence a partial order. To see that <
is antisymmetric. Suppose that P < Q@ and @ < P. Suppose that X € P. Then
there is a 'V € Q such that X C Y; and since Y € Q there is a X' € P such that
Y C X'. Hence X C Y C X', which implies X = Y (since it must be the case
that X = X'). Therefore, X € Q. Similarly we can show that if X € Q, then
X eP.

We say that P is finer than Q if P < Q, or that Q is coarser than P. Suppose
that P represents i’s current information. Then moving to a refinement Q@ < P
represents an increase in i’s knowledge. We will not be interested in any increase
of knowledge, but rather any increase in knowledge caused by communication
among agents governed by the communication graph. This will be discussed in
more detail below. The following notation will turn out to be useful.

286

Definition 2. Let P and Q be two partitions on a set W. The least com-
mon refinement of P and Q, denoted by P M Q, is the partition generated by
intersecting the cells from P and Q. That is,

PO (Pw)nQw) | we W}

Clearly, P M @ is a partition; and P11 Q < P and PN @ < Q. Given two
partitions, it is easy to see that P M Q is the coarsest partition that refines both
P and Q, thus we can think of the operation M as a meet between P and Q. We
can also define a join operation:

Definition 3. The least coarsest partition between P and O is the finest

partition R such that P <R and Q < R. We denote R by P L Q.

Given a partition space (W,P), < is a partial order on P, and M and U give
us a meet and join respectively.

A partition P for an agent i represents i’s current information. Thus when i
learns a new piece of information, i’s partition P is refined. Since any refinement,
of a partition is itself a partition, we must make some assumptions about what
kind of information can be learned by an agent. We therefore assume that ¢
can only update with true information. Otherwise, updating with a false piece
of information may result in an agent acquiring a false, justified belief which
cannot be represented using (only) partitions.

We also point out that upon receiving the information ¢ an agent might not
come to know ¢. For example, suppose that 4 is told “There is a bug on i’s
shoulder, but i does not know it”. Then, after ¢ updates with this proposition ¢,
1 will not know ¢, but rather the proposition “There is a bug on ¢’s shoulder”.
These propositions of the form ¢ A —=K;¢ were first discussed by G. E. Moore.

We first extend our basic notions to a multi-agent setting. Let .4 be a finite
set of agents. For simplicity, we assume that the set of states is the same for all
agents. A multi-agent partition is a n-tuple P = (P1,...,P,), where n is the
number of agents and each partition P; is a partition on W.

Definition 4 (Multi-Agent Partition Space). Given a set W, a multi-
agent partitions space is a tuple (W, P), where P is a set of multi-agent par-
titions.

We think of a multi-agent partition space (W, P) as a set of states together
with all the n-tuples of partitions that could possibly arise given a communi-
cation graph. This will be made more precise below. We write P; for the i-th
projection of P. We can extend our notation defined above to vectors of parti-
tions. If P = (P1,Pa,...,Pyn) and Q@ = (Q1,...,Q,) are vectors of partitions,
then we write P < Q if P; < Q; for all i = 1,...n. Other operators are defined
pointwise on vectors:

def

PHQ: (PlﬂQhPZHQQ:-":PnﬂQn)

287

Similarly for P U Q. So, a vector P € P represents each agent’s information.
As above, < is a partial order on P and M and Ll are meet and join respectively. In
fact, we can say more. Given a vector P, there is a vector P that represents the
implicit information that the agents currently have. P’ is obtained by replacing
each agent’s partition with the least common refinement, i.e., for each i € A,
P! = MijeaP;. Similarly, we can define a common knowledge partition P in
which each agent’s partition is replaced by the least coarsest partition. For each
i € A, PE = UjeaPi. Given P, P is the information that is commonly known
among all the agents.

In fact we will not be interested in any refinement of i’s partition, but rather
only those refinements that can arise from “communication” between two agents.
Suppose that agent i can directly communicate with agent 7, i.e., there is an edge
between ¢ and j in the communication graph. In this case any piece of information
that j knows can be learned by agent i. Suppose that Q is agent j’s partition
and P is agent i’s partition. Given a set X C W, i can update his partition with
X provided 7 knows X, i.e., X contains a union of cells from j’s partition Q.
We can define our basic operation on partitions. Given a set X which is a union
of partition cells from Q, i updates P at state w by splitting the cell P(w) into
two sets: one that intersects X and the other intersects W — X with the other
partition cells remaining fixed.

In this paper we identify a piece of information with a set of states. Our
basic refinement operation accepts a partition P and a set X, and returns the
partition refined by X.

Definition 5. Let P be a partition on W and X a subset of W. The informa-
tion refinement of P, denoted ref(P,X) is defined as follows:

ref(P,X) ¥ {(Pnx,PAn(W —X) | PeP}— {0}

In the above operation X can be any subset of W. In our framework, the
set X represents some information known by an agent. Therefore, we say that
ref(P,X) is an information refinement based on @, if X is a union of cells
from Q,ie., X =@Q1U---UQ,, where each @; € Q fori=1,...,1.

Obviously, ref(P, X) = P. Intuitively, if Q is j’s partition, we think of X as
being some information known by j and so ref(P, X) is result of agent i learning
X.

Notice that in the above definition, the cells of @ remain fixed. Thus the
type of communication that takes place between ¢ and j is rather impersonal.
Suppose that i asks j whether a certain fact ¢ is true or false. As a matter of
fact, suppose that ¢ is true and that j knows this. In this situation, not only
does i’s information get updated, but so does j’s information, since j learned
that 7 now knows ¢. We assume, that instead of asking j directly whether ¢ is
true, i is able to query j’s knowledge database in complete secrecy of j.

A vector of partitions P represents the current state of information of all
the agents. If some admissible communication between two agents 7 and j takes
place, then P is refined. Admissible communication between i and j simply

288

means that ¢+ and j are directly connected in the communication graph; and we
will use the information refinement function defined above to state precisely how
P is refined by the communication.

Definition 6. Suppose that G = (A, E) is a communication graph. Let P and
P’ be two vectors of partitions on W. We say that P is a one-step refinement
of P!, denoted by P <1 P’, if there exist i,j5 € A with i # j and a set X such
that X is a union of partition cells from P;, (i,j) € E, Py, = Pj, for all k # i
and P; = ref(P], X).

This represents the situation described above, where 7 learns some informa-
tion from j’s database of known facts, and the other agents, including agent j,
are completely ignorant of this fact. Obviously if P <y P’, then P < P’, but
not conversely.

Definition 7. Let G be a communication graph and P and P’ be two vectors of
partitions on W. We say that P is an information refinement of P’, denoted
P <g P' if there exists vectors P1, P2, ..., Pm such that P1 = P, Pm =P’
and P; =1 Pig1, fori=1,....,m.

Thus, <g is the reflexive, transitive closure of <.

Let (W, P) be a multi-agent partition space. We think of the elements of P
as being the partitions that could possibly arise. Currently, P can be any set of
vectors of partitions. However, if we are given a communication graph we are
only interested in the set of partitions that can arise from communication among
agents respecting the communication graph. Given a multi-agent partition space
(W, P), we assume that there is a vector P° that represents the agents’ knowledge
before any communication has taken place. P° will be called the initial vector,
and multi-agent partition spaces in which an initial vector is singled out will be
called pointed multi-agent partition spaces. In this paper we will always assume
that multi-agent partition spaces are pointed. We can now define the partition
spaces that will be of interest to us in this paper.

