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Abstract

Logic Programming Update Languages were proposed
as an extension of logic programming, which allow for mod-
elling the dynamics of knowledge bases where both exten-
sional knowledge (facts) as well as intentional knowledge
(rules) may change over time due to updates, with impor-
tant application Multi-Agent Systems (MAS).

Despite their generality, these languages do not provide
means to directly access past states of the evolving knowl-
edge. They only allow for so-called Markovian changes i.e.
changes determined entirely by the current state. This is a
drawback in several situation.

In this paper, after motivating for the need of non-
Markovian changes, we extend EVOLP – The Logic Pro-
gramming Update Language at the heart of an existing MAS
– with LTL-like temporal operators that allow referring to
the history of the evolving agent. We then show that with
a suitable introduction of new propositional variables it is
possible to embed the extended EVOLP into the original
one, thus demonstrating that EVOLP itself can already be
used for non-Markovian changes. While showing how to
use EVOLP for encoding non-Markovian changes, this em-
bedding sheds light into the relationship between Logic Pro-
gramming Update Languages and Modal Temporal Logics,
of particular importance in MAS.

1 Introduction

With the promise to uniformly integrate the tasks of
specifying, programming and verifying Multi-Agent Sys-
tems (MAS), Computational Logic (CL) and Logic Pro-
gramming (LP) have been used as the privileged driving
vehicles to describe the informational, motivational and dy-
namic dimensions of several such systems [25, 11, 18, 9, 7,
17, 21]. For surveys on some of these and others see [23, 8].

Agents must keep beliefs about their goals, intentions,
capabilities and the environment in which they are situated.
These beliefs must be dynamic, not only because the agent
may learn about static features of its environment and new

ways to behave, but also because of the intrinsic dynamic
character of the environment. This rich dynamic character
of MAS called for the development of LP based languages
that are capable of dealing with updates that go beyond the
simple addition and deletion of fluents. These languages
are usually referred to as LP Update Languages and include
LUPS [5], EPI [12], KABUL [20] and EVOLP [3].

LP Update Languages are extensions of LP designed
to allow the modelling of the dynamics of non-monotonic
knowledge represented by logic programs where both their
extensional part (set of facts) as well as their intentional
part (set of deductive rules) may change over time due to
updates. Each defines special types of rules that specify
the transition to subsequent states of knowledge through the
update of the current one. While LUPS, EPI and KABUL
offer a very diverse set of update commands, each specific
for one particular kind of update (assertion, retraction, etc),
EVOLP – the language we focus on – follows a simpler ap-
proach that stays closer to traditional logic programming.

EVOLP (Evolving Logic Programming) generalizes
Answer-set Programming [16] to allow for the specifica-
tion of a program’s own evolution, arising both from self
(i.e. internal to the program) updating, and external updat-
ing originating in the environment. From the syntactical
point of view, evolving programs are generalized logic pro-
grams, extended with (possibly nested) assertions in either
heads or bodies of rules. From the semantical point of view,
a model-theoretic characterization is offered of the possible
evolutions of programs by means of evolving stable models
which are sequences of interpretations. Each interpretation
in the sequence describes, at the corresponding evolution
step, what is true, and the possible next-step evolutions.

EVOLP is at the heart of the MAS presented in [21],
where it is used to represent the dynamics of both beliefs
and capabilities of agents. The use of EVOLP has also been
illustrated in Role Playing Games to represent the dynamic
behaviour of Non-Playing Characters [19] and Knowledge
Bases to describe their update policies [12]. Furthermore, it
was shown that Logic Programming Update Languages are
able to capture Action LanguagesA, B and C, making them
suitable for describing domains of actions [1].
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Despite their generality concerning the kinds of updates
possible, these LP Update Languages do not provide means
to directly access past states of the evolving knowledge base
i.e. states other than the current one. They languages were
designed for situations where all knowledge updates are
Markovian i.e. determined by the current state of affairs.

