
A Modified Semantics for LUPS

João Alexandre Leite!

CENTRIA - Centro de Inteligência Artificial
Universidade Nova de Lisboa

2829-516 Caparica
Portugal

jleite@di.fct.unl.pt

Abstract. Following the introduction of Dynamic Logic Programming
in [1], the language of updates LUPS was introduced in [2]. Whereas
Dynamic Logic Programming provides a meaning to sequences of logic
programs, each of them representing a state of the world, LUPS allows
the specification of such states and state transitions.
In this paper, we take a closer look at the language LUPS and identify
one problem with its semantics and a possible, important, extension to
its set of commands. We then propose an extension to the syntax of
LUPS as well as a new semantics that solves the identified problem. We
illustrate the changes by means of two examples.

1 Introduction and Motivation

In the past few years, research in the area of Nonmonotonic Reasoning has de-
voted some attention to the problem of dynamically adapting a knowledge base
(KB) to correctly represent a world that changes, i.e. how to update a KB. For
the case where the KB is a theory in classical propositional logic, adequate solu-
tions have been proposed in [8] and [15]. In [12,13], these solutions were adapted
to allow for the update of logic programs and deductive databases, following the
so called interpretation update approach. This approach has been shown inade-
quate when applied to nonmonotonic theories, often leading to counterintuitive
results as pointed out in [9]. Since then, several approaches for updating KBs
represented by logic programs have been proposed [1,3,4,9,10,14,16]. Each of
these approaches proposes a semantics for what the outcome of the update of
a logic program by another such program ought to be or, more generally, what
the meaning of a sequence of logic programs should be. For considerations and
comparisons wrt. these approaches see [4].

In [2], the authors argue that besides assigning a meaning to a sequence of
logic programs, one also needs a language to specify how such sequence of pro-
grams is to be constructed i.e., besides declaratively specifying the states of a
KB, it is advantageous to also declaratively specify the state transitions. And
these state transitions should be allowed to depend on the states themselves. To
this purpose, the language of updates LUPS [2] was introduced. In the LUPS
! Partially supported by PRAXIS XXI scholarship no. BD/13514/97

P. Brazdil and A. Jorge (Eds.): EPIA 2001, LNAI 2258, pp. 261–275, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

262 João Alexandre Leite

framework, the next state of the KB is produced according to a set of commands
and the KB at the current state. Such LUPS commands allow the specification
of statements such as: “a certain rule should belong to the next state if some
condition holds in the current state”, which would be represented by the com-
mand “assert Rule when Condition”. Similar commands exist for the retrac-
tion of rules, for the specification of permanent assert commands, i.e. an assert
command that is to be executed at every state after being issued, and for the
cancellation of such persistent commands. For further motivation for the need
of a language as LUPS, and some application examples, see [2]. Throughout the
remainder of this paper we assume that the reader is familiar with LUPS and its
Dynamic Logic Programming (DLP) based semantics. In Appendix we provide
an overview of DLP and LUPS with all the relevant intuitions and definitions.

1.1 Motivation

In LUPS, the authors introduced a class of commands whose immediate effect
should only hold in the successor state and should not persist by inertia in sub-
sequent states. This kind of non-inertial commands are indicated by the keyword
event (e.g. “assert event Rule when Condition”).

According to the intuitive reading above, if we want to update an initial KB,
P1, with two consecutive updates U2 and U3, such that U2 only contains such
non-inertial commands, and U3 is empty, it seems reasonable to expect that after
the second update, U3, what holds true is exactly equal to what held true before
the first update, i.e. what holds true at P1. Unfortunately this is not the case in
LUPS, as illustrated by the following example:

Example 1. Consider the simple case where P1 = {a ←}, possibly obtained by
a past update command such as assert a ←, and the following sequence of
updates:

U2 = {assert event a ←}
U3 = {}

At state 3, i.e. after the update U3, according to the semantics of LUPS we have
M3 = {} as the only stable model, i.e. a is not a consequence of the knowledge
base at state 3.

In this example, M3 = {} is the only stable model because the command
assert event a ← asserts the rule a ← at state 2, but then causes the removal
of all rules (past and present) of the form a ←, i.e. both the rule specified by
U2 and the rule of P1 are removed. We argue that M

′

3 = {a} should be the only
stable model at state 3, because the command assert event a ← should not
affect (remove at state 3) the rule a ← that was previously asserted at state 1,
i.e. the rule in P1. Let us look at another example:

Example 2. Consider a slight modification in the previous example, such that
the initial program is, now, P ∗

1 = {a ← not ⊥} (where, as usual, ⊥ is a reserved

A Modified Semantics for LUPS 263

proposition with the property of being false in every stable model i.e, not ⊥
belongs to every stable model). If the same update sequence is performed, after
the update U3 we have M∗

3 = {a} as the only stable model.