Definition 8. Let G be a communication graph and P a wvector of partitions
on a set W. We say that Pg is generated by G from the initial partition P if
Pg is the smallest set containing P and for all P’ € Pg and all vectors P", if
P" <g P!, then P" € Pg.

We say that a multi-agent partition space (W, P) is generated by a communi-
cation graph G when P = Pg. In this paper, we will assume that any multi-agent
space is generated from some P by some communication graph.

Given a multi-agent partition space (W, P) we can define the downward clo-
sure of a vector of partitions Q@ € P:

def

BPE(Q|QePand Q=g P}

When P is clear from context, we may write | P instead of |p P. If P is
generated from a communication graph G, then we write g P, since in this case
if @ <g P, then Q € P.

289

The type of refinement that we have described in this section is appropriate
when modelling what agents know or come to know about the physical world.
A more complex semantics will be needed to deal with what agents know about
other agents’ knowledge. The problem is that after some communication has
taken place, the standard assumption that the partition structure is commonly
known must be dropped. Consider the point of view of agent i. Agent i may
learn some information from agent j, but in general will be unaware of commu-
nication between other agents in the communication graph. Thus agent ¢ will
be uncertain about the exact partition structure that represents the current sit-
uation. Moreover, while ¢ may learn that j knows X, ¢ is uncertain about how
j came to know X, i.e., what questions did j ask and to whom. Of course, we
assume that the communication graph is common knowledge, but uncertainty
remains. Given a vector P, when i updates with information X from agent j,
there will be many different vectors of partitions compatible with j knowing X.
Furthermore, this will be true for each agent.

A history based semantics can be used to deal with the general situation in
which agents can have knowledge about other agents. We will give a brief sketch
of some of the details in the next section. A complete discussion of this more
general approach is reserved for the full version.

Example: Suppose there are three agents A = {1,2, 3,4} and suppose that the
communication graph G is the tree rooted at 1, where 1 has two children: 2 and
4, and 2 has only 3 as a child. Suppose that the initial partitions of the agents
are given by the vector P = (P1, P2, Ps, P4). Since neither 3 nor 4 are connected
to any other agent, their partitions cannot change, i.e., for all P’ <g P, Py = P
and P; = Px.

Since agent 1 is connected to all of the other agents, it is possible by asking
enough questions, agent 1 can generate the partition, P; NPy MP3MP4. However,
since the only connection between agent 1 and agent 3 is through agent 2, any
P’ such that P’ <g P must reflect this fact. That is, if X is some information
known only to agent 3, then there is no one step information refinement based on
X of agent 1’s partition. However, there is an information refinement in which
1’s partition is updated with X after agent 2’s partition is updated with X.

3 The Logic of Communication Graphs

Let @y be a countable set of propositional variables. £o(®g) is the propositional
(base) language based on ®g. Let L1(Po) = {K;¢ | ¢ € Lo(Pg),i € A} U Lo(Pp).
Finally let £2(®g) be L£1(Pg) closed under boolean combinations and <. So
formulas in £2(®g) will not contain any embedded K; operators, but may contain
K, embedded in a & operator. Note that we are ruling out formulas of the form
K;©C¢. However, this is not a significant restriction, since in any topologic for
any formula ¢ € Lo(Pg), O¢ is equivalent to ¢, i.e., no amount of effort can
change the base facts about the world. We will not include @, as a parameter
when it is not important.

290

Definition 9. A multi-agent model is a tuple (G, W, P, v) where G is a com-
munication graph, (W,P) is a multi-agent partition space generated by G and
v: Py — 2% is a valuation function.

We can now define truth in a model. A truth relation =, where M is a
multi-agent model (G, W, P, v) is a subset of (W x P) x £ defined as follows (we
write w, P Em ¢ instead of ((w,P), ¢) EEM.

w,P Empiff we v(p)

w,P Fam ¢ iff w, P ¢

w,PEMOAY T w, P EM¢and w,P =a ¥
w, P Em K¢ iff Yo € Py(w), v,PEMm0¢
w,PEMOPIIVO elpP, w,QFmd

O =

Other propositional connectives are defined in the standard way. We abbre-
viate =K;—¢ and —0O-¢ as L;¢ and ¢ respectively. We say ¢ is valid in M if
for all (w,P), w,P [¢, denoted by =1 ¢. Since some of axioms will be given
in terms of <, we state the definition of truth for & formulas

w,PEmCoiff 3IQ €lpP, w, QF ¢

Thus the formula ¢ K;¢ is interpreted as “There is a sequence of information
refinements that results in agent ¢ knowing ¢.”

Axioms

. All propositional tautologies

. (p — Dp) A (—\p — |:|—\p)7 for p € @0.
O(¢ —9) — (0¢ —)

O¢ — ¢

O¢ — O0¢

- Ki(p =) = (Kip — Kip)

Kip— ¢

. Ki¢p = K K¢

. K¢ — Ki-K;¢

SO LN

—_

We include the following rules: modus ponens, K;-necessitation and O-necessitation.
We write | ¢ if ¢ follows from any of the above schemes and rules. These axioms
and rules are known to be sound and complete with respect to the set of all
subset spaces ([MP]). Thus, they represent the core set of axioms and rules for
any topologic. Soundness of axioms 1-8 and the rules are easy to verify.

Of course, technically, axiom 10 is not part of our language, since it contains a
O embedded in a K; operator. Nonetheless, we can show that this axiom is valid
in our model. In fact this axiom will remain valid in the more general semantics
defined below. For an example, we show that the mix axiom K;0¢ — OK;¢ is
sound. It is easier to consider this in its contrapositive form: OL;p — L; O,
This can be interpreted as if it is possible that agent ¢ thinks ¢ is possible, then
1 thinks that it is possible that ¢ can be true.

291

Proposition 1. OL;¢p — L;<$¢ is valid in all multi-agent models.

Proof. Suppose that M = (G, W, {P;};c 4, v) is a multi-agent model, and suppose
that w € W and P is an arbitrary vector of partitions. Suppose that w,P |
OL;¢. Then there exists @ <¢g P such that w, @ = L;¢. So, there exists v €
Q;(w) such that v,Q E ¢. Now since Q@ =g P, Q;(w) C P;(w), we have
v € P;(w). But since v, Q@ |= ¢, v, P |= C¢. Hence w, P |= L;Oo. O

Recall that given a vector P, P’ represents the implicit knowledge of all the
agents. We can imagine that P’ arises after all the agents discuss each and every
fact known to each of them. This is of course assuming that any agent can access
any other agent’s knowledge database. If the agents communicate according to
a communication graph, then it may not be possible to generate P!. However,
it will be possible to generate a coarser partition P’9 which is based on the
communication graph. Given an agent i € A, define reachg(i) to be the set of
all j € A such that there is a path from i to j in G (we may write reach(i) when
G is understood). We can then define PLY a5 follows: for each i € A,

1.g
Pi = |Tz’ET‘eachg(i)IPi

Thus, P19 arises if all the agents that can communicate according to the com-
munication graph actually do communicate. So, P19 is the vector that results
if all the communication that can take place does take place. It is not hard to
see that P19 is a “lower bound” of P in the set Pg in the following sense. The
following lemma follows easily from the definitions.

Lemma 1. Let G be a communication graph and Pg the set of partitions gen-
erated from G. Then for any P € Pg and for each P' <g P and P" <g P, we
have P19 <5 P' and P19 <5 P"

We can now show that the following scheme is also valid in all models.
O0¢ — OC¢
Proposition 2. ¢O¢ — OO¢ is valid in all multi-agent models.