However, there are many scenarios that require non-
Markovian updates i.e. updates that depend on conditions
encompassing past states of knowledge.

Suppose that we want to build agents that control user
access for a number of computers at different locations. A
login policy for example may say that after the first failed
login the user is warned by sms and if there is another failed
login the account is blocked. This policy could be expressed
by the following two rules:

sms(U)← �(not sms(U)), fLog(U, IP ).
block(U)← ♦(sms(U)), fLog(U, IP ).

where we assume that fLog(U, IP ) is an external event
representing a failed login by user U from address IP . A
feature of EVOLP is the ability to represent such external
influence on the contents of a knowledge base and its up-
dates. The symbols ♦ and � represent operators similar
to the Past LTL operators where ♦ϕ means that there is a
state in the past where ϕ was true and �ϕ means that ϕ
was true in all past states. Now suppose that we want to
model the updates made by the system administrator. For
example, the new policy consists in blocking a user after
the first failed login attempt if the user has an IP address
from a “bad domain”, and not send him an sms. The new
policy is represented by the following rules:

block(U)← fLog(U, IP ), dom(IP,D).
not sms(U)← fLog(U, IP ), dom(IP,D).

with D instantiated to the domain in question.
Whether a domain is bad or not, however, depends on

the particular agent. In this case, the sys admin may want
to send an update to all agents so that the above rules are
added to each agent’s policy only for domains which are
bad according to the agent’s current history. The sys admin
issues the following update to every agent, saying that the
above new rules are to be asserted if the domain has been
considered a bad one since the last failed attempt:

assert(block(U)← fLog(U, IP ), dom(IP,D))←
S(badDom(D), fLog(U2, IP2)), dom(IP2, D).

assert(not sms(U)← fLog(U, IP ), dom(IP,D))←
S(badDom(D), fLog(U2, IP2)), dom(IP2, D).

where badDom(D) is a predicate defined locally and the
symbol S above represents an operator similar to the Past
LTL operator “since”. The intuitive meaning of S(ψ,ϕ) is
that at some point in the past ϕ was true, and ψ has always

been true since then. The assert construct is one of the
main features of EVOLP which allows one to specify up-
dates to the agent, leaving to its semantics the task of deal-
ing with contradictory rules such as the one that specifies
that an sms should be sent if it is the first failure, and the
one that specifies otherwise if the domain is bad.

The ability to refer to the past is lacking in EVOLP. [12]
suggests that LP Languages of Updates need a prev() predi-
cate to access the previous state. In this paper, we go beyond
that and introduce LTL-like temporal operators that allow
more flexibility in referring to the history of the evolving
knowledge base. We proceed by showing that with the in-
troduction of new propositional variables, it is possible to
embed the extended EVOLP into the original one, demon-
strating that EVOLP itself can already be used for non-
Markovian changes. This embedding proves interesting as
it shows how to use EVOLP for encoding non-Markovian
changes, while shedding light into the relationship between
LP Update Languages and modal temporal logics.

2 Preliminaries

EVOLP [3] is a logic programming language extended
with the special predicate assert/1 used for specifying up-
dates, and with the possibility of having negated rule heads.
An EVOLP program consists of a set of rules of the form
L0 ← L1, . . . , Ln where L0, L1 . . . , Ln are literals (i.e.
propositional atoms possibly preceeded by the negation-
as-failure operator not ) including literals of the assert/1
predicate. An atom assert(R) takes a rule R as an argu-
ment and intuitively represents that the argumentR belongs
to the next program in the evolution.

An EVOLP program containing rules with assert in the
head is capable of going through a sequence of changes
even without influence from outside. External influence
can also be captured in EVOLP. This is done by means of
a sequence of programs each of which represents external
events. The next definitions make these intuitions precise.