Updates are somewhat syntactical in nature (cf. [1]), but in this example,
this syntactical difference in behaviour should not exist. We argue that both
examples should have the same outcome, i.e. they should both have M = {a} as
the only stable model at state 3. To avoid such problem, we argue that an event
command should be exerted on the single asserted (or retracted) instance of a
rule and not on all other syntactically equal ones.

The main contribution of this paper is a proposal for a change in the seman-
tics of LUPS to correct this undesirable behaviour.

The second contribution of this paper resides in the extension of the LUPS
syntax with the introduction of a persistent retract command. In LUPS, besides
the assertion and retraction commands, denoted by the keywords assert and
retract respectively, that may only contribute to the state transition for which
they were specified, there is a command, denoted by the keyword always, which
can be seen as a permanent assert command, i.e. until it is cancelled, it will
cause the assertion of a specific rule every time the specified condition holds. We
argue that such persistent command should also exist for the retraction of rules.
To illustrate our claim, let us consider the following example from [2]:

Example 3. Consider the following scenario: -once Republicans take over both
Congress and the Presidency they establish a law stating that abortions are
punishable by jail; -once Democrats take over both Congress and the Presidency
they abolish such a law; -in the meantime, there are no changes in the law
because always either the President or the Congress vetoes such changes. The
specification in LUPS, as presented in [2], comprises the following persistent
update commands1:

always jail(X) ← abortion(X) when repC, repP (1)
always not jail(X) ← abortion(X) when not repC,not repP (2)

The authors further state that in this example, alternatively, instead of the
second command they could have used a retract command:

retract jail(X) ← abortion(X) when not repC,not repP (3)

noting that, in this example, since there is no other rule implying jail, retracting
the rule is safely equivalent to retracting its conclusion.

We argue that neither of the proposed solutions, to represent the abolition
of the abortion law when the Democrats take over (commands (2) and (3)),
properly represents the intuition stated in the scenario.
1 Where the rules with variables simply stand, as usual, for all the ground rules that

result from replacing the variables by all the ground terms in the language.

264 João Alexandre Leite

The argument against the use of command (2) is implicitly stated by the
authors of [2] when they say that “since there is no other rule implying jail,
retracting the rule is safely equivalent to retracting its conclusion”. In fact, if
there were other rules implying jail, which is fair to expect in a realistic scenario,
such as for example a rule stating that assassinations are punishable by jail, then
some undesirable effects would occur: -suppose such rule was represented by an
update command, at the initial state, of the form:

assert jail(X) ← assassination(X) (4)

If this command had been previously issued, then, after the Democrats take
over both Congress and the Presidency, someone (mary) that both assassins
someone and performs an abortion would not be punished by jail. This is so
because the rule asserted by command (2) would reject, according to the DLP
semantics, the previously asserted rule specified by command (4). The resulting
knowledge base would have not jail(mary) as a consequence.

The argument against the use of command (3) resides in the fact that, to
effectively represent the intended meaning, this command would have to belong
to every update i.e. it would have to be explicitly added to the specification
of every state transition. Not only this does not add to the simplicity of the
language but, also, the fact that the representation of the effect of Republicans
taking over requires a single update command, and that the representation of the
effect of Democrats taking over requires several update commands, one at each
update, is somehow unintuitive. The introduction of the always command in [2]
was justified with the need to avoid such consecutive repetitions of the assert
command. We believe that such persistent command should also exist for the
retraction of rules. A command that, until cancelled, retracts a specific rule from
the KB every time the specified condition holds. In this paper we introduce such
command.

Throughout, to differentiate the original LUPS language and the extended
and modified version here proposed, we refer to the latter as LUPS∗.

The remainder is structured as follows: First, in Sect.2, we introduce the
syntax of the extended language LUPS∗. In Sect.3 we propose a semantics for
this extended language that corrects the above mentioned problem. In Sect.4 we
illustrate with two examples. In Sect. 5 we compare both semantics by means of
a desirable property. We then conclude in Sect.6.

2 LUPS∗ - Syntax

In this Section we formalize the language of LUPS∗. We will keep all the com-
mands of LUPS, with a slight modification in the syntax of two of such com-
mands, which will be explained below, and introduce the above mentioned per-
sistent retract command and its corresponding cancellation command.