Proof. Suppose that M = (G, W, {P;};c 4, v) is a multi-agent model, and suppose
that w € W and P is an arbitrary vector of partitions. Suppose that w,P =
&0O¢. Then there is a refinement @ <¢g P such that w, @ = O¢. Let R € P.
We must show w, R | ¢¢. By the lemma 1, P’9 <5 Q@ and P9 <5 R.
Therefore, w, P19 = ¢; and so w, R = <¢. O

Before showing the connection between valid formulas and the communica-
tion graphs, we will discuss some of the details for a semantics for the more
general case in which we can express the knowledge which agents have about
other agents’ knowledge. Assume that an event is a query of a database. For-
mally we can define an event as a tuple (¢, i, j) to mean that i learns information

292

¢ from j, where ¢ is a base formula (an element of L(%g)). Of course there must
be an edge between i and j in the communication graph. A history is a finite
sequence of events. Thus a history represents a particular sequence of question
and answers. Assume that initially, nature informs each agent of the truth value
of a particular set of propositional variables. This generates an initial vector of
partitions, say P°. Now given any history there is a vector of partitions that is
generated by that sequence of questions starting from the initial partition. Let
Part(H) be the vector of partitions generated by history H from initial vector
PO. Truth in this model will be defined at a state w and a history H. Truth of
propositional variables is independent of the history, so w, H = p iff w € V(p),
where V is some valuation function. Boolean connectives are obvious. Given
two histories H and H', suppose that H < H' iff H' extends H, ie., H is H
concatenated with some event. Then,

w,HEC¢iff 3H', H<H and w,H' | ¢

Given a history H, let \;(H) be i’s local history. Le., this is a sequence of
events that ¢ can “see”. Formally \; maps each event of the form (¢, 1, j) to itself
and other events to the null string. Then define H ~; H' iff \;(H) = \(H').
We can know define truth of a knowledge formula:

w, H = K;¢ iff VH' ~; HYv € (Part(H');)(w), v,H = ¢

This definition addresses both causes of i’s uncertainty: 1. ¢’s uncertainty
about the partition representing the information of all the agents and 2. i’s
uncertainty about the current state.

4 Connection with Communication Graphs

In this section we will investigate the close connection between formulas valid
in a model based on the communication graph and the communication graph.
We will prove our main technical claim that the valid formulas characterize the
communication graph.

Let ¢ be a formula in our language £, and consider the formula K;¢p — O K;¢.
Intuitively, this formula says that if ¢ knows ¢ then it is possible for agent j to
know ¢. One would expect that this formula will always be true provided that j
is connected to ¢ in the communication graph. However, this does not quite work
for any formula ¢. For example, let ¢ be the formula p A =K;p, where p € &.
Suppose that j is connected to 7 in some communication graph G. It is easy to
construct a model in which K;(p A =K p) is true at some pair (w, P). However,
no pair (w, P’) with P’ =g P can satisfy the formula K;(p A =K;p), since K;
is an S5 modal operator.

Nonetheless, there is a certain class of formulas for which the above statement
will hold.

Definition 10. ¢ is stable in M iff ¢ — O¢ is valid in M.

293

We say that ¢ is stable if ¢ is stable in all models. If ¢ is a ground formula,
i.e., ¢ € Ly, then ¢ is stable. This is easy to see, since using axiom 1 and 2, one
can show that if ¢ € Lo, then | ¢ < O¢.

At this point, it is worth pointing out that we are assuming that the all the
agents share the same language. That is all of the agents are aware of the entire
set @¢ of propositional letters, and so it is possible that any agent can learn
any well-formed formula. This assumption can be relaxed in order to deal with
situations in which agents only partially share a language. Technically, we need
only restrict the sets X that can be used in definition 6 to show that P’ <; P.
The only sets X that can be learned from agent j by agent ¢ are the sets that are
definable in i’s language. Even if agent i and j share the same language, agent j
might not want agent 7 to have access to certain formulas.

Lemma 2. Let G be a communication graph and M a model generated by G. If
¢ is stable in M and there is a path from j to i in the communication graph,

then K;¢ — OK ;¢ is valid in M.

Proof. Suppose that M = (G, W, {P;}ic4,v) is a multi-agent model and ¢ is
stable in M. Suppose that w,P = K;¢. Then for all v € P;(w), v,P = ¢.
We must show that there is a @ such that @ <g P and w,Q = K;¢. For
simplicity, we will first assume that there is an edge between j and i in G. Let
X be the union of P; cells in which ¢ is true, i.e., X = P, U---U P,,, where for
allk=1,...m, P, € P; and for all v € Py, v, P = ¢. Define Q to be the vector
which is exactly like P except in the jth position, replace P; with ref(P;, X).
Since there is an edge between j and i, @ <; P, and so @ <; P. Let v be any
element in Q;(w), then by construction, v € P;(w)NX. Sincev € X, v, P = ¢;
and therefore since ¢ is stable, v, @ |= ¢. Hence, w, @ = K;¢.

If j and i are connected instead of directly connected the result is an easy
extension of the above proof. Suppose that the path from j to ¢ goes through the

agents iy, ...,ix. Then agent using the X defined above, we can define a sequence
vectors in which 4; learns X from i, i,,41 learns X from i,, form=1,... k—1,
and j learn X from iy. O

In fact we can show something stronger, that the communication graph is
characterized by formulas valid in models based on the graph.

Theorem 1. Let G = (A, E) be a communication graph. Then (i,j) € E if and
only if, for alll € A such that | #i and | # j and all stable ¢, the scheme

Kjp N—Kip = O(Kip A —Ki9)
is valid in all models generated by G.

We leave the details for the full version and sketch the proof. If (i, j) € E for
some communication graph, then Lemma 2 shows that provided ¢ is stable, then
Kij¢p = OK;¢ will be valid in any model based on G. It is not hard to see that
the above proof can be adapted to show that K;¢p A —K;¢ — (K¢ A K 9)

294

is valid in all models for I # i and I # j. If w,P |E K;¢ A ~K;¢ then there is
a v € Pi(w) such that v, P |= —¢, then using the fact that the refinement Q
defined in the proof of Lemma 2 does not change any partition other than j’s,
we can show that w, Q |= K;¢ A ~K;¢. For the other direction, if (i,5) & E,
then either there ¢ and j are not connected or there is a path going through
some agent [that connects 7 and j. In the first case, it is easy to construct a
model based on G in which K;p is true for some propositional variable p in some
situation (w,?P) and also that Kp is false in the same situation. If we assume
that ¢ and j are the only two agents, then it is easy to see that no refinement
of P can result in j knowing p. In the other case, if there is a path from 4 to
J going through [, then any refinement that increases i’s knowledge must also
increase I’s knowledge, and so the above formula will not be valid.

5 Conclusion

In this paper we have introduced a logic of knowledge and communication. Com-
munication among agents is restricted by a communication graph, and idealized
in the sense that the agents are unaware when there knowledge base is being
accessed. We have shown that the communication graph is characterized by the
validities of formulas in models based on that communication graph.

Related Work: This paper fits in with a growing body of work on social
software ([Pa]). One of the main goals of the social software research program
is to develop mathematical tools that can be used to study social procedures.
Other work that falls into this category is [PR] which studies the semantics of
messages and [PaPaC] which studies a logic of knowledge with obligation.

In this paper, we have presented a logic of multi-agent knowledge with an

update operator. Similar logics have been studied starting with [P1] and more re-
cently in [BM,K,Vd,Ge]. In chapter 4 of [K], Kooi provides an excellent overview
of the current state of affairs of these dynamic epistemic logics. We do not con-
sider general epistemic updates as is common in the literature, but rather study
a specific type of epistemic update and its connection with a communication
graph.
Further Work: We suspect that the logic of communication graphs has the
finite model property and so is decidable. We leave the proof for further inves-
tigation. Other standard questions such as a complete axiomatization will also
be studied. Another interesting extension would be to allow different types of
updates, such as lying, conscious updates, updating to subgroups and so on.