Definition 1 Let L be any propositional language (not con-
taining the predicate assert/1). The extended language
Lassert is defined inductively as follows: – All propositional
atoms in L are propositional atoms in Lassert; – If each of
L0, . . . , Ln is a literal in Lassert (i.e. a propositional atom
A or its default negation notA), then L0 ← L1, . . . , Ln is
a generalizedlogic program rule over Lassert; – If R is a
rule over Lassert then assert(R) is a propositional atom of
Lassert; – Nothing else is a propositional atom in Lassert.

An evolving logic program over a language L is a (pos-
sibly infinite) set of logic program rules over Lassert.

Nesting of assert/1 permits updating the knowledge
base with rules that may, in turn, further update it. This lan-
guage alone is enough to model a knowledge base allowing
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for internal updating actions changing it. But EVOLP goes
beyond such self-evolution in that it also allows change to
be caused by external events, where these may be: obser-
vation of facts (or rules) that are perceived at some state;
assertion commands directly imparting the assertion of new
rules on the evolving program. Both can be represented as
EVOLP rules: the former by rules without the assert predi-
cate in the head, and the latter by rules with it. To represent
outside influence as a sequence of EVOLP rules:

Definition 2 Let P be an evolving program over the lan-
guage L. An event sequence over P is a sequence of evolv-
ing programs over L.

Given this syntax, the semantics issue is that of, given
an initial EVOLP program and a sequence of EVOLP pro-
grams as events, determining what is true and what is false
after each of these events. Precisely, the meaning of a se-
quence of EVOLP programs is given by a set of evolution
stable models, each of which is a sequence of interpreta-
tions or states 〈I1, . . . , In〉. Each evolution stable model
describes some possible evolution of one initial program af-
ter a number n of evolution steps, given the events in the
sequence. Each evolution is represented by a sequence of
programs 〈P1, . . . , Pn〉, each program corresponding to a
knowledge state constructed as follows: regarding head as-
serts, whenever the atom assert(Rule) belongs to an inter-
pretation in a sequence, i.e. belongs to a model according
to the stable model semantics of the current program, then
Rule must belong to the program in the next state; asserts
in bodies are treated as any other predicate literals.

Definition 3 An evolution interpretation of length n of an
evolving program P over L is a finite sequence I =
〈I1, I2, . . . , In〉 of sets of propositional atoms of Lassert.
The evolution trace associated with an evolution interpreta-
tion I is the sequence of programs 〈P1, P2, . . . , Pn〉 where
P1 = P and Pi = {R | assert(R) ∈ Ii−1} for 2 ≤ i ≤ n.

The sequences of programs are then treated as in dy-
namic logic programming [4], where the most recent rules
are set in force, and previous rules are valid (by inertia) in-
sofar as possible, i.e. they are kept for as long as they do not
conflict with more recent ones. The semantics of dynamic
logic programs is a generalisation of the answer-set seman-
tics of [22] (in that sense that if the sequence consists of a
single program, the semantics coincides with answer-sets),
and is defined as follows [2]:

Definition 4 Let P = 〈P1, . . . , Pn〉 be a sequence of pro-
grams (or dynamic logic program) over language Lassert.
A set of propositional atoms in Lassert, M , is a dynamic
stable model of P at state s, 1 ≤ s ≤ n iff

M ′ = least([ρs(P)−Rejs(P,M)] ∪Defs(P,M)) and
Defs(P,M) = {notA | @r ∈ ρs(P), H(r) = A,

M � B(r)}

Rejs(P,M) = {r | r ∈ Pi,∃r′ ∈ Pj , i ≤ j ≤ s, r on r′,
M � B(r′)}

and A is an objective literal; ρs(P) denotes the multiset
of all rules appearing in the programs P1, ..., Ps; M ′ =
M ∪ {not A | A 6∈M}; if r is a rule of the form L0 ←
L1, . . . , Ln then H(r) = L0 (dubbed the head of the rule)
and B(r) = L1, . . . , Ln (dubbed the body of the rule); r on
r′ (conflicting rules) iff H(r) = A and H(r′) = notA
or H(r) = notA and H(r′) = A; and least(.) denotes
the least model of the definite program obtained from the
argument program by replacing every default literal notA
by a new atom not A.