The language of LUPS∗ will contain the basic non-persistent commands
for the assertion and retraction of rules, denoted by the keywords assert and

A Modified Semantics for LUPS 265

retract. They are of the form:

assert L ← L1, . . . , Lk when Lk+1, . . . , Lm (5)
retract L ← L1, . . . , Lk when Lk+1, . . . , Lm (6)

Both these commands can be made persistent, i.e. until cancelled they are
added to all subsequent updates. We will identify such persistent commands by
prefixing the non-persistent commands with the keyword always. They are thus
of the form:

always assert L ← L1, . . . , Lk when Lk+1, . . . , Lm (7)
always retract L ← L1, . . . , Lk when Lk+1, . . . , Lm (8)

Note here the first modification in the syntax of a LUPS command. In LUPS,
command (7) does not have the keyword assert, being identified by the keyword
always alone. Since we are now introducing the persistent retraction command,
this new notation becomes more symmetrical and therefore more intuitive.

All the previous commands are inertial. To obtain the corresponding non-
inertial commands one simply adds the keyword event to obtain the following
commands:

assert event L ← L1, . . . , Lk when Lk+1, . . . , Lm (9)
retract event L ← L1, . . . , Lk when Lk+1, . . . , Lm (10)

always assert event L ← L1, . . . , Lk when Lk+1, . . . , Lm (11)
always retract event L ← L1, . . . , Lk when Lk+1, . . . , Lm (12)

Just as in LUPS there is a cancellation command for the persistent command
always, denoted by the keyword cancel, so there will be one in LUPS∗ but
now denoted by the keyword cancel assert, to simplify the introduction of
a cancellation command for the persistent retraction command, which will be
denoted by the keyword cancel retract. These two commands are:

cancel assert L ← L1, . . . , Lk when Lk+1, . . . , Lm (13)
cancel retract L ← L1, . . . , Lk when Lk+1, . . . , Lm (14)

The syntax of the update commands of LUPS∗ is, formally:

Definition 1 (LUPS∗ - Update Commands). A LUPS∗ update command,
or command for short, is a propositional expression of any of the forms2

[always]assert [event] R when φ (15)
[always] retract [event] R when φ (16)
cancel assert R when φ (17)
cancel retract R when φ (18)

2 Where [a] will be used for notational convenience denoting either the presence or
absence of a.

266 João Alexandre Leite

where R is a rule of the form L ← L1, . . . , Lk and φ is a (possibly empty)
conjunction of literals, Lk+1, . . . , Lm, where L and each Li are literals. If φ is
empty, we simply omit the when keyword. We refer to those commands without
(resp. with) the keyword event as inertial (resp. non-inertial) commands. We
refer to those commands with (resp. without) the keyword always as persistent
(resp. non-persistent) commands.

The following table summarizes the correspondence between the syntax of
LUPS∗ and that of LUPS :

LUPS∗ LUPS
assert [event] ↔ assert [event]
retract [event] ↔ retract [event]

always assert [event] ↔ always [event]
always retract [event] non existing

cancel assert ↔ cancel
cancel retract non existing

An update program in LUPS∗ is defined as follows:

Definition 2 (LUPS∗ - Update Program). An update program in LUPS∗

is a finite sequence of updates, where an update is a set of commands of the form
(15) to (18).

3 LUPS∗ - Semantics

The semantics of LUPS∗ is defined by incrementally translating update programs
into sequences of generalized logic programs and by considering the semantics
of the DLP formed by them.

Let U = U1 ⊗ ... ⊗ Un be a LUPS∗ update program. At every state t we
determine the corresponding DLP, Υt (U) = Pt.

The translation of a LUPS∗ program into a dynamic program is similar to
the one presented for LUPS. It is made by induction, starting from the empty
program P0 and, for each update Ut, given the already built dynamic program
P0 ⊕ · · ·⊕Pt−1, determining the resulting program P0 ⊕ · · ·⊕Pt−1 ⊕Pt. To cope
with persistent update commands, as for the LUPS semantics, we also consider
a set containing all currently active persistent commands, although its defini-
tion must be extended to deal with the newly introduced persistent retraction
commands. As in LUPS, the retraction of rules imposes its unique identifica-
tion. Therefore, the language of the resulting dynamic logic program must be
extended with a new propositional variable “N(R)” for every rule R appearing
in the original LUPS program. To properly handle non-inertial commands, we
also need to uniquely associate those rules appearing in non-inertial commands
with the states they belong to. To this end, the language of the resulting dy-
namic logic program must also be extended with a new propositional variable
“Ev(R, S)” for every rule R appearing in a non-inertial command in the original
LUPS program, and every state S.