Finally we remark that this logic can be seen as a demonstration for the
need for cryptographic protocols. Two issues are important here. This first is
that an agent may only want part of its knowledge base to be accessible by the
public. This may be modeled in our framework by attaching to each agent a set
of formulas that are in the public domain, and so when ¢ is directly connected
to 7, ¢ can only update by sets definable in the publicly accessible language. The
second issue is that we may not know the exact structure of the communication
graph. For example, if Ann accesses some information from Bob’s website, but

295

unknown to Ann, Charles is listening in, then the communication graph does
not have an edge between Ann and Bob, but only a path from Ann to Bob going
through Charles. Then clearly as a condition for Ann learning some information
from Bob, Charles must become informed of that same piece of information. Thus
cryptographic protocols essentially ensure that there are direct edges between
agents in the communication graph.

References

[BM] Baltag, A. and Moss, L., Logics for Epistemic Programs, to appear in the Knowl-
edge, Rationality, and Action section of Synthese.

[DMP] Dabrowski, A, Moss, L, and Parikh, R. Topolgical reasoning and the logic of
knowledge. Annals of Pure and Applied Logic, 78, (1996), pp. 73 - 110.

[G93] Georgatos, K, Modal Logics for Topological Spaces. PhD Dissertation. Graduate
School and University Center. City University of New York, 1993.

[G94] Georgatos, K, Knowledge Theoretic Properties of Topological Spaces. In Knowl-
edge Representation and Uncertainty. M. Masuch and L. Polos, Eds. Lecture Notes
in Artificial Intelligence, vol. 808, pages 147-159, Springer-Verlag, 1994.

[G97] Georgatos, K, Knowledge on Treelike Spaces. Studia Logica, 59, (1997), pp. 271
- 231.

[Ge] Gerbrandy, J., Bisimulations on Planet Kripke, Ph.D. dissertation, University of
Amsterdam, 1999.

[H99] Heinemann, B., Temporal Aspects of the Modal Logic of Subset Spaces, Theo-
retical Computer Science, 224(1-2):135-155, 1999.

[HO0] Heinemann, B., Extending Topological Nexttime Logic. In S. D. Goodwin, A.
Trudel, editors, Temporal Representation and Reasoning, TIME-00, Cape Breton,
Nova Scotia, Canada, pages 87-94, IEEE Computer Society Press, Los Alamitos,
CA, 2000.

[HO2] Heinemann, B., A Hybrid Treatment of Evolutionary Sets. In C. A. Coello
Coello, A. de Albornoz, L. E. Sucar, O. Cair Battistutti, editors, MICAT’2002: Ad-
vances in Artificial Intelligence, Mrida, Yucatn, Mexico. Volume 2313 of Lecture
Notes in Artificial Intelligence, pages 204-213, Springer, Berlin, 2002.

[K] Kooi, B., Knowledge, Chance, and Change, Ph.D. dissertation, University of
Groningen, 2003.

[HO04] Heinemann, B., A Hybrid Logic of Knowledge Supporting Topological Rea-
soning. In Algebraic Methodology and Software Technology, AMAST 2004, Stirling,
United Kingdom. Lecture Notes in Computer Science, Springer, Berlin, 2004. To
appear.

[MP] Moss, L. and Parikh, Topological Reasoning and the Logic of Knowledge, TARK
1V, Ed. Y. Moses, Morgan Kaufmann, 1992.

[Pa] Parikh, R., Social Software, Synthese, 132: 3, Sep 2002, pp. 187-211.

[PaPaC] Parikh, R., Pacuit, E. and Cogan, E., The logic of knowledge based obligation.
Revised version to be presented at DALT ’04.

[PR] Parikh, R. and Ramanujam, R., A knowledge based semantics of messages, in J.
Logic, Language, and Information, 12, pp. 453 - 467, 2003.

[Pl] Plaza, J., Logics of public communications, Proceedings, 4th International Sym-
posium on Methodologies for Intelligent Systems, 1989.

[Vd] van Ditmarsch, H., Knowledge Games, Ph.D. dissertation, University of Gronin-
gen, 2000.

296

[V] Vickers, S. Topology Via Logic, Cambridge University Press. 1989.
[WP] Weiss, M. A. and Parikh, R., “Completeness of Certain Bimodal Logics of Subset
Spaces”, Studia Logica, 71:1, pp. 1 - 30, 2002.

297

Enhancing Commitment Machines

Michael Winikoff!, Wei Liu?, and James Harlahd

1 RMIT University, Melbourne, AUSTRALIA
{winikoff,jah }@cs.rmit.edu.au
2 University of Western Australia, Perth, AUSTRALIA
wei@csse.uwa.edu.au

Abstract. Agent interaction protocols are usually specified in terms of permissi-
ble sequences of messages. This representation is, unfortunately, brittle and does
not allow for flexibility and robustness. ThEommitment machinesamework

of Yolum and Singh aims to provide more flexibility and robustness by defining
interactions in terms of the commitments of agents. In this paper we identify a
number of areas where the commitment machines framework needs improvement
and propose an improved version. In particular we improve the way in which
commitments are discharged and the way in which pre-conditions are specified.

1 Introduction

Communications between software agents are typically regulated by interaction pro-
tocols. These include general communication protocols, such as the auction protocol
and the contract net protocol, as well as more specific protocols such as the NetBill
payment protocol [7, 8]. Traditional protocol representations such as Finite State Ma-
chines (FSM), Petri-Nets [3] and AUML sequence diagrams [1, 2] often specify pro-
tocols in terms of legal message sequences. Under such protocol specifications, agent
interactions are pre-defined and predictable. The inevitable rigidity resulting from this
prevents agents from taking opportunities and handling exceptions in a highly dynamic
and uncertain multi-agent environment.

Yolum and Singh’s Commitment Machines [7] (CMs henceforth) define an interac-
tion protocol in terms of actions that change the state of the system, which consists of
the state of the world as well as tbemmitmentthat agents have made to each other. It
is a commitment made to an interaction partner which makes an agent perform its next
action. In other words, an agent acts because it wants to comply with the protocol and
provide the promised outcomes for another party. Actions not only change the values of
state variables, but also may initiate new commitments and/or discharge existing com-
mitments. In traditional protocol representations, agents are constrained to perform a
pre-defined sequence of actions, whereas in CMs, an agent is able to reason about what
action should be taken next in accordance with the dynamics of the environment and
the management of its commitments in that environment. This fundamentally changes
the process of specifying a protocol from a procedural approach (i.e. presdnibing
an interaction is to be executed) to a declarative one (i.e. desciltintinteraction is
to take place) [7].

298

Another advantage of the CM approach is that it provides a natural means of man-
aging multi-agent interactions. Agent programming concepts are often discussed in the
context of a single agent situated in an environment, discussing properties such as au-
tonomy, pro-activeness, reactivity and social awareness. The CM approach enables pro-
activeness and reactivity to be discussed in a multi-agent context.

CMs thus allow interactions between agents to be organized in a manner which is
more flexible and robust than an approach based on pre-defined sequences. For example,
in the NetBill protocol (discussed in section 2), a customer may wish to order goods
without first receiving a quotation, or a merchant may be happy to send goods to a
known reliable customer with less rigorous checking than normal.