Going back to EVOLP, the events received at each state
must be added to the corresponding program of the trace,
before testing the stability condition of stable models of the
evolution interpretation.

Definition 5 (Evolution Stable Model) Let I =
〈I1, ..., In〉 be an evolution interpretation of an EVOLP
program P and 〈P1, P2, . . . , Pn〉 be the corresponding
execution trace. Then I is an evolution stable model of
P given event sequence 〈E1, E2, . . . , En〉 iff for every i
(1 ≤ i ≤ n), Ii is a stable model of 〈P1, P2, . . . , (Pi∪Ei)〉.

3 EVOLP with Temporal Operators

EVOLP programs have the limitation that rules cannot
refer to past states in the evolution of a program. In other
words, they do not allow one to specify behavior that is con-
ditional on the full evolution of the system being modelled.
Despite the fact that the whole evolution is available as a se-
quence of evolving programs, the body of a rule at any state
is always evaluated in that state. In fact, a careful analysis
of the above definition of the semantics of dynamic logic
programs, makes this evident: note that in the definitions of
bothDefs(P,M) andRejs(P,M), rules in previous states
are taken into account, but rule bodies are always evaluated
with respect to a single model M .

Our goal here is to extend the syntax and semantics of
EVOLP to overcome this limitation, defining a new lan-
guage called EVOLPT . Our approach is similar to the ap-
proach in [14] where Basic Action Theories in the Situation
Calculus are generalized with non-Markovian control. In
particular, we extend the syntax of EVOLP with Past LTL
modalities ©(G), ♦(G) �(G), and S(G1, G2), which in-
tuitively mean, respectively: G is true in the previous state;
there is a state in the past in which G is true; G is always
true in the past; and G2 is true at some state in the past, and
since then until the current state G1 is true.

Moreover, we allow arbitrary nesting of these operators
as well as negation-as-failure in front of their arguments.
Unlike not , however, temporal operators are not allowed
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in the head of rules. The only restriction on the body of
rules is that negation is allowed to appear in front of atoms
and temporal operators only. The formal definition of the
language and programs in EVOLPT is as follows.

Definition 6 (EVOLP with Temporal Operators) Let L
be any propositional language (not containing the predi-
cates assert/1, ©/1, ♦/1, S/2 and �/1). The extended
temporal language LassertT and the set of b-literals1 G are
defined inductively as follows: • All propositional atoms in
L are propositional atoms in LassertT and b-literals in G.
• If G1 and G2 are b-literals in G then ©(G1), ♦(G1),
S(G1, G2) and �(G1) are t-formulae2, and are also b-
literals in G. • If G is a t-formula or an atom in LassertT

then notG is a b-literal in G. • If G1 and G2 are b-literals
in G, then (G1, G2) is a b-literal in G. • If L0 is a proposi-
tional atomA in LassertT or its default negation notA, and
each of G1, . . . Gn is a b-literal, then L0 ← G1, . . . , Gn is
a generalised logic program rule over LassertT and G. • If
R is a rule over LassertT then assert(R) is a propositional
atom of LassertT . • Nothing else is a propositional atom in
Lassertor a b-literal in G.

An evolving logic program with temporal operators over
a language L is a (possibly infinite) set of generalised logic
program rules over LassertT and G.

Note that under this definition, e.g. the following is a
legal EVOLPT rule:

assert(a← not♦(b))←
not�(not♦(b, not assert(c← d))).

Notice the nesting of temporal operators and the appearance
of negation, conjunction and assert under the scope of the
temporal operators.
In contradistinction, e.g. the following rules are not al-
lowed: assert(�(b) ← a) ← b. a ← ♦(not (a, b)).
a← not not b.

In the first rule, �(b) appears in the argument rule
�(b) ← a, but temporal operators are not allowed in the
head of rules. The second rule applies negation to a con-
junctive b-literal, and the third rule has double negation. But
negation is only allowed in front of atoms and t-formulae.