A Modified Semantics for LUPS 267

We now present the translation for LUPS∗:

Definition 3 (Translation into dynamic logic programs). Let U = U1 ⊗
· · · ⊗ Un be a LUPS∗ update program. The corresponding dynamic logic pro-
gram Υ ∗(U) = P = Pn = P0 ⊕ · · · ⊕ Pn is obtained by the following inductive
construction, using at each step t an auxiliary set of persistent commands PCt:

Base step: P0 = {} with PC0 = {}.
Inductive step: Let Υ ∗

t−1(U) = Pt−1 = P0 ⊕ · · · ⊕ Pt−1 with the set of
persistent commands PCt−1 be the translation of Ut−1 = U1 ⊗ · · · ⊗ Ut−1. The
translation of Ut = U1 ⊗ · · · ⊗ Ut is Υ ∗

t (U) = Pt = P0 ⊕ · · · ⊕ Pt−1 ⊕ Pt with the
set of persistent commands PCt, where:

PCt = PCt−1 ∪ {assert R when φ : always assert R when φ ∈ Ut} ∪
∪ {retract R when φ : always retract R when φ ∈ Ut} ∪
∪ {assert event R when φ : always assert event R when φ ∈ Ut} ∪
∪ {retract event R when φ : always retract event R when φ ∈ Ut} ∪
− {assert [event] R when φ : cancel assert R when ψ ∈ Ut∧

∧
⊕

Pt−1 ! ψ} −
− {assert [event] R when φ : always retract [event] R when ψ ∈ Ut∧

∧
⊕

Pt−1 ! ψ} −
− {retract [event] R when φ : cancel retract R when ψ ∈ Ut∧

∧
⊕

Pt−1 ! ψ} −
− {retract [event] R when φ : always assert [event] R when ψ ∈ Ut∧

∧
⊕

Pt−1 ! ψ}

NUt = Ut ∪ PCt

Pt = {not N(R) ←: retract R when φ ∈ NUt ∧
⊕

Pt−1 ! φ} ∪
∪ {N(R) ←; H(R) ← B(R), N(R) : assert R when φ ∈ NUt ∧

⊕
Pt−1 ! φ} ∪

∪ {H(R) ← B(R), Ev(R, t) : assert event R when φ ∈ NUt ∧
⊕

Pt−1 ! φ} ∪
∪ {not N(R) ← Ev(R, t) : retract event R when φ ∈ NUt ∧

⊕
Pt−1 ! φ} ∪

∪ {not Ev(R, t − 1) ←; Ev(R, t) ←}

Note that the body of every rule R must be extended either with the predicate
N(R) or with the predicate Ev(R, t). The differences between this transforma-
tion and the original LUPS transformation are the following: - the modification
in the definition of the set of active persistent commands, PCt, to deal with the
newly introduced persistent retraction command and the corresponding cancel-
lation command; - the modification in the definition of the generalized logic
program at state t, Pt, to properly deal with non-inertial commands. This is
achieved by treating inertial and non-inertial rules in a separate manner: the
former are dealt with as in LUPS while the latter are extended with the pred-
icate Ev(R, t) which is only made true for the duration of one state. This is
achieved simply by including the rules not Ev(R, t − 1) ← and Ev(R, t) ← in
the generalized logic program of every state.

The semantics of LUPS∗ is, as expected:

268 João Alexandre Leite

Definition 4 (LUPS∗ Semantics). Let U = U1 ⊗ ... ⊗ Un be a LUPS∗ pro-
gram. A query holds L1, . . . , Lk at t? is true in U iff

⊕
Υ ∗

t (U) ! L1, . . . , Lk,
or, equivalently, iff

⊕
Pt ! L1, . . . , Lk. By SM(U) we mean the set of all sta-

ble models of Υ ∗(U) at state n, modulo the newly introduced literals N(R) and
Ev(R, S).

4 Illustrative Examples

Follows an example to illustrate the different behaviour between LUPS and
LUPS∗:

Example 4. Consider a public building with several floors. Initially, the security
policy of the building states that any person (P) is allowed into any of its floors
(F) only if they have a special permit for that floor. This can be represented by
the update U1:

U1 : assert (allowed(P, F) ← permission(P, F))
assert (not allowed(P, F) ← not permission(P, F))

Later on, the administration decided to open up a public relations office, to be
situated in the ground floor. They had to update the security policy which, from
then on, would allow any person in the ground floor provided they have some
form of identification. Let us suppose this happened in the second day (state),
and is represented by the update U2:

U2 : assert (allowed(P, ground) ← id(P))

Further down the line (at the third day), the administration decided to, once
every now and then, declare an open day when everyone, for the duration of one
day, was allowed to visit the entire building, provided they have some form of
Id. This is represented by the update U3:

U3 : always assert event (allowed(P, F) ← id(P)) when open day

Suppose that both Mary and John have Ids and Mary has a permission for the
second floor, represented by the facts permission(mary, second), id(john) and
id(mary), in the KB. At day five there is an open day represented by the update
at state 4:

U4 : assert event (open day ←)

According to the LUPS∗ semantics, at state 4 Mary is allowed in the ground
and second floors, and John is only allowed in the ground floor; at state 5 both
Mary and John are allowed in all floors of the building; at state 6 and thereafter
everything is back as it was at state 4, with Mary being allowed in the ground
and second floors, and John only being allowed in the ground floor, as expected.
If this problem was to be tackled with the semantics of LUPS, everything would
be the same until (and including) state 5 but, at state 6, John and Mary (and

A Modified Semantics for LUPS 269

anybody else) would no longer be allowed in the ground floor, which seems
to be rather unintuitive. This is so because not only the rule asserted by the
always assert event command in U3 is removed, but so is the rule asserted by
U2, simply because it has the same syntax. !

We now show how Example 3 would be encoded in LUPS∗:

Example 5. Consider the scenario of Example 3. The specification in LUPS∗

would comprise the following persistent update commands:

always assert jail(X) ← abortion(X) when repC, repP

always retract jail(X) ← abortion(X) when not repC,not repP

If, as before, at the initial state we also have the following update command:

assert jail(X) ← assassination(X)

Then, after the Democrats take over both Congress and the Presidency, if Mary
both assassins someone and performs an abortion, she will now be punished by
jail, as intended. !

5 Comparison

In this section we compare LUPS and LUPS∗ by means of a property that
partially characterizes the desired behaviour of the semantics wrt. non-inertial
commands.

Before we express this property, we start with the definition of update equiv-
alence for update programs, according to which two update programs are update
equivalent iff their semantics coincides after an arbitrary number of updates with
arbitrary update programs. Formally:

Definition 5 (Update Equivalence). Let U1 and U2 be two update programs.
We say that U1 and U2 are update equivalent, denoted by U1

⊗≡ U2, iff for every
update program Q, U1 ⊗ Q is semantically equivalent to U2 ⊗ Q, i.e.:

SM (U1 ⊗ Q) = SM (U2 ⊗ Q)

where if R = Rr1 ⊗ ... ⊗ Rrn and S = Ss1 ⊗ ... ⊗ Ssm are two update programs,
by R ⊗ S we mean the update program Rr1 ⊗ ... ⊗ Rrn ⊗ Ss1 ⊗ ... ⊗ Ssm .

With this property, we can now come back to our main claim. In particular,
we claim that if we have a sequence of updates such that only non-inertial com-
mands are executed, the knowledge state before the execution of such sequence
of commands and the knowledge state after the execution of all such commands
should be update equivalent. This means that the long term effect (more than
one state) of non-inertial commands should only reside in their interaction with
inertial commands, be them persistent or not, i.e., rules asserted or retracted

270 João Alexandre Leite

by non-inertial commands should only change the semantics at the next state
to allow and/or prevent the execution of other commands at that state, which
may be inertial and therefore change the semantics at subsequent states. In par-
ticular, if there is a sequence of updates without any inertial command to be
executed, followed by a state transition specified by an empty update, then, after
its execution the knowledge state should be equivalent to the initial one. In other
words, we want the effect of non-inertial commands to be, in fact, non inertial.
The referred empty update is necessary because the immediate effect of every
non-inertial command holds for one state, i.e. we need an extra state transition
for such effect to be removed.

This is formally defined as follows:

Definition 6 (Stability wrt non-inertial commands). An update language
is stable wrt. non-inertial commands iff for every update programs U1 and U2
such that U1 consists of updates with non-persistent commands only, and U2
consists of updates with non-persistent, non-inertial commands only,

U1 ⊗ U∅
⊗≡ U1 ⊗ U2 ⊗ U∅

where U∅ denotes an empty update.

The restriction imposed on the updates of U1 to only contain non-persistent
commands, i.e. without the keyword always, is justified by the fact that if such
persistent commands were present, they could be executed at subsequent states,
together with the updates of U2, thus invalidating our goal to have only non-
inertial commands being executed at the state transitions corresponding to the
updates of U2. Recall that an inertial command is valid at all subsequent states,
until cancelled. Note that to express our intuition it suffices to guarantee that
at the state transitions corresponding to the updates of U2 only non-inertial
commands are executed. In fact, this would also be achieved by allowing U1 to
contain persistent non-inertial commands so as long as we ensure that at the
state transition corresponding to U∅ no commands are executed, but we will
keep to this simpler formulation.

Proposition 1. LUPS is not stable wrt. non-inertial commands.