In this paper we identify a number of areas where the Commitment Machine frame-
work can be improved. Specifically, we show how the identification of undesirable
states (such as omitting to provide a receipt, or receiving the goods before payment has
been confirmed) can be incorporated into the design process in order to achieve accept-
able outcomes for a wider variety of circumstances than is done in [7, 8]. We also show
how certain anomalies in discharging commitments and in handling pre-conditions can
be remedied.

The paper is organized as follows: in section 2 we introduce the commitment ma-
chine framework and a detailed example, both based on [7]. In section 3 we identify
a number of anomalies and issues with the commitment machines framework and in
section 4 we propose some improvements.

2 Background

We briefly introduce the commitment machines framework and the NetBill protocol.
Both are based on the description in [7] and we refer the reader to [7, 8] for further
details.

The key example used in [7] is the NetBill protocol [4]. In this protocol a customer
buys a product from a merchant. To buy a desired product, the protocol begins with a
customer (C) requesting a quote (message 1 in Figure 1) from the merchant (M), fol-
lowed by the merchant sending the quote (message 2). If the customer accepts the quote
(message 3), the merchant proceeds by sending the goods (message 4) and waits for the
customer to pay by sending an electronic payment order (EPO). Note that it is assumed
that the goods cannot be used until the merchant has sent the relevant decryption key,
such as software downloaded from the internet, or sent on a CD. Once the customer
has sent payment (via an EPO in message 5), the merchant will send the decryption key
along with a receipt (message 6). This concludes the NetBill transaction.

As suggested by the name “commitment machine”, a crucial concept is that of com-
mitment. A (social) commitment is an undertaking by one agentd#isor, =) to an-
other agent (thereditor, y) to bring about a certain propergy written C(z,y,p). A
commitment of the fornC(z,y, p) is a base-levecommitment. For example, in the
NetBill protocol when the customer sends message 3 and then receives the goods, he or
she has a commitment to pay the merchantG(€, M, pay).

When a party is willing to commit only if certain conditions hold (such as another
party making a corresponding commitment)c@nditional commitmentan be used.

299

Customer Merchant

1: Request Quote
quest Quote _|

< 2. Present Quote
3: Accept Quote
pt Quote

4: Deliver Goods
5: Send EPO
6: Send Receipt
<

Fig. 1. Simplified Net Bill Protocol

A conditional commitment, denotedC(z, y, p, ¢), indicates that agentis committed

to achievingg for agenty if p becomes true. A conditional commitment is latent — it
doesn’t commitz to do anything untilp becomes true, at which point the conditional
commitment is transformed to the base-level commitnignt y, ¢). For example, in

the NetBill protocol the customer may insist on his or her commitment to pay being
conditional on the goods being sent, which would be represented as

CC(customer, merchant, goods, pay). Where the identity of the debtor and creditor
are obvious from context we shall sometimes wfltg) in place of C(x,y,p) and
CC(p ~ q) in place ofCC(x,y,p, q).

Interactions are specified in the CM framework by defining the roles of the partic-
ipants, the domain-specific fluents (i.e. boolean state variables), the (conditional) com-
mitments that may arise during the interaction, and the ruldsiftatesandterminates
which define the effects of (communicative) actions, and are used to regulate the choices
of actions for the agents. The execution of a protocol is then driven by the commitments
that are in place: the desire to fulfil these commitments generates an action or actions to
achieve them, which in turn may create new commitments or discharge existing ones.
The NetBill protocol as a CM can be found in figure 2.

A statein a CM is a triple(F, CC, C), whereF is a set of fluentsC'C is a set of
conditional commitments and is a set of base-level commitments.

A final stateis a state that does not have undischarged base-level commitments.
A final state may contain conditional commitments, since they are latent commitments
that have not been activated. Formally, a state in a CM is a final state-if). Note that
a final state in a CM is one where the interactinayend. However, it is also possible
for interaction to continue from a final state.

A protocol runconsists of a sequence of actions that results in a final state.

A commitment machine places constraints on the sequence of agent actions that
constitute the interaction. For example, if an agent has a commitment, then it must at

300

Roles: M (merchant)C' (customer)
Fluents:

request (the customer has requested a quote),

goods (the goods have been delivered to the customer),
pay (the customer has paid),

receipt (the merchant has sent the receipt)

Commitments:

— accept = CC(C, M, goods, pay): a commitment by the customer (to the merchant) to gay
once the goods have been delivered.

— promiseGoods = CC(M, C, accept, goods): a commitment by the merchant to send e
goods if the customer accepts. Sineeept is itself a commitment this is a nested commgg-
ment:promiseGoods = CC(M, C, CC(C, M, goods, pay), goods).

— promiseReceipt = CC(M, C, pay, receipt): a commitment by the merchant to sendja
receipt once the customer has paid.

— offer = promiseGoods N promiseReceipt: an offer is a commitment by the merchant (@)
to send the goods if the customer accepts the offer, and (b) to send a receipt after pflyment
has been made.

Action Effects: the following (communicative) actions are defined:

— sendRequest: this action by the customer makes the fluenjuest true.

— sendQuote: this action by the merchant creates the two commitmegmsiseGoods and
promiseReceipt (i.e. offer) and terminates (makes false) the flueejuest.

— sendAccept: this action by the customer creates the commitnaenépt.

— sendGoods: this action by the merchant makes the flugodds true and also creates t
commitmenipromiseReceipt.

— sendE PO: this action by the customer makes the flugay true. This action is defined i
[7] as having the pre-condition that the goods have been sent.

— sendReceipt: this action by the merchant makes the fluesteipt true. This is defined i
[7] as having the pre-condition that payment has been made.

Fig. 2. The NetBill Protocol as a Commitment Machine [7]

301

some point fulfil its commitmeRt However, commitment machines do not dictate or
require that agents perform particular actions.

Each commitment machine implicitly defines a corresponding Finite State Ma-
chin¢* (FSM) where the states of the FSM correspond to states of the CM and the
transitions are defined by the effects of the actions. Figure 3 shows a (partial) view
of the states and transitions corresponding to the CM defined in figure 2. Final states
(those with no undischarged base-level commitments) are shaded and dotted lines de-
pict actions that are intended to be prevented by pre-conditions (but see section 3.4).
This figure is an extension of the figure given in [7, 8]. The table in figure 3 gives the
fluents and commitments that hold in each state.

3 Properties of CMs

In this section we discuss various properties of CMs as presented in [7, 8] and identify
a number of areas where we propose improvements to the CM framework.

3.1 Explicit labelling of undesirable states

The presentation in [7, 8] presents protocols as defining states (in terms of the commit-
ments of the agents and the fluents that hold). A query is then given and the interpreter
finds possible sequences of actions that lead to the requested state. For example, in [8]
given the commitment machine defined in figure 2, the interpreter is asked to find se-
guences of actions that lead to a final state where goods have been received, payment
has been made, and a receipt has been issued.

However, when designing interaction rules it is important to not only ensure that a
desirable final state is possible, but also to ensure that undesirable states are not possible.
In this context when we talk about “desirable” and “undesirable” states we are talk-

ing from the perspective of thdesignerof the interaction, not from the perspective of

an agent who will take part in the interaction. Roughly speaking, the designer should
consider a state to be desirable if an agent desires it and no agents find it undesirable. A
state should be considered undesirable if any agent finds it undesirable.

If an undesirable final state is determined to be possible then this can be fixed by
either adding additional commitments so that the state is no longer final, or by adding
pre-conditions so that the state can not be reachedntitipossible to fix undesirable
final states by merely having the agents be aware of the undesirable state - if a state is
undesirable to one agent, another agent may still perform an action that results in that
state.