As in EVOLP, the definition of the semantics is based
on sequences of interpretations or states 〈I1, . . . , In〉 (or
evolution interpretation). Each interpretation in a sequence
stands for the propositional atoms (ofLassertT ) that are true
at the state, and a sequence stands for a possible evolution
of an initial program after a given number n of evolution
steps. However, whereas in the original EVOLP language
the satisfiability of rule bodies in one such interpretation
Ii can easily be defined in terms of set inclusion—all the

1Intuitively, b-literal stands for body-literal.
2Intuitively, t-formula stands for temporal-formula.

positive atoms must be included in Ii, all the negative ones
excluded—in EVOLPT satisfiability is more elaborate as it
must account for the Past LTL modalities.

Definition 7 (Satisfiability of b-literals) Let I =
〈I1, ..., In〉 be an evolution interpretation of length n
of a program P over LassertT , and let G and G′ be any
b-literals in G. The satisfiability relation is defined as:

I |= A iff A ∈ In ∧A ∈ LassertT

I |= notG iff 〈I1, ..., In〉 6|= G
I |= G,G′ iff 〈I1, ..., In〉 |= G ∧ 〈I1, ..., In〉 |= G′

I |=©(G) iff n ≥ 2 ∧ 〈I1, ..., In−1〉 |= G
I |= ♦(G) iff n ≥ 2 ∧ ∃i < n : 〈I1, ..., Ii〉 |= G
I |= S(G,G′) iff n > 2 ∧ ∃i < n : 〈I1, ..., Ii〉 |= G′∧

∀i < k < n : 〈I1, ..., Ik〉 |= G
I |= �(G) iff ∀i < n : 〈I1, ..., Ii〉 |= G

Given an evolution interpretation, an evolution trace (de-
fined below) represents one of the possible evolutions of the
knowledge base. In EVOLPT , whether an evolution trace is
one of these possible evolutions additionally depends on the
satisfaction of the t-formulae that appear in rules. Towards
formally define evolution traces, we first define an elimina-
tion procedure which evaluates satisfiability of t-formulae
and replaces them with a corresponding truth constant.

Definition 8 (Elimination of Temporal Operators) Let
I = 〈I1, . . . , In〉 be an evolution interpretation and
L0 ← G1, . . . , Gn a generalised logic program rule. The
rule resulting from the elimination of temporal operators
given I, El(I, L0 ← G1, . . . , Gn) is obtained by replacing
by true every t-formula Gt in the body such I |= Gt and
by replacing all remaining t-formulae by false, where
constants true and false are defined, as usual, such that
the former is true in every interpretation and the latter is
not true in any interpretation.

The program resulting from the elimination of temporal
operators given I, El(I, P ) is obtained by applying El to
each of the program’s rules.

An evolution trace is then defined as in Def. 3, except
t-formulae are eliminated by applying El.

Definition 9 (Evolution Trace) Let P be an EVOLPT pro-
gram and I = 〈I1, . . . , In〉 an interpretation. The evo-
lution trace of P under I is the sequence of programs
〈P1, P2, . . . , Pn〉 where P1 = El(〈I1〉, P ) and Pi =
El(〈I1, . . . , Ii〉, {R | assert(R) ∈ Ii−1}) for 2 ≤ i ≤ n.

Since the programs in an evolution trace do not mention
t-formulae, the definition of evolution stable models can be
done in a similar way as in Def. 5, only taking into account
that the temporal operators must also be tested for satisfia-
bility, and eliminated accordingly, from the evolution trace
and also from the external events. Here, events are simply
sequences of EVOLPT programs.
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Definition 10 (Evolution Stable Model with Temp. Ops.)
Let I = 〈I1, . . . , In〉 be an evolution interpretation of
an EVOLPT program P and 〈P1, P2, . . . , Pn〉 be the
corresponding execution trace. Then I is an evolution
stable model of P given event sequence 〈E1, E2, . . . , En〉
iff Ii is a stable model of 〈P1, P2, . . . , (Pi ∪ E∗i )〉 for every
i (1 ≤ i ≤ n), where E∗i = {El(〈I1, . . . , Ii〉, r) | r ∈ Ei}.