Example 1 above shows that LUPS is not stable wrt. non-inertial commands.
It is worth noting that the recently proposed language of updates EPI [5], being
based on the semantics of LUPS, is also not stable wrt. non-inertial commands.
The same example also applies to EPI.

Theorem 1. LUPS∗ is stable wrt. non-inertial commands.

6 Conclusion

In this paper we have drawn the attention of the reader to an intuitively incorrect
behaviour of the semantics of the language of updates LUPS, when dealing with

A Modified Semantics for LUPS 271

non-inertial commands. Hoping to have convinced the reader that such behaviour
is in fact incorrect, we have then proposed a modification to the semantics of
LUPS to correct such problem. Both semantics, the original and the modified,
were compared by means of a desirable property that only holds in the latter.

We have also suggested the need for a new persistent retraction command,
symmetrical to the persistent assertion command, and extended the syntax and
adapted the semantics accordingly.

Each contribution was illustrated by means of an example.

References

1. J. J. Alferes, J. A. Leite, L. M. Pereira, H. Przymusinska, and T. Przymusinski.
Dynamic updates of non-monotonic knowledge bases. Journal of Logic Program-
ming, 45(1-3):43–70, 2000. Abstract titled Dynamic Logic Programming appeared
in Procs. of KR-98.

2. J. J. Alferes, L. M. Pereira, H. Przymusinska, and T. Przymusinski. LUPS :
A language for updating logic programs. In Procs. of LPNMR-99, LNAI-1730.
Springer, 1999.

3. F. Buccafurri, W. Faber, and N. Leone. Disjunctive logic programs with inheri-
tance. In Procs. of ICLP-99. MIT Press, 1999.

4. T. Eiter, M. Fink, G. Sabbatini, and H. Tompits. Considerations on updates of
logic programs. In Procs. of JELIA-00, LNAI-1919. Springer, 2000.

5. T. Eiter, M. Fink, G. Sabbatini, and H. Tompits. Specifying update policies for
nonmonotonic knowledge bases. In Procs. of DGNMR-01, 2001. To appear in
Procs. of IJCAI-01.

6. M. Gelfond and V. Lifschitz. The stable semantics for logic programs. In Procs.
of ICLP-88. MIT Press, 1988.

7. K. Inoue and C. Sakama. Negation as failure in the head. Journal of Logic Pro-
gramming, 35:39–78, 1998.

8. H. Katsuno and A. Mendelzon. On the difference between updating a knowledge
base and revising it. In Procs. of KR-91. Morgan Kaufmann, 1991.

9. J. A. Leite and L. M. Pereira. Generalizing updates: From models to programs. In
Procs of. LPKR-97, LNAI-1471. Springer, 1997.

10. J. A. Leite and L. M. Pereira. Iterated logic program updates. In Procs. of
JICSLP-98. MIT Press, 1998.

11. V. Lifschitz and T. Woo. Answer sets in general non-monotonic reasoning (pre-
liminary report). In Procs. of KR-92. Morgan-Kaufmann, 1992.

12. V. W. Marek and M. Truszczyński. Revision specifications by means of programs.
In Procs. of JELIA-94, LNAI-838. Springer, 1994.

13. T. C. Przymusinski and H. Turner. Update by means of inference rules. Journal
of Logic Programming, 30(2):125–143, 1997.

14. C. Sakama and K. Inoue. Updating extended logic programs through abduction.
In Procs. of LPNMR-99. Springer, 1999.

15. M. Winslett. Reasoning about action using a possible models approach. In Procs.
of NCAI-88. AAAI Press, 1988.

16. Y. Zhang and N. Foo. Updating logic programs. In Procs. of ECAI’98. Morgan
Kaufmann, 1998.

272 João Alexandre Leite

A Background

In this Appendix we provide some background on Generalized Logic Programs,
Dynamic Logic Programming and LUPS.

Generalized Logic Programs Here we recapitulate the syntax and stable
semantics of generalized logic programs3 [1].

By a generalized logic program P in a language L we mean a finite or infinite
set of propositional clauses of the form L0 ← L1, . . . , Ln where each Li is a
literal (i.e. an atom A or the default negation of an atom not A). If r is a clause
(or rule), by H(r) we mean L0, and by B(r) we mean L1, . . . , Ln. If H(r) = A
(resp. H(r) = not A) then not H(r) = not A (resp. not H(r) = A). By a (2-
valued) interpretation M of L we mean any set of literals from L that satisfies
the condition that for any A, precisely one of the literals A or not A belongs
to M . Given an interpretation M we define M+ = {A : A is an atom, A ∈ M}
and M− = {not A : A is an atom, not A ∈ M}. Wherever convenient we omit
the default (negative) atoms when describing interpretations and models. Also,
rules with variables stand for the set of their ground instances. We say that a
(2-valued) interpretation M of L is a stable model of a generalized logic program
P if ρ(M) = least (ρ(P) ∪ ρ(M−)), where ρ(.) univocally renames every default
literal not A in a program or model into new atoms, say not A. In the remaining,
we refer to a GLP simply as a logic program (or LP).