For example, in the NetBill protocol the desirable final states are those in which the
goods have been delivered and paid for and a receipt has been given. Undesirable states
are those where only one or two of these three conditions hold,; it is clearly undesirable
to have the goods without payment, to have paid for the goods without getting a receipt,
to have a receipt without payment, or to have paid without the goods being delivered.

3 Commitments can also be discharged in other ways than being fulfilled [7].
4 Actually, a variation of finite state machines, since there is no defined initial state.

302

State

Z
o

OO ~NOOULDAWNPFP

request
M: promiseReceipt N\ promiseGoods
M: promiseReceipt A C(goods), C: accept
goods, M: promiseReceipt, C: C(pay)
goods, pay, M: C(receipt)
goods, pay, receipt
goods, M: promiseReceipt
C:accept

10 pay, M: C(receipt) A promiseGoods
11 pay, receipt, M: promiseGoods
12 goods, receipt

13 goods, M: promiseReceipt, C: accept

Quote CxendRequest

-sendQuote :sendGoods

4’7

e 9 M:sendRecgipt

C:se M:sendGoOods

M:sendRecei 6 :pendEPO SendAcce@

M: sendkecelpt
C:sendEPO

Fig. 3. Implied FSM for the NetBill CM (partial)

303

The final state where the goods have not been delivered, no payment has been made,
and there is no receipt is acceptable, but not desirable (neutral). In figure 3 state 7 is
desirable, states 8,11,12 and 13 are undesirable, and states 1,2,3 and 9 are neutral. Note
that states 10, 11, 12 and 13 have been added to the machine discussed in [7, 8]. Note
also that states 4,5,6 and 10 have undischarged commitments, and hence are not final
states.

To illustrate why we need to identify and avoid undesirable states we consider an
alternative protocol which seems quite reasonable. This protocol differs from the one
presented in [7, 8] in that we remove the axiom:

Initiates(sendGoods, promise Receipt, t)

This axiom is not needed in the “normal” expected sequence of actions (depicted in
figure 1) and it is quite possible that aiwa protocol designer would leave it out of an
initial protocol specification.

Now suppose that the customer is desperate for the §@dbbegins the interac-
tion with send Accept. The merchant replies to thendAccept with sendGoods. At
this point in the interaction the customer’s acceptance commit®@€f(jood ~~ pay)
becomes a commitment to payC{pay) - since the goods have been received. The
customer then fulfils their obligation by paying. At this point we are in a final state
- there are no remaining commitments - and goods have been received and payment
made. However, this state is an undesirable one because the customer has not received
a receipt.

The important point is that the omission of tinitiatesrule is detected by checking
whether undesirable (final) states are reachable, rather than by only checking whether
desirable ones can be reached. If we had simply taken the variant protocol and asked
for sequences which result in goods being delivered along with payment and a receipt
then the problem would not have been noticed. In other words, the undesirable states
can be used as a check on the interaction rules, which in this case results in the problem
being easily found.

3.2 Failure to discharge conditional commitments

There are anomalies in the rules that govern the discharge of conditional commitments.
These anomalies can, in certain situations, result in conditional commitments not being
discharged when, intuitively, they ought to be.

Consider the following sequence of steps:

=

. The customer asks for a quote

2. The merchant replies with a quote. At this point the merchant has promised to send
the goods if the customer accepts, and has promised to send a receipt if the customer
pays.

3. The customer, misunderstanding the protocol perhaps, decides to accept but sends

payment instead of an acceptance.

5 Or has interacted with the merchant in the past and hence does not need to obtain a quote.

304

At this point the merchant becomes committed to sending a receipt, which it does,
resulting in the following final state:

— fluents:pay, receipt
— commitments of merchan€C(CC(goods ~~ pay) ~> goods)

The crucial point here is that this is a final state and the merchant is not committed
to sending the goods. The reason is that in orde€fofCC(goods ~ pay) ~~ goods)
to becomeC(goods) the commitmenCC(goods ~» pay) must hold: it is not enough
according to the formal framework fary to hold. This is counter-intuitive because
pay is stronger tharCC(goods ~~ pay) in that it discharges the commitment. The
formal framework does recognise this, but only at the top level — the reasoning process
that discharge€C(goods ~ pay) whenpay becomes true is not applied to nested
commitments.

3.3 Commitment discharge is not symmetrical

The axiom/postulate defining the conditions when a commitment (or conditional com-
mitment) is discharged says that the commitment is discharged when it already exists
and its condition is brought about by an event.

A problem with this is that it is possible to create a commitrm@&mpt) whenp already
holds. This commitment will not be discharged unless an event takes place subsequently
which re-initiategp.

For example, consider the following sequence:

1. The customer sends an accept. The customer has now committed to paying if the
goods are receivedC(goods ~ pay))

2. The merchant sends the goods. Since the goods have been sent, the customer now
is committed to payingQ(pay)).

However, lets consider what happens if the two steps occur in the reverse order:

1. The merchant sends the goods to the custbmer
2. The customer sends an accept.

What is the resulting state? When sending the acceptance the customer initiates the
conditional commitment to pay if the goods are received. This conditional commitment,
however, doesot become a commitment to pay even though the goods have already
been sent. Consequently, the resulting state has no base-level commitments and so is an
(undesirable) final state (state 13 in figure 3).

3.4 Pre-condition mechanism does not prevent action

A standard view of actions that goes back to STRIPS is that an action definition contains
a pre-condition and a post-condition. The formalization of actions in the CM framework
uses these, but the way in which pre-conditions are handled has a slight problem.

6 As discussed in [8, example 2], this may be a sensible strategy if the goods are cheap to copy
- e.g. software.

305

Pre-conditions in a CM are defined by putting conditions on the action effect def-
initions. For example, in [7] the effects of thend EPO action are defined using the
clausé

Initiates(sendEPO, pay,t) < HoldsAt(goods,t)

A standard reading in line with traditional pre-conditions would be that “payment can
only be sent (by theend E PO action) when the goods have already been deliired
However, what this formalization actually does is limit #féectsof send E PO rather
than the action itself. In the event calculus this does not prevent the svehi PO

from occurring if goods is false, it merely means that if the evereind EPO occurs
without goods being true then the flueniay does not become true as a result of
sendEPO.

This is a fairly subtle difference but it does have one significant implication: if we
consider agents that use an implementation of commitment machines to reason about
what actions to perform, then, for example, a customer agent who has not received the
goods is not prevented from executing thad E PO action. Although the reasoning
module will, in this case, believe that the effects of payment have not taken place, if the
sendE PO action is executed resulting in credit card details being sent, then in the real
world the action’s executiowill have resulted in the undesired effect of payment.

3.5 Communication mode assumptions not clear

The state space defined by the available events (actions) includes sequences of events
where an event representing an action by an agent (e.g. the merchant) is followed by an
event representing another action by the same agent. This may not be desirable, if the
intention is to define interactions where a message fiérto C' can only be followed

by a response fror@' to M.

The point here is that in the CM framework, there is no explicit specification of
how the conversation should be carried out between the two parties, i.e. whether it
should follow a synchronous mode or an asynchronous mode. Were the synchronous
communication mode clearly specified, the actiend Receipt by the Merchant would
have been prevented in state 8 as the actors for the incoming and outgoing arc are the
same.

However, there are situations where consecutive actions from the samesapet
sirable. A typical CM state that may result in multiple actions from the same agent (or
simultaneous actions from multiple agents) would have more than one base level com-
mitment. See Section 4 for an example of a state with multiple base level commitments
(state 10 in figure 5).