Since various evolutions may exist for a given length,
evolution stable models alone do not determine a truth re-
lation. But one such truth relation can be defined, as usual,
based on the intersection of models:

Definition 11 (Stable Models after n Steps given Events)
Let P be an EVOLPT program over the language L. We
say that a set of propositional atoms M over LassertT is a
stable model of P after n steps given the sequence of events
E iff there exist I1, . . . , In−1 such that 〈I1, . . . , In−1,M〉
is an evolution stable model of P given SE. We say that
propositional atom A of LassertT is: • true after n steps
given E iff all stable models after n steps contain A; •
false after n steps given E iff no stable model after n steps
contains A; • unknown after n steps given E otherwise.

It is worth noting that basic properties of Past LTL oper-
ators carry over to EVOLPT . In particular, in EVOLPT , as
in LTL, some of the operators are not strictly needed, since
they can be rewritten in terms of the others:

Proposition 1 Let t I = 〈I1, . . . , In〉 be an evolution sta-
ble model of an EVOLPT program given a sequence of
events E . Then, for every G ∈ G:
• I |= �(G) iff I |= not♦(notG);
• I |= ♦(G) iff I |= S(true,G)

Moreover, it should also be noted that EVOLPT is an ex-
tension of EVOLP in the sense that when no temporal oper-
ators appear in the program and in the sequence of events,
then evolution stable models coincide with those of the orig-
inal EVOLP. As an immediate consequence of this fact, it
can also be noted that EVOLPT coincides with answer-sets
when, moreover, the sequence of events is empty and pred-
icate assert/1 does not occur in the program.

4 Embed Temporal Operators in EVOLP

In this section we show that it is possible to transform
EVOLPT programs into regular EVOLP programs. This
transformation is important for at least two reasons. On one
hand, it shows that EVOLP is expressive enough to deal
with non-Markovian conditions, although not immediately
nor easily. On the other hand, given the existing imple-
mentations of EVOLP, the transformation readily provides
a means to implement EVOLPT , and this way to easily and

directly express non-Markovian conditions over evolving
logic programs3.

Similar transformations have been used for theories of
action in the situation calculus [15] and for temporal queries
in databases [10]. They replace t-formulae with new propo-
sitional atoms and rules that encode the dynamics of the
temporal operators. First we introduce the target language.

Definition 12 (Transformation Language) Let L be any
propositional language, and let LassertT and G be, respec-
tively, the extended language and the set of b-literals given
L. The transformed propositional language L∗ is L aug-
mented with a propositional variable ′G′ for each b-literal
G in G. Here by ′G′ we mean a propositional variable
whose name is the (atomic) string of characters that com-
pose the formula G. Furthermore, it is assumed that none
of these new propositional variables already occur in L.

In fact, as it will become clear in the sequel, the trans-
formation language could be made simpler by adding new
propositional variables only for those b-literals that appear
in either the program or the sequence of events. Indeed, the
aforementioned implementation uses the shorter transfor-
mation language, only adding the rules of the transforma-
tion (below) for those b-literals that appear in the program,
and further adding then to those appearing in the events,
along with the arrival of events. However, since in this paper
we do not focus on the complexity of the transformation, in
order to keep the definition as simple as possible we opted
for not further restricting the transformation language.