Dynamic Logic Programming Next we recall the semantics of dynamic logic
programming [1]. A dynamic logic program P = {Ps : s ∈ S} = P0 ⊕ ...⊕Pn ⊕ ...,
is a finite or infinite sequence of LPs, indexed by the finite or infinite set S =
{1, 2, . . . , n, . . .}. Such sequence may be viewed as the outcome of updating
P0 with P1, ..., updating it with Pn,... As we will see, in LUPS each Pi is
determined by the ith state transition. The role of dynamic logic programming
is to ensure that these newly added rules are in force, and that previous rules are
still valid (by inertia) for as long as they do not conflict with more recent ones.
The notion of dynamic logic program at state s, denoted by

⊕
s P = P0⊕...⊕Ps,

characterizes the meaning of the dynamic logic program when queried at state
s, by means of its stable models, defined as follows:

Definition 7 (Stable Models of DLP). Let P ={Ps : s ∈ S} be a dynamic
logic program, let s ∈ S. An interpretation Ms is a stable model of P at state
s iff

Ms = least ([Ps − Reject(s, Ms)] ∪ Default (Ps, Ms))

3 The class of GLPs (i.e. logic programs that allow default negation in the premisses
and heads of rules) can be viewed as a special case of yet broader classes of programs,
introduced earlier in [7] and in [11], and, for the special case of normal programs,
their semantics coincides with the stable models semantics [6].

A Modified Semantics for LUPS 273

where

Ps =
⋃

i≤s Pi

Reject(s, Ms) = {r ∈ Pi : ∃r′ ∈ Pj , i < j ≤ s, H(r) = not H(r′) ∧ Ms ! B(r′)}
Default (Ps, Ms) = {not A | !r ∈ Ps : (H(r) = A) ∧ Ms ! B(r)}

If some literal or conjunction of literals φ holds in all stable models of P at state
s, we write

⊕
s P ! φ. If s is the largest element of S we simply write

⊕
P ! φ.

LUPS Here we recall the language of updates LUPS closely following its original
formulation in [2]. The object language of LUPS is that of generalized logic
programs. A sentence U in LUPS is a set of simultaneous update commands (or
actions) that, given a pre-existing sequence of logic programs P0 ⊕ · · · ⊕ Pn (i.e.
a dynamic logic program), whose semantics corresponds to our knowledge at a
given state, produces a sequence with one more program, P0 ⊕ · · · ⊕ Pn ⊕ Pn+1,
corresponding to the knowledge that results from the previous sequence after
performing all the simultaneous commands. A program in LUPS is a sequence
of such sentences.

Given a program in LUPS, its semantics is defined by means of a dynamic
logic program generated by the sequence of commands.

In this update framework, knowledge evolves from one knowledge state to
another as a result of update commands stated in the object language. Without
loss of generality it is assumed that the initial knowledge state is empty. Given
the current knowledge state, its successor knowledge state is produced as a re-
sult of the occurrence of a set U of simultaneous updates. The knowledge state
obtained by performing the sequence of updates U1, U2, . . . , Un is denoted by
U1 ⊗ U2 ⊗ · · · ⊗ Un. So defined sequences of updates will be called update pro-
grams. In other words, an update program is a finite sequence U = {Us : s ∈ S}
of updates indexed by the set S = {1, 2, . . . , n}. Each update is a set of update
commands. Update commands (defined below) specify assertions or retractions
to the current knowledge state. By the current knowledge state we mean the one
resulting from the last update performed.

Knowledge can be queried at any state t ≤ n, where n is the index of the
current knowledge state. A query will be denoted by:

holds L1, . . . , Lk at t?

and is true iff the conjunction of its literals holds at the state obtained after the
tth update. If t = n, the state reference “at t” is skipped.

Update commands specify assertions or retractions to the current knowledge
state. In LUPS a simple assertion is represented by the command:

assert L ← L1, . . . , Lk when Lk+1, . . . , Lm (19)

Its meaning is that if Lk+1, . . . , Lm is true in the current state, then the rule
L ← L1, . . . , Lk is added to its successor state, and persists by inertia, until
possibly retracted or overridden by some future update command.