We do not address this issue in this paper; we will return to it in subsequent work.

"Notation has been slighty changed. The actual clause in [7] is:
Initiates(send EPO(i,m), pay(m),t) < HoldsAt(goods(i),t).

8 This reading may seem contrary to the standard meaning of implication, but it is correct: in the
context of the event calculusiitiates(send E PO, pay, t) means that wheneveend E PO
occurs, the fluentay becomes true. The causality betweend E PO andpay is notcaptured
by the implication, but by the predicafe:tiates. The implication places a condition on when
the causality holds. Since there is only a sinfit@tiates clause, the clause above specifies
that the causality only occurs HoldsAt(goods, t) is true whensend E PO occurs.

306

4 Proposed extended CM model

In this section we propose an extended CM model which addresses some of the concerns
discussed in the previous section.

4.1 Labelling undesirable states

This isn't a change to the model so much as an extension and a change to how it is
used (the methodology). As part of developing the commitment machine the designer
indicates which states are undesirable (bad), which are desirable (good) and which are
acceptable but not desirable (neutral). Indicating the desirability of states can be done
by specifying conditions.

The indication of good/bad states is specific to a particular interaction and the pref-
erences of the parties involved. For example, in [8, example 2] where the goods are
cheap to copy, the merchant may not consider state 8 in figure 3 to be a bad state.

The desirability of states, particularly of those states that are undesirable, is then
used to perform safety checking.

4.2 Issues with commitment discharge

We now present a revised axiomatisation that remedies both anomalies associated with
commitment discharge (sections 3.2 and 3.3). We first consider the issue discussed in
section 3.2. Our proposed solution involves treating certain commitments as being “im-
plied”. For example, ifpay is true, then any commitment of the forGC(X ~~ pay)
that occurs as a condition can be treated as having implicitly held (and been discharged).

We introduce predicateBnplied and Subsumes which capture when a commit-
ment (base or conditional) holds implicitly or is subsumed by a condition. These are
used in the rules that govern commitment dynamics. When checking whether a condi-
tion p holds, we also check whether it is implied or subsuines

In order to make commitment discharge symmetrical (section 3.3) we also de-
couple intended causation from actual causation: instead of stating that an action initi-
ates a commitment (e.@nitiates(sendGoods, promise Receipt, t)), we state that the
action isintendedo cause the initiation of the commitment (e(@ruses(sendGoods,
promiseReceipt)). The rules in figure 4 link the two notions by definifigitiates in
terms ofCauses. Whenp is a fluent (not a commitment) then an evénttiates the
fluentp exactly when itCauses it. However, for a base level commitme@tp) even
thoughCauses(e, C(p)), the event will not make C(p) true if p already holds. Sim-
ilarly, for Causes(e, CC(p ~ q)), if p holds there will createC(q), not CC(p ~~ q),
and if ¢ holds there will have no effect. The rules in figure 4 realise these cases.

We then have the following action effect rules for the NetBill CM (the roles, fluents
and commitments remain unchanged):

® I'mplies(p, t) checks whethep is implied at timet and is used to check whether a condition
(implicitly) holds at the current timeSubsumes(p, p’) checks whethep subsumeg’ and is
used to check whether an event would cause a condition to (implicitly) hold.

307

Implied(p,t) < HoldsAt(p,t)
Implied(C(z,y,p),t) «— Implied(p,t)
Implied(CC(x,y,p,q),t) < Implied(q,t)

Subsumes(p, p)
Subsumes(p, C(z,y,p")) — Subsumes(p,p’)
Subsumes(p, CC(z,y,q,p")) — Subsumes(p,p’)

Happens(e,t) «— AgentTry(a,e,t) A Precond(e,p) A HoldsAt(p,t)

Initiates(e, p,t) «— Happens(e,t) A Causes(e,p) N isFluent(p)

Initiates(e, C(z,y,p), t) — Causes(e,C(z,y,p)) A Happens(e, t) A ~Implied(p,t)

Initiates(e, C(x,y,p), t) «— Causes(e, CC(x,y,q,p)) A Happens(e,t) A Implied(q,t)A
—Implied(p,t)

Initiates(e, CC(z,y, p, q),t) < Causes(e, CC(z,y,p,q)) N Happens(e, t)A
—Implied(q,t) A ~Implied(p,t)

Initiates(e, C(x,y,q),t) «— HoldsAt(CC(x,y,p, q),t) A Happens(e, t)A
Initiates(e,p’,t) A Subsumes(p’, p)

Terminates(e, C(x,y,p),t) «— Implied(C(x,y,p),t) A Happens(e,t) A Initiates(e,p’,t)
ASubsumes(p’, p)

Terminates(e, CC(x,y, p,q),t) «— Implied(CC(z,y,p, q),t) N Happens(e, t)A
Initiates(e, q',t) A Subsumes(q’, q)

Terminates(e, CC(x,y, p,q),t) < Implied(CC(z,y,p, q),t) N Happens(e, t)A
Initiates(e,p’,t) A Subsumes(p’, p)

Fig. 4. Revised Commitment Machine Framework

308

Causes(sendRequest, request)
Causes(sendQuote, offer)
Causes(sendAccept, accept)
Causes(sendGoods, goods)
Causes(sendGoods, promiseReceipt)
Causes(sendEPO, pay)
Causes(sendReceipt, receipt)
Terminates(sendQuote, request,t)

We now explain how the revised axiomatisation and rules address the two commit-
ment discharge anomalies. Let us begin with the first anomaly (section 3.2). Consider
the following sequence of steps:

1. The customer asks for a quote

2. The merchant replies with a quote. At this point the merchant has promised to send
the goods if the customer accepts, and has promised to send a receipt if the customer
pays.

3. The customer, misunderstanding the protocol perhaps, decides to accept but sends
payment instead of an acceptance.

Unlike previously, the payment causes the merchant to become committed to sending
the goods (as well as a receipt). Through the postulatplied(CC(x,y,p,q),t) «—
Implied(q,t), the fact that theway fluent holds indicates that the conditional commit-
mentCC(goods ~ pay) implicitly holdg® at the same time. This implied conditional
commitment discharges theomiseGoods (CC(CC(goods ~~ pay) ~» goods)) con-
ditional commitment and creates the base level commitiégtods). Once the com-
mitmentsC(goods) andC(receipt) are discharged we are in a desirable final state.
Consider now the second anomaly (section 3.3). Using the new predioate:s,
a conditional commitment is resolved to a base level commitment if the premise is
already true using the clause

Initiates(e, C(x,y,p),t) «— Causes(e, CC(z,y,q,p)) A Happens(e,t)
NImplied(q,t) A ~Implied(p,t)

Consider the transition from state 8 to state 13. Beclsgses(send Accept, accept)
andaccept is CC(goods ~ pay) and Implied(goods,t) and —Implied(pay,t), the
actual commitment initiated is then the base level commitn@&pty), which makes
state 13 no longer final.

Figure 5 shows (part of) the state machine implicitly defined by the revised Net-
Bill protocol and CM axiomatisation. The differences are in states 10, 11 and 13.
Whereas previously state 10 hady, C(receipt) and promiseGoods, now it has
pay, C(receipt) and C(goods). As a result state 11 now includes a commitment to
send the goods and is no longer a final state. State 13, which previoushobéd
promiseReceipt andaccept now hasgoods, C(pay) andpromiseReceipt and is no
longer a final state. As before, final states are shaded. Also, dotted lines indicate actions
that are affected by pre-conditions.