Definition 13 (Transformed EVOLP program) Let P be
an EVOLP program with temporal operators over L. Then
Tr(P ) is an EVOLP program (without temporal opera-
tors) in language L∗ obtained from P by replacing every
t-formula G in the body of rules by the new propositional
variable ′G′ and adding the rules:
• assert(′©(G)′)←′ G′. and
assert(not ′© (G)′)← not ′G′.
for every b-literal©(G) appearing in P ;
• assert(′♦(G)′)←′ G′.

for every b-literal ♦(G) appearing in P ;
• assert(′S(G1, G2)′)←′ G′1,′©(G2)′. and
assert(assert(not′S(G1, G2)

′)← not
′
G′1)←

assert(′S(G1, G2)
′).

for every b-literal S(G1, G2) appearing in P ;
• ′�(G)′ ←′ G′, not © true. and
assert(not ′�(G)′)← not ′G′.
for every b-literal �(G) appearing in P ;
•′notG′ ← not ′G′.

for every b-literal notG appearing in P ;
• ′G1, G

′
2 ←′ G′1,′G′2. and

′G2, G
′
1 ←′ G′1,′G′2.

3Implementation available at http://centria.fct.unl.pt/˜jja/updates/
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for every pair of b-literals G1 and G2 appearing in P .

Before establishing the correctness of this transforma-
tion with respect to EVOLPT , it is worth giving some in-
tuition on how the rules added in the transformed program
indeed capture the meaning of the temporal operators.

The rule for ♦(G) guarantees that whenever ′G′ is true
at some state, the fact ′♦(G)′ is added to the subsequent
program. So, since no rule for not ′♦(G)′ is added in the
transformation, and no rule head in the EVOLPT program
contains ♦(G), from then onwards ′♦(G)′ is true. The first
rule for©(G) is similar to the one for ♦(G). But the second
adds the fact not © (G) in case notG is true. So, ′© (G)′

will be true in the state after the one in which ′G′ is true,
and will become false in a state immediately after one in
which ′G′ is false, as desired.

The rules for �(G) are also easy to explain, and in fact
result from the dualisation of the ♦(G) operator. More in-
teresting are the rules for S(G1, G2). The first simply caters
for the condition for which ′S(G1, G2)′ starts to be true: it
adds a fact for it, in the state immediately after one in which
′G′1 is true and which is preceded by one in which ′G′2 is
true. With the addition of this fact, according to the seman-
tics of EVOLP, ′S(G1, G2)′ will remain true by inertia in
subsequent states until some rule for not ′S(G1, G2)′. We
want this to happen until a state immediately after one in
which ′G′1 becomes false. This effect is obtained with the
second rule by adding, along with the fact ′S(G1, G2)′, a
rule stating that the falsity of ′G′1 leads to the assertion of
not ′S(G1, G2)′.

The nesting of temporal operators is dealt with in the
transformation by adding the above rules for all possible
nestings. However, since this nesting can be combined with
conjunction and negation, as per the definition of the syn-
tax of EVOLPT (Def. 6), care must be taken with the new
propositional variables that stand for those conjunctions and
negations. For this, the last rules of the transformation are
added, guaranteeing that a new atom with a conjunction is
true in case the b-literals in the conjunction are true, and
that a new atom with the negation of a b-literal is true in
case the negation of the b-literal is true.

These intuitions form the basis to prove the next the-
orem. The proof, that cannot be added here due to lack
of space, proceeds by induction on the length of the se-
quence of interpretations, showing that the transformed
atoms corresponding to t-formulae satisfied in each state,
and some additional assert-literals guarantying the assertion
of t-formulae, belong to the interpretation state.

Theorem 2 (Embedding of Temporal Operator) Let P
be an evolving logic program with temporal operators over
language L, and let Tr(P ) be the transformed evolving
logic program over language L∗. Then M = 〈I1, . . . , In〉
is an evolving stable model of P iff there exists an evolving

stable model M ′ = 〈I ′1, . . . , I ′n〉 of Tr(P ) such that
I1 = (I ′1∩Lassert), . . . , In = (I ′n∩Lassert).

Since events are also EVOLPT programs, we can easily
deal with events by applying the same transformation. First,
when transforming the main program P , we take into ac-
count the t-formulae in the event sequence. Then the trans-
formation is applied to the events themselves.