274 João Alexandre Leite

In order to represent rules and facts that do not persist by inertia, i.e. that
are one-state events, LUPS includes the modified form of assertion:

assert event L ← L1, . . . , Lk when Lk+1, . . . , Lm (20)

The retraction of rules is performed with the two update commands:

retract L ← L1, . . . , Lk when Lk+1, . . . , Lm (21)
retract event L ← L1, . . . , Lk when Lk+1, . . . , Lm (22)

Its meaning is that, subject to precondition Lk+1, . . . , Lm (verified at the current
state) rule L ← L1, . . . , Lk is either retracted from its successor state onwards,
or just temporarily retracted in the successor state (if governed by event).

Normally assertions represent newly incoming information. Although its ef-
fects remain by inertia (until contravened or retracted), the assert command
itself does not persist. However, some update commands may desirably persist
in the successive consecutive updates. This is especially the case of laws which,
subject to some preconditions, are always valid, or of rules describing the effects
of an action. In the former case, the update command must be added to all sets
of updates, to guarantee that the rule remains indeed valid. In the latter case,
the specification of the effects must be added to all sets of updates, to guarantee
that, when the action takes place, its effects are enforced.

To specify such persistent update commands, LUPS introduces the following
commands:

always L ← L1, . . . , Lk when Lk+1, . . . , Lm (23)
always event L ← L1, . . . , Lk when Lk+1, . . . , Lm (24)

cancel L ← L1, . . . , Lk when Lk+1, . . . , Lm (25)

The first two statements mean that, in addition to any new set of arriving
update commands, the persistent update command keep executing with them
too. In the first case without, and in the second one with the event keyword. The
third statement cancels execution of this persistent update, once the conditions
for cancellation are met.

Definition 8 (LUPS). An update program in LUPS is a finite sequence of
updates, where an update is a set of commands of the form (19) to (25).

The semantics of LUPS is defined by incrementally translating update pro-
grams into sequences of generalized logic programs and by considering the se-
mantics of the DLP formed by them.

Let U = U1⊗...⊗Un be a LUPS programs. At every state t the corresponding
DLP, Υt (U) = Pt, is determined.

The translation of a LUPS program into a dynamic program is made by
induction, starting from the empty program P0, and for each update Ut, given the
already built dynamic program P0⊕· · ·⊕Pt−1, determining the resulting program
P0 ⊕ · · · ⊕ Pt−1 ⊕ Pt. To cope with persistent update commands, associated

A Modified Semantics for LUPS 275

with every dynamic program in the inductive construction, a set containing all
currently active persistent commands is considered, i.e. all those commands that
were not cancelled until that point in the construction, from the time they were
introduced. To be able to retract rules, a unique identification of each such rule
is needed. This is achieved by augmenting the language of the resulting dynamic
program with a new propositional variable “N(R)” for every rule R appearing
in the original LUPS program.

Definition 9 (Translation into dynamic logic programs). Let U = U1 ⊗
· · ·⊗Un be an update program. The corresponding dynamic logic program Υ (U) =
P = P0 ⊕ · · · ⊕ Pn is obtained by the following inductive construction, using at
each step t an auxiliary set of persistent commands PCt:

Base step: P0 = {} with PC0 = {}.
Inductive step: Let Υt−1(U) = Pt−1 = P0 ⊕ · · · ⊕ Pt−1 with the set of

persistent commands PCt−1 be the translation of Ut−1 = U1 ⊗ · · · ⊗ Ut−1. The
translation of Ut = U1 ⊗ · · · ⊗ Ut is Υt(U) = Pt = P0 ⊕ · · · ⊕ Pt−1 ⊕ Pt with the
set of persistent commands PCt, where:

PCt = PCt−1 ∪ {assert R when φ : always R when φ ∈ Ut} ∪
∪ {assert event R when φ : always event R when φ ∈ Ut} ∪
− {assert [event] R when φ : cancel R when ψ ∈ Ut ∧

⊕
Pt−1 ! ψ} −

− {assert [event] R when φ : retract R when ψ ∈ Ut ∧
⊕

Pt−1 ! ψ} −

NUt = Ut ∪ PCt

Pt = {N(R) ←; H(R) ← B(R), N(R) : assert [event] R when φ ∈ NUt∧
∧

⊕
Pt−1 ! φ} ∪

∪ {not N(R) ←: retract [event] R when φ ∈ NUt ∧
⊕

Pt−1 ! φ} ∪
∪ {not N(R) ←: assert event R when φ ∈ NUt−1 ∧

⊕
Pt−2 ! φ} ∪

∪ {N(R) ←: retract event R when φ ∈ NUt−1 ∧
⊕

Pt−2 ! φ, N(R)}

Definition 10 (LUPS Semantics). Let U be an update program. A query

holds L1, . . . , Ln at t

is true in U iff
⊕

t Υ (U) ! L1, . . . , Ln.