10 More precisely, it could be considered to hold: there is no actual commitment, because it has
been discharged, singay is true.

309

:sendGoods

Fig. 5. Revised Transitions in example (partial)

310

4.3 Issues with pre-conditions

As discussed in section 3.4 trying to capture pre-conditions by adding conditions to
Initiates clauses does not work.

Our proposed solution is to extend the agents with a proper notion of pre-condition
that specifies when actions should not be performable (as opposed to preventing the
effects of the action from being caused). In the NetBill example we have the pre-
conditionsPrecond(send EPO, goods) and Precond(sendReceipt, pay).

We then need to de-couple an agent wanting to perform an action from the action
actually occuring. This can be done by using a new predidgientTry(a,e,t) to
indicate that an agemtwants to perform an actionat timet. If the pre-conditions of
the actiore hold*! at timet then this will imply that the event happens.

Happens(e,t) «— AgentTry(a,e,t) A Precond(e,p) A HoldsAt(p, t)

Note that the definition of the interaction cannot prevent an agent from performing
an action (any more than it can force an agent to honour its commmitments). However,
it can specify when an action should not be performed, and detect violations, in the
same way that violations of commitments are detected.

5 Conclusion

We analyzed the reasoning process of commitment machines and identified several
anomalies in the current reasoning mechanism. We then indicated how these anomalies
could be remedied, giving detailed rules for fixing the anomalies involving commitment
discharge and pre-conditions.

Since the main contribution of this paper is a technical extension of [7] we do not
perform a detailed literature review: discussion of how CMs relate to other approches
can be found in [7].

There are a number of areas for future work including extending the CM framework
to deal with protocols involving open numbers of participarts-(/V) such as auction
protocols.

One area where we believe that commitment machines could be simplified concerns
pre-conditions. In a sense pre-conditions and commitments are dual: the former state
that a certain action must not be performed (under the prescribed conditions) whereas
the latter state that a certain state must be brought about. It may be that the commit-
ment machines framework could be simplified by merging the two concepts into a
more generalised form of commitment. Specifically, pre-conditions could be replaced
by commitments t@voidcertain actions. These avoidance commitments, might be bet-
ter termedprohibitions A prohibition of the formP(x, a) would state that agent is
prohibited from performing actioa. A conditionalprohibition of the formCP(z, a, p)
would state that agentis prohibitedfrom performing actior: if p holds. For example,

a merchant could have a conditional prohibition against sending a receipt if payment

M This assumes thatdoes not involve commitments. If it does then replébsl ds At (p, t) with
Implied(p,t).

311

has not been mad€P (M, sendReceipt, —pay). Prohibitions are more flexible than
pre-conditions in that they can vary over time.

Another area for future work would be applying our changes to the presentation of
commitment machines in [6, 5]. Whereas the presentation of commitment machines in
[7, 8] uses the event calculus to formalise commitment machines, the presentation of [6,
5] defines a process for compiling a commitment machine to a finite state machine.

Finally, the reasoning that each agent performs when deciding which action to do
needs to be specified in more detail. The reasoning could resemble a form of game
playing where an agent wants to ensure that states that it considers undesirable cannot be
reached by other agents’ actions while trying to achieve states that it considers desirable.

Acknowledgments

We would like to acknowledge the support of Agent Oriented Software and of the
Australian Research Council under grant LP0218928. We would also like to thank the
anonymous reviewers and Min Xu for their comments.

References

1. Marc-Philippe Huget, James Odell, @ystein Haugen, Mariam “Misty” Nodine, Stephen
Cranefield, Renato Levy, and Lin Padgham. Fipa modeling: Interaction diagrams. On
www.auml.orgunder “Working Documents”, 2003. FIPA Working Draft (version 2003-07-
02).

2. J. Odell, H. Parunak, and B. Bauer. Extending UML for agent®réceedings of the Agent-
Oriented Information Systems Workshop at the 17th National conference on Atrtificial Intelli-
gence 2000.

3. Wolfgang ReisigPetri Nets: An IntroductionEATCS Monographs on Theoretical Computer
Science. Springer-Verlag, 1985. ISBN 0-387-13723-8.

4. Marvin A. Sirbu. Credits and debits on the internet. In Michael N. Huhns and Munindar P.
Singh, editorsReadings in Agentpages 299-305. Morgan Kaufman, 1998. (Reprinted from
IEEE Spectrum1997).

5. P. Yolum and M.P. Singh. Synthesizing finite state machines for communication proto-
cols. Technical Report TR-2001-06, North Carolina State University, 2001. Available from
http://www.csc.ncsu.edu/research/tech-reports/README. htmi

6. P.Yolumand M.P. Singh. Commitment machines. In John-Jules Ch. Meyer and Milind Tambe,
editors,Agent Theories, Architectures, and Languages (AT¥dlume 2333 of_ecture Notes
in Computer Sciencgages 235—-247. Springer, 2002.

7. Pinar Yolum and Munindar P. Singh. Flexible protocol specification and execution: Applying
event calculus planning using commitments. Pimceedings of the 1st Joint Conference on
Autonomous Agents and MultiAgent Systems (AAMzgEg)es 527-534, July 2002.

8. Pinar Yolum and Munindar P. Singh. Reasoning about commitments in the event calculus:
An approach for specifying and executing protocafnals of Mathematics and Artificial
Intelligence (AMAI), Special Issue on Computational Logic in Multi-Agent SysfEonap-
pear (2004). Available fronhttp://www.csc.ncsu.edu/faculty/mpsingh/papers/mas/amai-03-
events.pdf

Author Index

Alagar, Vasu S. 266
Artikis, Alexander 188

Baldoni, Matteo 250
Baroglio, Cristina 250
Bosse, Tibor 61
Bracciali, Andrea 77

Cao, Cungen 109
Chopra, Amit K. 93
Coelho Avila7 Braulio 204
Cogan, Eva 47

Dastani, Mehdi 17
Demolombe, Robert 33
Desai, Nirmit V. 93
Dignum, Frank 17

Fan, Xiaocong 1
Feng, Qiangze 109

Gungui, Ivana 250

Harland, James 297
Hochuli Shmeil, Marcos A. 204

Jonker, Catholijn M. 61

Kiingas, Peep 220
Kamara, Lloyd 188

Leite, Joao A., II
Liu, Wei 297

Mallya, Ashok U. 93
Mancarella, Paolo 77

Martelli, Alberto 250

Martelli, Maurizio 250
Mascardi, Viviana 250
Matskin, Mihhail 220

Meyer, John-Jules Ch. 17
Miller, Michael 1

Mitsuo Hasegawa, Fabiano 204

Nayak, Abhaya 33
Omicini, Andrea, II

Pacuit, Eric 47,282
Pan, Yu 125

Paquet, Joey 266
Parikh, Rohit 47,282
Patti, Viviana 250
Pitt, Jeremy 188
Pokorny, L. Robert 172
Pontelli, Enrico 125
Pozos-Parra, Pilar 33

Qin, Qianfu 109

Ramakrishnan, C. R 172
Robertson, David 236

Schifanella, Claudio 250
Sergot, Marek J. 188
Singh, Munindar P. 93
Son, Tran Cao 125
Stathis, Kostas 77

Sui, Yuefei 109

Toni, Francesca 77
Torroni, Paolo, II
Treur, Jan 61

Tu, Phan Huy 125

van Riemsdijk, M. Birna 17
Vasconcelos, Wamberto W. 141

Walton, Christopher 156
Wan, Kaiyu 266
Winikoff, Michael 297

Yen, John 1
Yolum, Pinar, II

Zheng, Yufei 109

312