Definition 14 (Transformed EVOLP and Event Sequence)
Let P be an evolving program with temporal operators
and 〈E1, . . . , Ek〉 be an event sequence, both over L.
Then Tr(P, 〈E1, . . . , Ek〉) is an EVOLP program (without
temporal operators) in language L∗ obtained from P by
applying exactly the same procedure as in Definition 13,
only replacing “appearing in P ” by “either appearing in P
or in any of the Ei’s”.

Theorem 3 (Embedding of Temp. Op. with Events)
Let P be an evolving logic program with temporal
operators over language L, and let Tr(P ) be the trans-
formed evolving logic program over language L∗. Then
M = 〈I1, . . . , In〉 is an evolving stable model of P
given 〈E1, . . . , Ek〉 iff there exists an evolving stable
model M ′ = 〈I ′1, . . . , I ′n〉 of Tr(P, 〈E1, E2, . . . , Ek〉)
given the sequence 〈Tr(E1), . . . , T r(Ek)〉 such that
I1 = (I ′1∩Lassert), . . . , In = (I ′n∩Lassert).

5 Related Work and Conclusions

We have introduced the language EVOLPT for repre-
senting and reasoning about evolving knowledge bases with
non-Markovian dynamics. The language generalizes its
predecessor EVOLP by providing rules that may refer to
the past states in a knowledge base evolution through Past
LTL modalities. In addition to defining a syntax and se-
mantics for the new language, we show, through a syntactic
transformation, that an evolving logic program in EVOLPT

can be compiled into a regular program in EVOLP. The lat-
ter is thus proved to be expressive enough to capture non-
Markovian, evolving knowledge bases as defined above.

The use of temporal logic in computer science is
widespread. Here we would like to mention some of the
most closely related work. Eiter et al. [13] present a very
general framework for reasoning about evolving knowledge
bases. This abstract framework allows the study of different
approaches to logic programming knowledge base update,
including those specified in LUPS, EPI, and KABUL. For
the purpose of verifying properties of evolving knowledge
bases in this language, they define a syntax and semantics
for Computational Tree Logic (CTL), a branching tempo-
ral logic, modalities. While in [13] temporal logic is only
used for verifying meta-level properties, in EVOLPT tem-
poral operators are used in the object language to specify
the behavior of an evolving knowledge base.
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In the area of reasoning about actions, [24] describes an
extension of the action languageAwith Past LTL operators,
which allows formalizing actions whose effects depend on
the evolution of the described domain. On a similar vein but
in the more expressive situation calculus, [14] shows a gen-
eralization of Reiter’s Basic Action Theories for systems
with non-Markovian dynamics. Both of these formalisms
provide languages that can refer to past states in the evo-
lution of a dynamic system. However, the focus of these
formalisms is on solving the projection problem, i.e., rea-
soning about what will be true in the resulting state after
executing a sequence of actions. On the other hand, the fo-
cus in the EVOLPT language is specifying updates to the
system’s knowledge base itself due to internal or external
influence. For example, a system formalized in EVOLPT

would be able to modify the description of its own behav-
ior, which is not possible in A or in Basic Action Theories.

Also designed for specifying dynamic systems using
temporal logic is METATEM [7]. A program in this lan-
guage consists of rules of the form P ⇒ F , where P is
a Past LTL formula and F is a Future LTL formula. In-
tuitively, such a rule evaluated in a state specifies that if
the evolution of the system up to this state satisfies P , then
the system must proceed in such a way that F be satis-
fied. EVOLPT does not include Future LTL connectives
(our future work) so METATEM is more expressive in that
sense. On the other hand, METATEM does not have a con-
struct for updates and it is monotonic, unlike EVOLPT . In
[6] the authors propose a non-monotonic extension of LTL
with the purpose of specifying agent’s goals. Whereas [6]
share with our work the the use of LTL operators and non-
monotonicity, like METATEM it provides future operators,
but the non-monotonic character in [6] is given by limited
explicit exceptions to rules, thus appearing to be less gen-
eral than our proposal.
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